Definitions of Petroleum Products and Other Terms
(Revised June 2021)

Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH3-(CH2)n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol).

Alkylation. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline.

Alkylation. A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of an acid catalyst, usually sulfuric acid or hydrofluoric acid. The product, alkylate, an isoparaffin, has high octane value and is blended with motor and aviation gasoline to improve the antiknock value of the fuel.

All Other Motor Gasoline Blending Components. See Motor Gasoline Blending Components.

API Gravity. An arbitrary scale expressing the gravity or density of liquid petroleum products. The measuring scale is calibrated in terms of degrees API; it may be calculated in terms of the following formula:

\[
\text{Degrees API} = \frac{141.5}{\text{sp. gr. @ 60° F}} - 131.5
\]

The higher the API gravity, the lighter the compound. Light crudes generally exceed 38 degrees API and heavy crudes are commonly labeled as all crudes with an API gravity of 22 degrees or below. Intermediate crudes fall in the range of 22 degrees to 38 degrees API gravity.

Aromatics. Hydrocarbons characterized by unsaturated ring structures of carbon atoms. Commercial petroleum aromatics are benzene, toluene, and xylene (BTX).

Asphalt. A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

ASTM. The acronym for the American Society for Testing and Materials.

Atmospheric Crude Oil Distillation. The refining process of separating crude oil components at atmospheric pressure by heating to temperatures of about 600 degrees Fahrenheit to 750 degrees Fahrenheit (depending on the nature of the crude oil and desired products) and subsequent condensing of the fractions by cooling.

Aviation Gasoline (Finished). A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline.

Aviation Gasoline Blending Components. Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xyylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

Barrel. A unit of volume equal to 42 U.S. gallons.

Barrels Per Calendar Day. The amount of input that a distillation facility can process under usual operating conditions. The amount is expressed in terms of capacity during a 24-hour period and reduces the maximum processing capability of all units at the facility under continuous operation (see Barrels per Stream Day) to account for the following limitations that may delay, interrupt, or slow down production:

- the capability of downstream facilities to absorb the output of crude oil processing facilities of a given refinery. No reduction is made when a planned distribution of intermediate streams through other than downstream facilities is part of a refinery’s normal operation;

- the types and grades of inputs to be processed;

- the types and grades of products expected to be manufactured;

- the environmental constraints associated with refinery operations;

- the reduction of capacity for scheduled downtime due to such conditions as routine inspection, maintenance, repairs, and turnaround; and

- the reduction of capacity for unscheduled downtime due to such conditions as mechanical problems, repairs, and slowdowns.

Barrels Per Stream Day. The maximum number of barrels of input that a distillation facility can process within a 24-hour period when running at full capacity under optimal crude and product slate conditions with no allowance for downtime.

Benzene (C6H6). An aromatic hydrocarbon present in small proportion in some crude oils and made commercially from petroleum by the catalytic reforming of naphthenes in petroleum naphtha. Also made from coal in the manufacture of coke. Used as a solvent, in manufacturing detergents, synthetic fibers, and petrochemicals and as a component of high-octane gasoline.

Biomass-Based Diesel Fuel. Biodiesel and other renewable diesel fuel or diesel fuel blending components derived from biomass, but excluding renewable diesel fuel coprocessed with petroleum...
feedstocks.

Blending Components. See Motor or Aviation Gasoline Blending Components.

Blending Plant. A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline.

Bonded Petroleum Imports. Petroleum imported and entered into Customs bonded storage. These imports are not included in the import statistics until they are: (1) withdrawn from storage free of duty for use as fuel for vessels and aircraft engaged in international trade; or (2) withdrawn from storage with duty paid for domestic use.

BTX. The acronym for the commercial petroleum aromatics benzene, toluene, and xylene. See individual categories for definitions.

Bulk Station. A facility used primarily for the storage and/or marketing of petroleum products which has a total bulk storage capacity of less than 50,000 barrels and receives its petroleum products by tank car or truck.

Bulk Terminal. A facility used primarily for the storage and/or marketing of petroleum products which has a total bulk storage capacity of 50,000 barrels or more and/or receives petroleum products by tanker, barge, or pipeline.

Butane (C\(_4\)H\(_{10}\)). A normally gaseous straight-chain or branch-chain hydrocarbon extracted from natural gas or refinery gas streams. It includes normal butane and refinery-grade butane and is designated in ASTM Specification D1835 and Gas Processors Association Specifications for commercial butane.

Normal Butane (C\(_4\)H\(_{10}\)). A normally gaseous straight-chain hydrocarbon that is a colorless paraffinic gas which boils at a temperature of 31.1 degrees Fahrenheit and is extracted from natural gas or refinery gas streams.

Refinery-Grade Butane (C\(_4\)H\(_{10}\)). A refinery-produced stream that is composed predominantly of normal butane and/or isobutane and may also contain propane and/or natural gasoline. These streams may also contain significant levels of olefins and/or fluorides contamination.

Butylene (C\(_2\)H\(_4\)). An olefinic hydrocarbon recovered from refinery processes.

Captive Refinery Oxygenate Plants. Oxygenate production facilities located within or adjacent to a refinery complex.

Catalytic Cracking. The refining process of breaking down the larger, heavier, and more complex hydrocarbon molecules into simpler and lighter molecules. Catalytic cracking is accomplished by the use of a catalytic agent and is an effective process for increasing the yield of gasoline from crude oil. Catalytic cracking processes fresh feeds and recycled feeds.

Fresh Feeds. Crude oil or petroleum distillates which are being fed to processing units for the first time.

Recycled Feeds. Feeds that are continuously fed back for additional processing.

Catalytic Hydrocracking. A refining process that uses hydrogen and catalysts with relatively low temperatures and high pressures for converting middle boiling or residual material to high-octane gasoline, reformer charge stock, jet fuel, and/or high grade fuel oil. The process uses one or more catalysts, depending upon product output, and can handle high sulfur feedstocks without prior desulfurization.

Catalytic Hydro treating. A refining process for treating petroleum fractions from atmospheric or vacuum distillation units (e.g., naphthas, middle distillates, reformer feeds, residual fuel oil, and heavy gas oil) and other petroleum (e.g., cat cracked naphtha, coker naphtha, gas oil, etc.) in the presence of catalysts and substantial quantities of hydrogen. Hydrotreating includes desulfurization, removal of substances (e.g., nitrogen compounds) that deactivate catalysts, conversion of olefins to paraffins to reduce gum formation in gasoline, and other processes to upgrade the quality of the fractions.

Catalytic Reforming. A refining process using controlled heat and pressure with catalysts to rearrange certain hydrocarbon molecules, thereby converting paraffinic and naphthenic type hydrocarbons (e.g., low-octane gasoline boiling range fractions) into petrochemical feedstocks and higher octane stocks suitable for blending into finished gasoline. Catalytic reforming is reported in two categories. They are:

- **Low Pressure.** A processing unit operating at less than 225 pounds per square inch gauge (PSIG) measured at the outlet separator.
- **High Pressure.** A processing unit operating at either equal to or greater than 225 pounds per square inch gauge (PSIG) measured at the outlet separator.

Charge Capacity. The input (feed) capacity of the refinery processing facilities.

Coal. A readily combustible black or brownish-black rock whose composition, including inherent moisture, consists of more than 50 percent by weight and more than 70 percent by volume of carbonaceous material. It is formed from plant remains that have been compacted, hardened, chemically altered, and metamorphosed by heat and pressure over geologic time.

Commercial Kerosene-Type Jet Fuel. See Kerosene-Type Jet Fuel.

Conventional Blendstock for Oxygenate Blending (CBOB). See Motor Gasoline Blending Components.

Conventional Gasoline. See Motor Gasoline (Finished).

Crude Oil. A mixture of hydrocarbons that exists in liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities. Depending upon the characteristics of the crude stream, it may also include:

- Small amounts of hydrocarbons that exist in gaseous phase in natural underground reservoirs but are liquid at atmospheric pressure after being recovered from oil well (casinghead) gas in lease separators and are subsequently commingled
with the crude stream without being separately measured. Lease condensate recovered as a liquid from natural gas wells in lease or field separation facilities and later mixed into the crude stream is also included;

Small amounts of nonhydrocarbons produced from oil, such as sulfur and various metals;

Drip gases, and liquid hydrocarbons produced from tar sands, oil sands, gilsonite, and oil shale.

Liquids produced at natural gas processing plants are excluded. Crude oil is refined to produce a wide array of petroleum products, including heating oils; gasoline, diesel, jet fuels; lubricants; asphalt; ethane, propane, and butane; and many other products used for their energy or chemical content.

Crude oil is considered as either domestic or foreign, according to the following:

Domestic. Crude oil produced in the United States or from its Aouter continental shelf” as defined in 43 USC 1331.

Foreign. Crude oil produced outside the United States. Imported Athabasca hydrocarbons (tar sands from Canada) are included.

Crude Oil, Refinery Receipts. Receipts of domestic and foreign crude oil at a refinery. Includes all crude oil in transit except crude oil in transit by pipeline. Foreign crude oil is reported as a receipt only after entry through customs. Crude oil of foreign origin held in bonded storage is excluded.

Crude Oil Losses. Represents the volume of crude oil reported by petroleum refineries as being lost in their operations. These losses are due to spills, contamination, fires, etc. as opposed to refinery processing losses.

Crude Oil Production. The volume of crude oil produced from oil reservoirs during given periods of time. The amount of such production for a given period is measured as volumes delivered from lease storage tanks (i.e., the point of custody transfer) to pipelines, trucks, or other media for transport to refineries or terminals with adjustments for (1) net differences between opening and closing lease inventories, and (2) basic sediment and water (BS&W).

Crude Oil Qualities. Refers to two properties of crude oil, the sulfur content and API gravity, which affect processing complexity and product characteristics.

Delayed Coking. A process by which heavier crude oil fractions can be thermally decomposed under conditions of elevated temperatures and pressure to produce a mixture of lighter oils and petroleum coke. The light oils can be processed further in other refinery units to meet product specifications. The coke can be used either as a fuel or in other applications such as the manufacturing of steel or aluminum.

Desulfurization. The removal of sulfur, as from molten metals, petroleum oil, or flue gases. Petroleum desulfurization is a process that removes sulfur and its compounds from various streams during the refining process. Desulfurization processes include catalytic hydrotreating and other chemical/physical processes such as adsorption. Desulfurization processes vary based on the type of stream treated (e.g., naphtha, distillate, heavy gas oil, etc.) and the amount of sulfur removed (e.g., sulfur reduction to 10 ppm). See Catalytic Hydrotreating.

Disposition. The components of petroleum disposition are stock change, crude oil losses, refinery inputs, exports, and products supplied for domestic consumption.

Distillate Fuel Oil. A general classification for one of the petroleum fractions produced in conventional distillation operations. It includes diesel fuels and fuel oils. Products known as No. 1, No. 2, and No. 4 diesel fuel are used in on-highway diesel engines, such as those in trucks and automobiles, as well as off-highway engines, such as those in railroad locomotives and agricultural machinery. Products known as No. 1, No. 2, and No. 4 fuel oils are used primarily for space heating and electric power generation.

No. 1 Distillate. A light petroleum distillate that can be used as either a diesel fuel or a fuel oil.

No. 1 Diesel Fuel. A light distillate fuel oil that has a distillation temperature of 550 degrees Fahrenheit at the 90-percent recovery point and meets the specifications defined in ASTM Specification D 975. It is used in high speed diesel engines generally operated under frequent speed and load changes, such as those in city buses and similar vehicles. See No. 1 Distillate.

No. 1 Fuel Oil. A light distillate fuel oil that has distillation temperatures of 400 degrees Fahrenheit at the 10-percent recovery point and 550 degrees Fahrenheit at the 90-percent recovery point and meets the specifications defined in ASTM Specification D 396. It is used primarily as fuel for portable outdoor stoves and portable outdoor heaters. See No. 1 Distillate.

No. 2 Distillate. A petroleum distillate that can be used as either a diesel fuel or a fuel oil.

No. 2 Diesel Fuel. A distillate fuel oil that has a distillation temperature of 640 degrees Fahrenheit at the 90-percent recovery point and meets the specifications defined in ASTM Specification D 975. It is used in high speed diesel engines that are generally operated under uniform speed and load conditions, such as those in railroad locomotives, trucks, and automobiles. See No. 2 Distillate.

Low Sulfur No. 2 Diesel Fuel. No. 2 diesel fuel that has a sulfur level no higher than 0.05 percent by weight. It is used primarily in motor vehicle diesel engines for on-highway use.

High Sulfur No. 2 Diesel Fuel. No. 2 diesel fuel that has a sulfur level above 0.05 percent by weight.

No. 2 Fuel Oil (Heating Oil). A distillate fuel oil that has a distillation temperature of 640 degrees Fahrenheit at the 90-percent recovery point and meets the specifications defined in ASTM Specification D 396. It is used in...
atomizing type burners for domestic heating or for moderate capacity commercial/industrial burner units. See No. 2 Distillate.

No. 4 Fuel. A distillate fuel oil made by blending distillate fuel oil and residual fuel oil stocks. It conforms to ASTM Specification D 396 or Federal Specification VV-F-815C and is used extensively in industrial plants and in commercial burner installations that are not equipped with preheating facilities. It also includes No. 4 diesel fuel used for low- and medium-speed diesel engines and conforms to ASTM Specification D 975.

No. 4 Diesel Fuel. See No. 4 Fuel.

No. 4 Fuel Oil. See No. 4 Fuel.

Electricity (Purchased). Electricity purchased for refinery operations that is not produced within the refinery complex.

Ending Stocks. Primary stocks of crude oil and petroleum products held in storage as of 12 midnight on the last day of the month. Primary stocks include crude oil or petroleum products held in storage at (or in) leases, refineries, natural gas processing plants, pipelines, tank farms, and bulk terminals that can store at least 50,000 barrels of petroleum products or that can receive petroleum products by tanker, barge, or pipeline. Crude oil that is in-transit by water from Alaska, or that is stored on Federal leases or in the Strategic Petroleum Reserve is included. Primary Stocks exclude stocks of foreign origin that are held in bonded warehouse storage.

ETBE (Ethyl tertiary butyl ether) (CH₃)₂COC₃H₇. An oxygenate blend stock formed by the catalytic etherification of isobutylene with ethanol.

Ethane (C₂H₆). A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -127.48 degrees Fahrenheit. It is extracted from natural gas and refinery gas streams.

Ether. A generic term applied to a group of organic chemical compounds composed of carbon, hydrogen, and oxygen, characterized by an oxygen atom attached to two carbon atoms (e.g., methyl tertiary butyl ether).

Ethylene (C₂H₄). An olefinic hydrocarbon recovered from refinery processes or petrochemical processes. Ethylene is used as a petrochemical feedstock for numerous chemical applications and the production of consumer goods.

Exports. Shipments of crude oil and petroleum products from the 50 States and the District of Columbia to foreign countries, Puerto Rico, the Virgin Islands, and other U.S. possessions and territories.

Field Production. Represents crude oil production on leases, natural gas liquids production at natural gas processing plants, new supply of other hydrocarbons/oxygenates and motor gasoline blending components, and fuel ethanol blended into finished motor gasoline.

Flexicoking. A thermal cracking process which converts heavy hydrocarbons such as crude oil, tar sands bitumen, and distillation residues into light hydrocarbons. Feedstocks can be any pumpeable hydrocarbons including those containing high concentrations of sulfur and metals.

Fluid Coking. A thermal cracking process utilizing the fluidized-solids technique to remove carbon (coke) for continuous conversion of heavy, low-grade oils into lighter products.

Fresh Feed Input. Represents input of material (crude oil, unfinished oils, natural gas liquids, other hydrocarbons and oxygenates or finished products) to processing units at a refinery that is being processed (input) into a particular unit for the first time.

Examples:

1. Unfinished oils coming out of a crude oil distillation unit which are input into a catalytic cracking unit are considered fresh feed to the catalytic cracking unit.

2. Unfinished oils coming out of a catalytic cracking unit being looped back into the same catalytic cracking unit to be reprocessed are not considered fresh feed.

Fuel Ethanol (C₂H₅OH). An anhydrous alcohol (ethanol with less than 1% water) intended for gasoline blending as described in Oxygenates definition.

Fuels Solvent Deasphalting. A refining process for removing asphalt compounds from petroleum fractions, such as reduced crude oil. The recovered stream from this process is used to produce fuel products.

Gas Oil. A liquid petroleum distillate having a viscosity intermediate between that of kerosene and lubricating oil. It derives its name from having originally been used in the manufacture of illuminating gas. It is now used to produce distillate fuel oils and gasoline.

Gasohol. A blend of finished motor gasoline containing alcohol (generally ethanol but sometimes methanol) at a concentration of 10 percent or less by volume. Data on gasohol that has at least 2.7 percent oxygen, by weight, and is intended for sale inside carbon monoxide nonattainment areas are included in data on oxygenated gasoline. See Oxygenates.

Gasoline Blending Components. Naphthas which will be used for blending or compounding into finished aviation or motor gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus.

Gasoline Treated as Blendstock (GTAB). See Motor Gasoline Blending Components.

Gross Input to Atmospheric Crude Oil Distillation Units. Total input to atmospheric crude oil distillation units. Includes all crude oil, lease condensate, natural gas plant liquids, unfinished oils, liquefied refinery gases, slop oils, and other liquid hydrocarbons produced from tar sands, gilsonite, and oil shale.

Heavy Gas Oil. Petroleum distillates with an approximate boiling
range from 651 degrees Fahrenheit to 1000 degrees Fahrenheit.

High-Sulfur Distillate Fuel Oil. Distillate fuel oil having sulfur content greater than 500 ppm.

Hydrogen. The lightest of all gases, occurring chiefly in combination with oxygen in water; exists also in acids, bases, alcohols, petroleum, and other hydrocarbons.

Idle Capacity. The component of operable capacity that is not in operation and not under active repair, but capable of being placed in operation within 30 days; and capacity not in operation but under active repair that can be completed within 90 days.

Imported Crude Oil Burned As Fuel. The amount of foreign crude oil burned as a fuel oil, usually as residual fuel oil, without being processed as such. Imported crude oil burned as fuel includes lease condensate and liquid hydrocarbons produced from tar sands, gilsonite, and oil shale.

Imports. Receipts of crude oil and petroleum products into the 50 States and the District of Columbia from foreign countries, Puerto Rico, the Virgin Islands, and other U.S. possessions and territories.

Isobutane (C₈H₁₈). A normally gaseous branch-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of 10.9 degrees Fahrenheit. It is extracted from natural gas or refinery gas streams.

Isobutylene (C₈H₁₀). An olefinic hydrocarbon recovered from refinery processes or petrochemical processes.

Isohexane (C₇H₁₄). A saturated branch-chain hydrocarbon. It is a colorless liquid that boils at a temperature of 156.2 degrees Fahrenheit.

Isomerization. A refining process which alters the fundamental arrangement of atoms in the molecule without adding or removing anything from the original material. Used to convert normal butane into isobutane (C₈H₁₈), an alklylation process feedstock, and normal pentane and hexane into isopentane (C₅H₁₈) and isohexane (C₆H₁₄), high-octane gasoline components.

Isopentane. See Natural Gasoline and Isopentane.

Kerosene. A light petroleum distillate that is used in space heaters, cook stoves, and water heaters and is suitable for use as a light source when burned in wick-fed lamps. Kerosene has a maximum distillation temperature of 400 degrees Fahrenheit at the 10-percent recovery point, a final boiling point of 572 degrees Fahrenheit, and a minimum flash point of 100 degrees Fahrenheit. Included are No. 1-K and No. 2-K, the two grades recognized by ASTM Specification D 3699 as well as all other grades of kerosene called range or stove oil, which have properties similar to those of No. 1 fuel oil. See Kerosene-Type Jet Fuel.

Kerosene-Type Jet Fuel. A kerosene-based product having a maximum distillation temperature of 400 degrees Fahrenheit at the 10-percent recovery point and a final maximum boiling point of 572 degrees Fahrenheit and meeting ASTM Specification D 1655 and Military Specifications MIL-T-5624P and MIL-T-83133D (Grades JP-5 and JP-8). It is used for commercial and military turbojet and turboprop aircraft engines.

Commercial. Kerosene-type jet fuel intended for use in commercial aircraft.

Military. Kerosene-type jet fuel intended for use in military aircraft.

Lease Condensate. A mixture consisting primarily of pentanes and heavier hydrocarbons which is recovered as a liquid from natural gas in lease separation facilities. This category excludes natural gas liquids, such as butane and propane, which are recovered at downstream natural gas processing plants or facilities. See Natural Gas Liquids.

Light Gas Oils. Liquid Petroleum distillates heavier than naphtha, with an approximate boiling range from 401 degrees Fahrenheit to 650 degrees Fahrenheit.

Liquefied Petroleum Gases (LPG). A group of hydrocarbon-based gases derived from crude oil refining or natural gas fractionation. They include: ethane, ethylene, propane, propylene, normal butane, butylene, isobutane, and isobutylene. For convenience of transportation, these gases are liquefied through pressurization.

Liquefied Refinery Gases (LRG). Liquefied petroleum gases fractionated from refinery or still gases. Through compression and/or refrigeration, they are retained in the liquid state. The reported categories are ethane/ethylene, propane/propylene, normal butane/butylene, and isobutane/isobutylene. Excludes still gas.

Low-Sulfur Distillate Fuel Oil. Distillate fuel oil having sulfur content greater than 15 ppm to 500 ppm. Low sulfur distillate fuel oil also includes product with sulfur content equal to or less than 15 ppm if the product is intended for pipeline shipment and the pipeline has a sulfur specification below 15 ppm.

Lubricants. Substances used to reduce friction between bearing surfaces or as process materials either incorporated into other materials used as processing aids in the manufacture of other products, or used as carriers of other materials. Petroleum lubricants may be produced either from distillates or residues. Lubricants include all grades of lubricating oils from spindle oil to cylinder oil and those used in greases.

Merchant Oxygenate Plants. Oxygenate production facilities that are not associated with a petroleum refinery. Production from these facilities is sold under contract or on the spot market to refiners or other gasoline blenders.

Methanol (CH₃OH). A light, volatile alcohol intended for gasoline blending as described in Oxygenate definition.

Middle Distillates. A general classification of refined petroleum products that includes distillate fuel oil and kerosene.

Military Kerosene-Type Jet Fuel. See Kerosene-Type Jet Fuel.

Miscellaneous Products. Includes all finished products not classified elsewhere (e.g., petrolatum, lube refining byproducts (aromatic extracts and tars), absorption oils, ram-jet fuel, petroleum rocket fuels, synthetic natural gas feedstocks, and specialty oils). Note:
Beginning with January 2004 data, naphtha-type jet fuel is included in Miscellaneous Products.

Motor Gasoline (Finished). A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in spark-ignition engines. Motor gasoline, as defined in ASTM Specification D 4814 or Federal Specification VV-G-1690C, is characterized as having a boiling range of 122 to 158 degrees Fahrenheit at the 10 percent recovery point to 365 to 374 degrees Fahrenheit at the 90 percent recovery point. “Motor Gasoline” includes conventional gasoline; all types of oxygenated gasoline, including gasohol; and reformulated gasoline, but excludes aviation gasoline. Volumetric data on blending components, such as oxygenates, are not counted in data on finished motor gasoline until the blending components are blended into the gasoline. Note: E85 is included only in volumetric data on finished motor gasoline production and other components of product supplied.

Conventional Gasoline. Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Note: This category excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock.

Ed 55 and Lower. Finished conventional motor gasoline blended with a maximum of 55 volume percent denatured fuel ethanol.

Greater than Ed55. Finished conventional motor gasoline blended with denatured fuel ethanol where the volume percent of denatured fuel ethanol exceeds 55%.

OPRG. “Oxygenated Fuels Program Reformulated Gasoline” is reformulated gasoline which is intended for use in an oxygenated fuels program control area.

Oxygenated Gasoline (Including Gasohol). Oxygenated gasoline includes all finished motor gasoline, other than reformulated gasoline, having oxygen content of 2.0 percent or higher by weight. Gasohol containing a minimum 5.7 percent ethanol by volume is included in oxygenated gasoline. Oxygenated gasoline was reported as a separate product from January 1993 until December 2003 inclusive. Beginning with monthly data for January 2004, oxygenated gasoline is included in conventional gasoline. Historical data for oxygenated gasoline excluded Federal Oxygenated Program Reformulated Gasoline (OPRG). Historical oxygenated gasoline data also excluded other reformulated gasoline with a seasonal oxygen requirement regardless of season.

Reformulated Gasoline. Finished gasoline formulated for use in motor vehicles, the composition and properties of which meet the requirements of the reformulated gasoline regulations promulgated by the U.S. Environmental Protection Agency under Section 211(k) of the Clean Air Act. It includes gasoline produced to meet or exceed emissions performance and benzene content standards of federal-program reformulated gasoline even though the gasoline may not meet all of the composition requirements (e.g., oxygen content) of federal-program reformulated gasoline. Note: This category includes Oxygenated Fuels Program Reformulated Gasoline (OPRG). Reformulated gasoline excludes Reformulated Blendstock for Oxygenate Blending (RBOB) and Gasoline Treated as Blendstock (GTAB).

Reformulated (Blended with Alcohol). Reformulated gasoline blended with an alcohol component (e.g., fuel ethanol) at a terminal or refinery to raise the oxygen content.

Reformulated (Blended with Ether). Reformulated gasoline blended with an ether component (e.g., methyl tertiary butyl ether) at a terminal or refinery to raise the oxygen content.

Reformulated (Non-Oxygenated). Reformulated gasoline without added ether or alcohol components.

Motor Gasoline Blending. Mechanical mixing of motor gasoline blending components, and oxygenates when required, to produce finished motor gasoline. Finished motor gasoline may be further mixed with other motor gasoline blending components or oxygenates, resulting in increased volumes of finished motor gasoline and/or changes in the formulation of finished motor gasoline (e.g., conventional motor gasoline mixed with MTBE to produce oxygenated motor gasoline).

Motor Gasoline Blending Components. Naphthas (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. These components include reformulated gasoline blendstock for oxygenate blending (RBOB) but exclude oxygenates (alcohols, ethers), butane, and pentanes plus. Note: Oxygenates are reported as individual components and are included in the total for other hydrocarbons, hydrogens, and oxygenates.

Conventional Blendstock for Oxygenate Blending (CBOB). Conventional gasoline blendstock intended for blending with oxygenates downstream of the refinery where it was produced. CBOB must become conventional gasoline after blending with oxygenates. Motor gasoline blending components that require blending other than with oxygenates to become finished conventional gasoline are reported as All Other Motor Gasoline Blending Components. Excludes reformulated blendstock for oxygenate blending (RBOB).

Gasoline Treated as Blendstock (GTAB). Non-certified Foreign Refinery gasoline classified by an importer as blendstock to be either blended or reclassified with respect to reformulated or conventional gasoline. GTAB was classified on EIA surveys as either reformulated or conventional based on emissions performance and the intended end use in data through the end of December 2009. Designation of GTAB as reformulated or conventional was discontinued beginning with data for January 2010. GTAB data for January 2010 and later months is presented as conventional...
motor gasoline blending components when reported as a subset of motor gasoline blending components.

Reformulated Blendstock for Oxygenate Blending (RBOB). Specially produced reformulated gasoline blendstock intended for blending with oxygenates downstream of the refinery where it was produced. Includes RBOB used to meet requirements of the Federal reformulated gasoline program and other blendstock intended for blending with oxygenates to produce finished gasoline that meets or exceeds emissions performance requirements of Federal reformulated gasoline (e.g., California RBOB and Arizona RBOB). Excludes conventional gasoline blendstocks for oxygenate blending (CBOB).

RBOB for Blending with Alcohol. Motor gasoline blending components intended to be blended with an alcohol component (e.g., fuel ethanol) at a terminal or refinery to raise the oxygen content. RBOB product detail by type of oxygenate was discontinued effective with data for January 2010. Beginning with data for January 2010, RBOB was reported as a single product.

RBOB for Blending with Ether. Motor gasoline blending components intended to be blended with an ether component (e.g., methyl tertiary butyl ether) at a terminal or refinery to raise the oxygen content. RBOB product detail by type of oxygenate was discontinued effective with data for January 2010. Beginning with data for January 2010, RBOB was reported as a single product.

All Other Motor Gasoline Blending Components. Naphtha (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus.

MTBE (Methyl tertiary butyl ether) (CH₃)₂COCH₃. An ether intended for gasoline blending as described in Oxygenate definition.

Naphtha. A generic term applied to a petroleum fraction with an approximate boiling range between 122 degrees Fahrenheit and 400 degrees Fahrenheit.

Naphtha Less Than 401°F. See Petrochemical Feedstocks.

Naphtha-Type Jet Fuel. A fuel in the heavy naphtha boiling range having an average gravity of 52.8 degrees API, 20 to 90 percent distillation temperatures of 290 degrees to 470 degrees Fahrenheit, and meeting Military Specification MIL-T-5624L (Grade JP-4). It is used primarily for military turbojet and turboprop aircraft engines because it has a lower freezing point than other aviation fuels and meets engine requirements at high altitudes and speeds. Note: Beginning with January 2004 data, naphtha-type jet fuel is included in Miscellaneous Products.

Natural Gas. A gaseous mixture of hydrocarbon compounds, the primary one being methane.

Natural Gas Field Facility. A field facility designed to process natural gas produced from more than one lease for the purpose of recovering condensate from a stream of natural gas; however, some field facilities are designed to recover propane, normal butane, pentanes plus, etc., and to control the quality of natural gas to be marketed.

Natural Gas Liquids. Those hydrocarbons in natural gas that are separated from the gas as liquids through the process of absorption, condensation, adsorption, or other methods in gas processing or cycling plants. Generally such liquids consist of propane and heavier hydrocarbons and are commonly referred to as lease condensate, natural gasoline, and liquefied petroleum gases. Natural gas liquids include natural gas plant liquids (primarily ethane, propane, butane, and isobutane; see Natural Gas Plant Liquids) and lease condensate (primarily pentanes produced from natural gas at lease separators and field facilities; see Lease Condensate).

Natural Gas Plant Liquids. Those hydrocarbons in natural gas that are separated as liquids at natural gas processing plants, fractionating and cycling plants, and, in some instances, field facilities. Lease condensate is excluded. Products obtained include ethane; liquefied petroleum gases (propane, butanes, propane-butane mixtures, ethane-propane mixtures); isopentane; and other small quantities of finished products, such as motor gasoline, special naphthas, jet fuel, kerosene, and distillate fuel oil.

Natural Gas Processing Plant. Facilities designed to recover natural gas liquids from a stream of natural gas that may or may not have passed through lease separators and/or field separation facilities. These facilities control the quality of the natural gas to be marketed. Cycling plants are classified as gas processing plants.

Natural Gasoline and Isopentane. A mixture of hydrocarbons, mostly pentanes and heavier, extracted from natural gas, that meets vapor pressure, end-point, and other specifications for natural gasoline set by the Gas Processors Association. Includes isopentane which is a saturated branch-chain hydrocarbon, (C₅H₁₂), obtained by fractionation of natural gasoline or isomerization of normal pentane.

Net Receipts. The difference between total movements into and total movements out of each PAD District by pipeline, tanker, and barge.

Normal Butane. See Butane.

OPEC. The Organization of the Petroleum Exporting Countries (OPEC) was founded in Baghdad, Iraq, with the signing of an agreement in September 1960 by five countries namely Islamic Republic of Iran, Iraq, Kuwait, Saudi Arabia and Venezuela. They were to become the Founder Members of the Organization. These countries were later joined by Qatar (1961), Indonesia (1962), Libya (1962), the United Arab Emirates (1967), Algeria (1969), Nigeria (1971), Ecuador (1973), Gabon (1975), Angola (2007), Equatorial Guinea (2017) and Congo (2018). Ecuador suspended its membership in December 1992, rejoined OPEC in October 2007, but decided to withdraw its membership of OPEC effective 1 January 2020.
Indonesia suspended its membership in January 2009, reactivated it again in January 2016, but decided to suspend its membership once more at the 171st Meeting of the OPEC Conference on 30 November 2016. Gabon terminated its membership in January 1995. However, it rejoined the Organization in July 2016. Qatar terminated its membership on 1 January 2019.

Operable Capacity. The amount of capacity that, at the beginning of the period, is in operation; not in operation and not under active repair, but capable of being placed in operation within 30 days; or not in operation but under active repair that can be completed within 90 days. Operable capacity is the sum of the operating and idle capacity and is measured in barrels per calendar day or barrels per stream day.

Operable Utilization Rate. Represents the utilization of the atmospheric crude oil distillation units. The rate is calculated by dividing the gross input to these units by the operable refining capacity of the units.

Operating Capacity. The component of operable capacity that is in operation at the beginning of the period.

Operating Utilization Rate. Represents the utilization of the atmospheric crude oil distillation units. The rate is calculated by dividing the gross input to these units by the operating refining capacity of the units.

Other Oils Equal To or Greater Than 401 F. Other oils with a boiling range equal to or greater than 401 degrees Fahrenheit that is intended for use as a petrochemical feedstock.

Fuel Ethanol. Blends of up to 10 percent by volume anhydrous ethanol (200 proof) (commonly referred to as the “gasohol waiver”).

Methanol. Blends of methanol and gasoline-grade tertiary butyl alcohol (GTBA) such that the total oxygen content does not exceed 3.5 percent by weight and the ratio of methanol to GTBA is less than or equal to 1. It is also specified that this blended fuel must meet ASTM volatility specifications (commonly referred to as the “ARCO” waiver).

Blends of up to 5.0 percent by volume methanol with a minimum of 2.5 percent by volume cosolvent alcohols having a carbon number of 4 or less (i.e., ethanol, propanol, butanol, and/or GTBA). The total oxygen must not exceed 3.7 percent by weight, and the blend must meet ASTM volatility specifications as well as phase separation and alcohol purity specifications (commonly referred to as the “DuPont” waiver).

MTBE (Methyl tertiary butyl ether). Blends up to 15.0 percent by volume MTBE which must meet the ASTM D4814 specifications. Blenders must take precautions that the blends are not used as base gasolines for other oxygenated blends (commonly referred to as the “Sun” waiver).

Persian Gulf. The countries that comprise the Persian Gulf are: Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates.

Petrochemical Feedstocks. Chemical feedstocks derived from petroleum principally for the manufacture of chemicals, synthetic rubber, and a variety of plastics. The categories reported are “Naphtha Less Than 401° F” and “Other Oils Equal To or Greater Than 401° F.”

Naphtha Less Than 401° F. A naphtha with a boiling range of less than 401 degrees Fahrenheit that is intended for use as a petrochemical feedstock.

Other Oils Equal To or Greater Than 401° F. Oils with a boiling range equal to or greater than 401 degrees Fahrenheit that are intended for use as a petrochemical feedstock.

Petroleum Administration for Defense (PAD) Districts. Geographic aggregations of the 50 States and the District of Columbia into five districts by the Petroleum Administration for Defense in 1950. These districts were originally defined during World War II for purposes of administering oil allocation.

Petroleum Coke. A residue high in carbon content and low in hydrogen that is the final product of thermal decomposition in the condensation process in cracking. This product is reported as marketable coke or catalyst coke. The conversion is 5 barrels (of 42 U.S. gallons each) per short ton. Coke from petroleum has a heating value of 6.024 million Btu per barrel.

Catalyst Coke. In many catalytic operations (e.g., catalytic cracking) carbon is deposited on the catalyst, thus deactivating the catalyst. The catalyst is reactivated by burning off the carbon, which is used as a fuel in the refining process. This carbon or coke is not recoverable in a concentrated form.

Marketable Coke. Those grades of coke produced in delayed or fluid cokers which may be recovered as relatively pure carbon. This “green” coke may be sold as is or further purified by calcining.

Petroleum Products. Petroleum products are obtained from the processing of crude oil (including lease condensate), natural gas, and other hydrocarbon compounds. Petroleum products include unfinished oils, liquefied petroleum gases, pentanes plus, aviation gasoline, motor gasoline, naphtha-type jet fuel, kerosene-type jet...
fuel, kerosene, distillate fuel oil, residual fuel oil, petrochemical feedstocks, special naphthas, lubricants, waxes, petroleum coke, asphalt, road oil, still gas, and miscellaneous products.

Pipeline (Petroleum). Crude oil and product pipelines used to transport crude oil and petroleum products respectively, (including interstate, intrastate, and intracompany pipelines) within the 50 States and the District of Columbia.

Plant Condensate. One of the natural gas liquids, mostly pentanes and heavier hydrocarbons, recovered and separated as liquids at gas inlet separators or scrubbers in processing plants.

Processing Gain. The volumetric amount by which total output is greater than input for a given period of time. This difference is due to the processing of crude oil into products which, in total, have a lower specific gravity than the crude oil processed.

Processing Loss. The volumetric amount by which total refinery output is less than input for a given period of time. This difference is due to the processing of crude oil into products which, in total, have a higher specific gravity than the crude oil processed.

Product Supplied, Crude Oil. Crude oil burned on leases and by pipelines as fuel.

Production Capacity. The maximum amount of product that can be produced from processing facilities.

Products Supplied. Approximately represents consumption of petroleum products because it measures the disappearance of these products from primary sources, i.e., refineries, natural gas processing plants, blending plants, pipelines, and bulk terminals. In general, product supplied of each product in any given period is computed as follows: field production, plus refinery production, plus imports, plus unaccounted for crude oil, (plus net receipts when calculated on a PAD District basis), minus stock change, minus crude oil losses, minus refinery inputs, minus exports.

Propane (C\textsubscript{3}H\textsubscript{8}). A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -43.67 degrees Fahrenheit. It is extracted from natural gas or refinery gas streams. It includes all products designated in ASTM Specification D1835 and Gas Processors Association Specifications for commercial propane and HD-5 propane.

Propylene (C\textsubscript{3}H\textsubscript{6}). An olefinic hydrocarbon recovered from refinery processes or petrochemical processes.

Propylene (C\textsubscript{3}H\textsubscript{6}) (nonfuel use). Propylene that is intended for use in nonfuel applications such as petrochemical manufacturing. Nonfuel use propylene includes chemical-grade propylene, polymer-grade propylene, and trace amounts of propylene. Nonfuel use propylene also includes the propylene component of propane/propylene mixes where the propylene will be separated from the mix in a propane/propylene splitting process. Excluded is the propylene component of propane/propylene mixes where the propylene component of the mix is intended for sale into the fuel market.

Refinery. An installation that manufactures finished petroleum products from crude oil, unfinished oils, natural gas liquids, other hydrocarbons, and oxygenates.

Refinery-Grade Butane. See Butane.

Refinery Input, Crude Oil. Total crude oil (domestic plus foreign) input to crude oil distillation units and other refinery processing units (cokers, etc.).

Refinery Input, Total. The raw materials and intermediate materials processed at refineries to produce finished petroleum products. They include crude oil, products of natural gas processing plants, unfinished oils, other hydrocarbons and oxygenates, motor gasoline and aviation gasoline blending components and finished petroleum products.

Refinery Production. Petroleum products produced at a refinery or blending plant. Published production of these products equals refinery production minus refinery input. Negative production will occur when the amount of a product produced during the month is less than the amount of that same product that is reprocessed (input) or reclassified to become another product during the same month. Refinery production of unfinished oils, and motor and aviation gasoline blending components appear on a net basis under refinery input.

Refinery Yield. Represents the percent of finished product produced from input of crude oil, hydrogen, and other hydrocarbons, and net input of unfinished oils. Except for finished motor gasoline, finished aviation gasoline, and distillate fuel oil, EIA calculates refinery yield equal to net production of a finished petroleum product divided by the sum of input of crude oil, hydrogen, other hydrocarbons, and net input of unfinished oils. In the case of finished motor gasoline, subtract input of natural gas liquids, fuel ethanol, oxygenates, and net input of motor gasoline blending components from net production of finished motor gasoline and then divide by the sum of input of crude oil, hydrogen, other hydrocarbons, and net input of unfinished oils. In the case of finished aviation gasoline, subtract net input of aviation gasoline blending components from net production of finished aviation gasoline and then divide by the sum of input of crude oil, hydrogen, other hydrocarbons, and net input of unfinished oils. In the case of distillate fuel oil, subtract input of renewable fuels except fuel ethanol (including input of biodiesel, renewable diesel fuel, and other renewable fuels) from distillate fuel oil net production and then divide by the sum of input of crude oil, hydrogen, other hydrocarbons, and net input of unfinished oils. Prior to data for January 2009, EIA calculated refinery yields (except for finished motor gasoline) equal to finished product net production divided by the sum of input of crude oil and net input of unfinished oils. EIA calculated refinery yield of finished motor gasoline equal to net production of finished motor gasoline minus the sum of input of natural gas liquids, other hydrocarbons and oxygenates, and net input of motor gasoline blending components divided by the sum of input of crude oil and net input of unfinished oils.

Reformulated Blendstock for Oxygenate Blending (RBOB). See Motor Gasoline Blending Components.

Reformulated Gasoline. See Motor Gasoline (Finished).
Renewable Fuels (Other). Fuels and fuel blending components, except biomass-based diesel fuel, renewable diesel fuel, and fuel ethanol, produced from renewable biomass.

Residual Fuel Oil. A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuels and lighter hydrocarbons are distilled away in refinery operations. It conforms to ASTM Specifications D 396 and D 975 and Federal Specification VF-F-815C. No. 5, a residual fuel oil of medium viscosity, is also known as Navy Special and is defined in Military Specification MIL-F-859E, including Amendment 2 (NATO Symbol F-770). It is used in steam-powered vessels in government service and inshore power plants. No. 6 fuel oil includes Bunker C fuel oil and is used for the production of electric power, space heating, vessel bunkering, and various industrial purposes.

Residuum. Residue from crude oil after distilling off all but the heaviest components, with a boiling range greater than 1000 degrees Fahrenheit.

Road Oil. Any heavy petroleum oil, including residual asphalts and bitumen used as a dust palliative and surface treatment on roads and highways. It is generally produced in six grades from 0, the most liquid, to 5, the most viscous.

Shell Storage Capacity. The design capacity of a petroleum storage tank which is always greater than or equal to working storage capacity. Special Naphthas. All finished products within the naphtha boiling range that are used as paint thinners, cleaners, or solvents. These products are refined to a specified flash point. Special naphthas include all commercial hexane and cleaning solvents conforming to ASTM Specification D1836 and D484, respectively. Naphthas to be blended or marketed as motor gasoline or aviation gasoline, or that are to be used as petrochemical and synthetic natural gas (SNG) feedstocks are excluded.

Steam (Purchased). Steam, purchased for use by a refinery, that was not generated from within the refinery complex.

Still Gas (Refinery Gas). Any form or mixture of gases produced in refineries by distillation, cracking, reforming, and other processes. The principal constituents are methane, ethane, ethylene, normal butane, butylene, propane, propylene, etc. Still gas is used as a refinery fuel and a petrochemical feedstock. The conversion factor is 6 million BTU’s per fuel oil equivalent barrel.

Stock Change. The difference between stocks at the beginning of the reporting period and stocks at the end of the reporting period. Note: A negative number indicates a decrease (i.e., a drawdown) in stocks and a positive number indicates an increase (i.e., a buildup) in stocks during the reporting period.

Sulfur. A yellowish nonmetallic element, sometimes known as “brimstone.” It is present at various levels of concentration in many fossil fuels whose combustion releases sulfur compounds that are considered harmful to the environment. Some of the most commonly used fossil fuels are categorized according to their sulfur content, with lower sulfur fuels usually selling at a higher price. Note: No. 2 Distillate fuel is currently reported as having either a 0.05 percent or lower sulfur level for on-highway vehicle use or a greater than 0.05 percent sulfur level for off-highway use, home heating oil, and commercial and industrial uses. Residual fuel, regardless of use, is classified as having either no more than 1 percent sulfur or greater than 1 percent sulfur. Coal is also classified as being low-sulfur at concentrations of 1 percent or less or high-sulfur at concentrations greater than 1 percent.

Supply. The components of petroleum supply are field production, refinery production, imports, and net receipts when calculated on a PAD District basis.

TAME (Tertiary amyl methyl ether) \((\text{CH}_3\text{C}_2\text{H}_4\text{COCH}_3\)) An oxygenate blend stock formed by the catalytic etherification of isoamylene with methanol.

Tank Farm. An installation used by gathering and trunk pipeline companies, crude oil producers, and terminal operators (except refineries) to store crude oil.

Tanker and Barge. Vessels that transport crude oil or petroleum products. Data are reported for movements between PAD Districts; from a PAD District to the Panama Canal; or from the Panama Canal to a PAD District.

TBA (Tertiary butyl alcohol) \((\text{CH}_3\text{C}_4\text{H}_9\text{COH}\)). An alcohol primarily used as a chemical feedstock, a solvent or feedstock for isobutylene production for MTBE; produced as a co-product of propylene oxide production or by direct hydration of isobutylene.

Thermal Cracking. A refining process in which heat and pressure are used to break down, rearrange, or combine hydrocarbon molecules. Thermal cracking includes gas oil, visbreaking, fluid coking, delayed coking, and other thermal cracking processes (e.g., flexicoking). See individual categories for definition.

Toluene \((\text{C}_7\text{H}_8\)). Colorless liquid of the aromatic group of petroleum hydrocarbons, made by the catalytic reforming of petroleum naphthas containing methyl cyclohexane. A high-octane gasoline-blending agent, solvent, and chemical intermediate, base for TNT.

Ultra-Low Sulfur Distillate Fuel Oil. Distillate fuel oil having sulfur content of 15 ppm or lower. Ultra-low sulfur distillate fuel oil that will be shipped by pipeline must satisfy the sulfur specification of the shipping pipeline if the pipeline specification is below 15 ppm. Distillate fuel oil intended for pipeline shipment that fails to meet a pipeline sulfur specification that is below 15 ppm will be classified as low-sulfur distillate fuel oil.

Unaccounted for Crude Oil. Represents the arithmetic difference between the calculated supply and the calculated disposition of crude oil. The calculated supply is the sum of crude oil production plus imports minus changes in crude oil stocks. The calculated disposition of crude oil is the sum of crude oil input to refineries, crude oil exports, crude oil burned as fuel, and crude oil losses.

Unfinished Oils. All oils requiring further processing, except those requiring only mechanical blending. Unfinished oils are produced by partial refining of crude oil and include naphthas and lighter oils,
kerosene and light gas oils, heavy gas oils, and residuum.

Unfractionated Streams. Mixtures of unsegregated natural gas liquid components excluding those in plant condensate. This product is extracted from natural gas.

United States. The United States is defined as the 50 States and the District of Columbia.

Vacuum Distillation. Distillation under reduced pressure (less than atmospheric) which lowers the boiling temperature of the liquid being distilled. This technique with its relatively low temperatures prevents cracking or decomposition of the charge stock.

Visbreaking. A thermal cracking process in which heavy atmospheric or vacuum-still bottoms are cracked at moderate temperatures to increase production of distillate products and reduce viscosity of the distillation residues.

Wax. A solid or semi-solid material at 77 degrees Fahrenheit consisting of a mixture of hydrocarbons obtained or derived from petroleum fractions, or through a Fischer-Tropsch type process, in which the straight-chained paraffin series predominates. This includes all marketable wax, whether crude or refined, with a congealing point (ASTM D 938) between 80 (or 85) and 240 degrees Fahrenheit and a maximum oil content (ASTM D 3235) of 50 weight percent.

Working Storage Capacity. The difference in volume between the maximum safe fill capacity and the quantity below which pump suction is ineffective (bottoms).

Xylene (C₆H₄(CH₃)₂). Colorless liquid of the aromatic group of hydrocarbons made the catalytic reforming of certain naphthenic petroleum fractions. Used as high-octane motor and aviation gasoline blending agents, solvents, chemical intermediates. Isomers are metaxylene, orthoxylene, paraxylene.