Residential Demand Module of the National Energy Modeling System: Model Documentation

May 2017
This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies.
Contents

Update Information ... 4
Introduction ... 5
 Purpose of this report .. 5
 Model summary ... 5
Archival media ... 6
Model contact .. 6
Report organization .. 7
Chapter 1: Model Purpose ... 8
 Module objectives .. 8
 Module input and output ... 8
 Relationship to other models ... 12
Chapter 2: Model Rationale ... 14
 Theoretical approach .. 14
 General model assumptions ... 15
 Legislation-specific model assumptions ... 16
 Technology-specific modeling assumptions ... 17
Model Structure .. 20
 Structural overview ... 20
 Fortran subroutine descriptions .. 25
Appendix A: Input Parameters ... 31
Appendix B: Detailed Mathematical Description ... 53
Appendix C: Bibliography ... 134
Appendix D: Data Quality .. 135
Tables

Table 1. Categorization of key variables ..11
Table 2. Mapping of fuel variables ..12
Table 3. Services and equipment in NEMS Residential Demand Module21
Table 4. Primary NEMS Residential Demand Module Subroutines29
Table B-1. Definition of Subscripts ...53
Table B-2. Categorization of tracked equipment by vintage and survival/replacement type ...66
Table B-3. Categorization of equipment unit energy consumption (UEC) by category of housing unit ...66

Figures

Figure 1. Relationship to other NEMS Modules ...13
Figure 2. Weibull and linear equipment survival rate functions55
Figure 3. Penetration rate of distributed generation into new construction for selected years to positive cumulative net cash flow128
Update Information

This edition of the *Residential Demand Module of the National Energy Modeling System: Model Documentation* reflects changes made to the module since the previous iteration of this report. These changes include the following:

- Incorporating new equipment efficiency standards, including standards for furnace fans and external power supplies, as well as a voluntary agreement for set-top boxes (AEO2015)
- Updating cost and performance assumptions for major end-use equipment (AEO2015)
- Revising and refining market niches for distributed generation to more accurately reflect solar insolation and marginal prices at the sub-Census division level (AEO2015)
- Modeling the impacts of energy efficiency expected with the implementation of the Environmental Protection Agency’s Clean Power Plan (AEO2016)
- Adding energy efficiency rebate modeling capability for major end-use equipment (AEO2015)
- Adding energy efficiency rebate modeling capability for distributed generation equipment (AEO2016)
- Updating solar photovoltaic generation calibration using latest version of PVWatts software (AEO2016)
- Extending modeling projection horizon through 2050 (AEO2017)
- Incorporating the option to use ZIP code-level hurdle models of solar photovoltaic systems (AEO2016), calibrated to historical capacity levels by U.S. Census division (AEO2017)
- Using a 5-year average of historical consumption benchmarking factors to transition into projected consumption (AEO2017)
- Modeling wine coolers consumption as a miscellaneous electric load to represent recent DOE equipment efficiency standard (AEO2017)
- Improving representation of distributed energy generation impacts on end-use load shapes (AEO2017)
- Adjusting shares of PV generation deducted from specific end uses (AEO2017)
- Including historical and projected energy efficiency program impact estimates (AEO2017)

Additional information regarding annual changes to modeling and assumptions can be found online with [AEO Buildings Working Group materials](#).
Introduction

Purpose of this report
This report documents the objectives, analytical approach, and structure of the National Energy Modeling System (NEMS) Residential Demand Module (RDM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and Fortran source code.

This document serves three purposes. First, this report meets the legal requirement of the U.S. Energy Information Administration (EIA) to provide adequate documentation in support of its reports according to Public Law 93-275, section 57(b)(1). Second, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Finally, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, model performance evaluations, and parameter refinements.

Model summary
The NEMS Residential Demand Module is used in developing long-term projections and energy policy analysis over the time horizon beginning with EIA’s most recent Residential Energy Consumption Survey (RECS) (the module’s base year) through 2050 (the current projection horizon). The model generates projections of energy demand (or energy consumption; the terms are used interchangeably throughout the document) for the residential sector by end-use service, fuel type, and U.S. Census division.

The RDM uses inputs from NEMS such as energy prices and macroeconomic indicators to generate outputs needed in the NEMS integration process. These inputs are used by the module to generate energy consumption by fuel type and Census division in the residential sector. NEMS uses these projections to compute equilibrium energy prices and quantities.

The RDM is an analytic tool that is used to address current and proposed legislation, private sector initiatives, and technological developments that affect the residential sector. Examples of policy analyses include assessing the potential impacts of the following:

- New end-use technologies
- Changes in fuel prices due to tax policies
- Changes in equipment energy-efficiency standards and building energy codes
- Financial incentives for energy efficiency and renewable energy investments
Archival media
The Residential Demand Module has been archived as part of the NEMS production runs that generate the *Annual Energy Outlook 2017* (AEO2017).

Model contact
Kevin Jarzomski
Operations Research Analyst
Buildings Energy Consumption and Efficiency Analysis

kevin.jarzomski@eia.gov
(202)586-3208

U.S. Energy Information Administration
1000 Independence Avenue SW
EI-32
Washington, DC 20585
Report organization
The first chapter of this report discusses the purpose of the RDM, with specific details on the objectives, primary inputs and outputs, and relationship of the module to other modules in NEMS.

Chapter 2 describes the rationale behind the design, fundamental assumptions regarding consumer behavior, and alternative modeling approaches.

Chapter 3 describes the NEMS RDM structure, including flowcharts and major sub-routines.

Appendices to this report document the variables and equations contained in the Fortran source code. Appendix A catalogues the input data used to generate projections in list and cross-tabular formats. Appendix B provides mathematical equations that support the program source code in the module. Appendix C is a bibliography of reference materials used in the development process. Appendix D discusses the data quality of the primary data source that informs the module.
Chapter 1: Model Purpose

Module objectives
The NEMS Residential Demand Module has three fundamental objectives:

1. The module generates disaggregated projections of energy demand in the residential sector from the base year through the projection horizon by housing type, fuel type, Census division, and end-use service.
2. It is an analysis tool that can assess the impacts of changes in energy markets, building and equipment technologies, and regulatory initiatives that affect the residential sector.
3. The module is an integral component of NEMS; it provides projected energy demand to the supply and conversion modules of NEMS, and contributes to the calculation of the overall energy supply and demand balance.

The Residential Demand Module projects residential sector energy demand in six sequential steps. These steps produce information on housing stocks, technology choices, appliance stocks, building shell integrity, distributed generation, and energy consumption. The module uses a stock-vintaging approach that monitors equipment stock and equipment efficiency over time.

The module design allows the user to conduct a variety of analyses to assess proposed changes in policy or explore other uncertainties about future residential energy markets. Technological advancement in equipment design and efficiency, as well as incentive programs (such as rebates or tax credits), can be modified for specific types of equipment. Housing stock attrition and equipment retirement assumptions can be modified to reflect varying equipment performance over time. Building shell characteristics can be modified to reflect varying policy options, such as building codes or the impact of mortgage incentives for energy efficiency.

Projected residential fuel demand generated by the RDM is used by NEMS in the calculation of the demand and supply equilibrium. In addition, the NEMS supply modules use the residential sector outputs to determine the patterns of consumption and the resulting prices for energy delivered to the residential sector.

Module input and output

Inputs
The primary module inputs include fuel prices, housing stock characteristics, housing starts, population, and technology characteristics. The technology characteristics used in the module include installed capital costs (in real dollars), equipment efficiency, and expected equipment lifetimes. The major inputs by module component are as follows:

Housing Stock Component
- Housing starts
- Existing housing stock in the base year
- Housing stock attrition rates
- Housing floor area trends (new and existing)
Technology Choice Component
- Equipment retail or replacement cost
- Equipment subsidies
- Equipment energy efficiency
- Equipment penetration level (i.e., percent of households with that equipment)
- Water usage factors
- Fuel and equipment switching costs
- Fuel costs

Appliance Stock Component
- Expected equipment minimum and maximum lifetimes
- Base-year equipment stocks
- Equipment saturation level (i.e., the number of units per household)

Building Shell Component
- Level of shell integrity (insulation and air tightness)
- Price elasticity of shell integrity
- Rate of improvement in existing housing shell integrity
- Cost and efficiency of various building shell measures for new construction

Distributed Generation Component
- Equipment cost
- Equipment subsidies
- Equipment conversion efficiency
- Solar insolation values
- Cross-sector capacity levels
- System penetration parameters
- Wind speeds
- Grid interconnection limitations

Energy Consumption Component
- Base-year unit energy consumption (UEC)
- Population-weighted heating and cooling degree days
- Population
- Household size
- Personal disposable income
Outputs
The primary module output is projected residential sector energy consumption by fuel type, end-use service, and Census division. The module also projects housing stock and energy consumption per housing unit. In addition, the module can produce a disaggregated projection of appliance stock and efficiency for the types of equipment included in the model:

- Furnaces (electric, natural gas, liquefied petroleum gas (LPG), and distillate fuel oil)
- Hydronic heating systems/boilers (natural gas, distillate fuel oil, and kerosene)
- Heat pumps (electric air-source, ground-source, and natural gas)
- Wood stoves
- Air conditioners (central and room)
- Dishwashers
- Water heaters (electric, natural gas, distillate fuel oil, LPG, and solar)
- Cookstoves (electric, natural gas, and LPG)
- Clothes washers
- Clothes dryers (electric and natural gas)
- Refrigerators (with top-, side-, and bottom-mounted freezers)
- Freezers (upright and chest)
- Lighting (general service, linear fluorescent, reflector, and exterior)
- Solar photovoltaic systems
- Fuel cells
- Wind turbines

Geographic classification
The NEMS modules are designed to provide and use system data at the Census division level of aggregation, forming nine model regions within the United States. There are two primary reasons for using the Census division level of model specificity: the input data available from EIA’s RECS and several other key input sources such as the Census Bureau are generally specified for the nine Census divisions; and the technical constraints of the computing system required in order to run the NEMS model within a reasonable turnaround time. The need to balance data availability, model runtime, and model output detail is best met at the Census division level.

Building type classification
While RECS and several Census Bureau products use residential building types (single-family detached, single-family attached, multifamily with 2-4 units, multifamily with 5 or more units, and mobile homes), NEMS uses just three building types: single-family, multifamily, and mobile homes. Manufactured housing is considered single-family housing.
The key geographic, building type, and major end use classifications within the module are often numbered as seen in Table 1. Fuels are indexed differently depending on where they are referenced within the RDM (Table 2).

Table 1. Categorization of key variables

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Census Division</th>
<th>Housing Type</th>
<th>End-Use Service</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscript: D</td>
<td>B</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>New England</td>
<td>Single-Family</td>
<td>Space Heating</td>
<td>Major</td>
</tr>
<tr>
<td>2</td>
<td>Middle Atlantic</td>
<td>Multifamily</td>
<td>Space Cooling</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>East North Central</td>
<td>Mobile Home</td>
<td>Clothes Washing</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>West North Central</td>
<td></td>
<td>Dishwashing</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>South Atlantic</td>
<td></td>
<td>Water Heating</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>East South Central</td>
<td></td>
<td>Cooking</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>West South Central</td>
<td></td>
<td>Clothes Drying</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Mountain</td>
<td></td>
<td>Refrigeration</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pacific</td>
<td></td>
<td>Freezing</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>Lighting</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>U.S. Total</td>
<td></td>
<td>Televisions & Related Equipment</td>
<td>Minor</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>Computers & Related Equipment</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>Furnace Fans & Boiler Circulation Pumps</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>Misc. End-Use Loads (MELs)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Mapping of fuel variables

<table>
<thead>
<tr>
<th>Dimension</th>
<th>FCON</th>
<th>RTFUEL</th>
<th>Fuel Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Index</td>
<td>1</td>
<td>3</td>
<td>Natural Gas</td>
<td>Major</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>Electricity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>Distillate Fuel Oil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>Liquefied Petroleum Gas (LPG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>Kerosene</td>
<td>Minor/ Renewable</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>Wood</td>
<td>Minor/ Renewable</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4</td>
<td>Geothermal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td>Solar</td>
<td></td>
</tr>
</tbody>
</table>

Note: Wood is priced to distillate fuel oil when comparing across fuels; geothermal and solar are priced to electricity.

Relationship to other models

The RDM uses data from the Macroeconomic Activity Module (MAM) of NEMS. The MAM provides projected population, personal disposable income, housing starts by Census division and housing type, a gross domestic product price deflator, and a 30-year residential mortgage rate.

The RDM uses fuel price projections generated by the NEMS supply and conversion modules to calculate operating costs for technology selections, existing building shell integrity improvements, and short-term behavioral responses.

The NEMS supply and conversion modules in turn use the residential sector outputs to determine the fuel mix and the resulting prices for energy delivered to the residential sector. The Electricity Market Module (EMM) also receives aggregated utility rebate incentives and efficiency program overhead costs calculated in the RDM in order to further represent utilities passing such program costs to consumers.

Distributed generation by some technologies (such as on-site residential systems instead of utility-scale systems) is provided to the EMM for the calculation of renewable energy credits. Utility subsidies and overhead costs are also provided. Cumulative capacity levels for distributed generation technologies are shared across the residential, commercial, and electricity market modules in order to facilitate technology-learning algorithms that anticipate cost reductions based on cumulative installations.
Figure 1. Relationship to other NEMS Modules

- Residential Demand Module
 - Energy supply inputs
 - Energy conversion inputs
 - Macroeconomic inputs
 - Fuel demand
 - Distributed generation
 - Energy efficiency rebates and overhead

- Supply and Conversion Modules
 - Fuel prices
 - Fuel demand
 - Distributed generation (to EMM)
 - Energy efficiency rebates and overhead

- Integrating Module
 - Housing starts
 - Population
 - GDP deflator
 - 30-year mortgage rate
 - Personal disposable income

- Macroeconomic Activity Module
Chapter 2: Model Rationale

Theoretical approach
The NEMS RDM is an integrated dynamic modeling system based on accounting principles and a representation of residential consumer economic behavior that generates projections of residential sector energy demand, appliance stocks, and market shares.

The RDM is a housing and equipment stock/flow model. The stock of housing units and the corresponding energy-consuming equipment are tracked for each year of the projection. The housing stock changes over time as houses are removed from the stock (demolished, retired, or converted) and new construction is added or converted to residential use. Similarly, the equipment stock changes each projection year as appliances fail and are replaced, through increases in the saturation of existing appliances, and as new technologies enter the market. Detailed subroutines provide the structure for computation of specific elements of the residential sector within the RDM.

Base-year information developed from the RECS microdata forms the foundation of equipment and housing stock. Market share information from RECS is used to estimate the number and type of replacements and additions to the equipment stock. The choice between the capital cost and the first year's operating cost determines the market share within a given service. Market shares are also modeled as functions of the corresponding fuel prices, expected level of equipment usage, and equipment efficiency characteristics.

Logistic or logit functions are used to estimate the market shares of competing technologies within each end-use service. Market shares are determined for both new construction equipment decisions and replacement equipment decisions. The Technology Choice Subroutine of the module considers the relative installed capital and operating costs of each equipment type within the logit function to calculate the market shares of the technology within the service, region, and housing type.

Only major end-use services with technology characterizations (i.e., space heating, space cooling, clothes washing, dishwashing, water heating, cooking, clothes drying, refrigeration, freezing, and lighting) use this approach. Because air-source and ground-source (also known as geothermal) heat pumps are used for both space heating and space cooling, heat pump market shares for space cooling are assigned from the heating choice calculations.

Unlike the major technology services, several miscellaneous electric loads (MELs) such as televisions and related equipment (set-top boxes, home theater systems, and DVD/VCR players), computers and related equipment (monitors, desktops, laptops, networking equipment), rechargeable electronics, ceiling fans, coffee makers, dehumidifiers, microwave ovens, pool heaters and pumps, home security systems, portable electric spas, and wine coolers are modeled with a different approach that does not consider investment parameters such as cost or efficiency.

Building shell integrity is also considered in the projection of end-use consumption. Building shell integrity in existing homes is sensitive to real price increases over base-year price levels for space conditioning fuels. Final residential sector energy consumption is determined as a function of the
equipment and housing stock, average unit energy consumption, weighted equipment characteristics, and building shell integrity improvements.

For new construction, market shares of building shell options are also determined using a similar logistic calculation. The shell options are linked to heating and cooling equipment, as building codes can be met with a combination of more-efficient equipment and structural options (like windows and insulation levels). These linked, minimum efficiencies for heating and cooling equipment in new construction can be increased, but not decreased.

General model assumptions
The RDM assumes that the residential sector has the following characteristics:

- The sector is bifurcated into two housing vintages: housing that existed in the base year and new construction built in years after the base year.
- Housing units are removed from the housing stock at a constant rate over time, based on an analysis of each building type's historical growth and housing starts.
- Some energy-consuming equipment is chosen based on its upfront cost compared to its operating costs (like water heaters and refrigerators) while some appliances are chosen based on factors not related to their energy consumption (such as security systems or coffee makers).
- Equipment lifetime is defined by Weibull shape parameters. These parameters are based on estimated lifetime ranges and are used to refine a linear decay function (similar to the linear decay function included in previous versions of the model).
- The equipment contained in a retiring housing structure is assumed to retire when the structure is removed from the housing stock. Zero salvage value for equipment is assumed.
- Projected new home heating fuel shares are based on the Census Bureau's new construction data and vary over time due to changes in life-cycle cost for each of the heating system types.
- The choice of fuel for water heating and cooking is largely dependent on the choice of heating fuel.
- The type of fuel used for cooking and water heating when replacing retiring equipment in single-family homes is based on an input percentage of those who may switch and a technology choice-switching algorithm. Replacements are with the same technology in multifamily and mobile homes.
- Space heaters, air conditioners, water heaters, cookstoves, and clothes dryers may be replaced (up to a user-specified percentage) with competing technologies in single-family homes. Switching is based on retail cost of new equipment and the cost of switching technologies.
- Building shell efficiency and heating, ventilation, and air conditioning (HVAC) systems for new housing stock are a function of the life-cycle cost of competing building shell and HVAC packages.
- A constant 1.2% share of existing housing is renovated each year, increasing the square footage of the conditioned (heated and cooled) living area by about one-third.
- The volumetric size of new construction is larger than existing homes, which increases the heating and cooling loads in new construction, all else equal. This assumption is based on a time-series analysis of RECS which shows increased floorspace per household over time, as well as increased prevalence of slightly higher ceilings.
Legislation-specific model assumptions

American Recovery and Reinvestment Act of 2009 (ARRA)
The ARRA legislation passed in February 2009 provides energy-efficiency funding for federal agencies, state energy programs, and block grants, as well as a sizable increase in funding for weatherization. To account for the impact of this funding, it is assumed that the total funding is aimed at increasing the efficiency of the existing housing stock. The assumptions regarding the energy savings for heating and cooling are based on evaluations of the impact of weatherization programs over time.\(^1\) Further, it is assumed that each house requires a $2,600 investment to achieve the heating and cooling energy savings estimated in the evaluations, with a 20-year life expectancy of the measures.

Section 410 of ARRA provided states with funding under the condition that they adopt building codes that meet or exceed the 2009 International Energy Conservation Code (IECC), achieving 90% compliance by 2017. To represent this, new construction after 2017 is generally assumed to be built to at least IECC 2009 levels, although some Census divisions reach that level much earlier.

The ARRA provisions remove the cap on the 30% tax credit for ground-source heat pumps through 2016. Additionally, the cap for the tax credits for other energy-efficiency improvements, such as windows and efficient furnaces, was increased to $1,500 through the end of 2010.

Successful deployment of smart grid projects based on ARRA funding could stimulate more rapid investment in smart grid technologies, especially smart meters on buildings and homes, which might make consumers more responsive to electricity price changes. To represent this, the price elasticity of demand for residential electricity was increased for the services that have the ability to alter energy intensity (e.g., lighting). The Tax Relief, Unemployment Insurance Reauthorization, and Job Creation Act of 2010 extended several ARRA tax credit provisions through 2011, often at reduced amounts.

Energy Independence and Security Act of 2007 (EISA)
The passage of the EISA in December 2007 provides additional minimum efficiency standards for various types of residential equipment. The standards contained in EISA include the following: a nearly-30% reduction in the wattage of general service lighting in 2012-2014 and about 65% reduction by 2020; boiler standards in 2012; wattage reductions for external power supplies after 2008; and standards for clothes washers, dishwashers, and dehumidifiers to be implemented between 2010 and 2012.

Energy Policy Act of 2005 (EPACT05) and Energy Improvement and Extension Act of 2008 (EIEA)
EPACT05 provided for additional minimum efficiency standards for residential equipment and provided tax credits to producers and purchasers of energy-efficient equipment and builders of energy-efficient homes. The standards contained in EPACT05 include the following: 190-watt maximum for torchiere lamps starting in 2006; dehumidifier standards starting in 2007 and 2012; and ceiling fan light kit standards starting in 2007. Producers of manufactured homes that were 30% more efficient than the latest code could claim a $1,000 tax credit. Likewise, builders of homes that were 50% more efficient

than the latest code could claim a $2,000 credit. Production tax credits were assumed to be passed through to the consumer in the form of lower purchase cost. EPACT05 included production tax credits for energy-efficient refrigerators, dishwashers, and clothes washers, with dollar amounts varying by type of appliance and level of efficiency met, subject to annual caps. Consumers could claim a 10% tax credit for several types of appliances specified by EPACT05, including energy-efficient gas, propane, or distillate fuel oil furnaces or boilers, energy-efficient central air conditioners, air- and ground-source heat pumps, water heaters, and windows. Lastly, consumers could claim a 30% tax credit in 2006, 2007, and 2008 for purchases of solar photovoltaic (PV), solar water heaters, and fuel cells (subject to a $2,000 cap).

EIEA extended the tax credits specified in EPACT05 through 2010. In addition, the $2,000 cap for solar PV, solar water heaters, and fuel cells was removed, and the credit for ground-source heat pumps was increased to $2,000.

Technology-specific modeling assumptions

The efficiency choices made for residential equipment are based on a log-linear function. The function assigns market shares for competing technologies based on the relative weights of capital/installed (first cost) and discounted operating (annual fuel) costs. A time-dependent log-linear function calculates the installed capital cost of equipment in new construction. Although not activated in most model runs, there is an option for price-induced technological change. Essentially, with this option, if fuel prices increase markedly and remain high over a multi-year period, more-efficient appliances will be available earlier in the projection period than they would have been otherwise.

Weather and climate adjustment

Space heating and air conditioning usage is adjusted across Census divisions by heating and cooling degree day factors to account for potential deviations relative to the temperatures (and their corresponding degree days) during the RECS survey period. Thirty years of historical heating and cooling degree days for each state are used to establish a linear trend of heating and cooling degree days at the state level. This 30-year trend informs the projection of state-level degree days, which are exogenously aggregated to the Census division level using state-level populations. Projected changes in degree days are thus intended to reflect projected shifts in population among states as well as continuing changes in historical degree day data.

Technology and fuel switching

Space heaters, air conditioners (heat pumps and central air conditioners), water heaters, cookstoves, and clothes dryers may be replaced with competing technologies in single-family homes. It is assumed that 20% of the replacement market in single-family homes is eligible to switch fuels in any projection year. The log-linear functional form is flexible to allow the user to specify parameters, such as weighted bias, retail equipment cost, and technology switching cost. Equipment in multifamily and mobile homes are replaced with the same technology.

Space cooling: room and central air conditioning units

Room and central air conditioning units are disaggregated based on existing housing data. The market penetration of room and central air systems by Census division and housing type, along with new
housing construction data, are used to determine the number of new units of each type. The penetration rate for central air conditioning is estimated by means of time series analysis of RECS data. Where room air conditioners are used, RECS also informs the number of room air conditioners per household in new construction.

Water heating: solar water heaters
Market shares for solar water heaters are tabulated from the RECS public use microdata. The module currently assumes that, in solar water heating systems, solar energy provides 50% of the energy needed to satisfy hot water demand, and an electric back-up unit satisfies the remaining 50%.

Refrigerators and freezers
The module assumes fixed overall shares for three types of refrigerator based on freezer orientation (top-mounted, side-mounted, or bottom-mounted freezer) and two types of freezer (upright and chest). Market shares were established based on RECS public use microdata.

Clothes dryers
The module currently assumes that clothes dryer market penetration increases over the projection period, with a terminal saturation level that is consistent with the market penetration of clothes washers. This assumption is based on analysis of RECS public use microdata.

Clothes washers
The module links clothes washer choice to the water heating service because many efficiency features for clothes washers act to reduce the demand for hot water.

Lighting
The module partitions lighting into four main categories of bulb type: general service, reflector, linear fluorescent, and exterior. Within the general service category, several hours of use bins further partition this category, allowing bulb choice to vary with the amount of time each fixture is used on an annual basis. The reflector, exterior, and linear fluorescent categories assume an average hours of use value for lamp choice purposes per DOE’s 2010 U.S. Lighting Market Characterization report. Within an application such as general service lighting, a fixed light output level (measured in lumens) is used so that choices are among bulbs with similar light output.

Miscellaneous electric loads
The module uses exogenous expectations of saturation and per-unit consumption to form projections of the miscellaneous electric loads (MELs). Consumption projections for some of these MELs are also affected by projected changes in square footage and disposable income.

Furnace fans
The number of housing units that have fossil-fuel-fired central forced-air heating determines furnace fan energy consumption. The relative level of heating and cooling degree days also affects the amount of energy used for this service.

Secondary heating
The consumption of secondary heating fuels is determined based on the share of total housing that uses a secondary heating fuel multiplied by the UEC, adjusted for the shell integrity.
Other / Unspecified consumption
Even with the consumption information collected in RECS, there is consumption attributed to unspecified uses. Often these are aggregated as other uses.

Distributed generation
In single-family housing, adoption of solar photovoltaic systems, fuel cells, and small wind turbines for on-site electricity generation competes with purchased electricity to satisfy the home’s electricity needs. Penetration is limited by factors outlined in the detailed description of the Distributed Generation Subroutine. The electricity generated from these systems is either used on-site or sold back to the grid.
Model Structure

Structural overview
The NEMS Residential Demand Module characterizes energy consumption using a series of algorithms that account for the stocks of housing and appliances, equipment market shares, and energy intensity. The module assesses the shifts of market shares between competing technologies based on fuel prices, equipment costs, and assumptions about the behavior of residential consumers.

The RDM is a sequential structured system of algorithms, with succeeding computations using the results from previously executed components as inputs. The module is composed of six components: housing stock projection, equipment technology choice, appliance stock projection, building shell integrity, distributed generation, and energy consumption.

Housing stock projection
The location and type of housing stock are the primary model drivers. The first component uses data from the NEMS Macroeconomic Activity Module to project new and existing housing for three dwelling types at the Census division level.

Equipment technology choice
The Technology Choice Component simulates the behavior of consumers by projecting market shares for each available equipment type. New and replacement equipment decisions are modeled for each technology type. For new construction, the home heating fuel is determined by the relative life-cycle costs of all competing heating systems.

Relative weights are determined for each equipment type based on the existing market share, the installed capital cost, and the operating cost. These relative weights are then used to compute the market shares and composite average efficiencies for each service listed in Table 3. The technologies are distinguished by the service demand that they satisfy, by the fuel that they consume, and by their energy efficiency.

Energy efficiency can be defined as the ratio of service demand to energy input. For relatively simple devices such as space heaters or light bulbs, service demand is a unit of heat or light, respectively, and thus efficiency is described in terms of heat per unit energy (such as coefficient of performance (COP) or annual fuel utilization efficiency (AFUE)) or light per unit energy (lumens per Watt).

For other equipment, service demand can be more difficult to quantify, or other factors beyond the primary service demand may contribute to a unit’s energy consumption. In the case of refrigerators, the primary service demand is the volume of interior space refrigerated, but features such as an icemaker or through-the-door water dispenser can add to the unit’s energy consumption (UEC). Another example is televisions, where service demand may be described as the area of the visual display, but other factors such as power draw in standby and off modes affect their consumption. For this reason, some equipment is described by a UEC (typically in units of kilowatt-hours per year) rather than an energy-efficiency metric.
Table 3. Services and equipment in NEMS Residential Demand Module

<table>
<thead>
<tr>
<th>End-Use Equipment</th>
<th>Efficiency Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Heating</td>
<td></td>
</tr>
<tr>
<td>Air-Source Heat Pump</td>
<td>Heating Seasonal Performance Factor (HSPF)</td>
</tr>
<tr>
<td>Electric Furnace</td>
<td>COP</td>
</tr>
<tr>
<td>Distillate Fuel Oil Boiler</td>
<td>Annual Fuel Utilization Efficiency (AFUE)</td>
</tr>
<tr>
<td>Distillate Fuel Oil Furnace</td>
<td>AFUE</td>
</tr>
<tr>
<td>Ground-Source Heat Pump</td>
<td>COP</td>
</tr>
<tr>
<td>Kerosene Furnace</td>
<td>AFUE</td>
</tr>
<tr>
<td>Liquefied Petroleum Gas (LPG) Furnace</td>
<td>AFUE</td>
</tr>
<tr>
<td>Natural Gas Boiler</td>
<td>AFUE</td>
</tr>
<tr>
<td>Natural Gas Furnace</td>
<td>AFUE</td>
</tr>
<tr>
<td>Natural Gas Heat Pump</td>
<td>COP</td>
</tr>
<tr>
<td>Wood Stove</td>
<td>COP</td>
</tr>
<tr>
<td>Air Conditioning</td>
<td></td>
</tr>
<tr>
<td>Air-Source Heat Pump</td>
<td>Seasonal Energy Efficiency Ratio (SEER)</td>
</tr>
<tr>
<td>Central Air Conditioner</td>
<td>SEER</td>
</tr>
<tr>
<td>Ground-Source Heat Pump</td>
<td>Energy Efficiency Ratio (EER)</td>
</tr>
<tr>
<td>Natural Gas Heat Pump</td>
<td>COP</td>
</tr>
<tr>
<td>Room Air Conditioner</td>
<td>EER</td>
</tr>
<tr>
<td>Water Heating</td>
<td></td>
</tr>
<tr>
<td>Electricity Water Heater</td>
<td>Energy Factor (EF)</td>
</tr>
<tr>
<td>Distillate Fuel Oil Water Heater</td>
<td>EF</td>
</tr>
<tr>
<td>LPG Water Heater</td>
<td>EF</td>
</tr>
<tr>
<td>Natural Gas Water Heater</td>
<td>EF</td>
</tr>
<tr>
<td>Solar Water Heater</td>
<td>EF</td>
</tr>
<tr>
<td>Cooking</td>
<td></td>
</tr>
<tr>
<td>Electric Cookstove</td>
<td>kilowatt-hours per year (kWh/yr)</td>
</tr>
<tr>
<td>LPG Cookstove</td>
<td>Thermal Efficiency (Btu Out / Btu In)</td>
</tr>
<tr>
<td>Natural Gas Cookstove</td>
<td>Thermal Efficiency (Btu Out / Btu In)</td>
</tr>
</tbody>
</table>
Table 3. Services and equipment in NEMS Residential Demand Module (continued)

<table>
<thead>
<tr>
<th>End-Use Equipment</th>
<th>Efficiency Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothes Drying</td>
<td></td>
</tr>
<tr>
<td>Electric Clothes Dryer</td>
<td>EF</td>
</tr>
<tr>
<td>Natural Gas Clothes Dryer</td>
<td>EF</td>
</tr>
<tr>
<td>Clothes Washing</td>
<td></td>
</tr>
<tr>
<td>Clothes Washer</td>
<td>kWh / cycle (motor), Modified Energy Factor (MEF), Water Factor (WF)</td>
</tr>
<tr>
<td>Dishwashing</td>
<td></td>
</tr>
<tr>
<td>Dishwasher</td>
<td>EF, WF</td>
</tr>
<tr>
<td>Refrigeration</td>
<td></td>
</tr>
<tr>
<td>Refrigerator w/ top freezer (21 cubic foot capacity)</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Refrigerator w/ side freezer (26 cubic foot capacity)</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Refrigerator w/ bottom freezer (25 cubic foot capacity)</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Freezing</td>
<td></td>
</tr>
<tr>
<td>Chest Freezer (15 cubic foot capacity)</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Upright Freezer (automatic defrost, 20 cubic foot capacity)</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Lighting</td>
<td></td>
</tr>
<tr>
<td>General Service – Compact Fluorescent Lamp (CFL)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>General Service – Incandescent and Halogen</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>General Service – Light-Emitting Diode (LED)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Linear Fluorescent (T12)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Linear Fluorescent (T8)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Linear Fluorescent (LED)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Reflector (Incandescent)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Reflector (Halogen)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Reflector (CFL)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Reflector (LED)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Exterior (Incandescent)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Exterior (Halogen)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Exterior (LED)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
<tr>
<td>Exterior (High Pressure Sodium)</td>
<td>Watts (for an assumed lumen level)</td>
</tr>
</tbody>
</table>
Table 3. Services and equipment in NEMS Residential Demand Module (continued)

<table>
<thead>
<tr>
<th>End-Use Equipment</th>
<th>Efficiency Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Televisions and Related Equipment</td>
<td></td>
</tr>
<tr>
<td>Televisions</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Set-top Boxes</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Video Game Consoles</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Home Theater Systems</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>DVD / VCR players</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Personal Computers and Related Equipment</td>
<td></td>
</tr>
<tr>
<td>Desktops</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Laptops</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Monitors</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Networking Equipment (modems and routers)</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Secondary Heat</td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Distillate Fuel Oil</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Electric</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Gas</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Kerosene</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>LPG</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Wood</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Furnace Fans and Boiler Circulation Pumps</td>
<td></td>
</tr>
<tr>
<td>Furnace fans</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Other Uses</td>
<td></td>
</tr>
<tr>
<td>Ceiling Fans</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Coffee Makers</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Dehumidifiers</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Microwaves</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Pool Heaters & Pumps</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Portable Electric Spas</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Rechargeable Electronics</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Security System</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Wine Coolers</td>
<td>kWh / yr</td>
</tr>
<tr>
<td>Unspecified: Distillate Fuel Oil</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Unspecified: Electric</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Unspecified: Natural Gas</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Unspecified: LPG</td>
<td>MMBtu / yr</td>
</tr>
<tr>
<td>Distributed Generation</td>
<td></td>
</tr>
<tr>
<td>Solar Photovoltaic</td>
<td>Electrical Efficiency</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>Electrical Efficiency</td>
</tr>
<tr>
<td>Small Wind Turbine</td>
<td>Electrical Efficiency</td>
</tr>
</tbody>
</table>
Appliance stock projection
The appliance stock component of the module projects the number of end-use appliances within all occupied housing units. This component tracks equipment additions and replacements.

Building shell integrity
Building shell integrity is modeled for existing and new housing. The existing housing stock responds to rising prices of space conditioning fuels by improving shell integrity. Shell integrity improvements might range from relatively inexpensive measures (such as caulking and weather-stripping) to projects with substantial costs (such as window replacement). These improvements exhibit a one-way price response: more measures are installed as prices increase, but those measures are not undone when prices fall.

New housing stock also incorporates shell integrity improvements. The shell integrity of new housing is a function of capital and operating costs for several levels of total system efficiency. New housing stock includes homes that meet the 2009 International Energy Conservation Code (IECC), those that meet ENERGY STAR criteria, those that qualify for federal tax credits for efficient shells, and those that include the most efficient commercially available building shell components, as well as some non-code-compliant homes.

Distributed generation component
The distributed generation component allows adoption of solar photovoltaic, fuel cells, and small wind turbine systems for on-site generation to compete with purchased electricity for satisfying electricity needs. Through the use of a ZIP code-level hurdle model\(^2\) (solar photovoltaics) and a cash-flow formulation (fuel cells and wind), the penetration rates of these systems are projected. Electricity generated from these systems is deducted from total housing unit use, or sold back to the grid, if feasible.

Energy consumption
The energy consumption component calculates end-use consumption for each service and fuel type. The consumption projections are constructed as products of the number of units in the equipment stock and the average technology unit energy consumption (UEC). The average UEC changes as the composition of the equipment stock changes over time. For each year of the projection, the following steps are performed to develop the projection of energy consumption:

1. A projection of housing stock is generated based on the retirement of existing housing stock and the addition of new construction as determined in the Macroeconomic Activity Module.
2. Base-year equipment stock is estimated, accounting for housing demolitions and additions.
3. Market shares are determined for equipment types and efficiencies by service.
4. The previous year's equipment additions and replacements for both existing homes and new construction vintages are determined based on the current-year market share.
5. Efficiencies weighted by market share are calculated.
6. Fuel consumption is calculated using UEC and the weighted efficiencies. Consumption can also vary based on projected heating and cooling shell integrities, fuel prices, personal disposable income, housing unit sizes, and weather as applicable to specific equipment and end-use services.

\(^2\) The solar photovoltaic ZIP code-level hurdle model was included in NEMS for AEO2016 but not turned on until AEO2017. The cash flow model was used for solar penetration in AEO2016 and is still an option for AEO2017 onward.
Fortran subroutine descriptions

The NEMS Residential Demand Module Fortran source code consists of more than 50 subroutines sequentially called during the execution of the module. Table 4 lists the major subroutines and their corresponding descriptions. The subroutines can be grouped into the following 13 categories according to their functions:

Fuel Price Subroutine (1 subroutine)
- **RDPR**: reads in fuel prices from NEMS

Initialization Subroutine (1 subroutine)
- **INTEQT**: initializes heating equipment market shares and applies the decay rate to the existing equipment

Housing Subroutine (1 subroutine)
- **NEWHSE**: reads housing starts from NEMS Macroeconomic Activity Module and computes new housing stock

Existing Equipment Subroutine (1 subroutine)
- **RDHTRTEC**: projects existing vintage equipment by service. In this subroutine, the following operations are performed:
 1. Read equipment market share from an input file by equipment type, housing type, and Census division.
 2. Calculate the base-year equipment stock or the existing vintage stock as the product of the share and the number of existing housing units.
 3. Project surviving equipment of the existing vintage using the equipment survival rate and the housing decay rate for every year in the projection.

Other Input Subroutines (11 subroutines)

These subroutines read other information from files:
- **RDSTEFF**: reads efficiencies of base-year stock equipment
- **RDEFF**: reads efficiencies of retiring equipment
- **RDRET**: reads equipment retirement rates
- **RDESTARHOMES**: reads historical ENERGY STAR home percentages
- **RTKREAD**: reads the detailed technology data for equipment
- **RTKREAD1**: reads the detailed technology data for building shells
- **RDSQFT**: reads home square footage data
- **RDUecs**: reads unit energy consumption data for equipment
- **BLDBASERead**: reads baseline electricity consumption for energy efficiency program calculations
- **RSCHELSREAD**: reads unit energy consumption data for building envelopes
- **RSMELsREAD**: reads miscellaneous electric load data
- **RSSWITCHREAD**: reads fuel and equipment switching data
Calculation Subroutines (2 subroutines)

The model includes a subroutine SQFTCALC to calculate average home floor areas for new and existing houses and compute size and volume effects for new construction. The subroutine PITC calculates the amount of price-induced technology change based on fuel prices.

Technology Choice - TEC Subroutines (10 subroutines)

The code includes 10 technology choice subroutines that follow these general steps:

1. Initialize capital costs and equipment efficiencies.
2. Set discount rate, adjustment factors, and present value horizon.
3. Compute operating costs of each equipment type.
4. Compute life-cycle costs of each equipment type.
5. Compute technology share for new housing.
6. Calculate new and replacement equipment weights based on the bias, capital cost, and operating costs using a log-linear function.
7. Compute new market shares, ratio between equipment weights and total equipment weight.
8. Calculate efficiencies for new and replacement equipment types weighted by their respective market shares.

These subroutines are as follows:

RSHVAC RHTRTEC RCLTEC RWHTEC RSTVTEC
RDRTYEC RREFTEC RFRZTEC RCWTEC RDWTEC

Replacements and Additions - ADD Subroutines (8 subroutines)

The code contains eight equipment replacement and additions subroutines (water heaters and cookstoves use the same ADD subroutine). TEC subroutines for each service are followed by ADD subroutines that calculate new and replacement equipment for the previous year based on the current year’s market share. The following steps are implemented in these subroutines:

1. Determine new construction vintage equipment additions based on the estimated share (from the MAM) of new houses that demand that service.
2. Compute the surviving new vintage equipment in existing vintage houses.
3. Compute total equipment required for existing vintage houses.
4. Compute the equipment replacements in existing vintage houses by subtracting the sum of surviving existing-vintage equipment and surviving new-vintage equipment in existing-vintage houses from the total equipment demanded for existing-vintage houses. Technology switching is allowed at
replacement for space heaters, heat pumps and central air conditioners, water heaters, cookstoves, and clothes dryers in single-family homes.

5. Compute the surviving new-vintage equipment that was purchased as either additions or replacements for new houses.

6. Calculate the current year’s replacements of new-vintage equipment in new houses by subtracting the surviving replacements and equipment additions in new houses from the stock of surviving new houses. Technology switching is allowed at replacement for space heaters, heat pumps and central air conditioners, water heaters, cookstoves, and clothes dryers in single-family homes.

These subroutines are as follows:

- RHTRADD
- RCLADD
- REUADD
- RDRYADD
- RREFADD
- RFRZADD
- RCWADD
- RDWADD

End-Use Consumption - CON/CNS Subroutines (15 subroutines)

The 15 end-use consumption subroutines are defined by service. The ADD subroutines are followed by consumption subroutines. Within each of these subroutines the new, replacement and average unit energy consumption values are calculated. These UECs are then multiplied by the equipment stock (and climate adjustment factor and shell integrity for space conditioning) to yield final fuel consumption. These subroutines, which follow, also include a price-sensitivity expression that adjusts short-term demand for fuels:

- RHTRCON
- RCLCON
- RWHCON
- RSTVCON
- RDRYCON
- RREFCON
- RFRZCON
- LTCNS
- APCNS
- SHTCNS
- APPCNS
- RCWCON
- RDWCON
- TVCNS
- PCCNS

Distributed Generation (1 subroutine)

- RDISTGEN projects the number of housing units with distributed generation technologies; calculates amount of distributed capacity; and estimates electricity generated both for own use and for sale to the grid (reported to NEMS EMM).

Overall Consumption - CN Subroutines (2 subroutines)

The model includes the following two subroutines that calculate overall fuel consumption and list output NEMS consumption:

- FUELCN calculates fuel consumption
- NEMSCN writes out NEMS consumption

Historical Consumption/Calibration Subroutines (2 subroutines)

- EXCONS calculates base-year consumption
RSBENCH calibrates consumption to historical and near-term forecast consumption

Energy Efficiency Program Impacts (1 subroutine)

CALC111D calculates incremental electricity consumption between an integrated NEMS model run that includes energy efficiency rebates and one in which no rebates are included; aggregates regional subsidies for major end-use and distributed generation equipment; and estimates energy efficiency program overhead costs; all outputs are sent to EMM of NEMS

Report Subroutines (4 subroutines)

RESDRP aggregates consumption by end use for NEMS reports

RESDRP2 provides diagnostic reports for internal use

RESDBOUT provides diagnostic reports for internal use

NHTSHR prepares new heating system shares report
Table 4. Primary NEMS Residential Demand Module Subroutines

<table>
<thead>
<tr>
<th>Subroutine Name</th>
<th>Description of the Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTEKREAD</td>
<td>Read technological characterizations for all equipment</td>
</tr>
<tr>
<td>RTEKREAD1</td>
<td>Read technological characterizations for building shells</td>
</tr>
<tr>
<td>RDSQFT</td>
<td>Read annual average housing floor areas</td>
</tr>
<tr>
<td>RSMISCREAD</td>
<td>Read miscellaneous data for the module</td>
</tr>
<tr>
<td>RDPR</td>
<td>Read prices</td>
</tr>
<tr>
<td>PITCINIT</td>
<td>Initialize values for price-induced technology change</td>
</tr>
<tr>
<td>RSPITC</td>
<td>Compute price-induced technology change</td>
</tr>
<tr>
<td>INTEQT</td>
<td>Initialize heating equipment market share</td>
</tr>
<tr>
<td>RDHTRTEC</td>
<td>Project base-year vintage for all services</td>
</tr>
<tr>
<td>RDUECS</td>
<td>Initialize equipment UECs (service aggregates)</td>
</tr>
<tr>
<td>RCONSFL</td>
<td>Rationalize fuel numbering among equipment types</td>
</tr>
<tr>
<td>EXCONS</td>
<td>Calculate base-year consumption</td>
</tr>
<tr>
<td>RDISTGEN</td>
<td>Project distributed generation penetration</td>
</tr>
<tr>
<td>NEWHSE</td>
<td>Calculate new housing</td>
</tr>
<tr>
<td>SQFTCALC</td>
<td>Calculate average floor area of housing</td>
</tr>
<tr>
<td>RDSTEFF</td>
<td>Read in efficiency of equipment from base-year stock</td>
</tr>
<tr>
<td>RDEFF</td>
<td>Read in efficiency of retiring equipment from base-year stock</td>
</tr>
<tr>
<td>RDRET</td>
<td>Read in proportion of retiring equipment from base-year stock</td>
</tr>
<tr>
<td>RDESTARHOMES</td>
<td>Read in historical ENERGY STAR home shares</td>
</tr>
<tr>
<td>RSUECSSLREAD</td>
<td>Read in unit energy consumption data for building envelopes</td>
</tr>
<tr>
<td>RSMELSLREAD</td>
<td>Read in miscellaneous electric load data</td>
</tr>
<tr>
<td>RSSWITCHREAD</td>
<td>Read in fuel-switching and equipment-switching parameters</td>
</tr>
<tr>
<td>RSMILGRTREAD</td>
<td>Read in lighting technology data</td>
</tr>
<tr>
<td>DEGDAYREAD</td>
<td>Read in degree day data</td>
</tr>
<tr>
<td>BLDBASERead</td>
<td>Read in baseline electricity consumption for energy efficiency program impact calculations</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Share out replacement equipment switching among competing technologies for single-family homes up to an input limit</td>
</tr>
<tr>
<td>RCWTEC</td>
<td>Choose clothes washing equipment</td>
</tr>
<tr>
<td>RCWADD</td>
<td>Calculate new and replacement clothes washing</td>
</tr>
<tr>
<td>RCWCON</td>
<td>Calculate consumption for clothes washing</td>
</tr>
<tr>
<td>RDWTEC</td>
<td>Choose dishwashing equipment</td>
</tr>
<tr>
<td>RDWADD</td>
<td>Calculate new and replacement dishwashers</td>
</tr>
<tr>
<td>RDWCON</td>
<td>Calculate consumption for dishwashing</td>
</tr>
<tr>
<td>PCCNS</td>
<td>Calculate personal computer and related equipment consumption</td>
</tr>
<tr>
<td>TVCNS</td>
<td>Calculate television, set-top box, and video game console consumption</td>
</tr>
<tr>
<td>RWHTEC</td>
<td>Choose water heating equipment</td>
</tr>
<tr>
<td>REUADD</td>
<td>Calculate new and replacement water heaters and cookstoves</td>
</tr>
<tr>
<td>RWHHCNS</td>
<td>Calculate consumption for water heating</td>
</tr>
</tbody>
</table>
Table 4. Primary NEMS Residential Demand Module Subroutines (continued)

<table>
<thead>
<tr>
<th>Subroutine Name</th>
<th>Description of the Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSTVTEC</td>
<td>Choose cooking equipment</td>
</tr>
<tr>
<td>RSTVCN</td>
<td>Calculate consumption for cooking</td>
</tr>
<tr>
<td>RDRYTEC</td>
<td>Choose clothes dryer equipment</td>
</tr>
<tr>
<td>RDRYADD</td>
<td>Calculate new and replacement clothes dryers</td>
</tr>
<tr>
<td>RDRYCON</td>
<td>Calculate consumption for clothes dryers</td>
</tr>
<tr>
<td>RSHVAC</td>
<td>Choose HVAC equipment and shell characteristics for new homes</td>
</tr>
<tr>
<td>RHTRTEC</td>
<td>Choose heating equipment and compute average efficiencies</td>
</tr>
<tr>
<td>RHTRADD</td>
<td>Calculate new and replacement heating equipment</td>
</tr>
<tr>
<td>RHTRCN</td>
<td>Calculate heating consumption</td>
</tr>
<tr>
<td>RCLTEC</td>
<td>Choose cooling equipment</td>
</tr>
<tr>
<td>RCLADD</td>
<td>Calculate new and replacement cooling equipment</td>
</tr>
<tr>
<td>RCLCON</td>
<td>Calculate cooling consumption</td>
</tr>
<tr>
<td>RREFTEC</td>
<td>Choose refrigeration equipment</td>
</tr>
<tr>
<td>RREFADD</td>
<td>Calculate new and replacement refrigerators</td>
</tr>
<tr>
<td>RREFCON</td>
<td>Calculate energy consumption for refrigeration</td>
</tr>
<tr>
<td>RFRZTEC</td>
<td>Choose freezing equipment</td>
</tr>
<tr>
<td>RFRZADD</td>
<td>Calculate new and replacement freezing equipment</td>
</tr>
<tr>
<td>RFRZCON</td>
<td>Calculate consumption by freezers</td>
</tr>
<tr>
<td>LTCNS</td>
<td>Calculate lighting stock, efficiency, and consumption</td>
</tr>
<tr>
<td>APCNS</td>
<td>Calculate consumption for electric appliances</td>
</tr>
<tr>
<td>SHTCNS</td>
<td>Calculate consumption for secondary heating</td>
</tr>
<tr>
<td>APPCNS</td>
<td>Calculate appliance consumption</td>
</tr>
<tr>
<td>NHTSHR</td>
<td>Prepare new home heating system shares report</td>
</tr>
<tr>
<td>FUELCN</td>
<td>Calculate fuel consumption</td>
</tr>
<tr>
<td>RSBENCH</td>
<td>Calibrate consumption to benchmark values</td>
</tr>
<tr>
<td>NEMSCN</td>
<td>Calculate and report NEMS output variables</td>
</tr>
<tr>
<td>RESDBOUT</td>
<td>Prepare residential output database file</td>
</tr>
<tr>
<td>CALC111D</td>
<td>Calculates energy efficiency program costs and energy savings</td>
</tr>
<tr>
<td>RESDRP</td>
<td>Prepare data for reporting</td>
</tr>
<tr>
<td>RESDRP2</td>
<td>Report module results</td>
</tr>
</tbody>
</table>
Appendix A: Input Parameters

Residential Demand Module input data files

For AEO2013, several input files were renamed for consistency and/or reorganized based on their function. With this convention, all residential input files begin with the letters rs, with the exception of KDEGDAY, which is shared with the commercial module.

<table>
<thead>
<tr>
<th>AEO2012 and prior</th>
<th>AEO2013 and subsequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unchanged files</td>
<td></td>
</tr>
<tr>
<td>RSSTEO</td>
<td>RSSTEO</td>
</tr>
<tr>
<td>RSEFF01</td>
<td>RSEFF01</td>
</tr>
<tr>
<td>RSRET01</td>
<td>RSRET01</td>
</tr>
<tr>
<td>RSSTKEFF</td>
<td>RSSTKEFF</td>
</tr>
<tr>
<td>Renamed files</td>
<td></td>
</tr>
<tr>
<td>RGENTK⁴</td>
<td>RSGENTK</td>
</tr>
<tr>
<td>RSEQP93</td>
<td>RSSTK</td>
</tr>
<tr>
<td>RSSQRFT</td>
<td>RSSQFT</td>
</tr>
<tr>
<td>RSUEC10</td>
<td>RSUEC</td>
</tr>
<tr>
<td>RSUEC11</td>
<td>RSESTAR</td>
</tr>
<tr>
<td>RTEKCL</td>
<td>RSCLASS</td>
</tr>
<tr>
<td>RTEKTY</td>
<td>RSMEQP</td>
</tr>
<tr>
<td>RTEKTYC</td>
<td>RMSHL</td>
</tr>
<tr>
<td>Combined files</td>
<td></td>
</tr>
<tr>
<td>RSHTSHR</td>
<td>RSHTSHR</td>
</tr>
<tr>
<td>RSHTSH95</td>
<td></td>
</tr>
<tr>
<td>Separated files</td>
<td></td>
</tr>
<tr>
<td>RMISC</td>
<td>RSMLGT</td>
</tr>
<tr>
<td></td>
<td>RSSWITCH</td>
</tr>
<tr>
<td></td>
<td>RSMELS</td>
</tr>
<tr>
<td></td>
<td>RSUECSHL</td>
</tr>
<tr>
<td></td>
<td>RSMISC</td>
</tr>
<tr>
<td>Files in common with other modules</td>
<td></td>
</tr>
<tr>
<td>RMISC (degree day arrays)</td>
<td>KDEGDAY</td>
</tr>
</tbody>
</table>

³ The unused RGENTK was repurposed starting with AEO2016 to contain ZIP code-level solar photovoltaic penetration input data.
Residential Technology Class Description

File: RSCLASS.TXT (formerly RTEKCL.TXT)

Source: RECS

Units: See discussion of individual variables below.

Comments: This file provides various pointers used throughout the module to coordinate and allocate the number of equipment types within an end use, as well as overarching parameters such as equipment life functions and choice parameters.

Variables:

RTCLENDU_{eg} End use number. Matches RTTYENDU_{es} in the RSMEQP.TXT input file. Equipment classes having the same end use compete with one another. The RDM allocates equipment among them in the technology choice process.

1=Space Heating
2=Space Cooling
3=Clothes Washing
4=Dishwashing
5=Water Heating
6=Cooking
7=Clothes Drying
8=Refrigeration
9=Freezing

RTCLEQCL_{eg} Equipment class number. Appears on all records. Matches RTTYEQCL_{es} in the RSMEQP.TXT file for one or more equipment types; there are one or more equipment types in RSMEQP.TXT for each class in RSCLASS.

RTCLTYPT_{eg} Required pointer from equipment class to a representative equipment type. This is the only pointer from RSCLASS to RSMEQP.TXT. This pointer selects the equipment type used in determining the equipment class for newly constructed housing units and replacement equipment class in single-family houses. Its value is the RTEQTYPE_{es} in RSMEQP.TXT of the representative equipment.

RTCLPNTR_{eg} Class pointer. Required for end uses 1, 2, and 5; otherwise, equals 0.
If end use = 1: Required pointer from space heater class to associated water heater class linking water heater fuel choice to space heater fuel choice for newly constructed housing units.
If end use = 2: Required pointer from cooling heat pump class to same class of heating heat pump.
0 = Not a heat pump
Integer = Heater heat pump class number
If end use = 5: Required pointer from water heater class to matching cooking class linking cooking fuel choice to water heater fuel choice for newly constructed housing units. Also see $RTCLREPL_{eg}$ end use 5 (water heating) below; only natural gas water heaters may point to two types of cookstoves.

$RTCLREPL_{eg}$ Replacement class. Required for end uses 1 and 5; zero otherwise.
If end use = 1: Flag for replacing the existing space heater class with a natural gas forced air space heater at retirement.
If end use = 5: Second pointer from natural gas water heater class to matching cooking class. The model assumes that 44% of new single-family homes, 15% of new multifamily homes, and 100% of new mobile homes with natural gas water heaters have natural gas cookstoves and the remainder have electric cookstoves.

$RTFUEL_{eg}$ Fuel used by this equipment (Table 2)

$RTMAJORF_{eg}$ Major fuel flag. Used only for end use (RTCLENDU) 1, space heating; zero otherwise. Space heater shares for systems using major fuels are calculated differently from space heater shares for systems using minor fuels. Set to 1 to indicate a major fuel, which applies to all modeled space heating equipment. Set to 0 to indicate a minor fuel. Not currently used in RDM.

$RTFFAN_{eg}$ Furnace fan flag. Value of 1 assigns use of a furnace fan with respective central heating/cooling technology; zero otherwise.

$RTBASEFF_{eg}$ Base efficiency for this equipment class. Defined differently for different end uses:
- End uses 1, 2, 4, 5, 7: base efficiency for this equipment class.
- End uses 3, 6, 8, 9: intensity for this equipment class.

$RTALPHA_{eg}$ Equipment life parameter alpha (α) for exponential decay.

$RTMINLIF_{eg}$ Minimum life of this equipment class (years). Not used by the model, but retained here for informational purposes.

$RTMAXLIF_{eg}$ Maximum life of this equipment class (years). Not used by the model, but retained here for informational purposes.

RTK_{eg} Equipment life Weibull distribution shape parameter k.

$RTLAMBDA_{eg}$ Equipment life Weibull distribution scale parameter lambda (λ).

$RTFCBETA_{eg}$ New home heating technology choice model log-linear parameter beta (β). Used only for end use 1; zero otherwise.

$RTSWFACT_{eg}$ Maximum fraction of single-family homes which may switch away from specified equipment class on replacement.
$RTSWBETA_{eg}$ Replacement technology choice model log-linear parameter beta (β). Used only for single-family homes.

$RTSWBIAS_{eg}$ Replacement technology choice model bias parameter. Used only for single-family homes.

$RTCLNAME_{eg}$ Unique name for each equipment class.

Base-year Equipment Stock

File: RSSTK.TXT (formerly RSEQP93.TXT)

Sources: RECS; Analysis and Representation of Miscellaneous Electric Loads in NEMS, Navigant Consulting, Inc. and SAIC

Units: Number of units (e.g. number of refrigerators, number of televisions, etc).

Comments: Each value represents values from RECS public use microdata, aggregated to the Census division and building type level.

Variables: $EQCESE_{baseyr, eg, b, r}$

Equipment Classes Included:

- **Space Heaters:** Electric Furnace
- **Furnace Fans:**
- Air-Source Heat Pump
- Natural Gas Furnace
- Natural Gas Boiler/Radiator
- Kerosene Furnace
- Distillate Fuel Oil Furnace
- LPG Furnace
- Wood Stoves
- Ground-Source Heat Pump
- Natural Gas Heat Pump
- Distillate Fuel Oil Other
- Other
- Clothes Washers
- Dishwashers
- Water Heaters: Natural Gas
- Water Heaters: Electric
- Water Heaters: Distillate Fuel Oil

- **Space Coolers:** Room Air Conditioner
- Central Air Conditioner
- Air-Source Heat Pump
- Ground-Source Heat Pump
- Natural Gas Heat Pump
- Ceiling Fans
- Coffee Machines
- Dehumidifiers
- Microwaves
- Pool Heaters and Pumps
- Security Systems
- Spas
- Wine Coolers
- Secondary Heaters: Natural Gas
- Secondary Heaters: Electric
Base-year Unit Energy Consumption

File: RSUEC.TXT (formerly RSUEC10.TXT)

Sources: RECS; Updated Buildings Sector Appliance and Equipment Costs and Efficiency, Navigant Consulting, Inc. and SAIC; Analysis and Representation of Miscellaneous Electric Loads in NEMS, Navigant Consulting, Inc. and SAIC

Units: Per-unit energy consumption (MMBtu/unit/year or MMBtu/household/year)

Definition: Unit Energy Consumption (UEC) for all residential equipment classes and building types in each Census division. The equipment classes are the same as those listed in the previous section for the stock of existing equipment (RSSTK.TXT).

Comments: For space heating, space cooling, and water heating, each value represents per-unit consumption data from RECS public use microdata, aggregated to the Census division and building type level. Other end uses are informed by several sources. The inputs are structured the same as the Base-year Equipment Stock file described above.

Variables: $E_QCUEC_{\text{baseyr}, eg, b, r}$

Equipment classes included: Same as those in the Base-year Equipment Stock described above.

<table>
<thead>
<tr>
<th>Water Heaters: LPG</th>
<th>Secondary Heaters: Distillate Fuel Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Heaters: Solar</td>
<td>Secondary Heaters: LPG</td>
</tr>
<tr>
<td>Cookstoves: Natural Gas</td>
<td>Secondary Heaters: Kerosene</td>
</tr>
<tr>
<td>Cookstoves: LPG</td>
<td>Secondary Heaters: Wood</td>
</tr>
<tr>
<td>Cookstoves: Electric</td>
<td>Appliances: Electric</td>
</tr>
<tr>
<td>Clothes Dryers: Natural Gas</td>
<td>Appliances: Natural Gas</td>
</tr>
<tr>
<td>Clothes Dryers: Electric</td>
<td>Appliances: LPG</td>
</tr>
<tr>
<td>Refrigerators</td>
<td>Appliances: Distillate Fuel Oil</td>
</tr>
<tr>
<td>Freezers</td>
<td></td>
</tr>
</tbody>
</table>

Table showing equipment classes and their secondary heaters.
Square Footage
File: RSSQFT.TXT (formerly RSSQRFT.TXT)
Source: Multiple RECS; U.S. Census Bureau, Survey of Construction (SOC) (formerly Characteristics of New Housing/ C25).
Units: Square feet per housing unit
Comments: Average of floor space in residential buildings in each housing type, for each division, from the base year to the projection horizon. Values after the last data year are based on an exogenous projection derived from Census data.
Variables: SQRFOOT_{y,b,d}

Stock Equipment Efficiencies
File: RSSTKEFF.TXT
Source: Exogenous vintaging models developed based on shipment data.
Units: Dimensionless (energy out/energy in) except refrigerators, freezers, and cookstoves.
Comments: Values in this file give the average efficiencies of equipment remaining from the base-year stock expected to be retired in each year. They are calculated in an external spreadsheet that vintages efficiencies from the shipment data.
Variables: BASEFF_{y,eg}

Equipment classes included:
- Electric Furnaces
- Air-Source Heat Pumps (heating)
- Natural Gas Furnaces
- Natural Gas Other
- Kerosene Furnaces
- LPG Furnaces
- Distillate Fuel Oil Furnaces
- Distillate Fuel Oil Other
- Wood Stoves
- Ground-Source Heat Pumps (heating)
- Natural Gas Heat Pumps (heating)
- Room Air Conditioners
- Central Air Conditioners
- Air-Source Heat Pumps (cooling)
- Ground-Source Heat Pumps (cooling)
- Natural Gas Heat Pumps (cooling)
- Clothes Washers
- Dishwashers
- Natural Gas Water Heaters
Electric Water Heaters
Distillate Fuel Oil Water Heaters
LPG Water Heaters
Solar Water Heaters
Natural Gas Stoves
LPG Stoves
Electric Stoves
Natural Gas Dryers
Electric Dryers
Refrigerators
Freezers

Stock Equipment Retired Fraction
File: RSRET01.TXT
Source: Exogenous vintaging models developed based on shipment data.
Units: Dimensionless (units retired to date/units extant in the base year).
Comments: Values in this file give the fraction of base-year equipment stocks expected to be retired as of each year. They are calculated in an external spreadsheet that vintages efficiencies from the shipment data. Equipment classes included are the same as those described in the Stock Equipment Efficiencies file described above.
Variables: \(EQCRET_{y,eg} \)

Stock Equipment Retired Efficiencies
File: RSEFF01.TXT
Source: Exogenous vintaging models developed based on shipment data.
Units: Dimensionless (energy out/energy in) except refrigerators, freezers, and cookstoves.
Comments: Values in this file give the average efficiencies of base-year equipment stock expected to be retired as of each year. They are calculated in an external spreadsheet that vintages efficiencies from the shipment data. Equipment classes included are the same as those described in the Stock Equipment Efficiencies file described above.
Variables: \(EQCEFF_{y,eg} \)
Heating Shares in New Construction

File: RSHTSHR.TXT (also incorporates the former file RSHTSH95.TXT)

Units: Fraction of purchases

Comments: Market share of general space heating equipment for new homes in the base year and benchmarked years. This file provides the share of each equipment class by building type and Census division. Equipment classes included are the same as those described in the Base-year Equipment Stock file described above, but limited to heating equipment.

Variables: $HSYSSHR_{y,eg,b,r}$

Major end-use technology menu (except lighting)

File: RSMEQP.TXT (formerly RTEKTY.TXT)

Source: RECS; Updated Buildings Sector Appliance and Equipment Costs and Efficiency, Navigant Consulting, Inc. and SAIC; multiple Technical Support Documents of DOE Appliance Standard Rulemakings.

Units: Discussed for each variable.

Comments: Each line of this data file gives the important user-modifiable parameters for one equipment type. Used by the RDM for allocating equipment choice among the individual equipment types.

Variables:

$RTEKDOLLARYR$ Dollar year of equipment costs, based on source data.

$RTTYENDU_{es}$ End use number as in RSCLASS. Matches RTCENDU in the RSCLASS.TXT input file.

$RTTYEQCL_{es}$ Equipment class for this equipment type. Must match a class number, $RTCLEQCL_{es}$, in the RSCLASS file.

$RTEQTYPE_{es}$ Equipment type number. Each equipment class may include multiple types. Each equipment type may have up to one record for each year of the projection period (years must not overlap). The user may add equipment types to existing classes. When adding new types, update the type numbers for the rest of that end use; also, adjust the RTTYPNTR pointer for cooling and the RTCLTYPT pointer in the RSCLASS file for heating. If adding heat pump types, add same type to both space heating and space cooling and adjust pointers.
$RTINITYR_{es}$ Initial calendar year for this model of this equipment type. The first $RTINITYR_{es}$ for a model within a type should be the NEMS residential demand module base year; subsequent initial years for a model must be previous $RTLASTYR_{es}+1$.

$RTLASTYR_{es}$ Last calendar year for this model of this equipment type. Must be greater than or equal to $RTINITYR_{es}$ for this model; final $RTLASTYR_{es}$ should be year of the projection horizon.

$RTCENDIV$ Census division, as numbered in the geographic description section

$HVACPT$ Pointer to identify the unique HVAC system number.

$RTYPNTR_{es}$ Required pointer from cooling heat pump type to same type of heating heat pump. Also used as a flag to mark room air conditioners and central air conditioners. Used by end use 2 only; zero otherwise. Modify as follows only if heat pumps added:

-1 = Room air conditioner
0 = Central air conditioner (not heat pump)
Other Integer = Matching heater heat pump HVAC system number

$CWMEF_{es}$ Modified energy factor (MEF). Used only for clothes washers.

$LOADADJ_{es}$ Proportion of water heating load affected by efficiency gains in end uses 3 and 4 (clothes washing and dishwashing, respectively).

$RTEQEFF_{es}$ Defined differently for different end uses, but with the same approach as RTBASEFF: If end use = 1, 2, 4, 5, 7: Equipment efficiency (AFUE, COP, etc.) If end use = 3, 6, 8, 9: Energy consumption (e.g., annual kWh consumption for refrigerators).

$RTEQCOST_{es}$ Installed capital cost per unit.

$RTRECOSt_{es}$ Retail capital cost per unit.

$SUBREPL_{es}$ Federal subsidy/ rebate per installed unit.

$SUBNEW_{es}$ Federal subsidy/ rebate per replacement unit.

$S111DREPL_{es}$ Utility subsidy/ rebate per installed unit.

$S111DNEW_{es}$ Utility subsidy/ rebate per replacement unit.

$RTMATURE_{es}$ Technology maturity description.

$MATURE = No further cost reductions expected; used above constants for installed wholesale and retail capital costs.$

$ADOLESCENT = Main cost reductions occurred before 1993; function EQCOST reduces installed wholesale and retail capital cost with 1993 (or first year of availability) as the inflection point.
INFANT = All cost reductions expected after first year of availability; function EQCOST reduces installed wholesale and retail capital cost with the inflection point in the future.

RTCOSTP1es If MATURE technology, not used.
If ADOLESCENT technology, representative year cost decline began (γ₁ in code).
If INFANT technology, year of inflection of cost trend (γ₀ in code).

RTCOSTP2es If MATURE technology, not used.
If ADOLESCENT or INFANT technology, logistic curve shape parameter (gamma in code).

RTCOSTP3es If MATURE technology, not used.
If ADOLESCENT technology, total possible proportional decline in equipment cost from y₀ onward (d in code).
If INFANT technology, total possible proportional decline in equipment cost from y₁ onward (d in code).

RTECBTA1es Efficiency choice model log-linear parameter β₁, weights capital cost.

RTECBTA2es Efficiency choice model log-linear parameter β₂, weights fuel cost.

RTECBTA3es Efficiency choice model log-linear parameter β₃, weights life-cycle cost.

RTECBIASes Efficiency choice model, consumer preference log-linear parameter.

RTTYNAMEes Unique name for each equipment type.

Lighting technology menu
File: RSMLGT.TXT (formerly part of RMISC.TXT)

Source: RECS; Updated Buildings Sector Appliance and Equipment Costs and Efficiency, Navigant Consulting, Inc. and SAIC; DOE Lighting Market Characterization; multiple DOE Solid-State Lighting Program reports.

Units: Index values; discussed for each variable.

Comments: Unlike other end uses and equipment types, characterizing lighting equipment stock and consumption requires time intervals measured in hours rather than years. Furthermore, there are multiple applications of lighting technologies (general service, reflector, linear fluorescent, and exterior), that have different usage profiles.

Variables:

General lighting control variables:

RLGTDOLLARYR Dollar year of bulb costs, based on source data.
NumApps Number of lighting applications modeled.

AppID_app A three-character variable denoting the application name:
- General service lighting (GSL)
- Reflector (REF)
- Linear fluorescent (LFL)
- Exterior (EXT)

AppIndex_app Numerical order of the application

NumTypes_app Number of bulb types modeled per application

NumBins_app Number of hour-of-use bins modeled per application (maximum 6)

Lighting cost and performance data includes one record for each bulb modeled, with each row containing the following variables. The number of data records is allowed to vary (terminated by FirstYear = 9999), with requirements that each application must include bulbs for all lighting types for that application covering all modeled years from the base year through the projection horizon.

FirstYear First year bulb is available.

LastYear Last year bulb is available.

BulbCost Cost per bulb.

BulbSub Subsidy/ rebate per bulb. Nine columns correspond to the nine U.S. Census divisions shown in Table 1.

LPW Lumens per Watt efficacy of bulb.

BulbWatts Number of Watts bulb consumes.

LifeHours Service life in hours-of-use for bulb.

BulbCRI The color rendering index (CRI) for bulb. 100 for full-spectrum incandescent lighting, lower for other bulb types (e.g., an LED may have a CRI value of 80)

LightingApp A three-character variable that matches the AppID for which bulb is being characterized.

BulbType A three-character variable that defines the bulb type:
- Incandescent/ halogen incandescent (INC)
- Compact Fluorescent Lamp (CFL)
- Light-emitting diode (LED)

Characterization of base-year bulb stocks (one record for each application) with stocks for each of the residential housing types (ht) modeled (single-family, multifamily, and mobile homes):
BulbsPerHH_{app,ht} Number of bulbs per household

Data characterizing base-year bulb usage for each application by hours-of-use bin, grouped by application:

AppBinHours_{app,bin} Daily hours-of-use for application in each hours-of-use bin

BinShares_{app,bin} Shares of bulbs for application by bin (must add to 100%)

BulbBinShares_{app,e,bin} Within bins, bulb shares by bulb type e for each application.

BaseWattsBulbs_{app,e} Base-year Watts for each of the bulb types used for this application.

Choice parameters:

β₁ The choice parameter that applies to capital cost

β₂ The choice parameter that applies to operating cost

Building shell technology menu

File: RSMSHL.TXT (formerly RTEKTYC.TXT)

Source: Exogenous modeling of housing units using REMDesign software.

Definition: HVAC technology data for new homes.

Units: Discussed for each variable.

Comments: Each of the lines of this data file gives the important user-modifiable parameters for HVAC equipment in new homes.

Variables:

RSHLDOLLARYR Dollar year of shell costs, based on source data.

RSCENDIV Census division number (1-9).

RSBTYPE Building type number (1-3).

HVHTEQCL HVAC heating equipment class. Same as the RTCLTYPT pointer in the RSCLASS.TXT file for heating.

HVHTEQTY HVAC heating equipment type. Same as the RTEQTYPE variable in the RSMEQP.TXT file for heating.

HVCLEQCL HVAC cooling equipment class. Same as the RTCLTYPT pointer in the RSCLASS.TXT file for cooling.
$HVCLEQTY$ HVAC cooling equipment type. Same as the RTEQTYPE variable in the RSMEQP.TXT file for cooling.

$HVFYEAR$ Initial calendar year for this model of this equipment type. The first HVFYEAR for a model within a type should be the NEMS base year; subsequent initial years for a model must be previous RTLASTYR$_{es}$+1.

$HVLYEAR$ Last calendar year for this model of this equipment type. Must be greater than or equal to HVFYEAR for this model; final HVLYEAR should be year of the projection horizon.

$HVHEATFACT$ Elasticity of the heating shell factor based on square footage.

$HVCOOLFACT$ Elasticity of the cooling shell factor based on square footage.

$HTSHEFF$ Heating shell efficiency index for HVAC system type.

$CLSHEFF$ Cooling shell efficiency index for HVAC system type.

$SHELCOST$ Installed capital cost for shell measures per unit for new homes.

$SHELLSUBSIDY$ Federal subsidy/ rebate per housing unit.

$SHELLSUBSIDY111D$ Utility subsidy/ rebate per housing unit.

$HVBETA1$ HVAC efficiency choice model log-linear parameter β_1, weights capital cost.

$HVBETA2$ HVAC efficiency choice model log-linear parameter β_2, weights fuel cost.

$HVPACKG$ HVAC shell efficiency package number.

$HVPGNAME$ Unique name for each HVAC shell efficiency package type.

Service demand and baseload by new housing type

File: RSUECSHL.TXT (formerly part of RMISC.TXT)

Source: Various.

Units: Discussed for each variable.

Comments: Contains new-home service demand and baseload inputs by housing type, Census division, and technology; used to calculate operating costs for builder choice in new construction.

Variables:

$NEWHEATUEC_{es,b,r}$ Service demand for heating equipment by equipment type (aligns with equipment class name RTCLNAME in RSCLASS.TXT input file), housing type, and Census division. Efficiency by equipment type found in Table 3.
NEWCOOLEC*b,r***
Service demand for cooling equipment by equipment type (aligns with equipment class name RTCLNAME in RSCLASS.TXT input file), housing type, and Census division. Efficiency by equipment type found in Table 3.

BASELOAD*es***
Standard level of efficiency as seen in Table 3 for RTCLEQCL heating classes 1–11 and cooling classes 1–5 in the RSCLASS.TXT input file.

LEARNFACT*b,r***
Learning factors (no units) for ENERGY STAR qualified shells by housing type and Census division.

Miscellaneous Electric Loads (MELs)
File: RSMELS.TXT (formerly part of RMISC.TXT)
Source: Analysis and Representation of Miscellaneous Electric Loads in NEMS, Navigant Consulting, Inc. and SAIC; multiple Technical Support Documents of DOE Appliance Standard Rulemakings.
Units: Index, base year = 1.0.
Comments: For each end use described in this file, there are two arrays, both indexed to the base year. One index modifies the number of units per household (penetration, or PEN) and the other modifies the per-unit energy consumption (efficiency, or EFF). Each end use has two variables associated with it; the variable naming convention uses the first three letters to associate the end use and the last three letters to associate the index type (PEN or EFF).

Variables:

***PEN*+=** Indexed change in equipment stock per household by year for each end use.

***EFF*+=** Indexed change in per-unit energy consumption index by year for each end use.

Where the first three letters of each variable are associated with the following end uses:

Televisions and related equipment
- **TVS***
- **STB***
- **HTS***
- **DVD***
- **VGC***

Computers and related equipment
- **DPC***
- **LPC***
- **MON***
- **NET***
Other miscellaneous electric loads

- **BAT** Non-PC Rechargeable Electronics (battery chargers)
- **CFN** Ceiling Fans
- **COF** Coffee machines
- **DEH** Dehumidifiers
- **MCO** Microwaves
- **PHP** Pool Heaters & Pumps
- **SEC** Security Systems
- **SPA** Portable Electric Spas
- **WCL** Wine Coolers

Equipment Switching

File: RSSWITCH.TXT (formerly part of RMISC.TXT)

Source: Switching costs based on RSMeans Residential Cost Data, 2008.

Units: Discussed for each variable.

Comments: The bias parameters inform the logit function for new home heating equipment choice, while the replacement cost parameters describe costs associated with switching heating equipment (in addition to the equipment cost itself).

Variables:

- \(R_{\text{TF}BIAS}^{\text{eg},b,r} \) Bias parameters for new home heating fuel choice.
- \(R_{\text{PIN}SCOST}^{\text{eg},\text{egsw}} \) Installation cost associated with switching from equipment class (\(\text{eg} \)) to equipment class (\(\text{egsw} \)) when equipment is replaced.

Distributed Generation Technologies

File: RSGENTK.TXT (formerly RGENTK.TXT)

Units: Described for each variable.

Comments: This file contains variables used in the distributed generation module calculations, including cost, efficiency and performance variables for the three modeled technologies (photovoltaics, fuel cells and small wind turbines); niche variables for modeling within...
Census region (see RDISTGEN section of documentation); and historical installations by Census division.

Variables:

\(i\text{gencapcostyr} \) Dollar year of equipment costs, based on source data.

\(x\text{alpha} \) Penetration function shape parameter.

\(x\text{penparm} \) Penetration function used to calculate maximum market share into new construction parameter.

\(x\text{operhours}_t \) Typical operating hours by technology.

\(x\text{beta}_t \) Learning \(\beta \) parameter by technology.

\(x\text{c0}_t \) Learning \(c_0 \) parameter by technology.

\(i\text{RPSStartYear} \) Year for which renewable portfolios standard (RPS) credits are available for residential photovoltaic generation.

\(i\text{RPSPhaseOutYear} \) Last year for which RPS credits are available for residential photovoltaic generation.

\(i\text{RPSGrandFatherYear} \) Year after which photovoltaic installations are grandfathered in to receive RPS credits.

\(x\text{inx} \) Initial interconnection limitation by Census division.

\(x\text{inxfy} \) First year of interconnection limitations.

\(x\text{inly} \) Last year of interconnection limitations.

\(x\text{taxrate} \) Marginal combined federal and state income tax rate, currently assumed to be 34\% for the typical homeowner.

\(x\text{downpaypct} \) Down payment percentage assumed to apply to the distributed generation investment, currently 10\% of the installed cost.

\(x\text{inrate} \) Residential mortgage rate from the Macroeconomic Activity Module.

\(x\text{term} \) Loan term (currently set at 30 years).

\(x\text{inflation} \) Inflation assumption for converting constant-dollar fuel costs and fuel cost savings into current dollars for the cash flow model in order to make the flows correspond to the nominal-dollar loan payments. The current assumption is 3\% annually.

\(a\text{equipname}_{e,v} \) Distributed generation technology equipment name.
\(ifueltype_t \): Fuel used by technology (0 for solar and wind); must coincide with fuels in Table 1.

\(ifirstyr_{t,v} \): First year technology is available.

\(ilastyr_{t,v} \): Last year technology is available.

\(xkW_{t,v} \): Capacity (kW) of typical system. Note that capacity must remain constant across vintages for a given technology.

\(xeleff_{t,v} \): Electrical conversion efficiency by technology and vintage.

\(xlossfac_{t,v} \): Conversion losses (for systems that are rated at the unit rather than per available alternating current wattage) if appropriate.

\(xdegrad_{t,v} \): Degradation of conversion efficiency by technology and vintage.

\(xeqlife_{t,v} \): Equipment lifetime by equipment type and vintage.

\(xwhrecovery_{t,v} \): Waste heat recovery factor for technologies that burn fuel (i.e., not wind or solar photovoltaics).

\(xinstcost_{t,v} \): Installation cost in dollars per kW.

\(xcapcost_{t,v} \): Capital cost of the investment in dollars per kW.

\(xmaintcst_{t,v} \): Annual maintenance cost in dollars per kW.

\(xintervalcst_{t,v} \): DC-to-AC inverter cost.

\(iintervalyrs_{t,v} \): DC-to-AC inverter equipment lifetime.

\(xavail_{t,v} \): Percentage of time available (1 – forced outage rate – planned outage rate) applied to typical operating hours.

\(xtxcrpct_{t,v} \): Tax credit percentage that applies to a given technology’s total installed cost (if any).

\(xtxcrmaxperkw_{t,v} \): Maximum tax credit dollar amount, if any, per kW system capacity.

\(xtxcrmaxpersys_{t,v} \): Maximum tax credit dollar amount, if any, per distributed generation system.

\(xtxcrpct_{-}\text{div}_{t,v,r} \): Subsidy/ rebate per system as a percent of installed capital cost. Nine columns correspond to the nine U.S. Census divisions shown in Table 1.

\(xtemp \): RPS credit availability (1 = yes, 0 = no). Annualized using \(xrps \) variable.

\(xtemp1 \): Number of years before RPS rate adjustment. Annualized using \(iNumYrsatRPSBaseRate \) variable.

\(xtemp2 \): Total number of RPS credit years. Annualized using \(iNumRPSCreditYrs \) variable.
Descriptions for renewable resource and electricity *niche-dimensioned* rate level variables within each Census division from RECS:

- \(x_{\text{SolarInsolation}}_{r,n,rl} \) Estimated solar insolation (kWh per square meter per day) for Census division, solar niche, and electricity rate level.

- \(x_{\text{HHShare}}_{r,n,rl} \) RECS share of households within each niche.

- \(x_{\text{RateScalar}}_{r,n,rl} \) RECS ratio of electricity price for niche to Census division average price.

- \(x_{\text{AvgKWH}}_{r,n,rl} \) RECS average annual electricity consumption in kWh per household within each niche.

- \(x_{\text{RoofAreaPerHH}}_{r,n,rl} \) Estimated roof area per household within each niche.

- \(x_{\text{WindSpeed}}_{r,n,rl} \) Estimated wind speed within each niche in meters per second.

- \(x_{\text{RuralPctHH}}_{r,n,rl} \) RECS percentage of households that are considered *rural* in each niche.

Variables representing program-driven and historical distributed generation capacity:

- \(x_{\text{exogpen}}_{t,y} \) Exogenous distributed generation capacity by technology, Census division, and year.

Solar Photovoltaic Penetration Hurdle Model

File: RGENTK.TXT

Source: State solar PV program data from California, New Jersey, and Arizona; U.S. Census Bureau’s American Community Survey (ACS); solar insolation data from the National Renewable Energy Laboratory; various reports and studies.

Units: Described for each variable.

Comments: This file has been repurposed from its former use as the residential distributed generation technology menu and now contains ZIP code-level variables used to calculate solar photovoltaic installation penetration.

Variables:

- **UseNewModel** Boolean variable used to activate ZIP code solar PV penetration model.

- **EstYear** First year of data estimated by ZIP code model.

Coefficients for full, urban, and rural models:

- **CINT** Model intercepts.

- **CHH** Number of households.
CPD
Population Density.

CINC
Income.

CINS
Solar insolation.

CER
Electricity rate.

CCDD
One-year lagged cooling degree days.

CPMT
Monthly payment for PV system (30-year).

CIR
Interest rate.

CLAG1
Lag1 PV installs (one-year lag).

CLAG2
Lag2 PV installs (two-year lag).

CPVP
PV installed price net of tax credits (if any).

NumZips
Total number of ZIP code records in file.

ZIP code-level data:

ZipCodes
Record ZIP code.

State
State that includes the record ZIP code.

CenDiv
Census division (shown in Table 1) that includes the record ZIP code.

Income
Median household income in nominal EstYear dollars.

Households
Number of households within the ZIP code.

PopDensity
Population density in units of households per square mile.

Insol
Annual average solar irradiation level, in kilowatthours per square meter per day (assumed to be constant over time).

ElecRate
ZIP code-level electricity rate in cents per kilowatthour, derived from state-level and ZIP code-level rates.

LagCDD
One-year lagged cooling degree days.

IntRate
Annual average mortgage interest rate for EstYear.

PVPrice
Installed price of solar PV system in EstYear.
MonthlyPayment Monthly payment per kW of installed system capacity, based on a 30-year (360 month) mortgage.

Lag1Installs One-year lagged estimate of number of residential solar PV installations in the ZIP code.

Lag2Installs Two-year lagged estimate of number of residential solar PV installations in the ZIP code (not currently used in the models).

PureHurdle Value (0 or 1) indicating whether or not Lag1Installs is used in projections for the ZIP code (0 indicates it is used).

RuralZip Value (0 or 1) identifying ZIP code as rural (i.e., having a population density of 10 or fewer households per square mile).

ModelInstalls Projected number of new residential solar PV installations for the ZIP code.

Historical ENERGY STAR Home Shares
File: RSESTAR.TXT (formerly RSUEC11.TXT).
Source: ENERGY STAR Certified New Homes Market Indices for States, Environmental Protection Agency.
Units: Share of homes within Census division, building type, and shell integrity level.
Comments: The information in this file was not used for AEO2016.
Variables: $HVEQWTN_{y,e,s,d}$ Percent of homes meeting ENERGY STAR Home specification or better by heating technology type, shell level type, and Census division.

Weather (Degree Days)
File: KDEGDAY.TXT (formerly part of RMISC.TXT)
Source: Historical and near-term forecast of heating and cooling degree days from NOAA. Projected degree days developed exogenously by EIA based on a 30-year historical trend. Population weights from detailed inputs to the Macroeconomic Activity Module, which maintains historical and projected state-level populations.
Units: Population-weighted degree days.
Comments: This file, which is also used by the commercial demand module (CDM), supplies heating and cooling degree day information for weather adjustments in the RDM.
Variables:

$HDDADJ_{y,r}$ Heating degree days by Census division and year.

$CDDADJ_{y,r}$ Cooling degree days by Census division and year.
Miscellaneous Inputs

File: RSMISC.TXT (formerly RMISC.TXT)
Units: Discussed for each variable.
Source: Discussed for each variable.
Comments: This file contains several variables and arrays that otherwise did not fit conceptually with the other input files.

Variables:

HDR_b Housing demolition rates by building type.
$EH_{baseyr,b,r}$ Existing houses in the base year by building type and Census division (with totals).
$RACSA{T}_{b,r}$ New room air conditioner saturation level by building type and Census division.
$RACUNTS_{b,r}$ Number of room air conditioners per housing unit by building type and Census division.
$CACSAT_{b,r}$ New central air conditioner saturation level by building type and Census division.
$CACPR_r$ Central A/C penetration rate by Census division.
$DISHPEN$ Dishwasher penetration rate.
$FRZSAT_{b,r}$ New home freezer saturation level by building type and Census division.
$REFSAT_{b,r}$ New home refrigerator saturation level by building type and Census division.
$ELDRYPR_{b,r}$ Electric dryer penetration rate by building type and Census division.
$SHTSHR_{r,f,b}$ Secondary heating share by fuel, building type, and Census division.
$NSHTSHR_{r,f,b}$ Secondary heating share for post-base-year construction by fuel, building type, and Census division.
$ELASTIC_{e,r}$ Elasticity of service demand with respect to square footage by end use and Census division.
$NEWDRYSAT_{eg,b,r}$ New dryer saturation by type (natural gas, electric).
$DISHNEW_{b,r}$ Percent of new housing units with dishwashers by building type and Census division.
$WASHNEW_{b,r}$ Percent of new housing units with clothes washers by building type and Census division.
$WTHRZTN_{y,f,r}$ Changes to existing shell index due to weatherization measures.
$ELAST$ Elasticity parameters for calculating model price elasticities.
Historical Data and Short-Term Energy Outlook Benchmarking

File: RSSTEO.TXT

Units: Trillion Btu

Comments: Regional consumption by fuel and year for historical years comes from the State Energy Data System for the model’s base year and as many subsequent years as available. Beyond those years, national total energy consumption by fuel and year comes from the Monthly Energy Review, and beyond that, the Short-Term Energy Outlook for near-term forecasts.

Variables: \(STEOCN_{y,t,r} \)

Baseline Electricity Consumption for Energy Efficiency Calculations

File: BLDBASE.TXT (also used by the Commercial Demand Module of NEMS)

Source: Integrated NEMS model run in which no energy efficiency rebates or subsidies are included (with the exception of federal tax credits).

Units: Billion kilowatthours.

Comments: Used to calculate incremental electricity consumption between an integrated NEMS model run that includes energy efficiency rebates (i.e., the AEO Reference case including the Environmental Protection Agency’s Clean Power Plan) and one in which no rebates are included.

Variable:

\(baselinebkwh_{y,r} \) Baseline electricity consumption, by Census division, model index year (starting in 1990), and sector (residential and commercial).
Appendix B: Detailed Mathematical Description

This appendix presents the detailed calculations used in each of the module components. Table B-1 shows the correspondence between each of the subscripts in the documentation and the subscripts in the Fortran source code. The table of subscripts includes all of the major usages. In some minor instances, additional subscripts are defined as needed.

The equations and variable assignment statements follow the logic of the Fortran code very closely to facilitate an understanding of the code and its structure. In several instances, a variable appears on both sides of an equal sign. These statements must not be interpreted as equations. They are computer programming assignment statements that allow a previous calculation to be updated (for example, multiplied by a factor) and re-stored under the same variable name (i.e., in the same memory location). The equal signs in these statements do not denote equality; rather, they indicate that the value stored in a location in the computer’s memory is being overwritten by a new value.

The subscript y in the documentation refers to the year represented as 1990 through the projection horizon. In the Fortran code, the subscript CURIYR represents array dimensions starting with an index of 1 to represent 1990, and CURCALYR represents the calendar years 1990 through the projection horizon.

Some variables are documented having a y dimension when, in the Fortran code, they do not. The most common instances are for the variables, LFCY, OPCOST, SA, SHARESN, and SHARESR. These variables are calculated on an annual basis but are retained only for the current year. Although previous values are overwritten, the variables do have a y dimension. The y dimension is shown explicitly in the documentation to highlight 1) that the calculations do vary by year, and 2) to indicate the current year in formulas to avoid confusion.

Summations over all relevant variables are usually written without upper and lower range limits on the summation signs.

Table B-1. Definition of Subscripts

<table>
<thead>
<tr>
<th>Subscript in Documentation</th>
<th>Subscript in Fortran code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>r or d</td>
<td>Census division</td>
</tr>
<tr>
<td>T</td>
<td>y or t</td>
<td>Calendar year index</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>Fuel types</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>Housing (building) type</td>
</tr>
<tr>
<td>Baseyr</td>
<td>RECSyear</td>
<td>Base year (latest RECS available)</td>
</tr>
<tr>
<td>Y</td>
<td>curiyr or curcalyr</td>
<td>Annual index or calendar year</td>
</tr>
<tr>
<td>$y-1$</td>
<td>curiyr-1 or curcalyr-1</td>
<td>Previous year</td>
</tr>
<tr>
<td>E_g</td>
<td>eqc, reccl</td>
<td>General equipment class within an end use (e.g., 1 to 11 for space heating)</td>
</tr>
<tr>
<td>E_{gsw}</td>
<td>Eqcsw</td>
<td>Equipment class within an end use available to switch to another equipment class</td>
</tr>
<tr>
<td>E_s</td>
<td>Eqt</td>
<td>Specific equipment type within an end use</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>Vintage of equipment</td>
</tr>
</tbody>
</table>
Classification

The RDM regards the residential sector as a consumer of energy. It classifies this consumption into a series of end uses that represent the various ways in which energy is used by housing units. The end uses listed in Table 1 are defined within the logic of the RDM and determine the organization of the data found in the input data files and discussed in this document.

Further, the RDM assumes that a series of broad equipment classes are available to satisfy the demands within the end uses. Using input data files, the user can modify the definitions of equipment classes available for each of the major end uses, as well as penetration and per-unit consumption assumptions for several miscellaneous electric loads. In general, the equipment classes are each used to satisfy a particular end use; however, there are a few cases where one class of equipment (e.g., heat pumps) satisfies more than one end use, or where the availability of one class of equipment makes another class more likely (a natural gas furnace is frequently accompanied by a natural gas water heater and cooking equipment).

Each equipment class comprises a variety of specific equipment types that each have their own technological characteristics, such as efficiency, cost, and year when the technology is expected to become available or made obsolete. Examples of equipment types include the array of available natural gas furnaces, the more expensive of which tend to have higher efficiencies. The RDM does not attempt to represent all manufacturers’ products, but rather defines broad types that are similar to one another in their technological characteristics. The user has the ability to define and modify the definitions of these equipment types by modifying the equipment menu files.

Each equipment type can be assigned different characteristics during different ranges of years or vintages. Each of these time-related sets of characteristics is sometimes referred to as an equipment model of the given equipment type.

The concept of equipment classes comprising a number of different equipment types that each contain several models underlies the entire discussion of this manual. In earlier editions of the documentation, these two classifications were referred to as general equipment type (equipment class), and specific equipment type (equipment type). These names survive in the subscripts assigned to the two concepts throughout the document, eg and es, respectively. Over time, cost and performance can vary even within a specific equipment type, especially as appliance standards are introduced.

Other RDM files define the characteristics of the mix of appliances that are in use in the base year, including relative numbers installed (i.e., existing stock), efficiencies, and the rates at which they are expected to be replaced.

Within the present structure of the Residential Demand Module, there are 30 defined technology classes. The list is not exhaustive of all equipment used in the residential sector in the main end uses, in that there is, for example, a small percentage of homes in which wood is burned to heat domestic water; the vast majority of equipment used to satisfy the major end uses falls into at least one class.

Within each of the equipment classes defined in the RSCLASS.TXT file, the Residential Demand Module accepts one or more types of equipment. The module chooses among the equipment types according to
energy costs, equipment costs, and the relative efficiencies of the available types. The RSMEQP.TXT file contains the data used by the model for selecting which of the types are used. In general, the module does not exclusively select one of the alternatives available within a class, but rather changes the proportions of each type according to its evaluation of the equipment characteristics (i.e., a distribution of selections rather than a single selection).

The characteristics of each equipment type can change over time, so the RSMEQP.TXT file allows more than one set of characteristics for each equipment type.

Housing and equipment stock formation

To calculate the number of existing dwellings, the Housing Stock Component adds newly built homes to the inventory and subtracts demolitions. Housing construction starts are obtained from regional outputs of the Macroeconomic Activity Module (MAM). Existing base-year housing stock is designated as the existing vintage, and new additions to the housing stock are referred to as the post-base-year vintage. Additions and replacements for both housing vintages are tracked through the projection period.

SVRTE is a function that can be called with arguments and returns a single value as its result. The survival rate function is a Weibull-shaped decline, as shown in Figure 2 below. Its mathematical description is as follows:

\[SVRTE_{y,k,\lambda} = e^{-\left(\frac{y}{\lambda}\right)^k} \]

(B-1)

where

- \(SVRTE_{y,k,\lambda} \) is the proportion of surviving equipment after \(y \) years,
- \(y \) is the number of years after purchase,
- \(\lambda \) is the scale parameter, and
- \(k \) is the shape parameter.

Figure 2. Weibull and linear equipment survival rate functions

portion of surviving equipment after \(y \) years

0% 25% 50% 75% 100%

0 10 20 30 40 50 60 70 80 years

Linear

Weibull
The Weibull k and λ shape parameters were estimated to approximate the median and slopes of the existing linear decay functions that had been used in AEO2012 and prior Outlooks.

Note that function calls to SVRTE in the Fortran code include a placeholder as the first argument; however, the first argument is currently not used in the calculations. Because it is not used in the definition of the function in (B-1), it is not noted explicitly in the remainder of this documentation.

Existing housing evolution rate
The model assumes housing units are removed from the stock at a constant rate over time. This rate is intended to reflect all changes to the count of residential units other than additions from new construction. This includes demolition, decay, vacancy, etc., as well as additions such as conversion from commercial buildings. Thus, they are best thought of as evolution rates rather than demolition or decay factors. The evolution rates for the housing unit types (HDR_b) are as follows:

- Single-Family Homes: $HDR_1 = 0.997$
- Multifamily Homes: $HDR_2 = 0.995$
- Mobile Homes: $HDR_3 = 0.966$

These values were determined based on analysis of housing starts and housing stock arrays provided by the Macroeconomic Activity Module. By analyzing these two concepts at the building type level, the long-term average implicit evolution rate can be calculated.
The surviving base-year housing stock is defined by

\[
EH_{y,b,r} = \text{RECS data, if } y = \text{baseyr}
\]
\[
EH_{y,b,r} = EH_{y-1,b,r} \times HDR_{b}, \text{ if } y > \text{baseyr}
\]
(B-2)

where

- \(EH_{y,b,r}\) is the base-year housing stock surviving in year \(y\),
- \(HDR_b\) is the housing evolution rate

New construction

New houses are added to the stock each year, as provided by the NEMS Macroeconomic Activity Module. The total number of new additions in a given year is computed as:

\[
NH_{y,r} = MC_\text{HUSPS1}_{y,r} + MC_\text{HUSPS2A}_{y,r} + MC_\text{HUSMFG}_{y,r}
\]
(B-3)

where

- \(NH_{y,r}\) is total new housing added by year and Census division,
- \(MC_\text{HUSPS1}_{y,r}\) is single-family housing added by year and Census division,
- \(MC_\text{HUSPS2A}_{y,r}\) is multifamily housing added by year and Census division, and
- \(MC_\text{HUSMFG}_{y,r}\) is mobile home shipments added by year and Census division.

Square footage

In the calculation of square footage, the model first aggregates the housing stock to the national level:

\[
OLDHSES_y = \sum_{b,r} EH_{y,b,r}
\]
(B-4)

\[
NEWHSES_y = \sum_{b,r} NH_{y,b,r}
\]
(B-5)

where

- \(OLDHSES_y\) is the national total of remaining housing that existed in the base year, and
- \(NEWHSES_y\) is the national total of remaining post-base-year new construction additions.
\[SQFTAVG_{baseyr} = \sum_{b,r} \left(SQRFOOT_{baseyr,b,r} \cdot EH_{baseyr,b,r} \right) / OLDHSES_{baseyr} \]

\[SQFTAVG_{y;baseyr} = \sum_{b,r} \left(SQRFOOT_{baseyr,b,r} \cdot EH_{baseyr,b,r} + SQRFOOT_{y,b,r} \cdot NH_{y,b,r} \right) / OLDHSES_{baseyr} + NWHSES_{y} \]

where

\[SQFTAVG_{y} \] is the average floor area of houses of all types, and

\[SQRFOOT_{y,b,r} \] is a table of historical and projected housing floor areas by year, housing type, and Census division.

Projecting base-year vintage equipment for all end-use services

Much of the equipment that exists in the base year survives into subsequent years. For years beyond the base year:

\[EQCESE_{y,eg,b,r} = EQCESE_{baseyr,eg,b,r} \cdot HDR_{y;baseyr} \cdot EQCRET_{y,eg} \]

where

\[EQCESE_{y,eg,b,r} \] is the amount of surviving base-year vintage equipment in base-year housing by housing type and Census division,

\[HDR_{y} \] is the housing evolution rate by housing type, and

\[EQCRET_{y,eg} \] are the annual equipment retirement fractions for the equipment classes.

Technology Choice Component

The Technology Choice Component uses a log-linear function to estimate technology market shares for the 10 major end uses. The module is able to calculate market shares based on consumer behavior as a function of bias, capital costs, and operating costs or as a function of life-cycle costs.

All other uses are modeled differently and in less detail than the 10 major end-use services.

Space Heating

Space heating is modeled in two stages. For new construction, the first-stage choice is the HVAC/shell package which is a combination of heating equipment, air conditioning equipment, and building shell levels. There are up to five HVAC/shell packages available, generally named relative to the code level that is met: no code, the IECC code, and three more advanced ENERGY STAR qualified shells performing 30%, 40%, and 50% better than IECC. Not all equipment combinations are modeled for advanced shells.
The HVAC/shell packages are fuel-specific, so once chosen, the fuel choice is also determined. The second-stage choice models increases in efficiency for the heating and air conditioning equipment if available (for some of the advanced packages, the equipment may already be the most-efficient available). For existing construction, the first stage considers fuel-choice and the second stage equipment efficiency for the selected equipment class.

New equipment operating costs are computed by the expression:

\[
OPCOST_{y,es,b,r,v} = PRICES_{f,r,y} \times EQCUEC_{y,eg,b} \times HDDFACT_{r,y} \\
\times RTEFFAC_{eg,y} \times HSHSHELL_{y-1,r,v}
\]

\[(B-9)\]

where

- \(OPCOST_{y,es,b,r,v}\) is the operating cost for the specific equipment type by year, housing type, Census division, and vintage,
- \(PRICES_{f,r,y}\) is the fuel price for the equipment by fuel, region, and projection year,
- \(EQCUEC_{r,eg,b}\) is the unit energy consumption by Census division, equipment class and housing type,
- \(HDDFACT_{r,y}\) is an adjustment factor for weather differences between the base year and the current year; it is computed as the ratio of the numbers of heating degree days in the current (numerator) and base (denominator) years;
- \(RTEFFAC_{eg,y}\) is the efficiency adjustment for the general equipment class and vintage, and
- \(HSHELL_{y-1,r,v}\) is the shell efficiency adjustment to account for building shell improvements over time (which reduce heating loads).

For newly constructed homes, heating and cooling choices are linked and therefore operating cost is a function of both the heating and cooling operating costs, with the shell efficiency also accounted for as:

\[
OPCOST_{y,es,b,r,hvac} = PRICES_{f,r,y} \times EQCUEC_{y,heatingb} \times HDDFACT_{r,y} \\
\times RTEFFAC_{heatingy} \times HTSHELL_{eg,r,b} + PRICES_{f,r,y} \times EQCUEC_{y,coolingb} \\
\times CDDFACT_{r,y} \times RTEFFAC_{coolingy} \times CLSHELL_{eg,r,b}
\]

\[(B-10)\]

where

- \(HTSHELL_{eg,r,b}\) is the heating shell efficiency factor for the HVAC system,
- \(CDDFACT_{r,y}\) is the cooling degree day adjustment factor, and
- \(CLSHELL_{eg,r,b}\) is the cooling shell efficiency factor for the HVAC system.

The consumer is allowed to choose among the various levels of cost and efficiency for a given class of equipment. Electric heat pumps are an example of an equipment class (denoted by eg). Equipment type (denoted by es) refers to the same class of equipment with different efficiency ratings (e.g., high- vs. low-efficiency electric heat pumps).
EQCOST is a time-dependent function for computing the installed capital cost of equipment in new construction and the retail replacement cost of equipment in existing housing. It is called if the cost trend switch COSTTRSW = 1 in COMMON file RTEK (which is the default). The formulation allows for three general classifications of equipment: mature equipment – no further time-dependent cost declines occur; adolescent and infant equipment – costs declines occur, but at different rates as set by the parameters and described below. For each of the three general classifications, the following equations describe the calculations for mature, adolescent, and infant technologies, respectively:

\[
\text{EQCOST}_{es,y,CAP} = \text{RTREQCOST}_{es} \text{, if } \text{RTMATURE}_{es} = \text{MATURE} \\
\text{EQCOST}_{es,y,RET} = \text{RTREQCOST}_{es} \text{, if } \text{RTMATURE}_{es} = \text{MATURE}\\
\text{EQCOST}_{es,y,CAP} = \frac{\text{RTREQCOST}_{es} * 2 * d}{1 + \left(\frac{y - y_1}{y_0 - y_1}\right)^\gamma} + (1 - d) \text{RTREQCOST}_{es}, \\
\text{if } \text{RTMATURE}_{es} = \text{ADOLESCENT}\\
\text{EQCOST}_{es,y,RET} = \frac{\text{RTREQCOST}_{es} * 2 * d}{1 + \left(\frac{y - y_1}{y_0 - y_1}\right)^\gamma} + (1 - d) \text{RTREQCOST}_{es}, \\
\text{if } \text{RTMATURE}_{es} = \text{ADOLESCENT}\\
\text{EQCOST}_{es,y,CAP} = \frac{\text{RTREQCOST}_{es} * d}{1 + \left(\frac{y - y_1}{y_0 - y_1}\right)^\gamma} + (1 - d) \text{RTREQCOST}_{es}, \\
\text{if } \text{RTMATURE}_{es} = \text{INFANT}\\
\text{EQCOST}_{es,y,RET} = \frac{\text{RTREQCOST}_{es} * d}{1 + \left(\frac{y - y_1}{y_0 - y_1}\right)^\gamma} + (1 - d) \text{RTREQCOST}_{es}, \\
\text{if } \text{RTMATURE}_{es} = \text{INFANT}
\]

where

\[\text{EQCOST}_{es,y,ctype} \] is time-dependent installed capital cost of equipment in new construction or the retail replacement cost of equipment in existing housing,

\[ctype \] tells function type of equipment cost to return,

\[\text{CAP} = \text{Return installed capital cost in new construction}, \]
\[\text{RET} = \text{Return retail replacement cost in existing housing}, \]

\[\text{RTMATURE}_{es} \] is a technology maturity description,

\[\text{MATURE} = \text{no further equipment cost reductions expected}, \]
ADOLESCENT = major cost reductions occurred before base year,
INFANT = all cost reductions expected after first year available,

\[RTEQ\text{\textsubscript{es}} \] is installed wholesale capital cost in \(\text{RTEK}\text{\textsubscript{DOLLARYR}} \) dollars per unit for new homes, which remains constant for MATURE technologies only (used when \(\text{ctype} = \text{CAP} \)),

\[RTREC\text{\textsubscript{es}} \] is retail capital cost in \(\text{RTEK}\text{\textsubscript{DOLLARYR}} \) dollars per unit for replacements, and remains constant for MATURE technologies only (used when \(\text{ctype} = \text{RET} \)),

\(y \) is the current projection calendar year,
\(y_0 \) is the year of inflection of cost trend,

\[\text{RTINITYR}_{es} \text{ if ADOLESCENT,} \]
\[\text{RTCOSTP1}_{es} \text{ if INFANT,} \]
\(y_1 \) is the year cost decline began,

\[\text{RTCOSTP1}_{es} \text{ if ADOLESCENT,} \]
\[\text{RTINITYR}_{es} \text{ if INFANT,} \]
\(d \) is the total possible proportional decline in equipment cost, \(\text{RTCOSTP3}_{es} \), from \(y_0 \) onward if ADOLESCENT and from \(y_1 \) onward if INFANT,

\(y \) is the assumed logistic curve shape parameter, \(\text{RTCOSTP2}_{es} \).

For newly constructed homes, the costs shown above also include the cooling system and shell efficiency measures.

The concept of price-induced technology change is also included in the formulation of equipment costs. Although not activated in most model runs, this concept allows future technologies faster diffusion into the marketplace if fuel prices increase markedly and remain high over a multi-year period. First, compare the average fuel price for a given fuel over a three-year period to the price observed in the base year:

\[
\text{PRICE\Delta}_{y,f} = \frac{0.33333 \times (\text{PRICE}_{y,f} + \text{PRICE}_{y-1,f} + \text{PRICE}_{y-2,f})}{\text{PRICE}_{\text{baseyr}}}
\]

(B-14)

Under a persistent doubling of energy prices (defined in the models as three consecutive years, as noted in (B-14) above), the most advanced technologies will advance forward by at most 10 years. For nearer-term technologies, shifts are limited to a lesser number of years by the algorithm to ensure that future technologies cannot become available before the persistent price change is projected to occur. The formulation only allows technologies potentially to shift toward earlier availability, and once shifted, they never shift back. This shift is represented as:
\[
\text{SHIFTYEARS}_f = \frac{(\text{PRICE}_f - 1.0)}{0.10}
\]

subject to the constraints listed above. The initial technology year, RTINITYR, used in equations (B-11) to (B-13) is adjusted according by the year shift obtained in equation (B-15).

The module includes the option to use life cycle costing to calculate market share weights. The life-cycle cost calculation is

\[
LFCY_{y,es,b,r,v} = \text{CAPITAL}_{es} + \text{OPCOST}_{y,es,b,r,v} \times \left(1 - \frac{(1 + \text{DISRT})^{\text{HORIZON}}}{\text{DISRT}}\right)
\]

where

- \(LFCY_{y,es,b,r,v}\) is the life-cycle cost of an equipment type by projection year, housing type, Census division, and vintage,
- \(\text{CAPITAL}_{es}\) is the installed capital cost of an equipment type based on calling EQCOST with RTEQOST1\(_{es}\),
- \(\text{OPCOST}_{y,es,b,r,v}\) is the operating cost for the specific equipment type by year, housing type, Census division, and vintage,
- \(\text{HORIZON}\) is the number of years into the future used to compute the present value of future operating cost expenditures, presently set to seven years, and
- \(\text{DISRT}\) is the discount rate applied to compute the present value of future operating costs, presently set at 20%.

A weight for each equipment class is calculated to estimate the market share for each of the 11 heating system classes for new construction based on the cost factors computed above. The functional form is expressed as:

\[
\text{HEATSYS}_{y,eg,b,r} = \text{LAGFACTOR} \times \text{HEATSYS}_{y-1,eg,b,r} + (1 - \text{LAGFACTOR}) \times \exp\left(\text{RFTBIAS}_{y,eg} + \text{RTFCBETA}_{eg} \times LFCY_{y,eg,b,r,v}\right)
\]

where

- \(\text{HEATSYS}_{y,eg,b,r}\) is the equipment weight for a heating equipment class for new housing by year, housing type, and Census division,
- \(\text{LAGFACTOR}\) is the weight given to the prior year’s heating system share,
- \(\text{RFTBIAS}_{y,eg}\) is a consumer preference parameter that fits the current market share to historical shipment data,
- \(LFCY_{y,eg,b,r,v}\) is the life-cycle cost for the equipment class by year, housing type, Census division, and vintage, and
$RTFCBETA_{eg}$ is a parameter value of the log-linear function.

The sum over the heating equipment classes gives the total weight for all of the heating equipment:

$$SYSTOT_{y,b,r} = \sum_{eg=1}^{11} HEATSYS_{y,eg,b,r}$$ (B-18)

where

$SYSTOT_{y,b,r}$ is the sum of equipment class weights for the all equipment classes.

The equipment class fuel share is computed as

$$HTYSSHR_{y,eg,b,r} = \frac{HEATSYS_{y,eg,b,r}}{SYSTOT_{y,b,r}}, \text{if } SYSTOT_{y,b,r} > 0$$ (B-19)

$$HTYSSHR_{y,eg,b,r} = 0, \text{otherwise}$$

where

$HTYSSHR_{y,eg,b,r}$ is the equipment class fuel share by year, building type, and Census division.

For each equipment type within each class, a weight is calculated based on the cost factors computed above. The functional form is expressed as:

$$EQWTN_{y,es,b,r} = \exp\left(RTECBTA1_{es} \ast CAPITAL_{es} + RTECBTA2_{es} \ast OPCOST_{y,es,b,r,1}\right)$$ (B-20)

$$EQWTR_{y,es,b,r} = \exp\left(RTECBTA1_{es} \ast CAPITAL_{es} + RTECBTA2_{es} \ast OPCOST_{y,es,b,r,2}\right)$$ (B-21)

where

$EQWTN_{y,es,b,r}$ is the equipment weight for new equipment type by year, housing type, and Census division,

$EQWTR_{y,es,b,r}$ is the equipment weight for replacement equipment type by year, housing type, and Census division,

$OPCOST_{y,es,b,c,v}$ is the operating cost for the equipment type by year, housing type, Census division, and vintage (1=new, 2=existing), and

$RTECBTA1_{es}$, $RTECBTA2_{es}$ these two parameters give relative weights to the capital and operating costs in the equipment choice determination – their ratio is approximately the discount rate used valuing the operating cost savings from more-efficient equipment.
Sums over the equipment types within each class give total weights for the equipment classes:

\[TOTEWTN_{y,eg,b,r} = \sum_{eseg} EQWTN_{y,es,b,r} \] \hspace{1cm} (B-22)

\[TOTEWTR_{y,eg,b,r} = \sum_{eseg} EQWTR_{y,es,b,r} \] \hspace{1cm} (B-23)

where

\(TOTEWTN_{y,eg,b,r} \) is the sum of weights for the new equipment types within equipment classes,

\(TOTEWTR_{y,eg,b,r} \) is the sum of weights for the replacement equipment types within equipment classes.

The equipment type share within a general equipment class is computed as:

\[EQFSHRN_{y,es,begy} = \frac{EQWTN_{y,es,begy}}{TOTEWTN_{y,eg,b,r}} , \text{if } TOTEWTN_{y,eg,b,r} > 0 \] \hspace{1cm} (B-24)

\[EQFSHRN_{y,es,begy} = 0, \text{ otherwise} \]

\[EQFSHRR_{y,es,begy} = \frac{EQWTR_{y,es,begy}}{TOTEWTR_{y,eg,b,r}} , \text{if } TOTEWTR_{y,eg,b,r} > 0 \] \hspace{1cm} (B-25)

\[EQFSHRR_{y,es,begy} = 0, \text{ otherwise} \]

where

\(EQFSHRN_{y,es \in eg,b,r} \) is the new equipment type share by year, building type, and Census division, and

\(EQFSHRR_{y,es \in eg,b,r} \) is the replacement equipment type share by year, building type, and Census division.
The weighted average equipment efficiencies for the equipment types within each equipment class are then computed as:

\[
\text{WTEQCEFF}_{y,es,rb} = \frac{\sum_{e\in eg} \frac{\text{EQFSHRN}_{y,es,rb}}{\text{RTEQEFF}_{y,es}}}{\sum_{e\in eg} \text{EQFSHRN}_{y,es,rb}}, \text{ if } \sum_{e\in eg} \text{EQFSHRN}_{y,es,rb} > 0
\]

\[
\text{WTEQCEFF}_{y,es,rb} = \frac{1}{\text{RTBASEFF}_{eg}}, \text{ otherwise}
\]

\[
\text{WTEQCEFFR}_{y,es,rb} = \frac{\sum_{es} \frac{\text{EQFSHRR}_{y,es,rb}}{\text{RTEQEFF}_{y,es}}}{\sum_{es} \text{EQFSHRR}_{y,es,rb}}, \text{ if } \sum_{es} \text{EQFSHRR}_{y,es,rb} > 0
\]

\[
\text{WTEQCEFFR}_{y,es,rb} = \frac{1}{\text{RTBASEFF}_{eg}}, \text{ otherwise}
\]

where

- \(\text{WTEQCEFF}_{y,es,rb} \) is the weighted average efficiency of new equipment type within each equipment class by year, housing type, and Census division,
- \(\text{RTEQEFF}_{y,es} \) is the efficiency of the equipment type,
- \(\text{RTBASEFF}_{es} \) is the base-year stock average efficiency of the equipment class, and
- \(\text{WTEQCEFFR}_{y,es,rb} \) is the weighted average efficiency of replacement equipment types within each equipment class by year, housing type, and Census division.

Appliance stock component

The appliance stock component tracks the major energy-consuming equipment by housing vintage and equipment vintage for additions, replacements, and surviving equipment.

The equipment accounting system partitions equipment into two major categories, depending on the vintage of the housing unit: equipment installed in housing units existing in the base year (at the beginning of a model run) and equipment added to new housing units (those added during the model run). Equipment is further partitioned into three additional survival/replacement categories: equipment that survives, equipment purchased to replace other equipment, and equipment purchased for new construction. The categorization of equipment by housing vintage and surviving/replacement type results in seven categories of equipment that are tracked, as seen in Table B-2 below.
Table B-2. Categorization of tracked equipment by vintage and survival/replacement type

<table>
<thead>
<tr>
<th>Category</th>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing housing unit</td>
<td>EQCESE</td>
<td>Surviving equipment stock in base-year existing homes (i.e., equipment that was present in the base year)</td>
</tr>
<tr>
<td></td>
<td>EQCSR90</td>
<td>Equipment stock in base-year existing homes that has been added as a replacement after the base year and that still survives</td>
</tr>
<tr>
<td></td>
<td>EQCRP90</td>
<td>Current-year replacement equipment for base-year existing housing</td>
</tr>
<tr>
<td></td>
<td>EQCRP90RP</td>
<td>Current-year replacements for equipment that had previously been replaced in EQCRP90 (i.e., replacements of replacements)</td>
</tr>
<tr>
<td>Modeled (new construction)</td>
<td>EQCSUR</td>
<td>Equipment that has been modeled as added and still survives</td>
</tr>
<tr>
<td>housing unit</td>
<td>EQCREP</td>
<td>Equipment that has been modeled as added and is in need of replacement in the current year</td>
</tr>
<tr>
<td></td>
<td>EQCADD</td>
<td>Equipment for housing units added in the current year</td>
</tr>
</tbody>
</table>

Note: EQCND90 is the sum of EQCESE, EQCSR90, EQCRP90RP, and EQCRP90.

Table B-3. Categorization of equipment unit energy consumption (UEC) by category of housing unit

<table>
<thead>
<tr>
<th>Category</th>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing housing unit</td>
<td>EQCUEC</td>
<td>Average UEC for the original base-year equipment in housing units that existed in the base year</td>
</tr>
<tr>
<td></td>
<td>EQCSUEC</td>
<td>Average UEC for surviving equipment in existing base-year housing units</td>
</tr>
<tr>
<td></td>
<td>EQCAUEC</td>
<td>Average UEC for surviving equipment in existing base-year housing units that has been replaced in the model run</td>
</tr>
<tr>
<td></td>
<td>EQCRUEC</td>
<td>UEC for all equipment added in the current year to replace existing base-year equipment</td>
</tr>
<tr>
<td>Modeled (new construction)</td>
<td>EQCHVUEC</td>
<td>UEC for heating and cooling equipment in new construction added in the current year</td>
</tr>
<tr>
<td>housing unit</td>
<td>EQCAHVUEC</td>
<td>Average UEC for heating and cooling equipment in surviving new construction</td>
</tr>
<tr>
<td></td>
<td>EQCNUEC</td>
<td>UEC for all equipment added in the current year to replace equipment after the base year</td>
</tr>
</tbody>
</table>

Shell indices are modeled for three categories of housing units:

- EHSHELL is the shell index applicable to housing units that existed in the base year.
- AHSHELL is the shell index applicable to housing units added in all but the current year.
- NHSHELL is the shell index for housing units added in the current year.

For example, in accounting for the heating energy consumption of surviving equipment installed in housing units that existed in the base year, the equipment stock, HTESE, would be multiplied by the unit energy consumption, HTUEC, and by the shell index EHSHELL. This procedure was designed to account
for heating equipment, but the accounting principle is used throughout the residential demand module. For the example above, the appropriate space cooling variables would be CLESE, CLUEC and ECSHELL. The shell indices apply only to heating and cooling; thus, for example, for refrigeration the accounting requires only RFESE and RFUEC.

The housing decay rate is used in conjunction with the equipment survival rate to determine the number of equipment units that survive/retire each year in the projection. The Weibull-shaped function described in (B-1) is used to model the proportion of equipment surviving after y years of use.

Equipment in houses constructed in the model run is the product of the number of new houses and the market share of each equipment class. This is expressed as

\[
EQCADD_{y,eg,b,r} = HSEADD_{y,b,r} \times SHARESN_{y,eg,b,r}
\]

where

- \(EQCADD_{y,eg,b,r}\) is the number of post-base-year-vintage equipment units added to new houses in year \(y\), by housing type and Census division,
- \(HSEADD_{y,b,r}\) is the number of new housing units constructed in the projection year by housing type and Census division, and
- \(SHARESN_{y,eg,b,r}\) is the current-year market share for each equipment class by housing type and Census division.

The number of replacements for the post-base-year equipment units in post-base-year houses is calculated as

\[
EQCREP_{y,eg,b,r} = \sum_{t=baseyr+1}^{t-y-1} (EQCADD_{t,eg,b,r} \times HDR_b^{y-t} \times (1 - SVRTE_{y-t, Lmin, Lmax}))
\]

where

- \(EQCREP_{y,eg,b,r}\) is the number of equipment replacements of post-base-year equipment in post-base-year houses,
- \(HDR_b\) is the housing evolution rate by housing type, and
- \(y-t\) is the age of the equipment.

Post-base-year replacement units required in the current year for houses existing in the base year are calculated as:

\[
EQCRP90_{y,eg,b,r} = EQCESE_{baseyr,eg,b,r} \times EQCRET_{y,eg} \times HDR_b
\]

where

- \(EQCRP90_{y,eg,b,r}\) is the number of replacement units required for homes existing in the base year in year \(y\), by housing type and Census division,
- \(EQCRET_{y,eg}\) is the equipment retirement rate for houses existing in the base year by projection year,
EQCESE_{baseyr,eg,b,r} is the vintage stock of equipment in the base year in houses existing in the base year by housing type and Census division.

Within the projection period, some of the EQCRP90 will also need to be replaced. The number of units needing replacement is estimated as:

$$ EQCRP90RP_{y,eg,b,r} = \sum_{t=2006}^{t=y-1} (EQCRP90_{t,eg,b,r} + EQCRP90RP_{t,eg,b,r}) \times (1 - SVRTE_{y,tnm,tna}) $$ \hspace{1cm} (B-31)$$

where

$$ EQCRP90RP_{y,eg,b,r} $$

is the number of replacement units required to replace post-base-year equipment in houses existing in the base year by projection year, housing type, and Census division.

Next, a series of calculations is made to determine the number of replacement units that switch to a different technology type. For each type of replacement (EQCRP90, EQCRP90RP, EQCREP), first calculate the number of eligible switches (single-family houses only):

$$ ELIGIBLE_{y,eg,b,r} = \sum_{eg} \left(EQCRP90_{y,eg,b,r} + EQCRP90RP_{y,eg,b,r} \right) \times (SWFACT_{eg}) $$ \hspace{1cm} (B-32)$$

where

$$ ELIGIBLE_{y,eg,b,r} $$

is the number of replacements eligible to switch technology types by housing type and Census division, and

$$ SWFACT_{eg} $$

is the fraction that may switch from equipment class eg.

The fuel switching weight for each equipment type is calculated as:

$$ RPWEIGHT_{y,egsw,b,r} = \exp \left(RTSWBIAS_{egsw} + RTWSBETA_{egsw} \times (LFCY_{y,egsw,b,r,v} + RPINSCOST_{eg,egsw}) \right) $$ \hspace{1cm} (B-33)$$

where

$$ RTSWBIAS_{eg} $$

is a replacement technology choice model bias parameter (used only for single-family homes),

$$ RTWSBETA_{eg} $$

is a replacement technology choice model log-linear parameter β (used only for single-family homes),

$$ LFCY_{y,eg,b,r,v} $$

is a life-cycle cost for the equipment class by year, housing type, Census division, and vintage, and

$$ RPINSCOST_{eg,egsw} $$

is the installation cost associated with switching from equipment class eg to equipment class $egsw$ when equipment is replaced.
Shares are summed over all equipment types:

\[
TOTSH_{y,b,r} = \sum_{egsw=1}^{egsw=11} RPWEIGHT_{y,egsw,b,r}
\] \hspace{1cm} (B-34)

The totals are used to normalize the shares, so that they add to 100%:

\[
RPSHARE_{y,egsw,b,r} = \frac{RPWEIGHT_{y,egsw,b,r}}{TOTSH_{y,b,r}}, \text{if } TOTSH_{y,b,r} > 0
\] \hspace{1cm} (B-35)

\[
RPSHARE_{y,egsw,b,r} = 0, \text{ otherwise}
\]

where

- \(RPSHARE_{y,egsw,b,r}\) is the share that will switch to equipment class \(egsw\) on replacement by year, housing type, and Census division,
- \(RPWEIGHT_{y,egsw,b,r}\) is the weight assigned to each equipment class \(egsw\) by year, housing type, and Census division,
- \(RTSWBBIAS_{egsw}\) is the consumer preference parameter for switching to this equipment class,
- \(RTSWBETA_{egsw}\) is the set of parameter values that influence purchasing decisions,
- \(LFCY_{y,essw,b,r,v}\) is the life-cycle cost of the equipment type switching to \(essw\) by year, housing type, Census division, and vintage,
- \(RPINSCOST_{eg,egsw}\) is the cost of switching from equipment class \(eg\) to \(egsw\) upon switching, and
- \(TOTSH_{y,b,r}\) is the sum of the fuel switching weights.

The equipment classes are then reconciled by from and to switching categories and redistributed to the correct equipment class.

The surviving post-base-year-vintage equipment in houses existing in the base year is computed as:

\[
EQCSR90_{y,eg,b,r} = \sum_{t=baseyr+1}^{t=y-1} \left(EQCRP90_{t,y,eg,b,r} + EQCRP90RP_{t,y,eg,b,r} \right) * SVRTE_{y-t,Lmin,Lmax} * HDR_{y-t}
\] \hspace{1cm} (B-36)

where

- \(EQCSR90_{y,eg,b,r}\) is the equipment stock in homes existing in the base year that has been replaced after the base year and still survives, by housing type and Census division,
- \(EQCRP90_{t,y,eg,b,r}\) is the number of replacement (post-base-year-vintage) equipment units demanded each year in houses existing in the base year, by housing type and Census division,
- \(EQCRP90RP_{t,leg,b,r}\) is the number of replacements of the EQCRP90 equipment units demanded each year, by housing type and Census division,
- \(SVRTE_{y-t,Lmin,Lmax}\) is the equipment survival function,
Surviving post-base-year equipment, originally purchased as additions or replacements in post-base-year houses, is calculated as:

\[
EQCSUR_{y,eg,b,r} = \sum_{t=baseyrt} \left(EQCADD_{t,eg,b,r} + EQCREP_{t,eg,b,r} \right) * SVRTE_{y-t,Lmin,Lmax} * HDR_{y-t}^{-1}
\]

where

- \(EQCSUR_{y,eg,b,r} \) is the surviving post-base-year equipment purchased as additions or replacements in post-base-year houses, by housing type and Census division,
- \(EQCADD_{t,eg,b,r} \) is the quantity of post-base-year vintage equipment added to post-base-year houses, by projection year, housing type and Census division,
- \(SVRTE_{y-t,Lmin,Lmax} \) is the equipment survival function,
- \(EQCREP_{t,eg,b,r} \) is the number of equipment replacements of post-base-year equipment in post-base-year houses, and
- \(y-t \) represents the age of the equipment.

Shell integrity component

The shell integrity component uses three indices to capture the increases in the energy efficiency of building shells over time. One index corresponds to the existing housing stock, and two indices correspond to the post-base-year stock: one for housing constructed in the current year and the other for the average post-base-year stock. The existing shell index is adjusted each year to account for fuel price increases (decreases have no effect on shell integrity, i.e., shell efficiency only increases in response to fuel price changes) and technology improvements. The shell index for newly constructed homes is based on the choice of HVAC system, which includes the shell characteristics represented as an index, incorporating the size of the structure into the index as well. As the physical size of structures increases, the index will increase in value, while an increase in energy efficiency decreases the value of the index.

The existing housing heating shell index is calculated as:

\[
EHSHELL_{y,f,r,b} = EHSHELL_{y-1,f,r,b} \cdot \text{if } EHSHELL_{y,f,r,b} > EHSHELL_{y-1,f,r,b} \\
EHSHELL_{y,f,r,b} = \text{LIMIT, if } EHSHELL_{y,f,r,b} < \text{LIMIT} \\
EHSHELL_{y,f,r,b} = EHSHELL_{baseyr,f,r,b} * RSELAST_{y,f,r,\alpha baseyr}^{1,2,3,baseyr} \cdot \text{TECHG}_{r,f,b} \cdot \text{otherwise}
\]

\(HDR_{y} \) is the housing evolution rate by housing type, and \(y-t \) is the age of the equipment.
where

- $E_{HSHELL}_{y,f,r,b}$ is the shell integrity index for existing housing by year, fuel, Census division, and housing type,
- $LIMIT$ is the maximum shell index efficiency index of 0.3 (i.e., maximum shell efficiency is limited to a 70% improvement on the base-year value),
- $TECHG_{t,d,b}$ is a parameter that represents the annual increase in existing shell integrity due to technology improvements, and
- $RSELAST$ is the short-term price elasticity function which distributes the price effect to the current year (EF1) and the prices in the two preceding years with weights EF1, EF2, and EF3, and α, the total short-term price elasticity. This function assumes the consumer adjusts behavior more slowly than in a single year – current model usage assumes the factors are 0.5, 0.35 and 0.15.

$$RSELAST_{y,f,r,ef1,ef2,ef3,baseyr} =
\left(\frac{PRICES_{f, y} / PRICES_{f, baseyr}}{EF1^{\alpha}} \right) \times \left(\frac{PRICES_{f, y-1} / PRICES_{f, baseyr}}{EF2^{\alpha}} \right) \times \left(\frac{PRICES_{f, y-2} / PRICES_{f, baseyr}}{EF3^{\alpha}} \right)$$ \quad (B-39)

The new housing heating shell index is calculated as:

$$N_{HSHELL}_{y,f,r,b} = \sum_{t=baseyr+1}^{t=y-1} \left(EQFISHRN_{t,es,b,r} \times SHELLEFF_{t,es,b,r} \right)$$ \quad (B-40)

where

- $N_{HSHELL}_{y,f,r,b}$ is the new housing units shell integrity index by year, fuel, Census division, and housing type, and
- $SHELLEFF_{y,es,b,r}$ is the shell integrity factor associated with each HVAC package available.

The average post-base-year housing heating shell index is calculated as:

$$A_{HSHELL}_{y,f,r,b} = \frac{\sum_{eg=f} \left[\left(N_{HSHELL}_{y,f,r,b} \times EQCADD_{y,eg,b,r} \right) + A_{HSHELL}_{y-1,f,r,b} \right]}{\sum_{eg=f} \left(EQCADD_{y,eg,b,r} + EQCREP_{y,eg,b,r} + EQCSUR_{y,eg,b,r} \right)}$$ \quad (B-41)

where

- $A_{HSHELL}_{y,f,r,b}$ is the average post-base-year heating shell index by year, fuel, Census division, and housing type, equal to N_{HSHELL} in the first year after the base year,
- $N_{HSHELL}_{y,f,r,b}$ is the new housing units shell integrity index by year, fuel, Census division, and housing type,
- $EQCADD_{y,eg,b,r}$ is the number of equipment units installed in new construction by projection year, housing type and Census division,
- $EQCREP_{y,eg,b,r}$ is the number of equipment replacements of post-base-year equipment in post-base-year houses, and
EQCSURy,eg,b,r is the surviving post-base-year equipment purchased as additions or replacement in post-base-year houses by projection year, housing type and Census division.

In addition to the calculation shown above, the module places two additional restrictions upon AHSHELLy,t,r,b: it may never increase and it must not fall below LIMIT. If AHSHELLy,t,r,b is ever calculated to increase, its value is set to the prior year’s value; if it falls below LIMIT, it is set equal to LIMIT.

Consumption and UEC component
Final end-use fuel consumption is determined by the fuels demanded by the equipment to provide housing units with the demanded services. For each equipment class, the UEC for new equipment, replacement equipment, and the average of all equipment is computed. New equipment UEC values are calculated as:

\[
EQCNUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \times WTEQCEFFN_{y,eg,b,r} \times RTBASEFF_{baseyr,eg} \times HDDFACT_{y,r} \times EXSQFTADJ_{y,b,r} \tag{B-42}
\]

where

\[
EQCNUEC_{y,eg,b,r} \quad \text{is the unit energy consumption for new equipment by projection year, housing type, and Census division,}
\]
\[
WTEQCEFFN_{y,eg,b,r} \quad \text{is the equipment class efficiency weighted by the market share of the specific equipment as computed in the logistic function in the technology choice component by housing type and Census division,}
\]
\[
RTBASEFF_{baseyr,eg} \quad \text{is the base-year stock-average efficiency of the equipment class,}
\]
\[
EQCUEC_{r,eg,b} \quad \text{is unit energy consumption for original base-year stock of the equipment class by Census division and housing type,}
\]
\[
HDDFACT_{y,r} \quad \text{is the heating degree day adjustment factor by Census division to correct to normal weather relative to the RECS survey year, and}
\]
\[
EXSQFTADJ_{y,b,r} \quad \text{is the adjustment for increasing floor area of new houses.}
\]

Replacement equipment UEC values are calculated as:

\[
EQCRUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \times WTEQCEFFR_{y,eg,b,r} \times RTBASEFF_{baseyr,eg} \times HDDFACT_{y,r} \tag{B-43}
\]

where

\[
EQCRUEC_{y,eg,b,r} \quad \text{is the unit energy consumption for replacement equipment by housing type and Census division,}
\]
\[
RTBASEFF_{baseyr,eg} \quad \text{is the efficiency of the weighted average of retiring units from the base-year existing stock, and}
\]
\[
WTEQCEFFR_{y,eg,b,r} \quad \text{is the replacement equipment efficiency weighted by the market share of the specific equipment as computed in the logistic function in the technology choice component by housing type and Census division.}
And the UEC for the surviving stock must be adjusted, according to

\[EQCSUEC_{y,eq,b,r} = EQCUEC_{r,eq,b} \times HDDFACT_{y,r} \times \frac{RTBASEFF_{baseyr,eg}}{RTBASEFF_{eq,eq}} \]

where

\[EQCSUEC_{y,eq,b,r} \] is the average unit energy consumption of the original base-year equipment stock that remains after the replacements have taken place.

The average UEC for all equipment in the existing stock is calculated as:

\[EQCAUEC_{y,eq,b,r} = EQCNUEC_{y,eq,b,r} \text{, if } y = baseyr + 1 \]

otherwise,

\[EQCAUEC_{y,eq,b,r} = \frac{(EQCREP_{y,eq,b,r} + EQCADD_{y,eq,b,r} + EQCRP90_{y,eq,b,r} \times EQCNUEC_{y,eq,b,r}) + (EQCSR90_{y,eq,b,r} + EQCSUR_{y,eq,b,r} \times EQCNUEC_{y,eq,b,r})}{(EQCREP_{y,eq,b,r} + EQCADD_{y,eq,b,r} + EQCRP90_{y,eq,b,r} \times EQCNUEC_{y,eq,b,r}) + (EQCSR90_{y,eq,b,r} + EQCSUR_{y,eq,b,r} \times EQCNUEC_{y,eq,b,r})} \]

where

\[EQCAUEC_{y,eq,b,r} \] is the average unit energy consumption for all post-base-year equipment categories.

The final step of this algorithm is to calculate consumption for the end-use service category. The consumption during the first year of the projection is computed initially as:

\[HTRCON_{y,baseyr,f,r} = \sum_{b} \sum_{eg} \left[EQCESE_{y,eq,b,r} \times EQCUEC_{y,eq,b,r} \times EHSHELL_{y,f,s,b} + EQCADD_{y,eq,b,r} \times EQCNUEC_{y,eq,b,r} \times NHSHELL_{y,f,s,b} + EQCRP90_{y,eq,b,r} \times EQCRUEC_{y,eq,b,r} \times EHSHELL_{y,f,s,b} \times RSELAST(f,r,\alpha,EF1,EF2,EF3,baseyr) \right] \]

where

\[\alpha = \frac{RTBASEFF_{baseyr,eg}}{RTBASEFF_{eq,eq}} \]

and

\[EHSHELL_{y,f,s,b} = \frac{RSELAST(f,r,\alpha,EF1,EF2,EF3,baseyr)}{RTBASEFF_{baseyr,eg}} \times RTBASEFF_{eq,eq} \]

\[NHSHELL_{y,f,s,b} = \frac{RSELAST(f,r,\alpha,EF1,EF2,EF3,baseyr)}{RTBASEFF_{baseyr,eg}} \times RTBASEFF_{eq,eq} \]
Subsequent annual consumption (for \(y \geq \text{baseyr}+2 \)) is computed as:

\[
HTRCON_{y,f,r} = \sum_{b} \sum_{eg} \left[\begin{array}{c}
EQCSE_{y,eg,b,r} \times ECQUCEC_{eg,b,r} \times EHSHELL_{y,f,r,b} \\
+ EQCADD_{y,eg,b,r} \times EQCHVUEC_{y,eg,b,r} \times NHSHELL_{y,f,r,b} \times RBN_{y,eg,b,r} \\
+ EQCRP90_y \times EQCRUEC_{y,eg,b,r} \times EHSHELL_{y,f,r,b} \times RBR_{y,eg,b,r} \\
+ EQCRP90RP_{y,eg,b,r} \times EQCNUEC_{y,eg,b,r} \times EHSHELL_{y,f,r,b} \times RBA_{y,eg,b,r} \\
+ EQCSR90_{y,eg,b,r} \times EQCAUEC_{y,eg,b,r} \times EHSHELL_{y,f,r,b} \times RBN_{y,eg,b,r} \\
+ EQCUREP_{y,eg,b,r} \times EQCNUEC_{y,eg,b,r} \times AHSHELL_{y,f,r,b} \times RBA_{y,eg,b,r} \\
* RSELAST (f, r, \alpha, EF1, EF2, EF3, baseyr) \\
\end{array} \right]
\]

(B-47)

where

- \(HTRCON_{y,f,r} \) is heating energy consumption by year, fuel type, and region,
- \(RSELAST \) is the short-term price elasticity function with distributed lag weights EF1, EF2, and EF3 and the total short-term price elasticity, \(\alpha \), described in (B-39), and the rebound effect associated with increasing equipment efficiency for a particular equipment class causes a corresponding change in the price elasticity for the class represented as

\[
RBN_{y,eg,b,r} = WTEQCEFFN_{y,eg,b,r} \times RTBASEFF_{\text{baseyr,eg}}^{\alpha_1}
\]

(B-48)

\[
RBR_{y,eg,b,r} = WTEQCEFFR_{y,eg,b,r} \times RTBASEFF_{\text{baseyr,eg}}^{\alpha_2}
\]

(B-49)

\[
RBA_{y,eg,b,r} = WTEQCEFFA_{y,eg,b,r} \times RTBASEFF_{\text{baseyr,eg}}^{\alpha_3}
\]

(B-50)

where

- \(RBA_{y,eg,b,r} \) is the rebound effect factor for surviving equipment,
- \(RBR_{y,eg,b,r} \) is the rebound effect factor for replacement equipment,
- \(RBN_{y,eg,b,r} \) is the rebound effect factor for new equipment, and
- \(\alpha_2 \) is the rebound effect elasticity, presently valued at -0.15.

Consumption by furnace fans and boiler pumps, \(\text{FANCON} \), is computed in a similar fashion for those systems that require them.
RCLTEC (Air conditioning equipment choice component)

Space cooling equipment choice begins with the calculation of a factor that adjusts for biased temperatures in either the base year or in the year under consideration. For each region \(r \),

\[
\text{CDDFACT}_{y,r} = \left(\frac{\text{CDDADJ}_{y,r}}{\text{CDDADJ}_{\text{base yr},r}} \right)^{1.75}
\]

(B-51)

where

- \(\text{CDDFACT}_{y,r} \) is a set of regional factors to be used in this year to adjust for abnormal temperatures either in this year or in the base year,
- \(\text{CDDADJ}_{y,r} \) are regional population-adjusted cooling degree days by Census division and historical year, with projection years, from the KDEGDAY.TXT file, and
- 1.75 is an exponent that best adjusted values to recent historical data.

Operating costs for cooling equipment are calculated like those for heating equipment, with the exception of the degree-day factor:

\[
\text{OPCOST}_{y,es,b,r,v} = \text{PRICES}_{f,r,y} \times \text{EQCUEC}_{y,eg,b} \times \text{CDDFACT}_{y,r} \times \text{RTEFFAC}_{eg,v} \times \text{CSHELL}_{y-1,r,v}
\]

(B-52)

where

- \(\text{OPCOST}_{y,es,b,r,v} \) is the operating cost for the air conditioner equipment type by housing type, Census division, and vintage in the projection year,
- \(\text{PRICES}_{f,r,y} \) are the fuel prices by region and projection year, from the NEMS Integrating Module,
- \(\text{EQCUEC}_{r,b} \) is the electricity unit energy consumption of base-year room air conditioning equipment by Census division and housing type,
- \(\text{RTEFFAC}_{eg,v} \) is the efficiency adjustment for the generic equipment type, and
- \(\text{CSHELL}_{y-1,r,v} \) is the shell efficiency adjustment to account for building shell improvements over time (which reduce cooling loads).

The following variables are computed as in the equations indicated:

- \(\text{LFCY}_{y,es,b,r,v} \) is the air conditioner type's life-cycle cost by year, housing type, and Census division. It is computed as in (B-16) above.
- \(\text{EQWTN}_{y,es,b,r} \) is the equipment weight for new equipment types by housing type, Census division and year. It is computed as in (B-20) above.
- \(\text{EQWTR}_{y,es,b,r} \) is the equipment weight for replacement equipment types by housing type, Census division and year. It is computed as in (B-21) above.
- \(\text{TOTEWTN}_{y,eg,b,r} \) is the sum of equipment type weights for the new equipment class. It is computed as in (B-22) above.
- \(\text{TOTEWTR}_{y,eg,b,r} \) is the sum of equipment type weights for the replacement equipment class. It is computed as in (B-23) above.
Market shares for equipment types within the cooling equipment classes distinguish between heat pumps, whose numbers have been determined in the heating choice component, and other cooling equipment. For heat pumps,

\[
NEQTSHR_{y,es,b,r} = NEQTSHR_{y,RTTYPNTR_{es},b,r}
\]

and for other cooling equipment,

\[
NEQTSHR_{y,es,b,r} = \frac{EQWTN_{y,es,b,r}}{TOTEWTN_{y,eg,b,r}} \\
REQTSHR_{y,es,b,r} = \frac{EQWTR_{y,es,b,r}}{TOTEWTR_{y,eg,b,r}}
\]

where

- \(NEQTSHR_{y,es,b,r}\) is the new market share for the new air conditioner equipment type by year, housing type and Census division,
- \(REQTSHR_{y,es,b,r}\) is the new market share for the replacement air conditioner equipment type by year, housing type and Census division,
- \(RTTYPNTR_{es}\) is the equipment type pointer for each equipment class,
- \(TOTEWTN_{y,eg,b,r}\) is the sum of equipment type weights for the new equipment class,
- \(TOTEWTR_{y,eg,b,r}\) is the sum of equipment type weights for the replacement equipment class,
- \(EQWTN_{y,es,b,r}\) is the equipment weight for new equipment, and
- \(EQWTR_{y,es,b,r}\) is the equipment weight for replacement equipment.

Weighted average inverse efficiencies of the types of cooling equipment into their classes are calculated exactly as in the heating component:

- \(WTEQCEFFN_{y,eg,b,r}\) is the weighted average inverse efficiency of new equipment types within each equipment class by year, housing type, and Census division, computed as in (B-26).
- \(WTEQCEFFR_{y,eg,b,r}\) is the weighted average inverse efficiency of replacement equipment types within each equipment class by year, housing type, and Census division, computed as in (B-27).
RCLADD (Additions and replacements of cooling equipment component)

Given the complex dependencies between choices of heating and cooling equipment, the cooling additions logic begins very differently from that for heating. Central air conditioner additions are calculated from housing additions and a set of saturation levels:

\[
EQCADD_{y,CAC,br} = HSEADD_{y,br} \times CACSAT_{br}
\]

where

- \(EQCADD_{y,CAC,br}\) is the number of central air conditioners (CAC) added to new (post-base-year) housing units by year, housing type, and Census division,
- \(HSEADD_{y,br}\) is the number of housing units added by year, housing type and Census division, and
- \(CACSAT_{br}\) is the market penetration level or saturation of the market for central air conditioning equipment by housing type and Census division.

For room air conditioners, there are similar saturation levels:

\[
EQCADD_{y,RAC,br} = HSEADD_{y,br} \times RACSAT_{br} \times RACUNTS_{br}
\]

where

- \(EQCADD_{y,RAC,br}\) is the number of room air conditioners (RAC) added to new (post-base-year) housing units by year, housing type, and Census division,
- \(HSEADD_{y,br}\) is the amount of housing additions by year, housing type and Census division,
- \(RACSAT_{br}\) is the market penetration level or saturation of the market for room air conditioning equipment by housing type and Census division, and
- \(RACUNTS_{br}\) is the number of room air conditioners per housing unit by housing type and Census division.

For heat pumps, however, additions are determined by the number of associated heat pumps installed in the heating additions component:

\[
EQCADD_{y,HP,br} = EQCADD_{y,RTCLPNTR_{eg,br}}
\]

where

- \(EQCADD_{y,HP,br}\) is the number of heat pumps used for space heating added to new housing units by year, housing type, and Census division, and
- \(RTCLPNTR_{eg}\) is the pointer to the heating equipment class associated with the cooling equipment class.

The number of new homes with central air conditioners also includes new homes with electric heat pumps. To determine the number of central air conditioners needed, electric heat pumps are first removed. If added electric heat pumps exceed the number of added central air conditioners determined by the saturation rate, 10% of central air conditioners are left in the additions:
\[EQCADD_{y,CAC,b,r} = EQCADD_{y,CAC,b,r} - EQCADD_{y,HP,b,r} \]

where
\[EQCADD_{y,CAC,b,r} \] is the number of central air conditioners in each equipment class added to new (post-base-year) housing units by year, housing type, and Census division, and
\[eq \] is the space cooling equipment class.

Surviving equipment follows the same dichotomy as the other calculations, with a different method for determining the number of surviving heat pumps from that used for calculating the surviving stock for other types of cooling equipment. For heat pumps, the stock is equated to that calculated in the space heating subroutines:

\[EQCSR90_{y,eg,b,r} = EQCSR90_{y,RTCLPNTR,eg,b,r} \]

where
\[EQCSR90_{y,eg,b,r} \] is the surviving post-base-year cooling equipment in existing housing units by year, housing type, and Census division, equated to the stock calculated in the space heating subroutines, and
\[RTCLPNTR \] is a Fortran pointer that maps the heat pump stock from the heating subroutine into the correct heat pump stock in the cooling subroutine.

For single-family houses with central air conditioning, there is a penetration rate that describes new units added in existing houses:

\[EQCND90_{y,eg,b,r} = EQCND90_{y,eg,b,r} \ast CACPR_r \ast HDR_b \]

where
\[EQCND90_{y,eg,b,r} \] is the number of air conditioning units needed in pre-2006 housing each year, by housing type, and Census division,
\[HDR_b \] is the housing demolition rate by housing type, and
\[CACPR_r \] is the regional penetration rate for central air conditioners from the RSMISC.TXT file.

The replacement equipment types, EQCREP, EQCRP90, and EQCRP90RP are computed as in (B-29), (B-30), and (B-31), respectively. The surviving new additions, EQCSUR, is computed as in (B-37) above.

Because replacements for heat pumps in the cooling end use equal replacements for heat pumps in the heating end use and switching was allowed on replacement of heat pumps used for heating, switching on replacement of heat pumps in the cooling end use occurred in RHTRADD (the subroutine for replacing heating equipment types). No switching on replacement of central or room air conditioners is allowed, because these numbers are based on historical data. Therefore, Subroutine RCLADD does not call Subroutine REPLACE.
RCLCON (Cooling energy consumption component)

Energy consumption for space cooling is calculated much like the comparable quantities for space heating. Space cooling equipment consumption begins with the calculation of a factor that adjusts for biased temperatures in either the base year or in the year under consideration, in each region, as computed in (B-51) above.

Unit energy consumption is calculated for each of the vintages of homes. For surviving equipment in existing vintage homes,

\[
EQCSUEC_{y,eg,b,r} = EQCUEC_{y,eg,b} \times CDDFACT_{y,r} \times \frac{RTBASEFF_{baseyr,eg}}{RTBASEFF_{y,eg}}
\]

where

- \(EQCSUEC_{y,eg,b,r}\) is the unit energy efficiency of surviving equipment in existing vintage homes, by year, equipment class, housing type, and Census division,
- \(EQCUEC_{r,eg,b}\) is the unit energy efficiency of equipment in homes that existed in the base year, by Census division, equipment class, and housing type,
- \(CDDFACT_{y,r}\) are the regional cooling degree day adjustment factors, and
- \(RTBASEFF_{y,eg}\) are the annual average efficiencies for the equipment classes.

For new equipment,

\[
EQCNUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \times WTEQCEFFN_{y,eg,b,r} \times RTBASEFF_{baseyr,eg} \times CDDFACT_{y,r} \times EXSQFTADJ_{y,b,r}
\]

where

- \(EQCNUEC_{y,eg,b,r}\) is the unit energy consumption by year for new equipment by housing type, and Census division,
- \(WTEQCEFFN_{y,eg,b,r}\) is the equipment inverse efficiency by year, equipment class, housing type, and Census division,
- \(RTBASEFF_{r,eg}\) is the average efficiency of the equipment class,
- \(EQCUEC_{r,eg,b}\) is unit energy consumption for equipment in existing housing by Census division, equipment class, and housing type,
- \(CDDFACT_{y,r}\) is the cooling degree day adjustment factor by Census division to correct for differences in weather from the RECS survey year, and
- \(EXSQFTADJ_{y,b,r}\) adjusts for the increasing average floor area of new homes, as compared with the RECS base year.
Replacement equipment UEC values are calculated in the same way as new equipment, but without the floor area adjustment:

\[
EQCRUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \times WTEQCEFFR_{y,eg,b,r} \times RTBASEFF_{baseyr,eg} \times CDDFACT_{y,r}
\]

(B-64)

where

- \(EQCRUEC_{y,eg,b,r} \) is the unit energy consumption for replacement equipment by housing type and Census division,
- \(RTBASEFF_{baseyr,eg} \) is the efficiency of the weighted average of retiring units from the existing stock, and
- \(WTEQCEFFR_{y,eg,b,r} \) is the replacement equipment inverse efficiency weighted by the market share of the equipment type (as computed in the technology choice component) by housing type and Census division.

The average UEC, EQCAUEC, for all cooling equipment is calculated as in (B-45) above.

Cooling shell efficiency is calculated similarly to heating shell efficiency computed in equations (B-38) through (B-41).

The final step of this component is to calculate consumption for the service category. This is accomplished in two steps. The first year of the projection is computed as

\[
COOLCN_{y=baseyr1,f,r} =
\sum_{b \in \text{eg}} \sum_{eg} \left[EQCESE_{baseyr1,eg,b,r} \times ECQUCE_{eg,b,r} \times ECSHELL_{baseyr1,r,b} + EQCADD_{baseyr-1,eg,b,r} \times EQCNUCE_{baseyr1,eg,b,r} \times NCSHELL_{baseyr1,r,b} + EQCRP90_{baseyr1,eg,b,r} \times EQCRUEC_{baseyr1,eg,b,r} \times ECSHELL_{baseyr1,r,b} \right] \times RSELAST(f,r,\alpha, EF1, EF2, EF3, baseyr)
\]

(B-65)
Subsequent consumption is computed as

\[
COOLCN_{y,f,r} = \sum_b \sum_{eg} \left[(EQCESE_{y,eg,b,r} * ECQCUEC_{eg,b,r} * ECSHELL_{r,r} + EQCADD_{y,eg,b,r} * EQCNUEC_{y,eg,b,r} * NCSHELL_{r,r} + RBN_{y,eg,b,r}) + EQCRP90_{y,eg,b,r} * ECQCUEC_{y,eg,b,r} * ECSHELL_{r,r} + RBN_{y,eg,b,r} + EQCR90ROP_{y,eg,b,r} * EQCNUEC_{y,eg,b,r} * ECSHELL_{y,r,b} * RBN_{y,eg,b,r} + EQCSR90_{y,eg,b,r} * EQCAUEC_{y,eg,b,r} * ECSHELL_{r,b} * RBA_{y,eg,b,r} + EQCREP_{y,eg,b,r} * EQCNUEC_{y,eg,b,r} * ACSHELL_{y,r,b} * RBN_{y,eg,b,r} + EQCSUR_{y,eg,b,r} * EQCAUEC_{y,eg,b,r} * ACSHELL_{y,r,b} * RBA_{y,eg,b,r} \right]^{RSELAST(f,r,\alpha,EF1,EF2,EF3,baseyr)}
\]

(B-66)

where

\[RSELAST\] is the short-term price elasticity function with distributed lag weights \(EF1, EF2,\) and \(EF3,\) and the total short-term price elasticity, \(\alpha,\) described in (B-39).

The rebound effect that was introduced in the space heating section in equations (B-48) through (B-50) is also represented in the space cooling consumption equation.

RCWTEC (Clothes washing technology choice component)

Compute current year operating costs:

\[
OPCOST_{y,es,b,r,v} = PRICES_{f,r,y} * EQCUEC_{y,eg,b} * \frac{RTBASEFF_{baseyr,eg}}{RTQEFFF_{eg}}
\]

(B-67)

where

\[OPCOST_{y,es,b,r,v}\] is the operating cost for the equipment type by year, housing type, Census division, and vintage,

\[PRICES_{f,r,y}\] is the fuel prices for the equipment from NEMS, by fuel, by region and projection year,

\[EQCUEC_{r,eg,b}\] is the unit energy consumption by Census division, equipment class and housing type,

\[RTQEFFF_{eg}\] is the equipment efficiency, and

\[RTBASEFF_{baseyr,eg}\] is the base-year stock-average efficiency.

The following variables are computed as in the equations indicated:

\[LFCY_{y,es,b,r,v}\] is the clothes washer's life-cycle cost by year, housing type, Census division, and vintage. It is computed as in (B-16) above.
EQWTN_{y,es,b,r} is the equipment weight for new equipment type by housing type, Census division, and year. It is computed as in (B-20) above.

EQWTR_{y,es,b,r} is the equipment weight for replacement equipment by housing type, Census division, and year. It is computed as in (B-21) above.

TOTEWTN_{y,eg,b,r} is the sum of equipment weights for the new equipment class. It is computed as in (B-22) above.

TOTEWTR_{y,eg,b,r} is the sum of equipment weights for the replacement equipment class. It is computed as in (B-23) above.

Market shares for new and replacement clothes washers are derived by:

\[
NEQTSHR_{y,es,b,r} = \frac{EQWT_{y,es,b,r}}{TOTEWT_{y,eg,b,r}}
\]

for es in eg

where

- **NEQTSHR**_{y,es,b,r} is the new market share of clothes washer equipment types by housing type and Census division in the current year,
- **TOTEWT**_{eg} is the sum of equipment weights for the new equipment class, and
- **EQWT**_{es} is the equipment weight for new equipment.

Because efficiency improvements in clothes washers tend to affect the amount of hot water used in a housing unit, establishing a link between clothes washers and water heaters is essential. The impact of the load reduction with respect to installing more efficient clothes washers is calculated as follows:

\[
TEMP = \sum_{eseg} EQWT_{y,es,b,r}
\]

\[
NCWLOAD_{y,eg,b,r} = \frac{\sum_{eseg} (EQWT_{y,es,b,r} \times LOADADJ_{es})}{TEMP}, \text{ if } TEMP > 0
\]

\[
NCWLOAD_{y,eg,b,r} = NCWLOAD_{y-1,eg,b,r}, \text{ otherwise}
\]

where

- **NCWLOAD**_{y,eg,b,r} is the weighted average load adjustment of new clothes washers with respect to water heating load in the current year by housing type and Census division,
- **EQWT**_{y,es,b,r} is the equipment weight for each type of new equipment, and
- **LOADADJ**_{es} is the fraction of hot water needed to provide the same level of service, relative to the base-year average.
RCWADD (Clothes washing additions component)

New clothes washing equipment is calculated using a saturation level for newly purchased equipment:

\[
EQCADD_{y,eg,b,r} = HSEADD_{y,b,r} \times \frac{\text{WASHNEW}_{b,r}}{100}
\]

(B-70)

where

- \(EQCADD_{y,eg,b,r}\) is the amount of new (post-base-year-vintage) equipment added in new housing units in the current year by housing type and Census division,
- \(HSEADD_{y,b,r}\) is the number of new housing additions in the year by housing type and Census division, and
- \(\text{WASHNEW}_{b,r}\) is the share of clothes washers in newly constructed houses by housing type and Census division in the current year.

The next step is to calculate the numbers of clothes washers of each vintage category. The following variables were computed as in the equations indicated:

- \(EQCSR90_{y,eg,b,r}\) is the surviving post-base-year vintage equipment in existing housing units in the current year by housing type and Census division. It is computed as in (B-36) above.
- \(EQCSUR_{y,eg,b,r}\) is the surviving new (post-base-year-vintage) equipment in the current year by housing type and Census division. It is computed as in (B-37) above.
- \(EQCREP_{y,eg,b,r}\) is the number of replacement units (post-base-year-vintage) equipment demanded in post-base-year-vintage housing units by housing type and Census division. It is computed as in (B-29) above.
- \(EQCRP90_{y,eg,b,r}\) is the number of replacement units demanded in existing housing units each year by housing type and Census division. It is computed as in (B-30) above.
- \(EQCRP90RP_{y,eg,b,r}\) is the number of replacement units for the EQCRP90 units demanded each year by housing type and Census division. It is computed as in (B-31) above.

RCWCON (Clothes washing energy consumption component)

To calculate the energy consumption attributable to clothes washers, first calculate the unit energy consumption for each vintage of home. The calculations are similar to those presented in equations (B-42) through (B-45).

- \(EQCNUEC_{y,eg,b,r}\) is the unit energy consumption by year for new equipment by housing type and Census division,
- \(EQCRUEC_{y,eg,b,r}\) is the unit energy consumption by year for replacement equipment by housing type and Census division,
- \(EQCSUEC_{y,eg,b,r}\) is the UEC for surviving base-year equipment in each equipment class, by housing type and Census division, and
- \(EQCAUEC_{y,eg,b,r}\) is the average unit energy consumption for all equipment by housing type and Census division.
Finally, the energy consumption calculation is simpler than the calculation for most of the other end uses:

\[
CSWCON_{y,r} = \begin{cases}
EQCESE_{y,\text{eg},b,r} \cdot EQCUEC_{\text{eg},b,r} \\
+ EQCADD_{y,\text{eg},b,r} \cdot EQCNUEC_{\text{eg},b,r} \\
+ EQCRP90_{y,\text{eg},b,r} \cdot EQCUEC_{\text{eg},b,r} \\
+ EQCRP90RP_{y,\text{eg},b,r} \cdot EQCNUEC_{\text{eg},b,r}
\end{cases}, \quad \text{if } y = baseyr + 1
\]

(B-71)

\[
CSWCON_{y,r} = \sum_{b,\text{eg}} \left(
EQCESE_{\text{eg},b,r} \cdot EQCUEC_{\text{eg},b,r} \\
+ EQCADD_{\text{eg},b,r} \cdot EQCNUEC_{\text{eg},b,r} \\
+ EQCRP90_{\text{eg},b,r} \cdot EQCUEC_{\text{eg},b,r} \\
+ EQCRP90RP_{\text{eg},b,r} \cdot EQCNUEC_{\text{eg},b,r} \\
+ EQCSR90_{\text{eg},b,r} \cdot EQCUEC_{\text{eg},b,r} \\
+ EQCREP_{\text{eg},b,r} \cdot EQCNUEC_{\text{eg},b,r} \\
+ EQCSUR_{\text{eg},b,r} \cdot EQCUEC_{\text{eg},b,r}
\right), \quad \text{if } y > baseyr + 1
\]

(B-72)

RDWTEC (Dishwashing technology choice component)

The following variables are computed as in the equations indicated:

- **OPCOST**_{y,\text{es},b,r,v} is the operating cost for the equipment type by year, housing type, Census division, and vintage. It is computed as in (B-67) above.
- **LFCY**_{y,\text{es},b,r,v} is the dishwasher’s life-cycle cost by year, housing type, Census division, and vintage. It is computed as in (B-16) above.
- **EQWTN**_{y,\text{es},b,r} is the equipment weight for new equipment type by year, housing type, and Census division. It is computed as in (B-20) above.
- **EQWTR**_{y,\text{es},b,r} is the equipment weight for replacement equipment by year, housing type, and Census division. It is computed as in (B-21) above.
- **TOTEWTN**_{y,\text{eg},b,r} is the sum of equipment weights for the new purchase equipment class. It is computed as in (B-22) above.
- **TOTEWTR**_{y,\text{eg},b,r} is the sum of equipment weights for the replacement purchase equipment class. It is computed as in (B-23) above.
Market shares for new and replacement dishwashers are next:

\[
\text{NEQTSHR}_{y,\text{es},b,r} = \frac{\text{EQWT}_{y,\text{es},b,r}}{\text{TOTEWT}_{y,	ext{eg},b,r}}
\] \hspace{1cm} (B-73)

where

- \(\text{NEQTSHR}_{y,\text{es},b,r}\) is the new market share of dishwasher equipment types by housing type and Census division in the current year,
- \(\text{TOTEWT}_{y,	ext{eg},b,r}\) is the sum of equipment weights for the new equipment class by housing type and Census division, and
- \(\text{EQWT}_{y,\text{es},b,r}\) is the equipment weight for new equipment by year, housing type, and Census region.

RDWADD (Dishwashing additions component)

New dishwashing equipment is calculated using a saturation level for newly purchased equipment:

\[
\text{EQCADD}_{y,\text{eg},b,r} = \text{HSEADD}_{y,b,r} \times \text{DISHNEW}_{b,r}
\] \hspace{1cm} (B-74)

where

- \(\text{EQCADD}_{y,\text{eg},b,r}\) is the amount of new (post-base-year-vintage) equipment added in new housing units in the current year by housing type and Census division,
- \(\text{HSEADD}_{y,b,r}\) is the number of new housing additions in the year by housing type and Census division, and
- \(\text{DISHNEW}_{b,r}\) is the share of dishwashers in newly constructed houses by housing type and Census division in the current year. Note that dishwashers have a single equipment class eliminating the need for an \(\text{eg}\) subscript.

The next step is to calculate the numbers of dishwashers of each vintage category. The following variables were computed as in the equations indicated:

- \(\text{EQCSR90}_{y,\text{eg},b,r}\) is the surviving post-base-year vintage equipment in existing housing units in the current year by housing type and Census division. It is computed as in (B-36) above.
- \(\text{EQCSUR}_{y,\text{eg},b,r}\) is the surviving new (post-base-year-vintage) equipment in the current year by housing type and Census division. It is computed as in (B-37) above.
- \(\text{EQCREP}_{y,\text{eg},b,r}\) is the number of replacement units (post-base-year-vintage) equipment demanded in post-base-year-vintage housing units by housing type and Census division. It is computed as in (B-29) above.
- \(\text{EQCRP90}_{y,\text{eg},b,r}\) is the number of replacement units demanded in existing housing units each year by housing type and Census division. It is computed as in (B-30) above.
EQCRP90RP_{y, eg, b, r} is the number of replacement units for the EQCRP90 units demanded each year by housing type and Census division. It is computed as in (B-31) above.

RDWCON (Dishwashing energy consumption component)
To calculate the energy consumption attributable to dishwashers, first calculate the unit energy consumption for each vintage of home. The calculations are similar to those presented in equations (B-42) through (B-45).

EQCSUEC_{y, eg, b, r} is the UEC for surviving base-year equipment in each equipment class, by housing type and Census division,
EQCNUEC_{y, eg, b, r} is the unit energy consumption by year for new equipment by housing type and Census division,
EQCRUEC_{y, eg, b, r} is the unit energy consumption by year for replacement equipment by housing type and Census division, and
EQCAUEC_{y, eg, b, r} is the average unit energy consumption for all equipment by housing type and Census division.

Finally, the energy consumption calculation is simpler than the calculation for most of the other end uses:

\[
DSWCON_{y=2006r} = \sum_{b, eg} \left(EQCSE_{y, eg, b, r} * EQCUEC_{eg, b, r} \\
+ EQCADD_{y, eg, b, r} * EQCNUEC_{y, eg, b, r} \\
+ EQCRP90_{y, eg, b, r} * EQCRUEC_{y, eg, b, r} \\
+ EQCRP90RP_{y, eg, b, r} * EQCNUEC_{y, eg, b, r} \right), \quad \text{if } y = baseyr + 1 \tag{B-75}
\]

\[
DSWCON_{y, r} = \sum_{b, eg} \left(EQCSE_{y, eg, b, r} * EQCUEC_{eg, b, r} \\
+ EQCADD_{y, eg, b, r} * EQCNUEC_{y, eg, b, r} \\
+ EQCRP90_{y, eg, b, r} * EQCRUEC_{y, eg, b, r} \\
+ EQCRP90RP_{y, eg, b, r} * EQCNUEC_{y, eg, b, r} \\
+ EQCSR90_{y, eg, b, r} * EQCAUEC_{y, eg, b, r} \\
+ EQCREP_{y, eg, b, r} * EQCNUEC_{y, eg, b, r} \\
+ EQCSUR_{y, eg, b, r} * EQCAUEC_{y, eg, b, r} \right), \quad \text{if } y > baseyr + 1 \tag{B-76}
\]

RWHTEC (Water heating equipment choice component)
New water heaters are assumed to be distributed in proportion to associated space heating equipment, where the association between water heating equipment and space heating equipment is specified by
the user in the RTCLPNTR\textsubscript{eg} pointer for each water heating equipment class in the RSCLASS.TXT file.

Replacement water heaters are not so constrained in single-family housing. There are five equipment classes for water heaters: natural gas, electric, distillate fuel oil, LPG, and solar thermal.

The component first adds up the market shares of all space heating equipment:

\[
TOTN_{b,r} = \sum_{eg} HSYSSHR_{y,eg,b,r} \tag{B-77}
\]

where

- \(TOTN_{b,r}\) is the sum of the current-year market shares for space heating equipment classes by housing type and Census division, and
- \(HSYSSHR_{y,eg,b,r}\) is the current-year market share for space heating equipment classes by housing type and Census division.

New water heater market shares are therefore calculated by the sum of the market shares of the associated heating equipment:

\[
NH2OSH_{y,b,r} = \frac{\sum_{eg} HSYSSHR_{y, RTCLEQCL_{SH}=RTCLPNTR_{WH},eg,b,r}}{TOTN_{b,r}} \tag{B-78}
\]

where

- \(NH2OSH_{y,b,r}\) is the market share of each new water heater class by housing type and Census division,
- \(TOTN_{b,r}\) is the sum of the current-year market shares for space heating equipment classes by housing type and Census division,
- \(HSYSSHR_{y,eg,b,r}\) is the current-year market share of the space heating equipment class by housing type and Census division,
- \(RTCLEQCL_{SH}\) is the equipment class number for the space heater class, and
- \(RTCLPNTR_{WH}\) is the pointer to a space heater class from a water heater class.

The following variables are computed as in the equations indicated:

- \(OPCOST_{y,es,b,r,v}\) is the operating cost for the water heater equipment type by housing type, Census division, vintage, and year. It is computed as in (B-67).
- \(LFCY_{y,es,b,r,v}\) is the water heater type’s life-cycle cost by year, housing type, Census division, and vintage. It is computed as in (B-16).
- \(EQWTN_{y,es,b,r}\) is the equipment weight for new equipment types by housing type, Census division, and year. It is computed as in (B-20).
- \(EQWTR_{y,es,b,r}\) is the equipment weight for replacement equipment types by housing type, Census division, and year. It is computed as in (B-21).
- \(TOTEWTN_{y,eg,b,r}\) is the sum of the equipment types’ weights for the new equipment class. It is computed as in (B-22).
- \(TOTEWTR_{y,eg,b,r}\) is the sum of the equipment types’ weights for the replacement equipment class. It is computed as in (B-23).
- \(EQFSHRN_{y,f,b,r}\) is the fuel share of new equipment type by year, housing type and Census division. It is computed as in (B-24).
EQFSHRR_{y,f,b,r} is the fuel share of replacement equipment type by year, housing type and Census division. It is computed as in (B-25).

The fuel shares are finally defined:

\[
NEQTSR_{y,f,b,r} = EQFSHRN_{y,es,b,r}
\] \hspace{1cm} (B-79)

\[
REQTSR_{y,f,b,r} = EQFSHRR_{y,es,b,r}
\] \hspace{1cm} (B-80)

where

\[NEQTSR_{y,f,b,r}\] is the fuel share of new water heaters by fuel, housing type, and Census division, and

\[REQTSR_{y,f,b,r}\] is the fuel share of replacement water heaters by fuel, housing type and Census division.

Weighted average class efficiencies by fuel can then be calculated from the individual equipment types for new and replacement equipment, using exactly the same formulas as for space heating equipment, as shown in equations (B-26) and (B-27):

\[WTEQCEFFN_{y,eg,b,r}\] is the weighted average inverse efficiency for new water heating equipment classes by year, housing type, and Census division, and

\[WTEQCEFFR_{y,eg,b,r}\] is the weighted average inverse efficiency for replacement water heating equipment classes by year, housing type, and Census division.

REUADD (Water heating and cooking additions and replacements component)

There is only one component in the RDM for addition and replacement of water heating equipment and cooking equipment.

The first operation is to calculate the total equipment in existing housing:

\[
EQCND90_{y,eg,b,r} = EQCESE_{basey,eg,b,r} \times HDR_b \hspace{1cm}, \text{ if } y = baseyr + 1
\] \hspace{1cm} (B-81)

\[
EQCND90_{y,eg,b,r} = EQCESE_{y-1,eg,b,r} \times HDR_b \hspace{1cm}, \text{ if } y > baseyr + 1
\]

where

\[EQCND90_{y,eg,b,r}\] is the total equipment in existing housing each year by housing type and Census division,

\[EQCESE_{basey,eg,b,r}\] is the existing equipment stock in existing housing units in the base year by housing type and Census division, and

\[HDR_b\] is the housing demolition rate by housing type.
Next, purchases are calculated for new housing,

\[EQCADD_{y,eg,b,r} = HSEADD_{y,b,r} \times SHARE_{y,eg,b,r} \]

(B-82)

where

- \(EQCADD_{y,eg,b,r} \) is the number of new units originally purchased for new housing additions by year, housing type, and Census division,
- \(HSEADD_{y,b,r} \) is the number of housing additions by year, housing type, and Census division, and
- \(SHARE_{y,eg,b,r} \) is the share of the particular equipment for which the component has been called, \(NH2OSH_{y,eg,b,r} \) or \(NCKSH_{y,eg,b,r} \).

\(NH2OSH_{y,eg,b,r} \) is the market penetration level or saturation of the market for water heaters by housing type and Census division, and

\(NCKSH_{y,eg,b,r} \) is the market penetration level or saturation of the market for cookstoves by housing type and Census division.

The following variables are computed as in the equations indicated:

- \(EQCSR90_{y,eg,b,r} \) is the surviving post-base-year vintage equipment in existing housing units in the current year by housing type and Census division. It is computed as in (B-36) above.
- \(EQCSUR_{y,eg,b,r} \) is the surviving (post-base-year-vintage) equipment in the current year by housing type and Census division. It is computed as in (B-37) above.
- \(EQCREP_{y,eg,b,r} \) is the number of replacement units (post-base-year-vintage) equipment demanded in post-base-year-vintage housing units by housing type and Census division. It is computed as in (B-29) above.
- \(EQCRP90_{y,eg,b,r} \) is the number of replacement units demanded in existing housing units each year by housing type and Census division. It is computed as in (B-30) above.
- \(EQCRP90RP_{y,eg,b,r} \) is the number of replacement units for the EQCRP90 units demanded each year by housing type and Census division. It is computed as in (B-31) above.

RWHCON (Water heating energy consumption component)

Energy consumption for water heating is calculated much like the comparable quantities for space heating. Some of the most important determinants of the amount of hot water consumption in housing units are the number of inhabitants and the usage and efficiency of clothes washers. The component therefore calculates an average housing unit size that will be used with an elasticity to account for this determinant:
\[HHSIZE_{y,r} = \frac{MC_{NP16A_{r,y}}}{\sum_b \left(EH_{y,b,r} + NH_{y,b,r} \right)} \]

where

- \(HHSIZE_{y,r} \) is the average number of persons over age 16 per housing unit by year and region,
- \(MC_{NP16A_{r,y}} \) is the number of persons over age 16 by year and region, from the NEMS Macroeconomic Activity Module,
- \(EH_{y,b,r} \) is the number of existing vintage homes existing in year \(y \), from the RSMISC.TXT file, and
- \(NH_{y,b,r} \) is the number of post-base-year-vintage homes remaining in year \(y \), from the NEMS Macroeconomic Activity Module, as shown in equation (B-3).

Unit energy consumption is calculated for housing vintages. First, for the surviving base-year homes,

\[EQCSUEC_{r,eg,b,r} = EQCUEC_{r,eg,b} \times \left(\frac{HHSIZE_{y,r}}{HHSIZE_{baseyr,r}} \right)^{HHSELAS} \times \frac{RTBASEFF_{baseyr,eg}}{RTBASEFF_{y,eg}} \]

where

- \(EQCSUEC_{y,eg,b,r} \) is the unit energy efficiency of surviving water heating equipment in existing-vintage homes, by year, equipment class, housing type, and Census division,
- \(EQCUEC_{r,eg,b} \) is the unit energy efficiency of equipment in homes that existed in the base year, by Census division, equipment class, and housing type,
- \(HHSIZE_{y,r} \) is the average housing unit size by year and Census division,
- \(HHSELAS \) is an elasticity parameter for the increase in hot water intensity due to increases in housing unit size, and
- \(RTBASEFF_{y,eg} \) are the annual average efficiencies for the equipment classes.

For new purchases,

\[EQCNUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \times WTEQCEFFN_{y,eg,b,r} \times RTBASEFF_{baseyr,eg} \times \left(\frac{HHSIZE_{y,r}}{HHSIZE_{baseyr,r}} \right)^{HHSELAS} \]

where

- \(EQCNUEC_{y,eg,b,r} \) is the unit energy consumption for new equipment by year, housing type, and Census division,
- \(EQCUEC_{r,eg,b} \) is the unit energy consumption for the equipment class by housing type and Census division,
- \(WTEQCEFFN_{y,eg,b,r} \) is the weighted average inverse efficiency for new water heating equipment types by year, class, housing type, and Census division,
- \(HHSIZE_{y,r} \) is the average housing unit size by year and Census division,
HHSELAS is an elasticity parameter for the increase in hot water intensity due to increases in housing unit size, and

RTBASEFF is the efficiency of the water heating equipment classes.

For replacements in all years,

\[
EQCRUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \times WTEQCEFF_{y,eg,b,r} \times RTBASEFF_{baseyr,eg} \left(\frac{HHSIZE_{y,r}}{HHSIZE_{baseyr,r}} \right)^{HHSELAS}
\]

(B-86)

where

- **EQCRUEC** is the unit energy consumption for replacement equipment by year, housing type, and Census division,
- **WTEQCEFF** is the weighted average inverse efficiency for replacement water heating equipment classes by year, housing type, and Census division,
- **EQCUEC** is the unit energy consumption for the equipment class by housing type and Census division, and
- **RTBASEFF** is the efficiency of retiring equipment from the base-year stock by year.

The average UEC for all equipment is calculated as

\[
EQCAUEC_{y,eg,b,r} = EQCNUEC_{y,eg,b,r}, \text{ if } y = baseyr + 1
\]

\[
EQCAUEC_{y,eg,b,r} = \left((EQREP_{y,eg,b,r} + EQCADD_{y,eg,b,r} + EQCRP90RP_{y,eg,b,r}) \times EQCNUEC_{y,eg,b,r} \\
+ (EQCSR90_{y,eg,b,r} + EQCSUR_{y,eg,b,r}) \times EQCAUEC_{y-1,eg,b,r} \\
+ EQCRP90_{y,eg,b,r} \times EQCRUEC_{y,eg,b,r} \right)^{-1}
\]

(B-87)

if \(y > baseyr + 1 \)

where

- **EQCAUEC** is the average unit energy consumption for all post-base-year equipment.

Water heater efficiency is calculated next. If \(y = baseyr+1 \),

\[
WTEQCEFF_{y=baseyr+1,eg,b} = WTEQCEFFN_{y=baseyr+1,eg,b}
\]

(B-88)
If $y > \text{baseyr}+1$,

$$WTEQCEFFA_{y,\text{eg},b,r} = \left((EQCREP_{y,\text{eg},b,r} + EQCADD_{y,\text{eg},b,r} + EQR0P_{y,\text{eg},b,r}) \right) \times WTEQCEFFN_{y,\text{eg},b,r} + (ECSR90_{y,\text{eg},b,r} + EQCSUR_{y,\text{eg},b,r}) \times WTEQCEFFA_{y-1,\text{eg},b,r} + EQR0P_{y,\text{eg},b,r} \times WTEQCEFFR_{y,\text{eg},b,r} \right) (B-89)$$

where

$WTEQCEFFA_{y,\text{eg},b,r}$ is the weighted average water heater efficiency by equipment class, housing type, Census division, and year.

To account for changes in hot water demand over time, both the number and efficiency (with respect to hot water use) of clothes washers is very important. To resolve this issue, the water heating consumption subroutine relies on calculations that are generated in the clothes washer subroutine. First, the number of clothes washers must be shared to each of the competing fuel types for each vintage of equipment:

$$H2OSHRCW_{y,f,b,r,v} = H2OSHR_{y,f,b,r,v} \times NUMCW_{y,b,r,v} \quad (B-90)$$

where

$H2OSHRCW_{y,f,b,r,v}$ is the number of clothes washers for each type of water heating fuel type by Census division and building type for each vintage of equipment,

$H2OSHR_{y,f,b,r,v}$ is the share for each type of water heating fuel type by Census division and building type for all vintages of equipment, and

$NUMCW_{y,b,r,v}$ is the number of clothes washers by Census division and building type for all vintages of equipment.

Next, the consumption for water heating for homes with clothes washers is computed as follows:

$$H2OCONCW_{y,f,b,r,v} = H2OSHRCW_{y,f,b,r,v} \times H2OUEC_{y,f,b,r,v} \times LDADJCW_{y,b,r} \quad (B-91)$$

where

$H2OCONCW_{y,f,b,r,v}$ is the water heating consumption for homes with clothes washers for each type of water heating fuel type by Census division and building type for all vintages of equipment,
is the unit energy consumption for each type of water heating fuel type by Census division and building type for all vintages of equipment, and is the adjustment to the water heating UEC to account for the efficiency of clothes washers with respect to hot water load by Census division and building type for all vintages of equipment.

Finally, energy consumption by fuel can be summed over the different housing types. If \(y = \text{baseyr} + 1 \),

\[
H2OCON_{y,f,r} = \sum_b \left(\left(\begin{array}{c}
\text{EQCSE}_{y,eg,b,r} * \text{EQCSUEC}_{eg,b,r} \\
+ \text{EQCADD}_{y,eg,b,r} * \text{EQCNUEC}_{eg,b,r} \\
+ \text{EQCRP90}_{y,eg,b,r} * \text{EQCRUEC}_{eg,b,r} \\
+ \text{EQCRP90RP}_{y,eg,b,r} * \text{EQCNUEC}_{eg,b,r}
\end{array} \right) + \sum_v H2OCONC_{y,f,b,r,v} \right) \tag{B-92}
\]

If \(y > \text{baseyr} + 1 \),

\[
H2OCON_{y,r} = \sum_b \left(\left(\begin{array}{c}
\text{EQCSE}_{y,eg,b,r} * \text{EQCSUEC}_{eg,b,r} \\
+ \text{EQCADD}_{y,eg,b,r} * \text{EQCNUEC}_{eg,b,r} \\
+ \text{EQCRP90}_{y,eg,b,r} * \text{EQCRUEC}_{eg,b,r} \\
+ \text{EQCRP90RP}_{y,eg,b,r} * \text{EQCNUEC}_{eg,b,r}
\end{array} \right) + \sum_v H2OCONC_{y,f,b,r,v} \right) \tag{B-93}
\]

where

\[
H2OCON_{y,f,r} \quad \text{is consumption for water heating by fuel, and}
\]

\[
\text{RSELAST} \quad \text{is the short-term price elasticity function with distributed lag weights EF1, EF2, and EF3, and the total short-term price elasticity, } \alpha, \text{ described in (B-39).}
\]

RSTVTEC (Cooking technology choice component)

Throughout this document, cooking equipment is characterized as a cookstove (i.e., gas or electric range), a unit that contains both an oven and a cooktop/ stovetop. The existing cooking equipment distribution is associated with the choice of water heaters. Homes that heat water with natural gas are allowed to have either gas or electric cookstoves; homes that heat with LPG cook with LPG; homes that heat water with distillate fuel oil cook with electricity. Replacement cookstoves in single-family homes
are not so constrained. These constraints are embodied in the technology choice by using the water heater equipment market shares for calculating the cooking equipment market shares:

\[
NCKSH_{y,eg,b,r} = NH2OSH_{y,eg,b,r} \cdot NGNGFACT, \text{ if } eg = \text{ gas range}
\]

\[
NCKSH_{y,eg,b,r} = NH2OSH_{y,eg,b,r}, \text{ if } eg = \text{ LPG range}
\]

\[
NCKSH_{y,eg,b,r} = \sum (NH2OSH_{y,eg,b,r}) + NH2OSH_{y,eg,b,r} \cdot (1 - NGNGFACT),
\]

where

- \(NCKSH_{y,eg,b,r}\) is the new market share for cooking equipment in the current year by housing type and Census division,
- \(NH2OSH_{y,eg,b,r}\) is the new market share for water heaters in the current year by equipment class, housing type and Census division, and
- \(NGNGFACT\) is a constant that defines the fraction of new homes having gas water heaters that have gas cookstoves.

In the formula, the summation in the case of \(eg = \text{ other}\) refers to the market shares of all water heater classes other than natural gas and LPG: homes that heat water with any other equipment class than these, depending on which are defined in the RSCLASS.TXT file, are assumed to cook with electricity.

The following variables are computed as in the equations indicated:

- \(OPCOST_{y,es,b,r,v}\) is the operating cost for the cooking equipment type by housing type, Census division, vintage, and year. It is computed as in (B-67) above.
- \(LFCY_{y,es,b,r,v}\) is the cooking equipment's life-cycle cost by year, housing type, Census division, and vintage. It is computed as in (B-16) above.
- \(EQWTN_{y,es,b,r}\) is the equipment weight for new equipment types by housing type, Census division, and year. It is computed as in (B-20) above.
- \(EQWTR_{y,es,b,r}\) is the equipment weight for replacement equipment types by housing type, Census division, and year. It is computed as in (B-21) above.
- \(TOTEWTN_{y,eg,b,r}\) is the sum of the equipment types' weights for the new equipment class. It is computed as in (B-22) above.
- \(TOTEWTR_{y,eg,b,r}\) is the sum of the equipment types' weights for the replacement equipment class. It is computed as in (B-23) above.
- \(EQFSHRN_{y,f,b,r}\) is the fuel share of new equipment type by year, housing type and Census division. It is computed as in (B-24) above.
- \(EQFSHRR_{y,f,b,r}\) is the fuel share of replacement equipment type by year, housing type and Census division. It is computed as in (B-25) above.
The final shares for the equipment types are the products of the market shares and the equipment type shares,

\[
\begin{align*}
NEQTSHRD_{y,eg,b,r} &= NCKSH_{y,eg,b,r} \times EQFSHRN_{y,es,b,r} \\
REQTSHRD_{y,eg,b,r} &= NCKSH_{y,eg,b,r} \times EQFSHRR_{y,es,b,r}
\end{align*}
\] (B-95)

where

- \(NEQTSHRD_{y,eg,b,r} \) is the new equipment type share for cookstoves by equipment type, housing type and Census division,
- \(REQTSHRD_{y,eg,b,r} \) is the replacement equipment type share for cookstoves by equipment type, housing type and Census division,
- \(NCKSH_{y,eg,b,r} \) is the new market share for cooking equipment in the current year by housing type and Census division,
- \(EQFSHRN_{y,es,b,r} \) is the new market share for cookstoves by equipment type, housing type and Census division, and
- \(EQFSHRR_{y,es,b,r} \) is the replacement market share for cookstoves by equipment type, housing type and Census division.

For cooking, the weighted average inverse efficiency of each equipment class is calculated differently from the foregoing end uses, because the RSMEQP file datum for \(RTBASEFF_{es} \) is the usage, measured in kWh or MMBtu, of the equipment in the class:

\[
WTEQCEFFA_{y,eg,b,r} = \frac{\sum_{es\in eg} (NEQTSHR_{y,es,b,r} \times RTEQEFF_{es})}{\sum_{es\in eg} NEQTSHR_{y,es,b,r}}
\] (B-96)

where

- \(WTEQCEFFA_{y,eg,b,r} \) is the weighted average cooking equipment usage in the current year by housing type and Census division, and
- \(RTEQEFF_{es} \) is the equipment efficiency.

REUADD (Water heating and cooking additions and replacements component)

As mentioned earlier, the capabilities for adding and replacing cooking equipment have been merged into a single component called \(REUADD \). This component was documented above in the water heating section.

RSTVCON (Cooking energy consumption component)

The unit energy consumption for the surviving equipment is calculated by,

\[
EQCSUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \times \frac{RTBASEFF_{base,eg}}{RTBASEFF_{y,eg}}
\] (B-97)
where

\(EQCSUEC_{y,eg,b,r} \) is the unit energy consumption for surviving cooking equipment in the current year by housing type, and Census division,

\(EQCUEC_{r,eg,b} \) is the unit energy consumption for cooking equipment by housing type, and Census division, and

\(RTBASEFF_{r,eg} \) are the annual average efficiencies for the equipment classes (represented as unit energy consumption for this service).

For new equipment,

\[
EQCNUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \times \frac{WTEQCEFFN_{y,eg,b,r}}{RTBASEFF_{baseyr,eg}} \tag{B-98}
\]

where

\(EQCNUEC_{y,eg,b,r} \) is the unit energy consumption for new cooking equipment in the current year by housing type and Census division,

\(EQCUEC_{r,eg,b} \) is the unit energy consumption for cooking equipment by class, housing type, and Census division,

\(WTEQCEFFN_{y,eg,b,r} \) is the weighted average cooking usage for new equipment in the current year by housing type and Census division, and

\(RTBASEFF_{baseyr,eg} \) is the base-year efficiency of the cooking equipment class.

For replacement equipment,

\[
EQCRUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \times \frac{WTEQCEFFR_{y,eg,b,r}}{RTBASEFF_{baseyr,eg}} \tag{B-99}
\]

where

\(EQCRUEC_{y,eg,b,r} \) is the unit energy consumption for replacement cooking equipment in the current year by housing type and Census division,

\(EQCUEC_{r,eg,b} \) is the unit energy consumption for cooking equipment by class, housing type, and Census division,

\(WTEQCEFFR_{y,eg,b,r} \) is the weighted average cooking usage for replacement equipment in the current year by housing type and Census division, and

\(RTBASEFF_{baseyr,eg} \) is the base-year efficiency of the cooking equipment class.

For the average efficiency, the initial year level is set to the new equipment efficiency:

If \(y = \text{baseyr}+1 \),

\[
EQCAUEC_{y,eg,b,r} = EQCNUEC_{r,eg,b} \tag{B-100}
\]
If \(y > baseyr+1 \),

\[
EQCAUEC_{y, eg, b, r} = \\
\left(\begin{array}{l}
EQCREP_{y, eg, b, r} + EQCADD_{y, eg, b, r} + EQCRP90_{y, eg, b, r} \\
\end{array} \right) \\
* EQCNUEC_{y, eg, b, r} \\
+ \left(\begin{array}{l}
EQCSR90_{y, eg, b, r} + EQCSUR_{y, eg, b, r} \\
\end{array} \right) * EQCAUEC_{y-1, eg, b, r} \\
+ EQCRP90_{y, eg, b, r} * EQCRUEC_{y, eg, b, r} \\
\right)
\]

And energy consumption is defined as:

\[
CKCON_{y, r} = \\
\left(\begin{array}{l}
EQCES_{y, eg, b, r} * EQCUEC_{y, eg, b, r} \\
+ EQCADD_{y, eg, b, r} * EQCNUEC_{y, eg, b, r} \\
+ EQCRP90_{y, eg, b, r} * EQCRUEC_{y, eg, b, r} \\
+ EQCRP90_{y, eg, b, r} * EQCNUEC_{y, eg, b, r} \\
\end{array} \right), \quad \text{if } y = baseyr + 1
\]

\[
CKCON_{y, r} = \sum_{b, eg} \left(\begin{array}{l}
EQCES_{y, eg, b, r} * EQCUEC_{y, eg, b, r} \\
+ EQCADD_{y, eg, b, r} * EQCNUEC_{y, eg, b, r} \\
+ EQCRP90_{y, eg, b, r} * EQCRUEC_{y, eg, b, r} \\
+ EQCSR90_{y, eg, b, r} * EQCAUEC_{y, eg, b, r} \\
+ EQCREP_{y, eg, b, r} * EQCNUEC_{y, eg, b, r} \\
+ EQCSUR_{y, eg, b, r} * EQCAUEC_{y, eg, b, r} \\
\end{array} \right), \quad \text{if } y > baseyr + 1
\]

RDRYTEC (Clothes drying technology choice component)

The following variables are computed as in the equations indicated:

\(OPCOST_{y, es, b, r, v} \) is the operating cost for the equipment type by year, housing type, Census division, and vintage. It is computed as in (B-67) above.

\(LFCY_{y, es, b, r, v} \) is the clothes dryer's life-cycle cost by year, housing type, Census division, and vintage. It is computed as in (B-16) above.

\(EQWTN_{y, es, b, r} \) is the equipment weight for new equipment type by year, housing type, and Census division. It is computed as in (B-20) above.

\(EQWTR_{y, es, b, r} \) is the equipment weight for replacement equipment by year, housing type, and Census division. It is computed as in (B-21) above.
TOTEWTN}_{eg, b, r} is the sum of equipment weights for the new purchase equipment class. It is computed as in (B-22) above.

TOTEWTR}_{eg, b, r} is the sum of equipment weights for the replacement purchase equipment class. It is computed as in (B-23) above.

Market shares for new and replacement dryers are computed next

\[
{NEQTSHR}_{y, es, b, r} = \frac{EQWT}_{y, es, b, r} \quad (B-104)
\]

where

- \({NEQTSHR}_{y, es, b, r} \) is the new market share of clothes dryer equipment types by housing type and Census division in the current year,
- \(TOTEWT_{eg} \) is the sum of equipment weights for the new equipment class, and
- \(EQWT_{es} \) is the equipment weight for new equipment.

The class averages of equipment type efficiencies for clothes drying equipment are calculated as for other end uses:

\[
TEMP = \sum_{es} EQWT_{y, es, b, r}
\]

\[
WTEQCEFFA_{y, eg, b, r} = \frac{\sum_{es} \left(EQWT_{y, es, b, r} / RTEQEFF_{es} \right)}{TEMP}, \text{ if } TEMP > 0 \quad (B-105)
\]

\[
WTEQCEFFA_{y, eg, b, r} = \frac{1}{RTBASEFF_{baseyr, eg}}, \text{ otherwise}
\]

where

- \(WTEQCEFFA_{y, es, b, r} \) is the weighted average usage of clothes dryer equipment classes in the current year by housing type and Census division, and
- \(EQWT_{y, es, b, r} \) is the equipment weight for each type of new equipment.

DRYADD (Clothes drying additions component)

New clothes drying equipment is calculated using a saturation level for newly purchased equipment:

\[
EQCADD_{y, eg, b, r} = \sum_{es} \left(HSEADD_{y, b, r} \times NEQTSHR_{y, es, b, r} \times \frac{NEWDRYSAT_{b, r}}{100} \right) \quad (B-106)
\]

where
EQCADD\(_y,eg,b,r\) is the amount of new (post-base-year-vintage) equipment added in new housing units in the current year by housing type and Census division,
HSEADD\(_y,b,r\) is the number of new housing additions in the year by housing type and Census division,
NEQTSHR\(_y,es,b,r\) is the market share of new clothes dryer equipment types by housing type and Census division in the current year, and
NEWDRYSAT\(_b,r\) is the level of market penetration of new clothes dryer equipment by housing type and Census division, expressed as a percent, from the RSMISC.TXT file.

The next step is to calculate the numbers of dryers of each vintage category. The following variables were computed as in the equations indicated:

EQCSR90\(_y,eg,b,r\) is the surviving post-base-year vintage equipment in existing housing units in the current year by housing type and Census division. It is computed as in (B-36) above.

EQCSUR\(_y,eg,b,r\) is the surviving new (post-base-year-vintage) equipment in the current year by housing type and Census division. It is computed as in (B-37) above.

EQCREP\(_y,eg,b,r\) is the number of replacement units (post-base-year-vintage) equipment demanded in post-base-year-vintage housing units by housing type and Census division. It is computed as in (B-29) above.

EQCRP90\(_y,eg,b,r\) is the number of replacement units demanded in existing housing units each year by housing type and Census division. It is computed as in (B-30) above.

EQCRP90RP\(_y,eg,b,r\) is the number of replacement units for the EQCRP90 units demanded each year by housing type and Census division. It is computed as in (B-31) above.

RDRYCON (Clothes drying energy consumption component)
The unit energy consumption for surviving equipment is calculated as:

\[
EQCSUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \ast \frac{RTBASEFF_{\text{baseyr},eg}}{RTBASEFF_{y,eg}}
\]

where

EQCSUEC\(_y,eg,b,r\) is the UEC for surviving base-year equipment in each equipment class, by housing type, and Census division,

RTBASEFF\(_{y,eg}\) is the base efficiency of the same general equipment category in each year, and

EQCUEC\(_{r,eg,b}\) is unit energy consumption for equipment in base-year housing by Census division, equipment class, and housing type.

For new equipment,

\[
EQCNUEC_{y,eg,b,r} = EQCUEC_{r,eg,b} \ast WTEQCEFFN_{y,eg,b,r} \ast RTBASEFF_{y,eg}
\]

(B-108)
where

\[EQCNUEC_{y, eg, b, r} \]

is the unit energy consumption by year for new equipment by housing type and Census division,

\[WTEQCEFF_{y, eg, b, r} \]

is the new equipment efficiency by year, equipment class, housing type, and Census division,

\[RTBASEFF_{y, eg} \]

is the base-year efficiency of the equipment class, and

\[EQCUEC_{r, eg, b} \]

is unit energy consumption for equipment in base-year housing by Census division, equipment class, and housing type.

For replacement equipment,

\[
EQCRUEC_{y, eg, b, r} = E QCUEC_{r, eg, b} \times WTEQCEFF_{y, eg, b, r} \times RTBASEFF_{y, eg}
\]

where

\[EQCRUEC_{y, eg, b, r} \]

is the unit energy consumption by year for replacement equipment by housing type and Census division,

\[WTEQCEFF_{y, eg, b, r} \]

is the replacement efficiency by year, equipment class, housing type, and Census division,

\[RTBASEFF_{y, eg} \]

is the base-year efficiency of the equipment class, and

\[EQCUEC_{r, eg, b} \]

is unit energy consumption for equipment in base-year housing by Census division, equipment class, and housing type.

The average of the two unit energy consumption variables is computed as follows:

If \(y = \text{baseyr} + 1 \),

\[
EQCAUEC_{y, eg, b, r} = EQCNUEC_{r, eg, b}
\]

If \(y > \text{baseyr} + 1 \),

\[
EQCAUEC_{y, eg, b, r} = \left(\frac{EQCREP_{y, eg, b, r} + EQCADD_{y, eg, b, r} + EQCRP90RP_{y, eg, b, r}}{EQCNUEC_{y, eg, b, r}} \right)
\]

\[
EQCAUEC_{y, eg, b, r} = \left(\frac{EQCREP_{y, eg, b, r} + EQCADD_{y, eg, b, r} + EQCRP90RP_{y, eg, b, r}}{EQCNUEC_{y, eg, b, r}} \right)
\]

\[
+ \left(EQCSR90_{y, eg, b, r} + EQCSUR_{y, eg, b, r} \right) \times EQCAUEC_{y-1, eg, b, r}
\]

\[
+ EQCRP90_{y, eg, b, r} \times EQCRUEC_{y, eg, b, r}
\]

\[
+ E QCADD_{y, eg, b, r} + EQCSR90_{y, eg, b, r} + EQCSUR_{y, eg, b, r} + EQCRP90_{y, eg, b, r}
\]
And energy consumption is defined as:

\[
DRYCON_{y=2006,r} = \left(\sum_{b,eg} \left(EQCESE_{y,eg,b,r} * EQCUEC_{eg,b,r} + EQCADD_{y,eg,b,r} * EQCNUEC_{y,eg,b,r} + EQCRP90_{y,eg,b,r} * EQCRUEC_{y,eg,b,r} + EQCRP90RP_{y,eg,b,r} * EQCNUEC_{y,eg,b,r} \right) \right), \text{ if } y = baseyr + 1 \tag{B-112}
\]

\[
DRYCON_{y,r} = \left(\sum_{b,eg} \left(EQCESE_{y,eg,b,r} * EQCUEC_{eg,b,r} + EQCADD_{y,eg,b,r} * EQCNUEC_{y,eg,b,r} + EQCRP90_{y,eg,b,r} * EQCRUEC_{y,eg,b,r} + EQCRP90RP_{y,eg,b,r} * EQCNUEC_{y,eg,b,r} + EQCSR90_{y,eg,b,r} * EQCAUEC_{y,eg,b,r} + EQCREP_{y,eg,b,r} * EQCNUEC_{y,eg,b,r} + EQCSUR_{y,eg,b,r} * EQCAUEC_{y,eg,b,r} \right) \right), \text{ if } y > baseyr + 1 \tag{B-113}
\]

RREFTEC (Refrigeration technology choice component)

Refrigeration is modeled somewhat differently than most other end uses. It can be thought of as having three general types depending on the freezer location: top-mounted, side-mounted, or bottom-mounted. RECS includes only a single UEC; therefore, rather than modeling these different general types as classes (e.g., electric dryers where there are multiple classes and multiple UECs), the multiple types are treated as just another refrigerator type, but with some further special treatment. So for refrigeration, the denotation for equipment class \(eg \) is always defined as 1, and is not needed as a subscript as for other end uses.

The special treatment of the multiple types takes the form of an assumed share of the market, whereas market shares for the other end use equipment types are determined based on model-endogenous logistic equipment choice based on the relationship between operating cost and capital cost. Refrigerators with side- and bottom-mounted freezers are generally more costly and tend to be less efficient. Thus, the assumed market share for these types is needed because if modeled competitively as just another refrigerator type (denoted es) they would not receive a significant market share, even though in practice they are popular. The assumed market share is 25% for side-mounted freezers and 25% for bottom-mounted freezers. In the equations that follow, the subscript es will be distinguished as to whether it refers to side- or bottom-mounted freezer refrigerators versus other types when the distinction is necessary. Equipment operating cost for top-mounted freezer refrigerators is:
where

\[OPCOST_{y,es,b,r,v} = PRICES_{f,r,y} \times RTEQEFF_{es} \times FACTOR \] \hspace{1cm} (B-114)

\[LFCY_{y,es,b,r,v} \] is the operating cost of the equipment type by housing type, Census division, and vintage in the current year,

\[PRICES_{f,r,y} \] is the fuel price in the current year by Census division from the NEMS Integrating Module,

\[RTEQEFF_{es} \] is the efficiency (represented as unit energy consumption for this service) of the refrigerator type, and

\[FACTOR \] is a factor (0.003412 MMBtu/kWh) that converts the units of \(RTEQEFF_{es} \) expressed in kWh for refrigerators and freezers.

The following variables are computed as in the equations indicated:

\[LFCY_{y,es,b,r,v} \] is the refrigerator’s life-cycle cost by year, housing type, Census division, and vintage. It is computed as in (B-16) above.

\[EQWTN_{y,es,b,r} \] is the equipment weight for new equipment type by year, housing type, and Census division. It is computed as in (B-20) above.

\[EQWTR_{y,es,b,r} \] is the equipment weight for replacement equipment by year, housing type, and Census division. It is computed as in (B-21) above.

\[TOTEWTN_{y,eg,b,r} \] is the sum of equipment weights for the new purchase equipment class. It is computed as in (B-22) above.

\[TOTEWTR_{y,eg,b,r} \] is the sum of equipment weights for the replacement purchase equipment class. It is computed as in (B-23) above.

The general types of refrigerators have market shares as follows:

\[NEQTSHR_{y,esTTD,b,r} = \frac{EQWTN_{es,b,r}}{TMFSHR_{b,r}} \times TMF_SHR \] \hspace{1cm} (B-115)

\[REQTSHR_{y,esTTD,b,r} = \frac{EQWTR_{es,b,r}}{TMFSHR_{b,r}} \times TMF_SHR \] \hspace{1cm} (B-116)

\[NEQTSHR_{y,esTTD,b,r} \] is the market share for new refrigerators of the equipment type in the current year by housing type and Census division,

\[REQTSHR_{y,esTTD,b,r} \] is the market share for the replacements of equipment type in the current year by housing type and Census division.

\[TMFSHR_{b,y}, \] is the model-calculated market share of refrigerators with top-mounted freezers in the current year by housing type and

\[TMF_SHR \] is the assumed overall share of refrigerators with top-mounted freezers.
Market shares are defined similarly for refrigerators with side- and bottom-mounted freezers using SMFSHR and BMFSHR, respectively, instead of TMFSHR. For the refrigerators with modeled market shares, their calculated market shares are deflated by the assumed share of the different types, ensuring that the market shares sum to unity.

\[
W_{TEQCEFFN_{y,b,r}} = \frac{\sum_{es} (NEQTSHR_{y,es,b,r} \times RTEQEFF_{es})}{\sum_{es} NEQTSHR_{y,es,b,r}}
\]
\[
W_{TEQCEFFR_{y,b,r}} = \frac{\sum_{es} (REQTSHR_{y,es,b,r} \times RTEQEFF_{es})}{\sum_{es} REQTSHR_{y,es,b,r}}
\]

where

- \(W_{TEQCEFFN_{y,b,r}}\) is the weighted average usage of new refrigerator classes by housing type and Census division,
- \(W_{TEQCEFFR_{y,b,r}}\) is the weighted average usage of replacement refrigerator classes by housing type and Census division,
- \(RTEQEFF_{es}\) is the efficiency by refrigerator type, from the RSMEQP.TXT input file,
- \(NEQTSHR_{y,es,b,r}\) is the new market share for the equipment types in the current year by housing type and Census division, and
- \(REQTSHR_{y,es,b,r}\) is the market share for the replacements of equipment types in the current year by housing type and Census division.

RREFADD (Additions to the refrigeration stock component)

Refrigerator additions allow for new single-family homes to have more than one refrigerator. The additions are calculated as:

\[
EQCADD_{y,b,r} = HSEADD_{y,b,r} \times RFADDFAC, \text{ if } b = 1
\]
\[
EQCADD_{y,b,r} = HSEADD_{y,b,r}, \text{ otherwise}
\]

where

- \(EQCADD_{y,b,r}\) is the amount of new (post-base-year-vintage) refrigerators added in new housing units in the current year by housing type and Census division,
- \(HSEADD_{y,b,r}\) is the number of new housing units constructed in the current year by housing type and Census division, and
- \(RFADDFAC\) is the percent of new single-family housing units with two refrigerators.

The following variables are computed as in the equations indicated:

- \(EQCSR90_{y,eg,b,r}\) is the surviving post-base-year vintage equipment in existing housing units in the current year by housing type and Census division. It is computed as in (B-36) above.
\(EQCSUR_{y,eg,b,r} \) is the surviving new (post-base-year-vintage) equipment in the current year by housing type and Census division. It is computed as in (B-37) above.

\(EQCREP_{y,eg,b,r} \) is the number of replacement units (post-base-year-vintage) equipment demanded in post-base-year-vintage housing units by housing type and Census division. It is computed as in (B-29) above.

\(EQCRP90_{y,eg,b,r} \) is the number of replacement units demanded in existing housing units each year by housing type and Census division. It is computed as in (B-30) above.

\(EQCRP90RP_{y,eg,b,r} \) is the number of replacement units for the EQCRP90 units demanded each year by housing type and Census division. It is computed as in (B-31) above.

RREFCON (Refrigeration energy consumption component)

The unit energy consumption calculations for surviving, new, and replacement equipment, and their averages are calculated as

\[
EQCSUEC_{y,b,r} = EQCUEC_{r,b} \times \frac{RTBASEFF_{y}}{RTBASEFF_{baseyr}}
\]

(B-120)

where

- \(EQCSUEC_{y,b,r} \) is the UEC for surviving base-year equipment in each equipment class, by housing type and Census division, and
- \(EQCUEC_{r,b} \) is the UEC for the original base-year equipment in each equipment class, by housing type and Census division, and
- \(RTBASEFF_{y} \) is the base efficiency (represented by unit energy consumption for this service).

For new refrigerators,

\[
EQCNUEC_{y,b,r} = EQCUEC_{r,b} \times \frac{WTEQCEFFN_{y,b,r}}{RTBASEFF_{baseyr}}
\]

(B-121)

where

- \(EQCNUEC_{y,b,r} \) is the efficiency-weighted unit energy consumption for new refrigerators in the current year by housing type and Census division,
- \(EQCUEC_{r,b} \) is the unit energy consumption for base-year refrigerators by housing type and Census division,
- \(WTEQCEFFN_{y,b,r} \) is the market-share-weighted usage of new refrigerators in the current year by housing type and Census division, and
- \(RTBASEFF_{baseyr} \) is the base-year stock-average efficiency of refrigerators.
For replacement refrigerators,

\[EQCRUEC_{y,b,r} = EQCUEC_{r,b} \times \frac{WTEQCEFFR_{y,b,r}}{RTBASEFF_{baseyr}} \] \hspace{1cm} (B-122)

where

- \(EQCRUEC_{y,b,r} \) is the efficiency-weighted unit energy consumption for replacement refrigerators in the current year by housing type and Census division,
- \(WTEQCEFFR_{y,b,r} \) is the market-share-weighted usage of replacement refrigerators in the current year by housing type and Census division,
- \(RTBASEFF_{baseyr} \) is the base-year stock-average efficiency of refrigerators.

The weighted average of the three UEC sets is calculated here.

If \(y = baseyr+1 \),

\[EQCAUEC_{y,b,r} = EQCNUEC_{y,b,r} \] \hspace{1cm} (B-123)

If \(y > baseyr+1 \),

\[EQCAUEC_{y,b,r} = \]
\[\left(\left(EQREP_{y,b,r} + EQCADD_{y,b,r} + EQCRP90_{y,b,r} \right) * EQCNUEC_{y,b,r} \right. \]
\[+ \left(EQCSR90_{y,b,r} + EQCSUR_{y,b,r} \right) * EQCAUEC_{y-1,b,r} \]
\[+ EQCRP90_{y,b,r} * EQCRUEC_{y,b,r} \]
\[\left(EQREP_{y,b,r} + EQCADD_{y,b,r} + EQCRP90_{y,b,r} \right) \]
\[+ EQCSR90_{y,b,r} + EQCSUR_{y,b,r} + EQCRP90_{y,b,r} \] \hspace{1cm} (B-124)

where

- \(EQCAUEC_{y,b,r} \) is the average unit energy consumption of refrigerators in the current year by housing type and Census division.
The weighted average usage is now calculated as:

\[\text{WTEQCEFF}_{y,b,r} = \text{WTEFFN}_{y,b,r}, \text{ if } y = \text{baseyr} + 1 \]

\[
\text{WTEQCEFF}_{y,b,r} = \left(\text{EQREP}_{y,b,r} + \text{EQCADD}_{y,b,r} + \text{EQCRP90}_{y,b,r} \right) \times \text{WTEQCEFFN}_{y,b,r} \\
+ \left(\text{EQCSR90}_{y,b,r} + \text{EQCSUR}_{y,b,r} \right) \times \text{WTEQCEFF}_{y-1,b,r} \\
+ \text{EQCRP90}_{y,b,r} \times \text{WTEQCEFFR}_{y,b,r} + \text{EQCADD}_{y,b,r} \times \text{RTBASEFF}_{\text{baseyr},eg} \\
+ \left(\text{EQREP}_{y,b,r} + \text{EQCADD}_{y,b,r} + \text{EQCRP90}_{y,b,r} \right), \text{ otherwise} \tag{B-125}
\]

And energy consumption is estimated as:

\[
\text{REFCON}_{y=\text{baseyr}+1,r} = \sum_{b} \left(\text{EQCESE}_{y,b,r} \times \text{EQCUEC}_{b,r} \right) \\
+ \text{EQCADD}_{y,b,r} \times \text{EQCNUEC}_{y,b,r} \\
+ \text{EQCADD}_{y,b,r} \times \text{EQCNUEC}_{y,b,r} \\
+ \text{EQCRP90}_{y,b,r} \times \text{EQCRUEC}_{y,b,r} \\
+ \text{EQCRP90}_{y,b,r} \times \text{EQCNUEC}_{y,b,r} \\
\text{otherwise}, \text{ if } y = \text{baseyr} + 1 \tag{B-126}
\]

\[
\text{REFCON}_{y,r} = \sum_{b} \left(\text{EQCESE}_{y,b,r} \times \text{EQCUEC}_{b,r} \right) \\
+ \text{EQCADD}_{y,b,r} \times \text{EQCNUEC}_{y,b,r} \\
+ \text{EQCADD}_{y,b,r} \times \text{EQCNUEC}_{y,b,r} \\
+ \text{EQCRP90}_{y,b,r} \times \text{EQCRUEC}_{y,b,r} \\
+ \text{EQCRP90}_{y,b,r} \times \text{EQCNUEC}_{y,b,r} \\
+ \text{EQCSR90}_{y,b,r} \times \text{EQCAUEC}_{y,b,r} \\
+ \text{EQCREP}_{y,b,r} \times \text{EQCNUEC}_{y,b,r} \\
+ \text{EQCSUR}_{y,b,r} \times \text{EQCAUEC}_{y,b,r} \\
\text{otherwise}, \text{ if } y > \text{baseyr} + 1 \tag{B-127}
\]

where

- \(\text{REFCON}_{y,r} \) is energy consumption for refrigeration,
- \(\text{EQCESE}_{y,b,r} \) is the surviving old (existing-vintage) equipment in old (existing vintage) housing units in the current year by housing type and Census division,
EQCADD_{y,b,r} is the amount of new (post-base-year-vintage) refrigerators added in new housing units in the current year by housing type and Census division,

EQCRP90_{y,b,r} is the number of replacement (post-base-year-vintage) equipment in existing housing units in the current year by housing type and Census division,

EQCRP90RP_{y,b,r} is the number of replacements for the EQCRP90 equipment in the current year by housing type and Census division,

EQCRUEC_{y,b,r} is the efficiency-weighted unit energy consumption for replacement refrigerators in the current year by housing type and Census division,

EQCNUEC_{y,b,r} is the efficiency-weighted unit energy consumption for new refrigerators in the current year by housing type and Census division, and

EQCUEC_{r,b} is the unit energy consumption for refrigerators by housing type and Census division.

RFRZTEC (Freezing technology choice component)
Freezing is parallel to refrigeration so it is also modeled without reference to the equipment class eg which is implicitly 1, and where upright freezers (with es instead denoted as UP) conceptually take the place of through-the-door refrigerators and receive an assumed market share. The upright freezer market share UPShr is assumed to be 49%. The other characterized freezers are assumed to be of the horizontal or chest type. The processing of the market share weights is performed as for similar to refrigeration. The following variables are computed as in the equations indicated:

OPCOST_{y,es,b,r,v} is the operating cost for the equipment type by year, housing type, Census division, and vintage. It is computed as in (B-67) above.

LFCY_{y,es,b,r,v} is the freezer's life-cycle cost by year, housing type, Census division, and vintage. It is computed as in (B-16) above.

EQWTN_{y,es,b,r} is the equipment weight for new equipment type by year, housing type, and Census division. It is computed as in (B-20) above.

EQWTR_{y,es,b,r} is the equipment weight for replacement equipment by year, housing type, and Census division. It is computed as in (B-21) above.

TOTEWTN_{y,es,b,r} is the sum of equipment weights for the new purchase equipment class. It is computed as in (B-22) above.

TOTEWTR_{y,es,b,r} is the sum of equipment weights for the replacement purchase equipment class. It is computed as in (B-23) above.

Shares for equipment types, in normalized form, are calculated by a method similar to the method used for other equipment types:

\[NEQTSHR_{y,es,b,r} = UPShr, \text{ if } es = \text{upright freezer} \]

\[NEQTSHR_{y,es,b,r} = \frac{EQWTN_{es,b,r}}{TOTEWTN_{b,r}} \times (1 - UPShr), \text{ otherwise} \]

(B-128)
\[R_{QTSHR}^{y,es,b,r} = \text{UPSHR, if } es = \text{upright freezer} \]
\[R_{QTSHR}^{y,es,b,r} = \frac{EQTR_{es,b,r} \cdot (1 - \text{UPSHR})}{TOTEWR_{b,r}} \]

where

- \(NEQT\text{SHR}^{y,es,b,r} \) is the new market share for the equipment type in the current year by housing type and Census division,
- \(REQ\text{TSHR}^{y,es,b,r} \) is the market share for replacement of equipment types in the current year by housing type and Census division, and
- \(UP\text{SHR} \) is the market share for upright freezers.

The weighted average efficiencies for new and replacement equipment are computed as for other equipment categories:

\[
W_TEQ\text{CEFFN}^{y,b,r} = \frac{\sum_{es} (NEQT\text{SHR}^{y,es,b,r} \cdot RTEQ\text{EFF}_{es})}{\sum_{es} NEQT\text{SHR}^{y,es,b,r}} \quad (B-130)
\]
\[
W_TEQ\text{CEFFR}^{y,b,r} = \frac{\sum_{es} (REQ\text{TSHR}^{y,es,b,r} \cdot RTEQ\text{EFF}_{es})}{\sum_{es} REQ\text{TSHR}^{y,es,b,r}} \quad (B-131)
\]

where

- \(W_TEQ\text{CEFFN}^{y,b,r} \) is the market-share-weighted usage of new freezers in the current year by housing type and Census division,
- \(W_TEQ\text{CEFFR}^{y,b,r} \) is the market-share-weighted usage of replacement freezers in the current year by housing type and Census division,
- \(NEQT\text{SHR}^{y,b,r} \) is the new market share in the current year by housing type and Census division, and
- \(REQ\text{TSHR}^{y,b,r} \) is the market share for the replacements in the current year by housing type and Census division.

RFRZADD (Additions to the freezing stock component)

Calculations of changes in the freezing equipment stock are computed for all vintage categories. For additions after the baseyr+1,

\[
EQCADD^{y,b,r} = HSEADD^{y,b,r} \times \left(\frac{FRZSAT^{b,r}}{100} \right) \quad (B-132)
\]

where

- \(EQCADD^{y,b,r} \) is the amount of new (post-base-year-vintage) equipment added in new housing units in the year by housing type and Census division,
- \(HSEADD^{y,b,r} \) is the number of new housing units constructed in the current year by housing type and Census division, and
FRZSAT_{b,r} is the market penetration level of freezers by housing type and Census division, from the RSMISC.TXT file, expressed as percentages.

The following variables are computed as in the equations indicated:

\[\text{EQCSR90}_{y,eg,b,r} \] is the surviving post-base-year vintage equipment in existing housing units in the current year by housing type and Census division. It is computed as in (B-36) above.

\[\text{EQCSUR}_{y,eg,b,r} \] is the surviving new (post-base-year-vintage) equipment in the current year by housing type and Census division. It is computed as in (B-37) above.

\[\text{EQCREP}_{y,eg,b,r} \] is the number of replacement units (post-base-year-vintage) equipment demanded in post-base-year-vintage housing units by housing type and Census division. It is computed as in (B-29) above.

\[\text{EQCRP90}_{y,eg,b,r} \] is the number of replacement units demanded in existing housing units each year by housing type and Census division. It is computed as in (B-30) above.

\[\text{EQCRP90RP}_{y,eg,b,r} \] is the number of replacement units for the EQCRP90 units demanded each year by housing type and Census division. It is computed as in (B-31) above.

FRZCON (Freezing energy consumption component)

The detailed unit energy consumption variables are computed exactly as for refrigerators:

\[\text{EQCSUEC}_{y,b,r} \] is the UEC for surviving base-year equipment in each equipment class, by housing type and Census division, calculated as equation (B-120),

\[\text{EQCNUEC}_{y,b,r} \] is the efficiency-weighted unit energy consumption for new freezers in the current year by housing type and Census division, calculated as in equation (B-121), and

\[\text{EQCRUEC}_{y,b,r} \] is the efficiency-weighted unit energy consumption for replacement refrigerators in the current year by housing type and Census division, calculated as in equation (B-122).

Weighted average usages are calculated:

\[
\text{WTEQCEFFA}_{y,b,r} = \text{WTREFFN}_{y,b,r}, \quad \text{if} \quad y = \text{baseyr} + 1.
\]

\[
\text{WTEQCEFFA}_{y,b,r} = \left(\frac{\text{EQCREP}_{y,b,r} + \text{EQCADD}_{y,b,r} + \text{EQCRP90P}_{y,b,r}}{\text{WTEQCEFFN}_{y,b,r}} \right) \times \text{WTEQCEFFA}_{y-1,b,r} + \left(\text{EQCSR90}_{y,b,r} + \text{EQCSUR}_{y,b,r} \right) \times \text{WTEQCEFFR}_{y,b,r} + \text{EQCRP90}_{y,b,r} \times \text{WTEQCEFFR}_{y,b,r}, \quad \text{otherwise}
\]

(B-133)
And regional energy consumption is estimated as

\[
FRZCON_{y=2006r} = \sum_{b} \left(EQCESE_{y,b,r} \ast EQCUEC_{b,r} + EQCADD_{y,b,r} \ast EQCNUEC_{y,b,r} + EQCRP90_{y,b,r} \ast EQCRUEC_{y,b,r} + EQCRP90RP_{y,b,r} \ast EQCNUEC_{y,b,r} \right), \quad \text{if } y = baseyr + 1
\]

(B-134)

where

\[WTEQCEFFA_{y,eg,b,r}\] is the market-share-weighted average usage of freezers in the current year by housing type and Census division.

LTCNS (Lighting choice, stock, and energy consumption component)

The lighting end use is separated into distinct applications grouped by usage or lamp characteristics referred to as lighting applications: general service lighting, reflector lamps, linear fluorescent lamps, and exterior lighting. General service lighting represents Edison-type sockets—the typical screw-base bulbs found on incandescent, compact fluorescent, and LED bulbs. General service lighting is most important in terms of energy consumption for the residential sector; therefore, it also has the most detailed characterization and accounting in the lighting module. The equations below are generalized to represent any of the four applications—the only difference among them is that the general service category is further partitioned into hours-of-use bins, which affects the relationship between operating and capital costs, as documented below. Currently reflector lamps, linear fluorescent lamps, and exterior lighting are characterized with only a single hours-of-use bin; however, this characterization is controlled by the dimensions set in the input file so that additional hours-of-use bins could be characterized, data permitting, up to six bins.

Operating costs are developed using the same general framework for each lighting application. Note that operating costs receive a regional dimension due to the regional variation in electricity prices. Capital costs below do not have a regional dimension, though subsidies are available by Census division to represent regional energy efficiency program expenditures.

\[
OPCOST_{y,app,bin,e,r} = \sum \left(PRICES_{y,r} \ast BULBWATTS_{app,y} \ast FACTOR \ast APPBINHOURS_{app,bin} \ast 365 \right)
\]

(B-135)

where

\[OPCOST_{y,app,bin,e,r}\] are the annual operating costs for year, application, bin, bulb type, e, and Census division, r,

\[PRICES_{y,r}\] are lighting end-use electricity prices by year and Census division,

\[BULBWATTS_{app,y}\] are the Watts for application, bulb type, and year,

\[FACTOR\] is a value \((3.412/10^6)\) that converts Watts to Btu per hour,

\[APPBINHOURS_{app,bin}\] are the number of hours of use per day for this application and bin, and converts daily hours to annual hours.
Capital costs are merely the cost of the bulb with two potential adjustments. In the case where multiple bulb replacements per year must be made as for high hours-of-use bins (affecting incandescent lights especially), bulb costs are scaled up by the number of annual replacements required, representing the annual purchase costs. Also, for non-incandescent bulbs, an adjustment is made based on the color rendering index (CRI) that normalizes to a CRI-adjusted cost and ultimately reduces the market share in the choice equation below for bulbs with less-desirable light spectra.

\[
LTLCAP_{y,app,bin,e} = \frac{[BULBCOST_{app,e,y} / BULBBINLIFE_{app,e,bin,y}] / [BULBCRI_{app,e,y} / 100]^2}{\sum_{e} \exp \left(\beta_1^{*}LTLCAP_{y,app,bin,e} + \beta_2{OPCOST_{y,app,bin,e,r}} \right)}
\] (B-136)

where

- \(LTLCAP_{y,app,bin,e}\) is the total annual bulb costs by year, application bin, bulb type, and Census division,
- \(BULBCOST_{app,e,y}\) is the cost per bulb,
- \(BULBBINLIFE_{app,e,bin,y}\) is the life in years for a bulb within an hours-of-use bin (if life in years is greater than one year, the capital cost is not adjusted because the choice is based on first-year total costs), and
- \(BULBCRI_{app,e,y}\) is the color rendering index for an application and bin (dividing by 100, then squaring the result, increases LTLCAP, thus penalizing bulbs with lower-quality light).

Market shares for purchases of the various types of bulbs available for a particular application are computed separately for each application as follows:

\[
LTMSHR_{y,app,bin,e,b,r} = \frac{\exp \left(\beta_1{LTLCAP_{y,app,bin,e,r}} + \beta_2{OPCOST_{y,app,bin,e,r}} \right)}{\sum_{e} \exp \left(\beta_1{LTLCAP_{y,app,bin,e,r}} + \beta_2{OPCOST_{y,app,bin,e,r}} \right)}
\] (B-137)

where

- \(LTMSHR_{y,app,bin,e,b,r}\) is the market share by year, application, bin, bulb type, housing type, and Census division, and
- \(\beta_1\) and \(\beta_2\) are the choice weights for capital and operating costs, respectively.

After computing market shares for each application by bin, bulb type, housing type, and Census division, overall purchases of bulbs, \(LTREPTOT\) (B-142), are determined. First, bulb purchases needed for each projection year’s floorspace additions for new construction, \(HSEADD\), plus newly added floorspace in existing homes are developed. The required number of bulb purchases for this element of the residential stock includes floorspace area adjustments for both new construction and added floorspace in the existing stock of households.

\[
LTNEEDED_{y,app,bin,e,b,r} = [HSEADD_{y,b,r} * SQRFOOT_{y,b,r} / SQRFOOT_{RECSYR,b,r} + EH_{y,b,r} * (EXSQRFOOT_{y,b,r} / EXSQRFOOT_{y-1,b,r} - 1)] * BULBSPERHH_{app,b} * BULBBINSHARES_{app,bin} * LTMSHR_{y,app,bin,e,b,r}
\] (B-138)
where

\[\text{HSEADD}_{y,b,r} \]

is the number of new housing units constructed in the projection year by housing type and Census division,

\[\text{SQRFOOT}_{y,b,r} \]

is an input table of historical and projected average floorspace areas by year, housing type, and Census division,

\[\text{EH}_{y,b,r} \]

is the RECS year housing stock surviving in year \(y \),

\[\text{EXSQRFOOT}_{y,b,r} \]

is the projected average floorspace areas by year, housing type, and Census division,

\[\text{BULBSPERHH}_{app,b} \]

bulbs per household in the RECS year for each lighting application and housing type, and

\[\text{BULBBINSHARES}_{app,bin} \]

is the bulb shares by bulb type \(e \) within hours-of-use bins for each application.

The remaining stocks of bulbs for the RECS year housing stock account for the year-to-year decay of the existing housing stock from the RECS year by housing type. Until the remaining stocks become zero, they are calculated as the difference between the bulb stock from the previous year less the number that expire in the remaining (surviving) housing stock this year. Bulbs in this stock existed in the RECS year and, as they expire, get added to \(LTREPTOT \), (B-142).

\[
LTSTOCKEX_{app,y,e,bin,b,r} = LTSTOCKEX_{app,y-1,e,bin,b,r} - LTSTOCKEX_{app,RECSYR,e,bin,b,r} \times \frac{HDR_y}{BULBBINLIFE_{app,e,bin}}
\]

(B-139)

where

\[LTSTOCKEX_{app,RECSYR,e,bin,b,r} \]

is the stock of bulbs in the RECS year for each application, bulb type, housing type, Census division, and hours-of-use bin,

\[HDR_y \]

is the percentage of the housing stock by housing type that survives from one year to the next as in (B-2), and

\[BULBBINLIFE_{app,e,bin} \]

is the life in years by bulb and hours-of-use bin.

Another component of bulb purchases is for the replacement of bulbs in existing homes. \(LTREPFUT \) represents the stock of bulbs that will need to be replaced each projection year for all bulbs purchased since the RECS year up to, but not including, the current model projection year. It is denoted as \(LTREPFUT \) because it represents replacements in future years after a bulb is purchased. For any given purchase, future replacements generally decline toward zero as more housing units decay from the stock and as fractions get repurchased every year (and get replaced with a new purchase which again generates its own stream of future replacement requirements). The exception is when purchases are made toward the end of the modeling horizon such that all bulbs would not have yet come up for replacement by the last modeled year of NEMS. Current-year replacements are based on the prior year’s lighting stock, adjusted for the decay of the housing stock. For bulbs purchased in a particular year, replacements continue each future year until the number of replacements equals the total in the original purchase, adjusted for the housing stock that has retired:
$LTREPFUT_{app,y,e,b,r,bin} = \frac{P_{app,y-1,e,b,r,bin}}{BULBBINLIFE_{e,bin}} \times HDR_b$

$LTREPFUT_{app,y+1,e,b,r,bin} = \frac{P_{app,y-1,e,b,r,bin}}{BULBBINLIFE_{e,bin}} \times HDR_b^2$ \hspace{1cm} (B-140)

$LTREPFUT_{app,y+2,e,b,r,bin} = \frac{P_{app,y-1,e,b,r,bin}}{BULBBINLIFE_{e,bin}} \times HDR_b^3$, etc...

$LTREPSTK$ represents the remaining purchased bulbs still in the lighting stock which accumulate from year to year as purchases are made.

$LTREPSTK_{app,y,e,b,r,bin} = LTREPSTK_{app,y-1,e,b,r,bin} - LTREPFUT_{app,y,e,b,r,bin}$ \hspace{1cm} (B-141)

For each application, all of the required replacement bulbs are aggregated by bulb type, because the purchases will ultimately be reallocated based on purchase market shares, $LTMSHR$ (B-137). These consist of replacements that may still be required from the original stock of RECS-year bulbs, replacements for bulbs purchased during the modeling horizon, and bulbs needed for new construction and floorspace additions.

$LTREPTOT_{app,y,b,r} = \sum_e [LTSTOCKEX_{app,y-1,e,b,r,bin} \times HDR_b - LTSTOCKEX_{app,y,e,b,r,bin} + LTREPFUT_{app,y,e,b,r,bin} + LTNEEDED_{app,y,e,b,r,bin}]$ \hspace{1cm} (B-142)

Distributing the replacements to bulb types using $LTMSHR$,

$LTREPSTK_{y,app,e,bin,b,r} = LTREPTOT_{app,y,b,r,bin} \times LTMSHR_{app,y,e,b,r,bin}$ \hspace{1cm} (B-143)

Consumption for the still-existing remaining RECS-year lighting stock is calculated as

$LTSTOCKEXCONS_{y,app,e,bin,b,r} = LTSTKEX_{app,y,e,b,r,bin} \times APPBINHOURS_{app,bin} \times 365 \times BASEWATTSBULBS_{app,e} \times FACTOR$ \hspace{1cm} (B-144)

where

$APPBINHOURS_{app,bin}$ are the number of hours of use per day for this application and bin,
$BASEWATTSBULBS_{app,e}$ is the RECS-year Watts for each of the bulb types used for this application, and
$FACTOR$ converts Watts to Btu per hour as in (B-135).
Consumption for replacement bulbs is computed directly from BULBWATTS and stock:

\[
LREPCONS_{y,app,e,bin,r} = LREPSTK_{app,y,e,b,r,bin} * APPBINHOURS_{app,bin} * 365 * BULBWATTS_{app,y} \tag{B-145}
\]

* FACTOR

where

\[
BULBWATTS_{app,e}
\]

is the current-year Watts for each of the bulb types used by application.

Total lighting consumption before adjustments for the price elasticity and rebound effects is just the sum of consumption from the surviving bulbs from the RECS year stock, LTSTKEXCONS, plus the consumption from all surviving purchases and replacements, LREPCONS.

WTLEFF represents the average consumption per bulb and is used to calculate the efficiency rebound effect.

\[
WTLEFF_{app,y,b,r,bin} = \frac{\sum \left(LREPSTK_{app,y,e,b,r,bin} * BULBWATTS_{app,y} + LTSTKEX_{app,y,e,b,r,bin} * BASEWATTSBULBS_{app,e} \right)}{\sum (LREPSTK_{app,y,e,b,r,bin} + LTSTKEX_{app,y,e,b,r,bin})} \tag{B-146}
\]

LTNUEC is the efficiency- and rebound-adjusted energy consumption by application, year, housing type, and Census division.

\[
LTNUEC_{app,y,b,r} = \sum_{bin} LTBINSHARE_{app,bin} * LTUEC_{app,r,b} * \left(\frac{WTLEFF_{app,y,b,r,bin} / BASEWATTSBINS_{app,bin}}{BASEWATTSBINS_{app,bin}} \right)^{(1+\alpha)} \tag{B-147}
\]

where

\[
LTUEC_{app,r,b}
\]

is RECS-year unit energy consumption by application, Census division, and housing type,

\[
BASEWATTSBINS_{app,bin}
\]

is computed directly from lighting inputs for the RECS year and defined below, and

\[
\alpha
\]

is the short-run price elasticity of demand.

\[
BASEWATTSBINS_{app,bin} = \sum e BULBBINSHARES_{app,e,bin} * BASEWATTSBULBS_{app,e} \tag{B-148}
\]
LTEQCN makes the adjustment for leap year and price elasticity and aggregates over bulb types and lighting bins:

\[
LTEQCN_{y,app,b,r} = LEAPYR \sum_{e,bin} \left(LREPSTK_{app,y,e,b,r,bin} + LTSTKEX_{app,y,e,b,r,bin} \right) \times RSELAST \times LTNUC_{app,y,b,r}
\]

where

- \(LTSTOCK_{y,b,r} \) is the number of general service bulbs in the current year by housing type and Census division,
- \(LTNUC_{y,r,b} \) is the unit energy consumption for general service lighting by year, Census division, and housing type, and
- \(RSELAST \) is the short-term price elasticity function applied to electricity prices with distributed lag weights EF1, EF2, and EF3, and the total short-term price elasticity, \(\alpha \), as described in (B-39).

Finally, \(LTCON_{y,r} \) is the reporting variable for NEMS and is merely the aggregation of \(LTEQCN_{y,app,b,r} \) over all applications and all housing types.

APCNS (Miscellaneous Electric Loads/ appliance consumption component)

For these miscellaneous electric loads (MELs), two input arrays, based on metrics from contracted report data and other sources, provide a penetration rate (number of units per household) and usage trend (kilowatthours per unit per year).

Throughout this section, the end use will be generalized as \(MEL \). In the code, those three letters are replaced with three letters associated with each end use, such as \(TVS \) for televisions, \(STB \) for set-top boxes, \(LPC \) for laptop personal computers, and so on. The abbreviations associated with each end use are described in the RSMELS.TXT description in Appendix A.

To form the projection of usage, the usage index is multiplied by the base-year UEC. Specifically,

\[
MELNUC_{y,r,b} = MELUEC_{r,b} \times MELEFF_y
\]

where

- \(MELNUC_{y,r,b} \) is the unit energy consumption for a MEL by year, Census division, and housing type,
- \(MELUEC_{r,b} \) is base-year unit energy consumption for a MEL by Census division and housing type,
- \(MELEFF_y \) is the usage index for a MEL in year \(y \).

In some cases, this array is also multiplied by an income index, as certain uses are more likely to be adopted when households have higher disposable income:
where

\[MC_{-YPDR}_{r,y} \]

is the personal disposable income variable from the Macroeconomic Activity Module, and

\[0.05 \]

is an exponent that estimates the correlation between changes in disposable income and changes in adoption of certain MELs.

The income effect described above is applied to the following MELs: TVS, STB, HTS, VGC, DPC, LPC, MON, NET, BAT, DEH, PHP, SEC, and SPA.

Similarly, the projection of stock is formed by multiplying the equipment stock index by base-year stock:

\[MELEQP_{y,r,b} = \left(\frac{MELEQP_{y,b}}{EH_{y=baseyr,r,b}} \right) * MELPEN_y * \left(EH_{y,b,r} + NH_{y,b,r} \right) \]

(B-152)

where

\[MELEQP_{y,r,b} \]

is the number of each MEL in the housing stock by year, Census division, and housing type,

\[MELEQP_{r,b} \]

is the base-year equipment stock for each MEL

\[MELPEN_y \]

is the estimated penetration of each MEL for year \(y \),

\[EH_{y,r,b} \]

is the existing housing stock by year, Census division, and housing type, and

\[NH_{y,r,b} \]

is the new housing stock by year, Census division, and housing type.

The final step of this component is to calculate consumption for each MEL:

\[MELCON_{y,r} = \sum_{b} \left(MELEQP_{y,b,r} * MELUEC_{y,b,r} \right) \times RSELAST \left(f, r, \alpha, EF1, EF2, EF3, baseyr \right) \]

(B-153)

where

\[MELCON_{y,r} \]

is the energy consumption of each MEL by year and Census division, and

\[RSELAST \]

is the short-term price elasticity function with distributed lag weights EF1, EF2, and EF3, and the total short-term price elasticity, \(\alpha \), described in (B-39).

The remaining electricity consumption is captured in a catch-all category that includes small kitchen appliances, small consumer electronics, and small motor devices that are used in homes but do not fall into any of the other categories of equipment that have their own consumption components described above. The component computes the UEC on a per-housing-unit basis, by housing type and Census division. Based on historical data, a growth rate is estimated and applied to the UEC to project future energy consumption.

Electric appliance energy consumption is computed as follows:
\[
APCON_{y,r} = \sum_{b} (EAUEC_{y,r} \times EAPEN_{y,r}) \times (EH_{y,r,b} + NH_{y,r,b}) \times RSELAST(f, r, \alpha, EF1, EF2, EF3, baseyr)
\] (B-154)

where

- \(APCON_{y,r}\) is other electric appliance energy consumption,
- \(EAUEC_{y,r}\) is other electric unit energy consumption,
- \(EAPEN_{y,r}\) is the growth rate in other electric unit energy consumption,
- \(RSELAST\) is the short-term price elasticity function with distributed lag weights \(EF1, EF2,\) and \(EF3,\) and the total short-term price elasticity, \(\alpha,\) described in (B-39),
- \(EH_{y,r,b}\) is the existing housing stock by year, Census division, and housing type, and
- \(NH_{y,r,b}\) is the new housing stock by year, Census division, and housing type.

SHTCNS (Secondary heating energy consumption component)

Energy consumption by secondary heaters is calculated directly from shares by fuel read into the model from a user file:

\[
SHTCON_{y,f,r} = \sum_{b} \left(SHTSHR_{r,f} \times (NH_{y,b,r} + EH_{y,b,r}) \times SHTUEC_{r,f,b} \right) \times AHSHELL_{y,f,r,b} \times RSELAST(f, r, \alpha, EF1, EF2, EF3, baseyr)
\] (B-155)

where

- \(SHTCON_{y,f,r}\) is the consumption of energy by secondary space heating equipment by year, fuel, and Census division,
- \(SHTSHR_{r,f}\) are shares of seven fuels for secondary space heating by Census division,
- \(EH_{y,b,r}\) is the number of old (existing) housing units in the current year by housing type and Census division,
- \(NH_{y,b,r}\) is the number of new (post-base-year) housing units in the current year by housing type and Census division,
- \(SHTUEC_{r,f,b}\) is base-year unit energy consumption for secondary heating by Census division, fuel, and housing type,
- \(AHSHELL_{y,f,r,b}\) is the average post-base-year heating shell index by year, fuel, Census division, and building type, and
- \(RSELAST\) is the short-term price elasticity function with distributed lag weights \(EF1, EF2,\) and \(EF3,\) and the total short-term price elasticity, \(\alpha,\) described in (B-39).

APPCNS (Non-electric miscellaneous appliance energy consumption component)

Other appliances refers to small appliances not covered in the other categories that do not use electricity as their primary fuel. Consumption alone is calculated.

The formula is a simple calculation from housing stock and unit energy consumption:
where

\[APLCON_{y,f,r} = \sum_b \left(\left[\left(EH_{y,b,r} + NH_{y,b,r} \right) \times APPUEC_{y,b,r} \right] \times RSE\text{LAST} \left(f_r, \alpha, EF1, EF2, EF3, \text{baseyr} \right) \right) \]

(B-156)

RDISTGEN (Distributed Generation Subroutine)

The Residential Demand Module includes a subroutine that develops penetration estimates for distributed electric generation technologies based on explicit cost and performance assumptions. The model is structured to allow for three technologies and can be readily expanded to include more if needed. The three technologies characterized are solar photovoltaics, fuel cells, and small distributed wind turbines.

The technology input file contains the following general categories of input data:

- Cost and performance of specific technologies (system capacity, cost per kW, efficiencies, etc.).
- Tax credits and regional subsidies, if any apply to a particular technology (this allows tax credit policies and subsidies to be included in the economic considerations).
- Technology window of availability, assumed to be a fixed interval of time after which a new technology characterization becomes operable. The interval length is flexible in the number of years it represents, and new technologies do not necessarily have to be different from the previous versions. The present practice is to characterize a *vintage* for each projection year in order to readily model proposed legislation; for extended NEMS time frames, however, multi-year time intervals beyond the projection horizon can be added for simplicity.
- Economic assumptions including tax rates, inflation rates for projecting results in the cash flow model, and financing assumptions such as down payment percentages and loan terms.
- Program-driven penetrations of technologies by Census division. These are viewed as non-economic, supplemental to any economic penetrations.
- Market niche variables developed from RECS data and solar and wind resource maps produced by the National Renewable Energy Laboratory (NREL). Each Census division includes from two to four solar insolation niches. Niches are further subdivided, based on the level of electricity prices relative to the Census division average electricity price, into three cases: high, average, and low prices. In addition to solar insolation and relative electricity prices, the market niche variables also include average wind speed, the Census division share of housing units within a niche,
average annual energy use (in kWh) per single-family housing unit, average roof area per single-family housing unit and the percentage of housing units considered rural (for wind turbine modeling). The solar niches are cross-classified by three levels of electricity prices, yielding a total of 63 market niche categories that are modeled separately.

- Utility interconnection limitations for each Census division. These limitations are intended to reflect state-level laws, regulations, and policies that encourage or limit distributed generation integration. State-level scores on a scale of zero (closed to interconnection) to one (open to interconnection) are aggregated to the Census division level by population. The scores are based on information from the Database of State Incentives for Renewables & Efficiency (DSIRE) and on updates on state legislative and public utility commission websites. Components include state-level renewable portfolio standards or goals, public benefit funds that support renewable resources, the existence of net-metering and interconnection standards and rules, whether fuel cells or CHP are eligible RPS technologies, and the existence of solar or wind access laws.

Distributed generation penetration is based on a cash flow simulation model. For each year in a NEMS run, a complete 30-year cash flow analysis is done for each of the three distributed generation technologies. For solar photovoltaic, an alternate penetration hurdle model using ZIP code-level input data is discussed later in this section. Cash flow analysis simulations are carried out by market niche for single-family homes. System characteristics, financial variables, solar insolation, and program-driven systems (e.g., the California solar program) are supplied to the subroutine via the RSGENTK.TXT input file.

The payback concept used in the residential Distributed Generation Subroutine is the number of years required for an investment to achieve a cumulative positive cash flow. This approach is related to, but different from, calculating what is commonly referred to as the simple payback. Simple paybacks are merely the investment cost divided by estimated annual savings and do not consider the timing of savings or costs that occur irregularly. The cumulative positive cash flow approach incorporates the time distribution of costs and returns including loan financing terms, tax credits, production credits (as under renewable portfolio standards), intermittent maintenance costs (e.g., inverter replacement for solar PV systems), inflationary increases in electricity rates, degradation in system output with age, and other factors that change over time. The current financing assumption is that, for new construction, investments in distributed generation technologies are rolled in with the home mortgage. The financing terms other than the mortgage rate are controlled through the distributed generation input file. The residential mortgage rates are supplied by the NEMS Macroeconomic Activity Module. Because tax credits are included in the input file, modeling alternative tax policies can usually be accomplished without changes to the model code.

Investments begin with a negative cumulative cash flow representing the down payment costs, assumed to be paid up front. In any subsequent year, the net of costs and returns can either be positive or negative. If the return is positive, then the cumulative net cash flow increases, and vice versa. For all technologies during the first full year of operation, electricity savings are realized, and loan payments and maintenance costs are paid. For fuel cells, natural gas costs are paid, but hot water savings are also realized via the capture and utilization of waste heat. Loan interest is separately tracked and leads to a tax savings (in the year following the payment) based on home mortgage deductibility. In the second full
year of operation, tax credits, if any, are also received. Based on current legislation, solar PV receives a 30% credit on installed capital costs through 2019, dropping to 26% in 2020, 22% in 2021, and discontinuing after 2021. These are modeled as one-time payments back to the consumer and, given the time value of money, such payments can have a major effect on increasing the cumulative net cash flow, because they are received near the front end of the cash flow.

Technology penetration rates for distributed generating technologies installed in new construction are determined by how quickly an investment in a technology is estimated to recoup its flow of costs. This penetration rate is allowed to be as high as 75% for distributed technologies if the investment pays back in less than one year, 30% if the investment pays back in one year, and correspondingly less for longer paybacks. The penetration function is assumed to follow a logistic functional form, as shown in equation (B-183), and a chart of the shape under different paybacks is provided in Figure 3. For retrofitting distributed generation into existing construction, penetration is capped by assumption at the lesser of 0.5% and the penetration rate into new construction divided by 40. The cap is in effect if penetration into new construction exceeds 20%.

In any given NEMS projection year, the total number of cash flow simulations performed equals the number of distributed technologies modeled (t=3), times the number of Census division niches (n=21), times the number of electricity price niches (l=3). An uppercase Y is used to denote years internal to the cash flow analysis in order to distinguish cash flow simulation years from NEMS model years (which are denoted with a lowercase y). The annual technology vintages will also be denoted with lowercase y because technology vintages currently align with NEMS projection years. Many of the concepts do not vary by solar or rate-level niches (subscripted by n and l, respectively). In cases where a concept varies by niche for only a subset of technologies, separate equations will be given for the relevant subsets, and in downstream equations the subscript will be placed in brackets to denote that it applies to only the relevant subset of technologies.

Even though the cash flow model is run by niche for each distributed generation technology and for each NEMS model year, many of the cash flow variables are only dimensioned by Y, the simulation year of the cash flow model itself, and are reused for other niches or technologies for a particular NEMS year. Such variables will be notated in the equations with the appropriate dimensions (indicating loops in the program), even if they are overwritten when the computer code is executed.

Technology capital cost is adjusted for learning effects on equipment cost for emerging technologies:

$$AdjCost_{t,y} = MIN\left\{ CapCost_{t,y}, C_{0,t} \cdot CumShip_{t,y}^{-\beta_t} \right\}$$ (B-157)

where $CapCost_{t,y}$ is the tentative maximum cost from the distributed generation input file, and $C_{0,t}$ and β_t are technology-specific (hence subscript t) learning cost parameters, and $CumShip_{t,y}$ represents cumulative shipments (in MW) for NEMS model year y, for residential and commercial buildings and utility installations combined (supplied via the global interface). Learning effects are modeled for photovoltaic, fuel cell technologies and wind turbines.

Calculated Maximum kW for Photovoltaic Systems:
The calculated maximum capacity (in kW) for photovoltaic systems, \(x_{\text{CalcKW}}_{t=1,n,l,y} \), is allowed to vary from the menu capacity in the RSGENTK.TXT input file. The capacity is niche-dependent with the target maximum size being enough to serve the residence’s annual electricity requirements, subject to maximum and minimum size constraints for the technology being evaluated. In the case of solar photovoltaics, only 90% of the properly oriented half of roof area is considered to be suitable for solar PV installation. Available roof area per house is developed from floor space and number of floors estimated from RECS and provided as part of the niche inputs in RSGENTK.TXT. The modules are also assumed to be placed at latitude tilt which requires roughly twice the roof area for minimum rack spacing when installed on flat roofs. On sloped roofs, solar modules are assumed to be close enough to being flush-mounted so that a one-square-foot module requires one square foot of roof area. An estimated 75% of residential roofs are sloped; so, on average, for a given amount of available residential roof area, \(75\% \times 1.0 + 25\% \times 2.0 \) (or 1.25) square feet of roof area are required to mount a one-square-foot module. Based on these constraints, the kW capacity of the maximum module area is calculated as

\[
x_{\text{CalcKW}}_{t=1,n,l,y} = \frac{\text{RoofAreaPerHH}_{n,l}}{1.25 \times 0.90 \times 0.50} \times x_{\text{SqftperKW}}_{y}
\]

(B-158)

Note: see equation (B-167) below for the calculation of \(x_{\text{SqftperKW}}_{y} \), which is recalculated each year based on module conversion efficiency for the appropriate year vintage.

Installed Equipment Cost:

Installed equipment cost, \(\text{EqCost}_{t,y} \), is the learning-adjusted cost from above plus the installation cost which is an input from the distributed generation input file times the system capacity:

\[
\text{EqCost}_{t,y} = (\text{AdjCost}_{t,y} + \text{InstCost}_{t,y}) \times kW_{t,y}
\]

(B-159)

For solar photovoltaics, \(kW_{t,y} \) is replaced by \(x_{\text{CalcKW}}_{t,n,l,y} \) from (B-158).

Initial Outlay Cost:

\[
\text{DownPay}_{t,y} = \text{EqCost}_{t,y} \times \text{DownPayPct}
\]

(B-160)

Annual Levelized Payment Calculation:

\[
\text{Payment}_{t,y} = \left[\text{EqCost}_{t,y} - \text{DownPay}_{t,y} \right] \times \frac{\text{IntRate}}{1 - (1 + \text{IntRate})^{-\text{Term}}}
\]

(B-161)

where the term in brackets is the amount financed,

\[
\text{IntRate}
\]

is the interest rate for the loan and

\[
\text{Term}
\]

is the number of years over which the loan payments are amortized.
Outlays for Capital Relating to Down Payments and Borrowing Costs:

\[
Outlay_{t,y,Y=1} = DownPay_{t,y} \\
Outlay_{t,y,1 < Y \leq Term} = Payment_{t,y} \\
Outlay_{t,y,Y > Term} = 0
\] (B-162)

Calculations of Loan Interest Paid and the Value of Tax Credits:

\[
Prin_{t,y,Y} = Payment_{t,y} - IntAmt_{t,y,Y}
\]

where \(IntAmt_{t,y,Y} = IntRate \cdot LoanBal_{t,y,Y-1}, \) and \(1 < Y \leq Term \)

\[
LoanBal_{t,y,Y} = LoanBal_{t,y,Y-1} - Prin_{t,y,Y}
\] (B-164)

\(Prin_{t,y,Y} \) is the amount of principal paid on the loan in each year \(Y \) of the cash flow analysis and is also used to determine the loan balance for the next year of the analysis. It is computed as the difference between the levelized payment and the interest paid: \(IntAmt_{t,y,Y} \) is the interest paid for the loan in each year of the analysis. This variable is a component of the tax deduction calculation. It is computed as last year’s ending principal balance, \(LoanBal_{t,y,Y-1} \), times the interest rate on the loan. \(LoanBal_{t,y,Y} \) is the principal balance of the loan for each year of the analysis. The loan balance reduces over time according to the formula:

\[
TaxCredit_{t,y,Y} \text{ is the allowed tax credit and can vary both by technology and vintage for distributed generation investments favored by the tax code. The credit is assumed to be collected in Year 3 of the cash flow analysis.}
\]

\[
TaxCredit_{t,y,Y} = \text{MIN} (EqCost_{t,y} \cdot TaxCreditPct_{t,y}, TaxCreditMax_{t,y}), \quad \text{if } Y = 3, \\
0, \quad \text{if } Y \neq 3
\] (B-165)

Annual kWh Generated by Technology:

\(AnnualKWH_{t,n,y} \) represents the base level of annual system kWh generation for a new system for the specific technology and vintage being analyzed.

For photovoltaics (technology, \(t=1 \)) annual generation is determined by system size, efficiency and solar availability as follows:

\[
AnnualKWH_{t,n,y} = \left(ElEff_{t,y} \cdot SolarIns_{n} \cdot 365.25 \cdot \frac{xSqftperKW_{y}}{10.8 \cdot LossFac_{t,y}} \right) \cdot xCalcKW_{t,n,y}
\] (B-166)
The parenthetical expression represents the kWh generated by a 1-kW system, so this amount is then multiplied by system kW to yield the annual generation amount. Solar insolation, SolarIns, varies within a Census division by niche, and is expressed in average daily kWh falling on a square meter area and annualized in equation (B-168). The insolation value is then adjusted for module square footage (10.8 square feet per square meter) and the electrical efficiency of a prototypical photovoltaic technology. Finally a loss factor (the percentage of the generation reaching the outlet) allows further adjustment of annual kWh available to the building by accounting for downstream electrical losses. The subroutine assumes that a typical solar PV module in 2009 has a system efficiency of 14% and requires an area of 77 square feet for a 1-kW system. The variable for the estimated photovoltaic array square footage for a 1-kW system, xSqftperKWy, depends inversely on the electrical efficiency of the system, ElEff, as follows:

\[
x_{\text{SqftperKW}} = 77 \cdot \frac{0.14}{\text{ElEff}_{1,y}}.
\]

(B-167)

The higher the efficiency, the smaller the square footage that will be required for a given system capacity. As system size is allowed to vary, higher-efficiency modules lead to higher-capacity systems being potentially selected.

For fuel cells (t=2), annual system generation for a 1-kW unit is determined by hours-of-use multiplied by an availability factor and a loss factor. Annual generation is determined by multiplying the amount for a 1-kW system by system capacity:

\[
\text{AnnualKWH}_{t,y} = (\text{OperHours}_{t} \cdot \text{Avail}_{t,y} \cdot \text{LossFac}_{t,y}) \cdot kW_{t,y}
\]

(B-168)

For distributed wind turbines (t=3), annual system generation is determined by turbine capacity (kW3,n), efficiency and average wind speeds as follows:

\[
\text{AnnualKWH}_{t,n,y} = \left(\frac{\text{ElEff}_{t,y}}{\text{ElEff}_{t,1}} \cdot (0.0645 - 0.0670 \cdot xMpS_{n} + 0.0210 \cdot xMpS_{n}^{2} - 0.0011 \cdot xMpS_{n}^{3})}{xMpS_{n}} \right) \cdot LossFac_{t,y} \cdot kW_{t,y}
\]

(B-169)

xMpSn denotes average wind speed in meters per second for niche n. Distributed wind turbine penetration is also assumed appropriate and suitable for only rural residences (developed from RECS and input in RSGENTK.TXT due to permitting issues and site limitations.

KWHty,y is the actual kWh generated in each of the years of the cash flow analysis. The actual generation is the ideal generation adjusted for degradation as the system ages. Currently, only photovoltaic generation has a non-zero degradation factor. Its value of 0.01 assumes a 1%-per-year loss in output as the modules age. Degradation begins in the year after the system is fully in use, which, in the cash flow model assumptions, is year 3.
\[KWH_{t,y} = AnnualKWH_{t,\{n\},y} \cdot \left(1 - Degradation_{t,y}\right)^{y-2} \]

(B-170)

Fuel Consumption for Fuel-using Distributed Generation Technologies:

Fuel consumption for fuel cells (t=2) is denoted by the variable \(FuelInput_{t,y} \) and is calculated in MMBtu of the input fuel used by the technology:

\[FuelInput_{t,y} = \frac{0.003412 \cdot OperHours_{t} \cdot Avail_{t,y} \cdot kW_{t,y}}{ElEff_{t,y}} \]

(B-171)

Calculation of Waste Heat Available for Water Heating Use:

\(BTUWasteHeat_{t,y} \) represents the amount of waste heat potentially available for providing an offset to home water heating. It is also computed in MMBtu and is the difference between the fuel input and the energy expended on electricity generation, multiplied by the waste heat recovery efficiency specific to this technology and vintage.

\[BTUWasteHeat_{t,y} = \left(FuelInput_{t,y} - 0.003412 \cdot AnnualKWH_{t,y}\right) \cdot WhRecoveryEff_{t,y} \]

(B-172)

The amount of available waste heat is used to offset water heating end use service demand up to the average housing unit consumption from RECS:

\[WaterHeatingMMBtu_{t,y} = MIN\{BTUWasteHeat_{t,y}, AvgWaterHtgMMBtu\} \]

(B-173)

Any amount of waste heat generated beyond the average water heating requirements is not assumed to offset end-use fuel requirements.

Net Fuel Cost:

\(BaseYrFuelCost_{t,y} \) is the initial fuel costs for operating the generation technology net of savings stemming from displaced water heating. It is calculated from the current fuel price and fuel input and converted to the same year constant/real dollars as the technology capital costs.

\[BaseYrFuelCost_{t,y} = \left(FuelInput_{t,y} - WaterHtgMMBtu_{t,y}\right) \cdot FuelPrice_{r,y} \]

(B-174)
FuelCost_{t,y,y} is the nominal-dollar value fuel cost for the technology net of any water heating cost savings from using waste heat:

\[
FuelCost_{t,y} = BaseYrFuelCost_{t,y} \cdot (1 + inflation)^{(Y-2)}
\]
(B-175)

Value of Electricity Savings Calculations:

ValElecSaveBase_{t,n,l,y} represents the calculated value of generated electricity for the initial year of the cash flow simulation for a particular solar and price level niche (n,l). This value is further adjusted to account for inflation and generation efficiency degradation in a later calculation described below.

Case 1: Photovoltaics

If generation is less than average electricity usage (i.e., \(AnnualKWH_{t,y} \leq AvgKWH\)), then savings are valued at the air conditioning price, \(PELRSOUT_{r,y,AC}\) (because photovoltaic generation tends to correlate with the need for air conditioning):

\[
ValElecSave_{t=1,n,l,y} = \left[\frac{PELRSOUT_{r,y,AC} \cdot xRateScala_{r,n,l} \cdot 0.003412 + EPRPSPR_y / 1000 \cdot xScaleRPS}{\cdot AnnualKWH_{t=1,n,l,y}}\right]
\]
(B-176)

The factor 0.003412 converts prices in dollars per million Btu to dollars per kWh. The potential to model renewable portfolio standard credits is incorporated in NEMS. The credit is received if it applies; however, in current reference case runs, RPS credits are not received. The credit amount, \(EPRPSPR_y\), is provided by the NEMS Electricity Market Module and must be divided by 1,000 because it is provided in mills per kWh\(^4\). If the credit is received, the scalar is set to a value greater than zero (e.g., for triple credits, the scalar is 3). Because RPS credits often have a last year or sunset year, the cash flow simulation also tracks the calendar year of each of the simulated years and zeroes out the credit if the calendar year exceeds the sunset year. If generation exceeds average usage, then the excess kWh are sold to the grid at the marginal price for utility purchases \(PELME_{r,y}\) and the value is:

\[
ValElecSave_{t=n,l,y} = 0.003412 \cdot \left[\frac{PELRSOUT_{r,y,AC} \cdot xRateScala_{r,n,l} \cdot AvgKWh}{\cdot PELME_{r,y} \cdot (AnnualKWH_{t,y} - AvgKWh)}\right] + EPRPSPR_y / 1000 \cdot xScaleRPS \cdot AnnualKWH_{t,y}
\]
(B-177)

Case 2: All other technologies

The air conditioning price, \(PELRSOUT_{r,y,AC}\), is replaced by \(PELRS_{r,y}\), the average residential electricity price. RPS credits are generally not available for the non-renewable technologies. Therefore, when RPS credits are modeled, scalars for non-renewable technologies are set to zero.

\(^4\) A mill is equal to 1/1000 of a U.S. dollar, or 1/10 of one cent. Mills per kilowatthour (kWh) equals dollars per megawatthour (mWh). To convert mills per kWh to cents per kWh, divide mills per kWh by 10.
ValElecSave_{t,n,l,y,Y} is the nominal dollar (inflated) value of ValElecSaveBase_{t,n,l,y} with adjustment for output degradation:

\[
ValElecSave_{t,n,l,y,Y} = ValElecSaveBase_{t,n,l,y} \cdot (1 + \text{inflation})^{(y-2)} \cdot (1 - \text{Degredation}_{t,y})^{(y-2)}
\]

(B-178)

Maintenance Cost Calculations:

MaintCost_{t,y,Y} is the calculated nominal dollar cost of maintenance for the specific technology and vintage being analyzed. MaintCostBase_{t,y} is the annual maintenance cost per kW and xIntervalCst_{t=1,y} is the interval maintenance cost for inverter replacement per kW if the technology being evaluated is a photovoltaic system (i.e., technology index 1). xIntervalCst_{t=1,y} is non-zero only if the cash flow model year, Y, is an inverter replacement year based on the replacement interval for solar photovoltaic system vintage, y.

\[
MaintCost_{t,y,Y} = kW_{t,y} \cdot (\text{MaintCostBase}_{t,y} + xIntervalCst_{t=1,y}) \cdot (1 + \text{inflation})^{(y-2)}
\]

(B-179)

Deductible Expenses for Personal Income Taxes:

TaxDeduct_{t,y,Y} is calculated as:

\[
TaxDeduct_{t,y,Y} = \left(\text{IntAmt}_{t,y,Y-1} - MaintCost_{t,y,Y-1} + \left(\text{FuelCost}_{t,y,Y-1} - ValElecSave_{t,y,Y-1} \right) \right) \cdot \text{TaxRate} + TaxCredit_{t,y,Y}
\]

(B-180)

Cash Flow and Investment Payback Years:

NetCashFlow_{t,n,l,y,Y} and CumCashFlow_{t,n,l,y,Y}:

\[
NetCashFlow_{t,n,l,y,Y} = ValElecSave_{t,n,l,y,Y} + TaxDeduct_{t,y,Y} - OutLay_{t,y,Y} - FuelCost_{t,y,Y} - MaintCost_{t,y,Y}
\]

(B-181)

CumCashFlow_{t,n,l,y,Y} is defined as the accumulated sum of all prior NetCashFlow_{t,n,l,y,Y} amounts.

Simple Payback Years:

SimplePayback_{t,n,l,y} is defined as the first year in the cash flow stream for which an investment has a positive CumCashFlow_{t,n,l,y,Y} (i.e., the Y if and when CumCashFlow_{t,n,l,y,Y} first becomes greater than or equal to 0). Note that SimplePayback_{t,n,l,y} is stored as a real (floating point) number and not rounded off to whole years – this will affect the calculated maximum penetration of the technology, as described below.
Real-valued Simple Payback Calculation:

Let \(Y' \) be the integer-valued year in the 30-year cash flow simulation for which \(\text{CumCashFlow}_{t,n,y,Y'} \) achieves a non-negative value. Call this value \(\text{IntSimplePayback}_{t,n,l,y} \) to represent the integer-valued payback. The real-valued \(\text{SimplePayback}_{t,n,l,y} \) for this technology is interpolated as follows:

\[
\text{SimplePayback}_{t,n,l,y} = \text{IntSimplePayback}_{t,n,l,y} - \frac{\text{CumCashFlow}_{t,n,l,y,Y'} + \text{NetCashFlow}_{t,n,l,y,Y'} - \text{NetCashFlow}_{t,n,l,y,Y'-1}}{\text{NetCashFlow}_{t,n,l,y,Y'}}
\]

(B-182)

Because \(Y' \) is the first year for which \(\text{CumCashFlow}_{t,n,l,y,Y'} \) is greater than or equal to zero, its prior-year value (in year \(Y'-1 \)) was less than zero. If \(\text{CumCashFlow}_{t,n,l,y,Y'-1} \) is small in absolute value relative to \(\text{NetCashFlow}_{t,n,l,y,Y'} \), the right-hand term is near unity, indicating that the payback was achieved close to the beginning of \(Y \).

Maximum Penetration into New Construction:

\[
\text{MaxPen}_{t,n,l,y} = \frac{\text{PenParm}_t}{\text{SimplePayback}_{t,n,l,y}}
\]

(B-183)

\(\text{PenParm}_t \) is set to 0.3 for all technologies. Thus the asymptotically approached \(\text{MaxPen}_{t,n,l,y} \) for these technologies with a 1-year payback will be 30%. Because \(\text{SimplePayback}_{t,n,l,y} \) is a real-valued number, it can potentially achieve values of less than one. For a \(\text{SimplePayback}_{t,n,l,y} \) of 0.5 years, \(\text{MaxPen}_{t,n,l,y} \) is 60%.

Easing of Interconnection Limitations:

\[
\text{Inxdecay}_{r,y} = \text{MIN} \left\{ 1.0, \text{Inx}_r + (1.0 - \text{Inx}_r) \cdot \frac{y - \text{Inxfy}}{\text{Inxly} - \text{Inxfy}} \right\}
\]

(B-184)

\(\text{Inxfy} \) and \(\text{Inxly} \) define the interval (in calendar years) over which interconnection limitations decrease to 0 and \(\text{Inxdecay}_{r,y} \) approaches 1. \(\text{Inx}_r \) values range between 0 and 1 and are aggregated from state to Census division level by population. State scores are based on the presence of rules, regulations, and policies that affect utility grid interconnection of distributed generation and are determined by EIA analyst judgment.
Penetration Function Formula for New Construction:

For a given value of $\text{SimplePayBack}_{t,n,l,y}$, penetration in NEMS model year y is an increasing function of y.

\[
\text{Pen}_{t,n,l,y} = \text{Inxdecay}_{r,y} \left[\frac{\text{MaxPen}_{t,n,l,y} - \frac{1}{\text{MaxPen}_{t,n,l,y}}} {1 + e^{\left[\alpha_r \left(y - \text{RECSYear} + 1 - \text{SimplePayBack}_{t(i,y)} \right) \right]}} \right]
\]

For new construction, $\text{Pen}_{t,n,l,y}$ is constrained to a maximum penetration of 75%.

Figure 3 below shows the logistic-shaped penetration function for a variety of years to achieve positive cumulative net cash flow:

Figure 3. Penetration rate of distributed generation into new construction for selected years to positive cumulative net cash flow

Penetration Function Formula for Existing Construction:

Penetration of distributed generation into the existing housing stock is limited to a maximum of 0.5% or one-fortieth of the penetration into new construction, whichever is less. It is denoted by $\text{DeltaPen}_{t,n,l,y}$.
Outputs to the Residential Demand Module and NEMS:

Explicit recognition of the Census-division dimension commences here. Refer to the variable descriptions in the Residential Distributed Generation Equipment File section of Appendix A for variables not explicitly defined here. \(\text{Units}_{y,r,t} \) denotes the accumulated total number of units in NEMS model year \(y \) employing the relevant type of generation technology by Census division and is the sum of \(\text{Units}_{y-1,r,t} \) plus penetration into new construction (\(\text{HSEADD} \)) plus penetration into existing housing units (\(\text{EH} \)) for the current NEMS model year plus additional exogenous penetration (\(\text{ExogPen} \)) representing program-driven amounts. The subscripts denoting Census division are restored for this section of the documentation to explicitly describe the interface with NEMS.

\(\text{Units}_{y,r,t} \) accumulates the number of projected distributed generation units based on penetration rates into new (\(\text{HSEADD} \)) and existing housing units (\(\text{EH} \)) for the share of households in each niche (\(\text{xHHShare} \)):

\[
\text{Units}_{y,r,t} = \text{Units}_{y-1,r,t} + \sum_{n,l,r} \left[\left(\text{ExogPen}_{y,r,t} - \text{ExogPen}_{y-1,r,t} \right) + \left(\text{Pen}_{t,n,l,y} \cdot \text{HSEADD}_{r,y} + \text{DeltaPen}_{t,n,l,y} \cdot \text{EH}_{r,y} \right) \right] \cdot \text{xHHShare}_{n,l} \tag{B-186}
\]

\(\text{Trills}_{y,r,t} \) accumulates total generation (own use plus grid sales) and converts it to trillions of Btu:

\[
\text{Trills}_{y,r,t} = \text{Trills}_{y-1,r,t} + \sum_{n,l,r} \left[\left(\text{ExogPen}_{y,r,t} - \text{ExogPen}_{y-1,r,t} \right) + \left(\text{Pen}_{t,n,l,y} \cdot \text{HSEADD}_{r,y} + \text{DeltaPen}_{t,n,l,y} \cdot \text{EH}_{r,y} \right) \right] \cdot \text{xHHShare}_{n,l} \cdot \text{AnnualKWH}_{t,n,l,y} \cdot 3412 \cdot 10^{12} \tag{B-187}
\]

\(\text{TrillsOwnUse}_{y,r,t} \) accumulates total electricity generation for on-site consumption (own use) and converts it to trillions of Btu. It is the minimum of 1) the average electric consumption from RECS, and 2) the annual generation.

\[
\text{TrillsOwnUse}_{y,r,t} = \text{TrillsOwnUse}_{y-1,r,t} + \sum_{n,l,r} \left[\left(\text{ExogPen}_{y,r,t} - \text{ExogPen}_{y-1,r,t} \right) + \left(\text{Pen}_{t,n,l,y} \cdot \text{HSEADD}_{r,y} + \text{DeltaPen}_{t,n,l,y} \cdot \text{EH}_{r,y} \right) \right] \cdot \text{xHHShare}_{n,l} \cdot \text{MIN} \left(\text{AnnualKWH}_{t,n,l,y}, \text{RECSAvgKwh}_{n,l} \right) \cdot 3412 \cdot 10^{12} \tag{B-188}
\]
FuelUsage_{y,r,t} accumulates FuelInput_{r,t,y} and converts from MMBtu to trillions of Btu:

\[\text{FuelUsage}_{y,r,t} = \text{FuelUsage}_{y-1,r,t} + \sum_{n,l} \left[\left(\text{ExogPen}_{y,r,t} - \text{ExogPen}_{y-1,r,t} \right) + \left(\text{Pen}_{t,n,d,y} \cdot \text{HSEADD}_{r,y} + \Delta \text{Pen}_{t,n,d,y} \cdot \text{EH}_{r,y} \right) \right] \cdot xHHShare_{n,d} \cdot \text{FuelInput}_{r,d,y} \cdot 10^6 \] (B-189)

HWBtu_{y,r,t} accumulates WaterHtgMMBtu_{r,t,y} and converts it to trillions of Btu:

\[\text{HWBtu}_{y,r,t} = \text{HWBtu}_{y-1,r,t} + \sum_{n,l} \left[\left(\text{ExogPen}_{y,r,t} - \text{ExogPen}_{y-1,r,t} \right) + \left(\text{Pen}_{t,n,d,y} \cdot \text{HSEADD}_{r,y} + \Delta \text{Pen}_{t,n,d,y} \cdot \text{EH}_{r,y} \right) \right] \cdot xHHShare_{n,d} \cdot \text{WaterHtgMMBtu}_{r,d,y} \cdot 10^6 \] (B-190)

Invest_{y,r,t} is the current-year investment in distributed generation resources in millions of constant/real dollars:

\[\text{Invest}_{y,r,t} = \text{Invest}_{y-1,r,t} + \sum_{n,l} \left[\left(\text{ExogPen}_{y,r,t} - \text{ExogPen}_{y-1,r,t} \right) + \left(\text{Pen}_{t,n,d,y} \cdot \text{HSEADD}_{r,y} + \Delta \text{Pen}_{t,n,d,y} \cdot \text{EH}_{r,y} \right) \right] \cdot xHHShare_{n,d} \cdot \text{EqCost}_{t,y} \cdot kW_t \cdot 10^6 \] (B-191)

Beginning with AEO2017, the cash flow analysis for residential solar photovoltaic penetration has been superseded by an econometric hurdle model using ZIP code-level input data. The UseNewModel variable in the RGENTK.TXT input file is used to switch between the new ZIP code model and the old cash flow model for PV; the cash flow model continues to be used for non-PV distributed generation technologies. Detailed information on how the econometric model was developed, the data it incorporates, and its functional forms can be found in *Using Hurdle Models for Long-term Projections of Residential Solar Photovoltaic Systems Installations*.

The hurdle model uses ZIP code level data from solar PV project databases, NREL, the U.S. Census Bureau’s American Community Survey (ACS), and other sources. The model estimates the number of residential solar PV systems to be installed for each of the ZIP codes characterized in the RGENTK.TXT input file, starting in EstYear as determined by ACS data availability. From the base year through EstYear, an additive factor, ExogPVMistie_{t,y}, is used as in (B-192) to calibrate total capacity by Census division to historical exogenous PV capacity, xexogpen_{t,y}. ExogPVMistie_{t,y} capacity is held constant from EstYear onward. The number of PV systems associated with ExogPVMistie_{t,y} is added to Units_{r,t,y}, and generation associated with ExogPVMistie_{t,y} is shared out to Trills_{r,t} and TrillOwnUse_{r,t}.
\[\text{ExogPVMistie}_{r,y} = \text{ExogPen}_{r,y} - \text{Capacity}_{r,y} \quad (B-192) \]

where

\[\text{ExogPVMistie}_{r,y} \] is the adjustment factor used to calibrate solar PV capacity,
\[\text{ExogPen} \] represents program-driven or historical capacity from RSGENTK.TXT, and
\[\text{Capacity} \] is the calculated capacity from the hurdle model.

\[\text{Capacity}_{r,y} = \text{Capacity}_{r,y} + \text{ExogPVMistie}_{r,y} \quad (B-193) \]

\[\text{Units}_{y,r,t} = \text{Units}_{y,r,t} + \left(\frac{\text{ExogPVMistie}_{r,y}}{\text{kW}_{t,y}} \right) \quad (B-194) \]

where

\[\text{kW}_{t,y} \] is the average solar PV system capacity from RSGENTK.TXT.

\[\text{Trills}_{y,r,t} = \text{Trills}_{y,r,t} + \left(\frac{\text{ExogPVMistie}_{r,y}}{\text{kW}_{t,y}} \right) \cdot \text{AnnualKWH}_{i,z,j,y} \cdot 3412 \cdot 10^{12} \quad (B-195) \]

\[\text{TrillsOwnUse}_{y,r,t} = \text{TrillsOwnUse}_{y,r,t} + \left(\frac{\text{TrillsOwnUse}_{y,r,t}}{\text{Trills}_{y,r,t}} \right) \cdot \left(\frac{\text{ExogPVMistie}_{r,y}}{\text{kW}_{t,y}} \right) \cdot \text{AnnualKWH}_{i,z,j,y} \cdot 3412 \cdot 10^{12} \quad (B-196) \]

FUEL CN (Fuel consumption totals component)

The total residential energy consumption for the nation is computed by summing end-use service consumption by fuel for each Census division. Division by 1,000,000 converts units from million Btu per year to trillion Btu per year. The factor \(\text{LEAPYR} \) in each equation takes on the value of 366/365 in near-term years (i.e., history and years up through the STEO benchmarking period); otherwise it has the value of 1.
Natural Gas (ng)

\[RSFLCN_{y,ng,r} = \frac{HTRCON_{y,ng,r} + H2OCON_{y,ng,r} + CKCON_{y,ng,b,r} + GASINPUT_{y,r} + DRYCON_{y,ng,r} + COOLCN_{y,ng,r} + SHTCON_{y,ng,r} + APLCON_{y,ng,r}}{1,000,000} \] (B-197)

* LEAPYR

Electricity (el)

\[RSFLCN_{y,el,r} = \frac{HTRCON_{y,el,r} + H2OCON_{y,el,r} + CKCON_{y,el,b,r} + REFCON_{y,r} + DRYCON_{y,el,r} + COOLCN_{y,el,r} + SHTCON_{y,el,r} + APCCON_{y,r} + FRZCON_{y,r} + CSWCON_{y,r} + DSWCON_{y,r} + LTCN_{y,r} + SPACON_{y,r} + CFCON_{y,r} + CMCON_{y,r} + MOCON_{y,r} + RCCON_{y,r} + HACON_{y,r} + SCSTCON_{y,r} + FANCON_{y,r} + PCCON_{y,r} + TVCON_{y,r} - ANNUALKWH_{y}}{1,000,000} \] (B-198)

* LEAPYR

Distillate Fuel Oil (ds)

\[RSFLCN_{y,d,s,r} = \frac{HTRCON_{y,d,s,r} + H2OCON_{y,d,s,r} + SHTCON_{y,d,s,r} + APLCON_{y,d,s,r}}{1,000,000} \] * LEAPYR

LPG (lpg)

\[RSFLCN_{y,lpg,r} = \frac{HTRCON_{y,lpg,r} + H2OCON_{y,lpg,r} + CKCON_{y,lpg,b,r}}{1,000,000} \] * LEAPYR

Kerosene (ks)

\[RSFLCN_{y,ks,r} = \frac{HTRCON_{y,ks,r} + SHTCON_{y,ks,r}}{1,000,000} \] * LEAPYR

(B-200)

(B-201)
Coal (cl)

\[
RSFLCN_{y,cl,r} = \frac{SHTCON_{y,cl,r} \times LEAPYR}{1,000,000}
\] (B-202)

Wood (wd)

\[
RSFLCN_{y,wd,r} = \frac{(HTRCON_{y,wd,r} + SHTCON_{y,wd,r}) \times LEAPYR}{1,000,000}
\] (B-203)

Geothermal (geo)

\[
RSFLCN_{y,geo,r} = \frac{(HTRCON_{y,geo,r} + COOLCN_{y,geo,r}) \times LEAPYR}{1,000,000}
\] (B-204)

National Total (us)

\[
RSFLCN_{y,US} = \sum_{r,f} (RSFLCN_{y,f,r})
\] (B-205)

RSBENCH (Benchmarking fuel consumption totals)

For historical years, the present year, and near-term future (through the current Short-Term Energy Outlook [STEO] horizon), fuel consumption totals are benchmarked to maintain consistency across EIA products. These products include the State Energy Data System (SEDS), which provides state totals (then aggregated to the Census division level), and the Monthly Energy Review (MER), which provides national totals distributed to the Census division levels based on the previous year’s SEDS distribution. Fuel consumption levels in the Residential Demand Module are benchmarked to the specific values in these historical publications.

For near-term future years, national fuel consumption totals are intended to be within a reasonable percentage of the STEO values. Currently, 2% is considered reasonable, but occasionally a larger difference may be accepted for a specific fuel if warranted by inherent differences in modeling structures. Beyond the benchmarked period (i.e., beyond the STEO horizon), there is an option to maintain these benchmark factors throughout the projection. Benchmark factors may be additive, meaning the difference between the modeled fuel total and benchmarked fuel total is maintained throughout, or multiplicative, meaning the ratio is maintained throughout. Fuels with more consumption such as electricity, natural gas, distillate fuel oil, and LPG use additive benchmarking, while kerosene uses multiplicative benchmarking.

Because benchmarking factors must be attributed to certain end uses, the benchmark factors for natural gas, distillate fuel oil, LPG, and kerosene are attributed to space heating. For electricity, the benchmark is applied to miscellaneous uses not specifically modeled, also known as *electric other*.
Appendix C: Bibliography

Appendix D: Data Quality

This Appendix discusses the quality of the Residential Energy Consumption Survey (RECS), which forms the basis of the historical housing stock, appliance stock, and technology information that drives the NEMS Residential Demand Module. Data quality information pertinent to additional sources used in the module development is not available for this report.

The RECS data collection procedure relies on two instruments: the housing unit survey and the energy supplier survey. Data are collected from a representative sample of housing units through personal interviews. Billing data are then collected through mail questionnaires from the companies supplying energy to the participating housing units, provided that authorization is obtained from the housing units. The results of the housing unit and energy supplier surveys are presented in the U.S. Department of Energy documentation of the RECS.

Stage I of RECS consists of personal interviews. The sample for the interviews is drawn from the population of housing units occupied as primary residences in the 50 states and the District of Columbia. The sample design process is composed of five steps that disaggregate the geographic scope into housing clusters of approximately five housing units to be surveyed.

The interview responses provide information on housing characteristics, fuels used, housing unit measurements, fuel bills, kitchen appliances, home appliance and electronics, space heating, air conditioning, water heating, miscellaneous uses, residential transportation, household characteristics, and energy expenditure assistance. Housing unit respondents are also asked to sign authorization forms to allow access to their billing records with energy suppliers.

Stage II of the survey design consists of a mail questionnaire for energy suppliers of the housing units interviewed in Stage I. Suppliers of residential electricity, natural gas, distillate fuel oil, kerosene, and liquefied propane gas (LPG) are contacted in Stage II. For the RECS, each supplier was asked to supply billed quantities and expenditures for the housing units interviewed in Stage I.

Quality assurance begins with a manual verification of the interview data from Stage I. The questionnaires are checked for completeness and consistency. Interview responses are compared to energy supplier data, and respondents are contacted in the event that an inconsistency persists. These data collection and verification procedures ensure the quality of the survey data.