Menu
Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids.
Exploration and reserves, storage, imports and exports, production, prices, sales.
Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.
Energy use in homes, commercial buildings, manufacturing, and transportation.
Reserves, production, prices, employment and productivity, distribution, stocks, imports and exports.
Includes hydropower, solar, wind, geothermal, biomass and ethanol.
Uranium fuel, nuclear reactors, generation, spent fuel.
Comprehensive data summaries, comparisons, analysis, and projections integrated across all energy sources.
Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, congressional reports.
Financial market analysis and financial data for major energy companies.
Greenhouse gas data, voluntary reporting, electric power plant emissions.
Maps, tools, and resources related to energy disruptions and infrastructure.
State energy information, including overviews, rankings, data, and analyses.
Maps by energy source and topic, includes forecast maps.
International energy information, including overviews, rankings, data, and analyses.
Regional energy information including dashboards, maps, data, and analyses.
Tools to customize searches, view specific data sets, study detailed documentation, and access time-series data.
EIA's free and open data available as API, Excel add-in, bulk files, and widgets
Come test out some of the products still in development and let us know what you think!
EIA's open source code, available on GitHub.
Forms EIA uses to collect energy data including descriptions, links to survey instructions, and additional information.
Sign up for email subscriptions to receive messages about specific EIA products
Subscribe to feeds for updates on EIA products including Today in Energy and What's New.
Short, timely articles with graphics on energy, facts, issues, and trends.
Lesson plans, science fair experiments, field trips, teacher guide, and career corner.
Grid-scale energy storage technologies are currently limited in use but may see increased adoption in the future. Currently, the vast majority of existing storage is pumped hydroelectric storage. A wide variety of technologies can serve an array of functions around the electric power system, from assuring power quality to deferring electric power system infrastructure upgrades to integrating variable generation from wind and solar generators.
Unlike other commodities, there are not significant stocks or inventories of electricity to cushion differences in supply and demand. Electricity must be produced at the level of demand at any given moment, and demand changes continually. Without stored electricity to call on, electric power system operators must increase or decrease generation to meet the changing demand in order to maintain acceptable levels of power quality and reliability.
Electricity markets are structured around this reality. Currently, generating capacity is set aside as reserve capacity every hour of every day to provide a buffer against fluctuations in demand. In that way, if the reserve capacity is needed, it can be dispatched or sent to the grid without delay. There are costs, at times significant, to requiring the availability of generating capacity to provide reserves and regulation of power quality. However, economic storage of electricity could decrease or eliminate the need for generating capacity to fill that role.
Various types of existing or potential storage technologies are adapted for different uses. All storage technologies are designed to respond to changes in the demand for electricity, but on varying timescales.
Cost is currently one of the major barriers to wider implementation of energy storage technologies. Additionally, the structure of a given electricity market may not assign explicit economic benefits to the functions storage can serve. However, energy storage research is an active field; a recent report from Ernst and Young details significant venture capital investment in energy storage technologies in the third quarter of 2011.
Upcoming articles will discuss specific examples of electricity storage technologies functioning on both short and long timescales, and their current applications.
Tags: consumption/demand, electricity, storage, transmission