Menu
Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids.
Exploration and reserves, storage, imports and exports, production, prices, sales.
Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.
Energy use in homes, commercial buildings, manufacturing, and transportation.
Reserves, production, prices, employment and productivity, distribution, stocks, imports and exports.
Includes hydropower, solar, wind, geothermal, biomass and ethanol.
Uranium fuel, nuclear reactors, generation, spent fuel.
Comprehensive data summaries, comparisons, analysis, and projections integrated across all energy sources.
Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, congressional reports.
Financial market analysis and financial data for major energy companies.
Greenhouse gas data, voluntary reporting, electric power plant emissions.
Maps, tools, and resources related to energy disruptions and infrastructure.
State energy information, including overviews, rankings, data, and analyses.
Maps by energy source and topic, includes forecast maps.
International energy information, including overviews, rankings, data, and analyses.
Regional energy information including dashboards, maps, data, and analyses.
Tools to customize searches, view specific data sets, study detailed documentation, and access time-series data.
EIA's free and open data available as API, Excel add-in, bulk files, and widgets
Come test out some of the products still in development and let us know what you think!
EIA's open source code, available on GitHub.
Forms EIA uses to collect energy data including descriptions, links to survey instructions, and additional information.
Sign up for email subscriptions to receive messages about specific EIA products
Subscribe to feeds for updates on EIA products including Today in Energy and What's New.
Short, timely articles with graphics on energy, facts, issues, and trends.
Lesson plans, science fair experiments, field trips, teacher guide, and career corner.
EIA is continuing normal publication schedules and data collection until further notice.
On average, utility-scale solar photovoltaic (PV) power plants in the United States operated at about 25% of their electricity generating capacity, based on an average of annual values from 2014 through 2017. This measurement, known as a plant’s capacity factor, is based on the plant’s electricity generation as a percentage of its summer capacity value for plants with a full-year of operation, as expressed in terms of alternating current (AC) power. States in the Southwest United States tend to have better solar resources—and higher capacity factors—than those in the Southeast or Northeast.
Arizona’s utility-scale solar PV plants performed better than those in any other state, achieving a 29.1% capacity factor from 2014 through 2017. Arizona’s installed utility-scale solar PV capacity was 1.7 gigawatts (GW) at the end of 2017, about 7% of the national total. Utah’s 0.9 GW of solar PV plants ranked second, with a 29.0% capacity factor. California’s utility-scale solar PV plants—totaling 9.4 GW, or 37% of the national total—ranked third with an average capacity factor of 28.4%.
By comparison, states in the Southeast, such as Georgia and North Carolina, had substantially lower PV capacity factors than southwestern states at similar latitudes. States in the Northeast, such as New Jersey and Massachusetts, had even lower capacity factors.
Three main factors largely determine a solar PV power plant’s capacity factor: resource quality, tracking capabilities, and inverter-sizing considerations. Sunnier locations, such as in the southwestern United States, have more hours of direct, high-angle sunlight per year, and as a result, the solar PV modules can capture more sunlight.
The addition of equipment to track the sun’s angle, either within a day (single-axis tracking) or across seasons (dual-axis tracking), further helps to maximize energy input into the PV system. Larger inverters—which convert the direct current produced by solar PV panels to grid-ready AC power—can also help to increase the total output of a system.
Principal contributors: Fred Mayes, Chris Namovicz
Tags: capacity factor, solar, map