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Data/Analysis Questions for
Industry

From policymakers

* How much storage is deployed? How much is planned?

 What s the cost of storage?

* How much storage do we need?

 Whatis the emissions impact of storage?

 What are the system / ratepayer benefits of storage deployment?

From grid operators
 What s the contribution of storage to resource adequacy?
* What s the value of storage services?

From others
e What is the cost structure of storage?
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Deployment Data Sources

Grid Baterie:

Deployment data “
. EIA 860-M
. WoodMackenzie R,
. Platts
. Utility IRPs

. State Program Results

. RTO Interconnection Queues

s (EIA Sep 2019) Eximsoniont]

Saskatoons

Calgary

Key issues

. Lack of capture of key details
MWh

Hybridization

. DER storage often overlooked
BTM hard to capture o
Dx infrastructural storage not “generation”
Unclear reporting lines for leased projects

Los. mmzs-.'
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Chihuahuas

Recommendations
. Include MWh in reporting

. Develop methods for estimating DER storage via state energy
offices, utility interconnection, other sources

. Track utility IRPs and RTO interconnection queues for forward
estimates
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WA Puget Sound 2017
NC Duke Carolinas 2017
g R Y4 UNS Energy Corp 2017
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BATTERY CAPACITY AND PROJECTS IN ISO CONNECTION QUEUES
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*In PJM and AZ, battery w/solar PV refers to the solar PV capacity
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Note: Interconnection queues as of May 2019. Partial coverage of NV, AZ, CO, NM, WY, AL, GA, FL. 1.5 GW of projects in ERCOT are reported as capacity but not as number of projects.
Some standalone projects in ERCOT/ISO-NE/MIS0O/SPP are probably co-located with solar PV but each asset applies for its own interconnection.

Source: S&P Global Platts Analytics
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Cost Data Sources

Capital Cost Comparison—Nameplate Capacity ($/kW)

Cost se ri es d ata In addition to analyzing storage costs on a levelized basis, Lazard’s LCOS also evaluates system costs on the basis of nameplate capacity
. NREL ATB ctow sy
* WoodMackenzie 100w 2000 Figure 1: Installed Costs of Large-Format Lithium-lon Battery Energy Storage, 4-Hour System®
. Lazard i roe
. BloombergNEF £ F———
. Utility IRPs 3
. (10 MW /60 MiWh) §1,784 _ §3474
. Utility RFP Results T
. State Program Results U120 w-sw
b Publlshed PPAs - HS 2016
. Key issues —— BNV ELE0T Y s it 1
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- Hardware vs. installed S Lazard (Lowy 2017
- Project boundary (e.g., interconnection)
- Price vs. cost
- Capex vs. LCOE
. Insufficient reflection of variety of characteristics
- Lithium Va riants o2011’ 2018 2019 2020 2021 2022
- BTM vs. Dx-connected vs. Tx-connected g s
- Standalone vs. hybrid g i::
. Lack of data on early techs (e.g., Zn, V, etc) g $140
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Analysis of System Need

Different rationales for “need”

. For an X% clean power system?

. For economic replacement of retiring capacity?

. For avoiding curtailment?

. For electrification of transportation / T&D — Regulatory Lift
infrastructure?

*  Assumptions affect “need” Rapid

. What price/duration/functions of storage are assumed in Battery
available? Costs

. What substitute technologies are assumed available?

Coal Ramping
=
Demand Responze CT and CCGT

*  Recent analyses of note

Cost

. NREL omnt Viarket
. Utility IRPs iy —
* NGO (GridLab, UCS) .
. Academic
RE Forecasting 1 Option costs are system-dependent |
. Recommendations | Reirttes |
. Study storage in a standalone context, not only as SYSTEM FLEXIBLE
Sty storsge v =
. ﬁtuﬁy st)orage in different clean energy mixes (not just gt
igh RE
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Analysis of Reliability Contribution

Recent analyses

NREL
NYISO, SPP, CAISO ELCC studies

Key issues

Existing analytical methods can capture storage but
may be computationally intensive (e.g., ELCC)

Significant assumptions involved in analytical
methods

- Sensitive to dispatch assumptions

— Contribution of storage changes with supply
mix, load profile = requires forecasting of
system

Lack of hybrid resource approach
- Hybrids not “standard”
Utility planning models still catching up

- Rarely use sub-hourly modeling (or not even
chronological hourly)

Characteristics may not be captured in reliability
analyses (e.g., response time / availability)

Recommendations

Undertake ELCC analysis across grid regions,
determine need for longer-duration storage

Develop hybrid resource capacity qualification
guidelines

Develop metric to reflect system flexibility needs for
reliability, akin to LOLE convention

Storage Penetration
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e 8-hour using Capacity Value Methodology
® 4-hour using Capacity Value Methodology

* B-hour using Capacity Value Methodology
e 2-hour using Capacity Value Methodology
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Valuation Methods

Energy Storage Values
Quantification robustness varies CATEGORY -
. Established "o e , " oo, e
- Wholesale Services (Energy / Capacity / Ancillary Services) - %
- Demand charge management ( s
. Less established < o
—  Avoided Tx/Dx by . . 8
—  Avoided emissions . ol .
—  Price effects = RN R ke
—  Voltage/local reliability Z ool § 1 il % i
. Not yet established ] ¢ 3| L ; o i
—  Resilience a'.l 819 /.]e] ‘..':.;.:

- Option value

5020

. Many actors working to establish methods

. State PUCs / Energy Offices - "
. EPRI - &jr ° w
*  NSPM for DER T
. Recommendations i g 3 ’? - CR "
. Collect catalogue of valuation methods for core power system . BoEEH 8 G ® &
benefits ) g g g : ﬁ o o = :D,
. Develop menu of methods & guide for selecting appropriate . - é 86 BoB oo, i,
method for valuing resilience EREEEEEREERE {81} "
. Develop option value method for storage as non-wires alternative i s TSy e )




Emissions Analysis

7 8

Storage can reduce emissions via several paths

Avoiding fossil generation (peakers) & related
infrastructure

Integrating higher levels of renewables with
deliverability

Enabling more rooftop solar, EVs, and other DERs
Making the grid more efficient

Recent studies on negative emissions impacts

Often based on unchanging system (no coal
retirements)

Round-trip losses offset by enabling greater RE
deployment

Models assume arbitrage behavior that may not
reflect actual operations

Recommendations

Conduct empirical study of storage impact on system

dispatch and emissions

Create datasets on marginal unit GHG emissions for
energy deliveries by location/hour/season

Develop analytical methods for non-GHG impacts
(NOx, SOx, PM)

Storage CO,

emissions
(kg/MWh of
delivered energy)
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Figure 9. Average net CO, emissions resulting from the operation of the base-case storage device at 48 locations in the U.S. under perfect
information on future electricity prices under 2014 MEFs (left) and under modified MEFs representing combined-cycle natural gas as the off-peak
marginal generator (right). The storage parameters, prices, and operation are the same in both panels, but the MEFs for the right panel are modified
so that the maximum emissions factor between 10 pm, and 7 am. is 410 kg of CO,/MWh. Regions that already have low marginal off-peak
emissions (California, New York, and New England) have a very small shift. In the Midwest, however, storage goes from having the highest net
emissions to having negative net emissions because it charges from efficient combined-cycle plants and displaces peaker coal and natural gas units.
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Fig. 7. Displaced peaker plant (a) CO; and (b) NO, emissions for four technology
sets: demand response shifting to nighttime load, energy storage shifting to

nighttime load, energy storage charged with NGCC, and on-site renewables and Enr\gy
efficiency. Greatest benefits are seen for on-site renewables and efficiency. The Sm page
range bars mark the 5-95% range for peaker plants, illustrating the value of tar-

geting high-rate emitters, particularly for avoiding NO, emissions. AESDCIB!’.IO!"\



System Benefit Analyses

Storage Value Proposition

Recent analyses to note S
. Massachusetts DOER (2016) sgmsr:“‘m -
. NYSERDA (2018) o TotalStorage
«  Virginia DMME (2019) O
e Can identify gap between system cost and value to . o
system/ratepayers A1
*  Informs state policy interventions T |
 (Can include non-traditional power sector
considerations
. Jobs/economic development e e
. Public health/environment Figure 12: Storage Value Prapostion
e Recommendations e —
*  Develop more robust data on jobs & economic activity from 3B e
grid storage sector T oY I E—— -
. Fund states to undertake and/or develop supporting £ 8 Jannual et geneis Sm) o 28200 52810 3M8)0
methods for system benefit analyses | B PPl TS mrors
S S |Annual Net Benefits ($M) $ 2993 |3$ 56.66 |$ 5804 |3 2527
£, 4 |Efficient Storage Level (MW) 397 396 329 9
£ 3 |Annual Net Benefits ($M) $ 1993 |$ 3744 |$ 2530|$ (0.17)

gure ES-1. Summary of estimated potential electricity system benefits from energy storage deployed in
1e Commonwealth of Virginia. Results are summarized by High-Cost and Low-Cost scenarios for storage
deployment and by duration of storage resources



Cost Structure

Understanding components can
inform policy

* Focus of applied R&D

* Betterinform trade and industrial /RN ‘

e  Assist with standardizing cost v B
reporting

Power Control Electronics

BATTERY
CELLS

BATTERY
PACKS

Fire detection and

. P extinguishing system
BATTERY

MODULES

Connection:
Electrical & Other
Balance of Plant

Battery cabinets and
battery management system
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* Not yet well understood for T
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non-battery technologies o
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* Critical for longer-duration storage w
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. Questions? Feedback?

Jason Burwen, VP of Policy
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