The Relationship between Oil Prices and Exchange Rates: Theory and Evidence

Joscha Beckmann, Robert Czudaj, and Vipin Arora June 2017

This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration.

Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585

Table of Contents

Abstract	4
About the Authors	5
1. Introduction	6
2. Classifications and definitions	8
3. Theoretical transmission mechanisms	9
3.1 The impact of oil prices on exchange rates	9
3.2 The impact of exchange rates on oil prices	10
3.3 Common factors driving oil prices and exchange rates	11
4. Long-run in-sample evidence between exchange rates and oil prices	13
4.1 General classification of empirical methods and data used	13
4.2 Empirical Results	16
4.2.1 Main empirical results	16
4.2.2 Oil-importing countries, oil-exporting countries and sample choices	16
4.2.3 Time-varying relationships	17
5. Short-run in-sample evidence between exchange rates and oil prices	19
5.1 Main empirical results	19
5.2 Time-varying relationships and evidence across different sample periods	20
5.3 Reconciling evidence and theory	21
6. Out-of-sample evidence between exchange rates and oil prices	22
6.1 Classification of empirical methods	22
6.2 Main empirical results	22
6.2.1 Predictive power of oil prices for exchange rates	22
6.2.2 Predictive power of exchange rates for oil prices	23
8. Conclusion	26
References	28
Appendix	34

Tables

Table 1. Share of forecasting superiority of exchange rate models against univariate models
Table A.1. Literature review

Figures

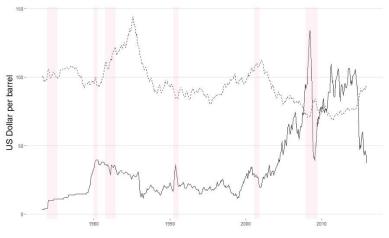
Figure 1. Oil price vs. major US dollar index	6
Figure 2. Oil price and exchange rate causalities	9
Figure 3. Wealth and portfolio channel	10
Figure 4. Long-run vs. short-run dynamics	
Figure 5. Empirical Methodologies	14
Figure 6. Characteristics of Nonlinearities	
Figure 7. Forecast evaluation	22
Figure 8. Oil price forecast with broad effective US dollar rate (h=1)	24

Abstract

This paper reviews existing theoretical and empirical research on the relationship between oil prices and exchange rates. We start with theoretical transmission channels—which point to bi-directional causality. Empirical research—focused on either explaining or forecasting one variable with the other—is classified and shows that the evidence varies substantially depending on sample, country choice and empirical method. Yet there are some common patterns: (i) strong links between exchange rates and oil prices are frequently observed over the long-run; and (ii) either exchange rates or oil prices are a potentially useful predictor of the other variable in the short-run, but the effects are strongly time-varying. We also identify some important avenues for future research such as addressing time-varying predictability and optimal sample choice for forecasting.

About the Authors

Joscha Beckman: Ruhr University of Bochum, Chair for International Economics, D-44801 Bochum, email: joscha.beckmann@rub.de, and Kiel Institute for the World Economy, Hindenburgufer 66, 24105 Kiel.


Robert Czudaj: Chemnitz University of Technology, Chair for Empirical Economics, D-09126 Chemnitz, e-mail: robert-lukas.czudaj@wirtschaft.tu-chemnitz.de, phone: (0049)-371-531-31323, fax: (0049)-371-531-831323.

Vipin Arora: US Energy Information Administration, 1000 Independence Ave, SW, Washington DC 20585, United States.

1. Introduction

Policymakers, academics and journalists have frequently discussed the link between oil prices and exchange rates in recent years—particularly the idea that an appreciation of the US dollar triggers a dip in oil prices. Empirical research is not so clear on the direction of causation, as there is evidence for bidirectional causality. Some studies find that an increase in the real oil price actually results in a real appreciation of the US dollar, while others show that a nominal appreciation of the US dollar triggers decreases in the oil price. Figure 1 illustrates the link between the nominal West Texas Intermediate (WTI) crude oil price and the US effective dollar exchange rate index relative to its main 7 trading partners.

Figure 1. Oil price vs. major US dollar index

--- Effective dollar exchange rate (major index) -- WTI crude oil price

Source: own illustration, data taken from Federal Reserve Economic Data.

This paper takes a closer look at the research dealing with the relationship between oil prices and exchange rates. After a brief review of theoretical transmission channels, we focus on a comprehensive and critical evaluation of empirical studies surrounding this research area.

We identify four major issues that need to be addressed in order to classify the oil price/exchange rate relationship. The first is to disentangle a backward ("in-sample") and a forward looking ("out-of-sample") empirical analysis. As will be discussed later, the frequent finding that exchange rates and oil prices move together over the long-run does not necessarily imply that one is useful when forecasting the other. The second challenge is to disentangle direct and indirect transmission channels. Direct channels are the influences either oil prices or exchange rates directly have on each other, whereas indirect channels are mainly due to other macroeconomic or financial factors. The third major task is to address the role of time-variation and nonlinearity. A final issue is related policy implications and open research questions.

The rest of this paper is organized as follows. Section 3 briefly summarizes various theoretical transmission channels which link oil prices and exchange rates. Based on those considerations, Sections 4 and 5 focus on in-sample validity of the identified transmission channels by reviewing empirical evidence over the short-run and long-run. The question of predictability between oil prices and exchange rate is considered in Section 6. The final two sections focus on policy recommendations and conclusions.

2. Classifications and definitions

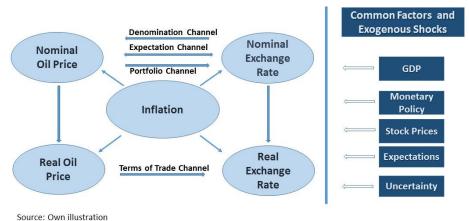
The distinction between real and nominal measures is important when assessing the relationship between oil prices and exchange rates. The nominal spot exchange rate at a specific point in time s_t is expressed as domestic currency per US dollar, implying that an increase reflects a nominal appreciation of the US dollar,

$$S_t = \frac{domestic \ currency}{US \ Dollar}.$$

The real exchange rate (q_t) also includes price indices for both countries, and reflects the basket of domestic goods that can be purchased with one basket of US goods. This can be expressed as $q_t = s_t \frac{p_t}{p_{t^*}}$.

where p_t and p_{t^*} denote domestic and foreign (i.e. US) price levels, usually approximated through consumer or producer prices. An increase is a real appreciation of the US dollar because the real purchasing power of US goods increases. This definition corresponds to the real exchange rate in external terms. Some studies consider the ratio between the prices of tradable and non-tradable goods; this is called the real exchange rate in internal terms, and a relative increase in the price of tradable goods corresponds to a real depreciation.¹

The nominal oil price is usually measured in US dollars per barrel, as shown in Figure 1. The real oil price is calculated by adjusting the nominal oil price for any changes in the US price level (usually based on the US consumer price index (CPI)). Both nominal and real exchange rates can be expressed as a geometric or arithmetic trade weighted index between multiple countries, rather than just between two countries (so-called bi-lateral exchange rates). Such effective exchange rates reflect overall external competiveness for an economy Instead of analyzing current or spot price dynamics, another alternative is to focus on futures price dynamics, as these also reflect expectations. The futures price reflects the price at a given point t for delivery at t+h.


¹The real exchange rate in external terms can be expressed as $q_t = s_t \frac{p_t}{p_{t'}}$, where p_t and $p_{t'}$ denote domestic and foreign (i.e. US) price levels, usually approximated through consumer or producer prices.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

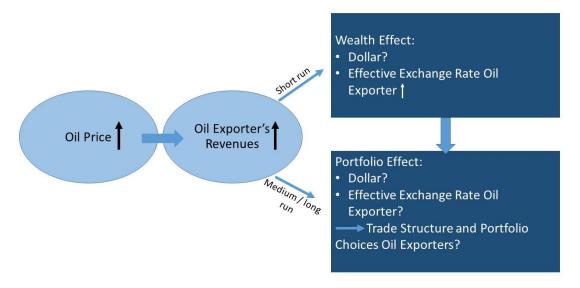
3. Theoretical transmission mechanisms

Before we turn to the empirical evidence, it is important to identify theoretical links between oil prices and exchange rates. The various transmission channels are summarized in Figure 2.

The terms of trade channel mostly focuses on real oil prices and exchange rates, while the wealth and portfolio channels propose an effect from the nominal exchange rate to the nominal oil price. The expectations channel allows for nominal causalities in both directions.

Source: own illustration

3.1 The impact of oil prices on exchange rates


The literature considers three direct transmission channels of oil prices to exchange rates: the terms of trade channel, the wealth effect channel and the portfolio reallocation channel (Buetzer et al, 2016).

The terms of trade channel was introduced by Amano and van Norden (1998a, b). The underlying idea is to link the price of oil to the price level which affects the real exchange rate (Bénassy-Quéré et al., 2007). If the non-tradable sector of a country A is more energy intensive than the tradable one, the output price of this sector will increase relative to the output price of country B. This implies that the currency of country A experiences a real appreciation due to higher inflation (Chen and Chen, 2007; Buetzer et al., 2016).

Effects on the nominal exchange rate arise if the price of tradable goods is no longer assumed to be fixed. In this case, inflation and nominal exchange rate dynamics are related via purchasing power parity (PPP). If the price of oil increases, we expect currencies of countries with large oil dependence in the tradable sector to depreciate due to higher inflation. The response of the real exchange rate then depends on how the nominal exchange rate changes, but relative to the impact of any changes in the price of tradable (and non-tradable) goods described above. Overall, causality embedded in the terms of trade channel potentially holds over different horizons depending on the adjustment of prices.

The underlying idea of the portfolio and wealth channel, introduced by Krugman (1983) and Golub (1983), is based on a three country framework and has been reconsidered by Bodenstein et al. (2011). The basic idea is that oil-exporting countries experience a wealth transfer if the oil price rises (Bénassy-Quéré et al., 2007). The wealth channel reflects the resulting short-run effect, while the portfolio channel assesses medium- and long-run impacts. When oil prices rise, wealth is transferred to oil-exporting countries (in US dollar terms) and is reflected as an improvement in exports and the current account balance in domestic currency terms. For this reason, we expect currencies of oil-exporting countries to appreciate and currencies of oil-importers to depreciate in effective terms after a rise in oil prices (Beckmann and Czudaj, 2013b). There is also the possibility that the US dollar appreciates in the short-run because of the wealth effect—if oil-exporting countries reinvest their revenues in US dollar assets.

The short- and medium-run effects on the US dollar relative to currencies of oil-exporters will depend on two factors according to the portfolio effect. The first is the dependence of the United States on oil-imports relative to the share of US exports to oil-producing countries. The second is oil exporters' relative preferences for US dollar assets (Bénassy-Quéré et al., 2007; Coudert et al., 2008; Buetzer et al., 2016). Figure 3 summarizes the wealth and portfolio channels.

Figure 3. Wealth and portfolio channel

Source: own illustration

3.2 The impact of exchange rates on oil prices

The theoretical starting point for causality from exchange rates to oil prices is the fact that the oil price is denominated in US dollars. Abstracting from transaction costs, consider the following relationship between the logarithms of the oil price denominated in a local currency (o_t) and the US dollar (o_t^*) based on the law of one price

$$o_t^* = s_t - o_t.$$

Following this equation, an appreciation of the US dollar increases the price of oil measured in terms of the domestic currency, and this lowers demand for oil outside the US, resulting in a drop in the oil price, all else equal (Bloomberg and Harris, 1995; Akram, 2009).

Effects on the supply side are potentially relevant but less frequently discussed, mainly because they are subject to several other factors affecting price setting and production. Positive supply responses may stem from a rise in the oil price due to a US dollar appreciation if drilling activity and/or production capacity increases (Coudert et al., 2008). Oil-exporting companies or countries might also decide to adjust oil prices or supply as a response to exchange rate changes depending on their price strategy (Yousefi and Wirjanto, 2004).²

Effects on the supply side are potentially relevant but less frequently discussed, mainly because they are subject to several other factors affecting price setting and production. Positive supply responses may stem from a rise in the oil price due to a US dollar appreciation if drilling activity and/or production capacity increases (Coudert et al., 2008). Oil-exporting companies or countries might also decide to adjust oil prices or supply as a response to exchange rate changes depending on their price strategy (Yousefi and Wirjanto, 2004).³ If market participants are aware of the underlying link outlined above, an appreciation of the US dollar immediately triggers expectations of a decrease in the price of oil, and oil futures might be considered a good hedge against an expected US dollar depreciation (Fratzscher at al., 2014). If both exchange rates and oil prices are viewed as asset prices, the fact that both are jointly determined in equilibrium complicates the identification of (one-sided) clear causality (Chen et al., 2008).⁴

3.3 Common factors driving oil prices and exchange rates

Having already explained the role of inflation, Figure 2 incorporates other common factors including GDP, interest rates, stock prices and uncertainty. A full analysis of all possible linkages and other potential factors is beyond the scope of this paper, but a few important channels are worth mentioning.

GDP and interest rates both affect exchange rates and oil prices and are also interrelated: Monetary policy reacts to GDP fluctuations⁵ while interest rate changes affect GDP through total investment and total spending. An increase in GDP, all else equal, results in an increase in the oil price. Effects on exchange rates are less clear for both interest and exchange rates. A relative increase in domestic interest rate should for example depreciate the domestic currency according to uncovered interest rate parity, but the empirical evidence has demonstrated that an appreciation is frequently observed

² In the case of partial or full exchange rate pass-through, foreign oil-producers potentially increase the price of oil, or cut supply, if the US dollar depreciates—and vice versa (Fratzscher et al., 2014). Following a pricing to market strategy they may hold the oil price in US dollars fixed.

³ In the case of partial or full exchange rate pass-through, foreign oil-producers potentially increase the price of oil, or cut supply, if the US dollar depreciates—and vice versa (Fratzscher et al., 2014). Following a pricing to market strategy they may hold the oil price in US dollars fixed.

⁴ Whether or not the oil price should be considered a forward looking asset price is debated, but recent studies by Killian and Vega (2011) and Fratzscher et al. (2014) provide evidence for the view that oil prices react to changes in other financial assets.

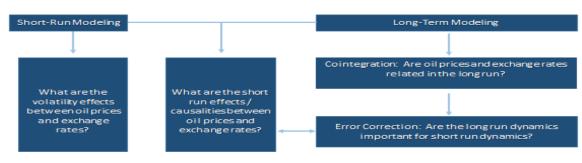
⁵ A central bank adjusts interest rates according to deviations of inflation and GDP from specific targets according to the Taylor rule principle.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

instead, reflecting the notorious forward premium puzzle.⁶ Another major influence on both the macroeconomic environment and exchange rate dynamics is the degree of uncertainty. A domestic appreciation of the exchange rate might result from uncertainty, if participants expect a currency to act as a safe haven (Beckmann and Czudaj, 2017).⁷

⁶ It is also worth mentioning that the intensity of the link between oil prices and exchange rates is of potential relevance for monetary policymakers. A central bank which aims at price stability will react less to inflationary effects stemming from oil prices which are at least partially offset by a change in domestic currency value. Central banks which adopt exchange rate targeting will also take such linkages into account (Reboredo, 2012; Beckmann and Czudaj, 2013a).

⁷ A possible explanation is that market participants consider news about a weakening of the US economy to have even worse effects for other countries (Fratzscher, 2009).


Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

4. Long-run in-sample evidence between exchange rates and oil prices

4.1 General classification of empirical methods and data used

As mentioned in the introduction, in-sample estimates consider the historical relationship between the price of oil and exchange rates, while out-of-sample analyses use information up to a point t to make predictions about time t+h. The term "pseudo out-of-sample" corresponds to a situation where future realizations are used as predictors. A crucial question that arises when studying historical relationships is whether knowledge about the past is important when making predictions for the future. Empirical questions usually address two different issues: The causality between oil prices and exchange rates, and/or the intensity of the link between them.

Figure 4 provides a first distinction between long-run and short-run analysis. The underlying concept of cointegration relies on the idea of a stable long-run equilibrium with short-run deviations above and below it that are corrected over time. If exchange rates and oil prices share a long-run (cointegrating) relationship, they (potentially) still deviate from this relationship in the short-run. The long-run coefficient characterizes the intensity of the relationship between both variables. A related question is which variable reacts to deviations from the long-run equilibrium. The so-called error correction mechanism captures 1.) the speed with which deviations from a long-run equilibrium are corrected; and 2.) the variables responsible for such corrections.

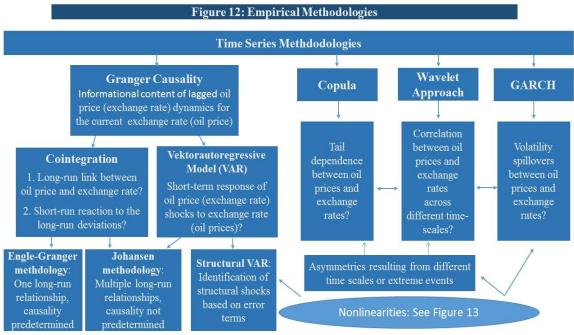


Figure 4. Long-run vs. short-run dynamics

Source: own illustration

The classification of empirical evidence shown in Figure 5 also reflects the distinction between short-run and long-run dynamics and provides a good guideline for the discussion of empirical results. The classified methods all correspond to country-specific time series dynamics since such frameworks are most frequently adopted. slower than countries such as India, where GDP is substantially underestimated because of price differences.

Figure 5. Empirical Methodologies

Source: own illustration

The simplest measure corresponds to Granger causality, which analyzes whether past oil prices or exchange rates help explain the current value of the other variable. In the context of vector autoregressive models (VAR) models, another frequently adopted technique is the consideration of impulse response functions. They measure the reaction of one variable to a shock of another variable. The general advantage of VAR models is that oil and exchange rate dynamics can be assessed without any assumptions related to causalities. Structural vector autoregressive models (VAR) models additionally include some theory guided restrictions when shocks are implemented. Such a proceeding allows for providing a distinction between supply and demand shocks in the context of oil prices, and allows for an important bridge between theory and empirics.

The idea of cointegration is also related to Granger causality. When conducting cointegration analysis, the long-run coefficient reflects the direction and intensity of the long-run relationship between the nominal oil price and exchange rates. The adjustment coefficients measure the speed of adjustment to long-run deviations for each variable. If, as an example, only the oil price (but not the exchange rate) adjusts to long-run equilibrium, the causality essentially runs from oil prices to exchange rates. Two different frameworks are considered in the context of cointegration: The Engle-Granger (1987) methodology adopts single equation estimates where one variable is assumed to be the dependent variable. The multivariate Johansen (1988) methodology essentially resembles a VAR model which incorporates long-run dynamics and allows for the simultaneous estimation of several long-run relationships, if detected.

Short-run dynamics often focus on contemporaneous correlations or spillovers rather than lead-lag relationships. Generalized autoregressive conditional heteroscedasticity (GARCH) models are the most common framework to assess short-run volatility spillovers. Recent studies also consider copula and wavelet approaches (Beckmann et al., 2016). Such frameworks can be extended in various directions

based on assumptions related to the underlying kind of volatility. Copula frameworks assess and compare relationships in turbulent and normal times by allowing for tail dependency, i.e. dependency in the tails of both distributions. Wavelet approaches are adopted to compare dependencies between oil price and exchange rates over different frequencies. The different scales are denominated 2i, where i denotes the time frequency. The first frequency corresponds to changes between 21= 2 days, while the second frequency corresponds to changes between 22= 4 days, with the same logic adopted for higher frequencies. Essentially, both wavelet and copulas reflect specific forms of asymmetry or nonlinearity by accounting for different relationships across frequencies (wavelet) or between normal and turbulent times (copulas). Approaches which account for nonlinearities and different approaches for evaluating forecasts will be discussed after the next section.

4.2 Empirical Results

4.2.1 Main empirical results

The long-run relationship between the price of oil and exchange rates has been analyzed for several countries in a range of studies. These cover various spans of data and use both effective and bilateral exchange rates, as well as nominal and real oil prices.

The bottom line is that several studies have provided evidence for a long-run relationship between exchange rates and oil. One type of study has focused on the link between the real oil price and real US dollar exchange rates. Many authors have identified a long-run relationship between both, suggesting that a real effective appreciation of the US dollar coincides with an increase in the real oil price over the long-run (Amano and van Norden, 1998a; Coudert et al., 2008 and Bénassy-Quéré et al., 2007; Beckmann and Czudaj; 2013b). Similar findings have been obtained for bilateral real exchange rates.

Clostermann and Schnatz (2000) establish a long-term link between the real US dollar-euro exchange rate and the oil price, while Chaudhuri and Daniel (1998) assess real US dollar exchange rates for 16 OECD countries and detect a cointegrating relationship between most of them. Chen and Chen (2007) use a panel of G7 countries and find that real oil prices have significantly contributed to real exchange rate movements.

In line with the terms-of trade channel discussed in Section 2, most studies find that the price of oil affects the exchange rate, but not vice versa. However, it is important to emphasize that the existence of a long-term relationship does not necessarily imply strong linkages in the short-run. In the case of linear models, the adjustment to restore disequilibria in many cases is estimated to be higher than 5 years, calling into question any practical relevance. There are also several studies which fail to establish a cointegrating relationship between exchange rates and the price of oil.

4.2.2 Oil-importing countries, oil-exporting countries and sample choices

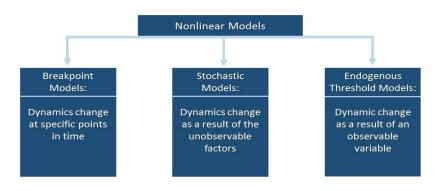
The terms of trade channel discussed in Section 2 has inspired several authors to focus on effective exchange rates of oil-importers and oil-exporters. The findings differ remarkably across studies and countries. The link between nominal exchange rates and price differentials (reflecting the validity of purchasing power parity (PPP), which constitutes a part of the terms of trade channel) is characterized by several nonlinearities. PPP is more relevant over the long-run and in the case of high inflation differentials (Taylor et al., 2001; Kilian and Taylor 2003; Sarno, 2005).

Habib and Kalamova (2007) do not find a long-run relationship between real effective exchange rates and the oil price for Norway and Saudi Arabia, but report evidence for a long-run real appreciation in Russia if the oil price rises. On the other hand, Al-Mulali (2010) provides evidence for a real effective appreciation in the case of an increase in the real oil price. Camarero and Tamarit (2002) find that real oil prices explain the real exchange rate for the Spanish peseta, while Huang and Guo (2007) show that real oil price shocks imply an appreciation of the real exchange rate for China based on a structural VAR.

On the other hand, the findings of two recent studies clearly show that there is no unique link between the real oil price and real effective exchange rates of oil-exporters and oil-importers. Buetzer et al.

(2016) identify various shocks to real oil prices in a structural VAR and find no systematic evidence that the exchange rates of oil exporters appreciate against those of oil importers (for a set of 43 countries). One explanation for the missing link is that countries with a higher oil surplus intervene in the foreign exchange rate market to prevent appreciation pressures.

Beckmann and Czudaj (2013b) analyze a group of 10 economies and find that the results differ not only between, but also within the group of oil-exporters and oil-importers. They find that changes in nominal oil prices trigger real exchange rate effects through the nominal exchange rate and price differentials. Nominal appreciation against the US dollar is mainly observed for oil-exporting countries, while nominal depreciation is detected for importing and exporting countries. They also find reverse causality, in the sense that nominal exchange rates influence nominal oil prices in some cases. The more general evidence on commodity producing countries also suggests a strong link between real exchange rate appreciations and an increase in commodity prices. Bodart et al. (2012) analyze 68 economies and find that such an effect is observed if the dominant commodity accounts for at least 20 percent of total exports. Overall, there is a clear evidence that sample selection affects empirical results, and offers an explanation for the huge dispersion of empirical findings across studies which analyze causalities between oil prices and exchange rates.


4.2.3 Time-varying relationships

The previous section has illustrated that the empirical findings differ over time, suggesting that instabilities are a key ingredient for understanding the oil price-exchange rate link.

Identifying and explaining structural changes represents a major economic and econometric task, and has inspired several lines of research on the relationship between oil prices and exchange rates. Figure 6 summarizes different kinds of nonlinearities. The first possibility is that the relationship between the price of oil and exchange rates changes at a specific point in time. Two different ideas for identifying regime changes can be distinguished. One possibility is to identify a variable which is responsible for such changes, for example a specific threshold of an observed variable.⁸ Such models are easy to handle in terms of interpretation and are well-suited to capture the underlying dynamics if the data is primarily generated by market forces (Balke and Fomby, 1997). However, if exogenous factors such as policy interventions or abnormal global economic crises affect the data, a stochastic framework which does not require a transition variable, such as a Markov-switching approach is better suited.

⁸ These effects can be formally derived in the context of international arbitrage costs (Taylor et al., 2001). Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

Figure 6. Characteristics of Nonlinearities

Source: own illustration

Several authors have adopted nonlinear frameworks when assessing the link between oil prices and exchange rates. Akram (2004) introduced nonlinear dynamics into the literature on oil prices and exchange rates. He identifies a nonlinear negative relationship between the value of the Norwegian krone and crude oil prices based on a threshold model where the change of the oil price determines the underlying dynamics. The intensity of the link depends on whether fluctuations are within or outside the normal range, and whether oil prices are falling or rising. Allowing for nonlinearities is also important when assessing a long-run relationship between oil prices and exchange rates. The finding by Zhang (2013), that detecting a long-run relationship between the real oil price and the real effective exchange depends on allowing for structural breaks, reflects the well-established fact that oil price and exchange rate dynamics are subject to structural breaks. Beckmann and Czudaj (2013b) rely on a Markovswitching vector error correction model (MS-VECM) and find that adjustment dynamics often differ significantly between regimes. For most countries oil prices only adjust to long-run deviations in one of the two regimes, while adjustment speed is often higher in one of the two regimes. Basher et al. (2016) also apply a Markov-switching approach and identify exchange rate appreciation pressures in oilexporting economies after oil demand shocks, but find limited evidence that oil supply shocks display a similar effect on exchange rates. As discussed above, wavelet and copula approaches also capture nonlinear patterns in the short-run.

5. Short-run in-sample evidence between exchange rates and oil prices

5.1 Main empirical results

Many studies dealing with short-run dynamics between exchange rates and the price of oil point to a causal chain from the US dollar exchange rate to the nominal oil price. Short-term studies analyze both daily and monthly frequencies, and we begin by summarizing studies dealing with monthly data. The first empirical study which related empirical oil price-exchange rate dynamics was provided by Trehan (1986). He argues that the effect of oil price shocks on the US economy is likely to be exaggerated because the oil price is denominated in US dollars and should not be considered as exogenous. Since then, several authors have directly analyzed the effects of exchange rate changes on the price of oil. Among other, Cheng (2008) finds an increase in the real (nominal) oil price as a response to a real (nominal) effective US dollar appreciation.

Some studies have also focused on the response of oil demand and supply to exchange rate shocks. Yousefi and Wirjanto (2004) analyze five OPEC countries and provide evidence that crude oil export prices respond positively to US dollar depreciations. A recent study by De Schryder and Peersman (2016) offers an interesting perspective on the link between exchange rates and the oil demand of oil importing countries. They identify a significant decline in the oil demand of 65 oil-importing countries as a result of an appreciation of the US dollar. Such demand effects are even stronger than exchange rate effects on the global price of crude oil. This pattern can potentially be explained by stronger pass-through of changes in the US dollar exchange rate to domestic end-user oil product prices.

There is also plenty of evidence based on structural VARs which focuses on causality in the other direction, and distinguish between oil demand and supply shocks when analyzing exchange rate responses. Basher et al. (2012) focus on emerging markets and provide evidence for short-run effects of oil price shocks on exchange rates. The results of Basher et al. (2016), based on a similar methodology, show that oil demand shocks have stronger effects on oil-exporter exchange rates as compared to oil supply shocks.

A comprehensive study by Fratzscher et al. (2014) identifies bi-directional causality between the US dollar and oil prices since the early 2000s. They focus on daily data between January 2001 and 2012 and conclude that oil has become a global commodity whose price is driven not only by US-specific factors, but also financial ones (in particular asset prices). For the sample period they also find that a 10% increase in the price of oil leads to a depreciation of the US dollar effective exchange rate by 0.28%, while a 1% US dollar depreciation causes oil prices to rise by 0.73%.

Studies dealing with volatility spillovers also find evidence for bi-directional causality over recent years. Several authors find evidence for causalities between the price of oil and different exchange rates. Ghosh (2011) focuses on the periods from 2007 until 2008 and finds that oil price increases depreciate the Indian rupee relative to the US dollar at a daily frequency. As discussed previously, possible explanations for the sample and currency-dependent findings include common factors and asymmetries.⁹ Cifarelli, G., and Paladino (2010) partly address the role of stock prices as a common factor. He focuses on spillovers between oil prices, stock prices and US dollar exchange rates and finds that oil price shifts are negatively related to exchange rate changes. Jiang (2016) analyzes 13 currencies, 4 of them at a daily frequency, and finds asymmetric correlations between oil prices and exchange rates—with more consistent correlations in case of small fluctuations.

Several studies also find short-run effects of oil price changes on exchange rates by comparing different frequencies. Benhmad (2012) conducts a wavelet analysis for real US dollar exchange rates and finds causality from oil prices to exchange rates over higher frequencies. The results over larger horizons point to bivariate causalities, but have potentially less explanatory power due to a smaller number of observations. Bouoiyour et al. (2015) also finds causality from oil price changes to the real exchange rate of Russia

5.2 Time-varying relationships and evidence across different sample periods

There is plenty of evidence that the main drivers of oil price changes are subject to structural breaks and can vary over time. Fan and Xu (2011) find that the price of oil has become more closely related to macroeconomic fundamentals and financial markets over time. Their findings are based on a wavelet approach that also suggests the link between US dollar exchange rates and oil has intensified over time.

Many recent studies also find that the relationship between exchange rates and the price of oil has become more time-varying, in particular after 2009. An early study by Zhang (2008), which analyzes the period between 2000 and 2005, finds a long-term equilibrium relationship between oil prices and euro/US dollar exchange rates, but reports little evidence for risk or volatility spillovers. This is in contrast to findings by Reboredo (2012) and Beckmann et al. (2016) which include the period after September 2008. Both studies rely on copula models and find that the intensity of the relationship between oil prices and US dollar exchange rates increased immediately after the onset of the financial crisis, and is stronger during extreme events. Reboredo (2012) additionally finds that the linkages turn out to be stronger for oil exporters. The findings by Beckmann et al. (2016) also point to relevance for the wealth channel. They find that appreciations (depreciations) are positively correlated with an increase in oil prices for oil exporters (oil importers).

Reboredo and Rivera-Castro (2013) adopt a wavelet approach and also identify a much stronger relationship after the onset of the financial crisis. The results of Turhan et al. (2014), based on dynamic conditional correlations, also finds that the correlation has increased and become strongly negative over

⁹ The study by Bal and Rath (2015) provides an example for the instability of empirical results. They identify statistically significant bi-directional nonlinear Granger causality between the real effective exchange rates of India and China and the real oil price. However, De Vita and Trachanas (2016) point to misspecifications in their study and come to different conclusions based on the same dataset.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

recent years. Jawadi et al. (2016) focus solely on the euro/US dollar exchange rate from 2014 and 2016, and find significant volatility spillovers from the exchange rate to oil prices using intraday data.

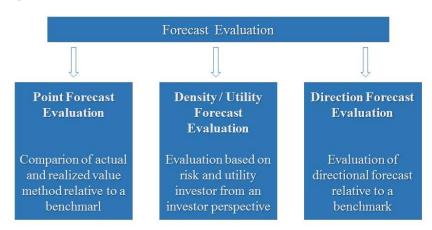
5.3 Reconciling evidence and theory

The various short-run linkages identified in empirical studies confirm the importance of both the denomination and the portfolio channel. There is also a strong consensus that the link between higher oil prices and US dollar depreciations has become stronger over recent years. While studies point to bidirectional causality, exchange rate changes are more important for oil prices changes as compared to the long-run. In the spirit of the denomination channel, these long-run studies often focus on effective exchange rates, whereas short-run dynamics are mostly based on bilateral US dollar exchange rates.

Results also show difficulty in explaining empirical short-run patterns from a theoretical perspective. At least the standard theoretical considerations don't offer any direct explanation for dynamics identified by wavelet and copula frameworks, for example, intensifying dynamics between oil prices and exchange rates over time. Such changes are driven by factors which are exogenous in the different models.

Another important question that has not been fully analyzed in detail is the distinction between supply and demand side effects. Such a distinction could contribute to a deeper understanding of transmission channels between oil prices and exchange rates. The price setting behavior of oil suppliers and the implications of exchange pass-through would also add to an understanding of potential exchange rate effects on oil price dynamics.

Many studies that have established a time-varying relationship between oil prices and exchange rates over time rely on copula or wavelet approaches. While both frameworks are quite useful and well-suited to trace back such changes, they are rather descriptive and unable to establish causalities and/or consider common factors. The underlying question of why the link between the price of oil and exchange rates has become more time-varying has yet to be analyzed from either a theoretical or an empirical perspective. Obvious candidates include the changing stance of monetary policy and the financialization of commodity markets.


Another open issue is the role of policy announcements for oil price-exchange rate dynamics over recent years. There is plenty of evidence that exchange rates react to monetary policy announcements, in particular over the short-run. On the other hand, Kilian and Vega (2011) do not find evidence that energy prices (including oil prices) respond instantaneously to macroeconomic news.

6. Out-of-sample evidence between exchange rates and oil prices

6.1 Classification of empirical methods

The evidence considered so far focuses on in-sample evidence and is not necessarily related to out-ofsample predictability. The literature on forecasting oil prices based on exchange rates (or vice versa) starts around 1973, after the breakdown of Bretton Woods. Prior to that point, nominal exchange rates were fixed relative to the US dollar. As mentioned in Section 4.1, the literature on forecasting considers statistical and economic criteria for evaluating forecasts.

Figure 6 summarizes the different possibilities for assessing forecasts.

Figure 7. Forecast evaluation

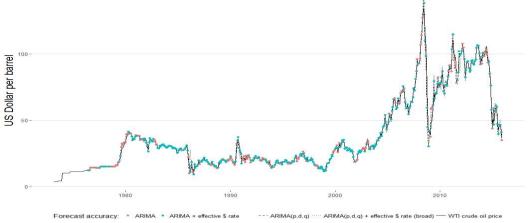
Source: own illustration

Statistical criteria usually compare the point prediction of a specific model to a simple benchmark. In many cases the random walk without drift is considered to be the toughest benchmark. In such a framework, the predicted change is zero, i.e. today's value is considered to be the best predictor. There are two alternative forecast evaluation methods which have attracted less attention in the literature on oil prices and exchange rates. One is to focus on directional adequacy instead of analyzing point forecast adequacy. Another perspective is based on the economic value of forecasts, and considers utility measures based on dynamic asset allocation strategies.

6.2 Main empirical results

6.2.1 Predictive power of oil prices for exchange rates

The seminal work of Meese and Rogoff (1983)—showing that exchange rate models based on economic fundamentals are unable to outperform a simple random walk forecast—still constitutes a benchmark result in the international finance literature. The resulting exchange rate disconnect puzzle remains one of the most important topics in international economics (Sarno, 2005). In general, the forecasting performance of fundamental exchange rate models is highly sensitive to the selection of different currencies, sample periods and forecast horizons (Rossi, 2013). Similar to the in-sample evidence, country- and time-specific estimates should therefore be interpreted with caution.


Some papers have found evidence for improved exchange rate forecasts when including the price of oil. Lizardo and Mollick (2010) imbed the real oil price into a simple form of the monetary model of exchange rate determination and show that it improves exchange rate predictions for several bilateral currencies. However, the overall evidence suggests that this is not a systematic finding, nor is it robust to different time periods.

While one string of the literature has focused on oil-exporting currencies, other authors have turned their attention to commodity exporters such as Canada, Chile, New Zealand and Australia. Ferraro et al. (2015) argue that commodity prices predict commodity exporters' exchange rates at a daily frequency, and this is not evident at quarterly or monthly frequencies. Kohlscheen et al. (2016) find that commodity price models dominate random walk forecasts in the case of exchange rates. However, their findings are obtained based on a "pseudo-out-of-sample" exercise where future values of commodity prices are utilized. They point out that the evidence of out-of-sample predictability using only lagged predictors is clearly weaker, as a result of the fact that commodity prices are hard to predict. A reasonable conclusion is that the strong "pseudo-out-of-sample" findings are mostly driven by the correlation between exchange rates and commodity prices.

Kohlscheen et al. (2016) also provide useful insights on the relationship between country specific commodity price measures and oil prices. Indices for Colombia and Mexico, for instance, are highly correlated with the price of oil (0.971), while commodity baskets of other countries such as Chile display a much lower correlation with the oil price. This suggests that the literature on commodity prices should be considered for a better understanding of exchange rate-oil price dynamics.

6.2.2 Predictive power of exchange rates for oil prices

Before we turn to the existing literature, we analyze the potential of exchange rates for forecasting the price of oil out-of-sample by comparing two rolling window forecast models The first is a simple benchmark model and relies solely on information from the recent past (i.e. 40 observations) of the WTI crude oil price, while the second model also includes recent data on a US dollar exchange rate measure (the US effective dollar exchange rate broad index). We use both models to forecast the price of oil for four different horizons: one-month-ahead (h=1) and twelve-months-ahead (h=12). Figure 8 shows the corresponding results for h=1 and h=12 and reports the observed WTI crude oil price and the rolling window forecasts based on both models. The red dots reflect cases where the benchmark model is superior while the turquois dots represent the exchange rate model. The exchange rate model is better than the benchmark model over 50% of the time.

Figure 8. Oil price forecast with broad effective US dollar rate (h=1)

Source: own illustration, data taken from Federal Reserve Economic Data.

Table 1 summarizes results over the full sample for different forecasting horizons for the WTI oil price. ¹⁰

Table 4. Characteristic		6	and the first state of the second	and the state of the state of the state
Table 1. Share of forecasting	g superiority o	t exchange rate i	models against	univariate models

	h=1	h=3	h=6	h=12	
Broad index	0.7004219	0.559322	0.5479744	0.5723542	
Major index	0.6561181	0.5635593	0.5714286	0.5226782	

The results look encouraging at first sight, and confirm the general result that exchange rates are more useful for forecasting oil prices over the short-run. The percentage of periods where effective exchange rate dynamics add information, as opposed to relying solely on past oil prices, does not exceed 60% over 3, 6 and 12 months—while results are more favorable over the short-run. These patterns are confirmed for common exchange rate expectation dynamics and the Australian dollar, where the percentage is close to 75% for a shorter sample starting in 1995.

It is important to highlight that even these findings do not necessarily imply that exchange rate dynamics are useful for oil price predictions for a number of reasons. In terms of absolute differences, the exchange rate model does not outperform the simpler model by a large amount, while the simpler model in many cases outperforms the exchange rate model substantially. An example is the case where the simple model correctly proposes a constant oil price while the exchange rate model predicts changes which do not materialize.

¹⁰ We have also performed the same exercise using either the Australian dollar exchange rate (as a commodity currency), a common factor across exchange rate expectations over the next month and the effective exchange rate of the US dollar against major currencies.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

Taking these findings into account, it is not surprising that there is little systematic evidence that exchange rates are directly useful for oil price predictions. Baumeister et al. (2015) show within a mixed frequency approach that high-frequency financial data are hardly helpful in forecasting the monthly real price of oil. The survey by Alquist et al. (2011) provides a comprehensive overview on predictability of nominal or real oil prices based on macroeconomic aggregates. They conclude that neither short-term interest rates nor trade-weighted exchange rates have significant predictive power for the nominal price of oil in terms of point forecasts. However, they also argue that specific bilateral exchange rates might still be useful. They find that the Australian exchange rate has significant predictive power for the sign of the change in nominal oil prices over specific horizons.

Alquist et al. (2011) draw an important link to the study of Chen et al. (2010), which shows that exchange rates of commodity exporters ("commodity currencies") are helpful in forecasting country specific or aggregate commodity prices.¹¹ Their findings hold for Australia, Canada, Chile, New Zealand and South Africa where oil is not the primary exported commodity. Alquist et al. (2011) point to the strong link between other commodities and the price of oil, and argue that the predictive power of a commodity prices. A related study by Groen and Pesenti (2011) analyzes a broad range of commodity prices and finds that exchange rates might be useful, but are not systematically more accurate predictors than simple benchmarks. Drachal (2016) addresses time variation in predictability by adopting a Dynamic Model Averaging framework for predicting the spot price of oil. He finds exchange rates to be important predictors between 1995 and 2000 and after 2005, while their relative importance diminishes between 2000 and 2005.

From an econometric perspective, the considerations so far have illustrated the issue of parameter and model uncertainty. On the one hand, all possible combinations of K potential explanatory variables for forecasting oil price or exchange rates result in 2^k different model specifications. In addition, coefficients of each model are subject to structural changes. A more common approach is to use Bayesian model averaging (BMA), which updates model weights and coefficient changes within a recursive learning scheme. These techniques are becoming more popular, and are increasingly used in the context of oil price and exchange rate predictions. Wright (2008), Della Corte et al. (2009) and Beckmann and Schüssler (2016) all adopt model averaging techniques in the context of exchange rate forecasting. When focusing on adequate oil price forecasts, Baumeister et al. (2014) and Baumeister and Kilian (2015) provide real-time out-of-sample evidence that the combination of forecasting models with equal weights dominates the approach of selecting one model and using it for all forecast horizons.

¹¹ Chen et al. (2014) find these results to be robust after the onset of the financial crisis.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

8. Conclusion

This paper has addressed and summarized existing research on the link between oil prices and exchange rates. We have started by identifying different transmission channels which provide simple theoretical underpinnings of the relationship between exchange rates and the price of oil.

The empirical evidence is strongly time-varying and suggests that past relationships do not necessarily hold in the future, and the link between in-sample and out-of-sample is often rather weak. A model which successfully explains past oil price changes based on exchange rates is not necessarily useful for forecasting the price of oil in the next period. This complicates the task of selecting an adequate forecasting model and constitutes an important research question.

There is strong evidence that oil prices and exchange rates are related over the long-run. There is also a fair amount of evidence for various short-run linkages and spillovers between both markets at daily and monthly frequencies. The inverse causality from US dollar depreciations to increases in the price of oil often materializes at a daily frequency or over a few months.

A fair conclusion is that exchange rate movements are not a silver bullet for understanding or forecasting the price of oil—and vice versa—and neither is a substitute for supply or demand factors. However, each contains potentially useful information for forecasting the other and should be taken into account, particularly over the short-run. The oil price-exchange rate relationship is evolving over time and has recently become more volatile. The change in monetary policy and the financialization of commodity markets offer potential explanations for the intensified relationship. It remains to be seen whether the intensity of the link is affected by the proposed exit of unconventional monetary policy. From a policy perspective, an important question besides assessing flexible exchange rates is whether oil-exporting or oil-importing countries should be in favor of fixed or flexible exchange rate arrangements.¹²

Finally, we have identified a number of important open questions. Addressing time-varying predictability and sample choices is quite important since both exchange rates and oil prices are hard to predict. Several techniques to tackle the time-varying importance of one for forecasting the other have been discussed briefly. Relying on a data rich environment in a flexible econometric framework potentially addresses these issues but the rich toolset makes it difficult to identify one single framework. The idea of averaging across models and discounting past information in a Bayesian framework is very appealing and should be considered against various benchmarks. Factor models offer an alternative possibility for

¹² Commodity exporters are usually strongly affected by fluctuations in global markets. Dutch Disease corresponds to a situation where increasing prices of key exported goods lead to an appreciation of the domestic currency, and the stronger currency harms international competitiveness, negatively affecting other export sectors (Bodart et al., 2012). Fixed exchange rate arrangements are sometimes seen as beneficial in this regard since they prevent such depreciations and stabilize export revenues. However, the recent episode of falling oil prices has revitalized this discussion because fixed exchange rates also do not allow for domestic depreciations in the reverse scenario.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

dealing with rich datasets. A first important avenue for future research is an extension of the study by Alquist et al. (2011). Considering that their sample ends in 2009, the argument that commodity exporter's exchange rates might be useful for oil price predictions deserves further attention over more recent periods.

Disentangling oil supply and demand factors is also quite important since most studies analyze the relationship between the oil price and exchange rate without separating oil demand and supply factors. Such a distinction is of great importance for a theoretical underpinning of the transmission channels from exchange rates to oil prices. The understanding of the exchange-rate pass-through of oil exporters potentially explains the time-varying ties between exchange rates and oil prices. Related to the issue of supply and demand, it also seems quite important to address the role of common factors, such as monetary policy drivers. At a minimum one should include these factors in an empirical investigation, while the optimal solution is an evaluation of potential indirect transmission channels. Policy announcements have already been identified as a potential driver of exchange rate volatility (Conrad and Lamla, 2010) and exchange rate expectations (Beckmann and Czudaj, 2016), while there has been much less written about their effect on oil prices. Finally, a critical evaluation of the economic value of predictions in a multivariate setup, for example in the spirit of Della Corte, Sarno and Tsiakas (2009), offers an interesting research avenue. Such an exercise potentially sheds some light on the question of whether exchange rates are a useful predictor for oil prices.

References

- Al-Mulali, U. (2010). The Impact of Oil Prices on the Exchange Rate and Economic Growth in Norway. *MRPA Paper No. 26257*, University Library of Munich, Germany.
- Alquist, R., Kilian, L., and Vigfusson, Robert J. (2011). Forecasting the Price of Oil. *International Finance Discussion Paper No. 1022*, Board of Governors of the Federal Reserve System.
- Amano, R. A., and Van Norden, S. (1998a). Oil prices and the rise and fall of the US real exchange rate. *Journal of International Money and Finance*, 17(2), 299-316.
- Amano, R. A., and Van Norden, S. (1998b). Exchange rates and oil prices. *Review of International Economics*, 6(4), 683-694.
- Akram, Q. F. (2004). Oil prices and exchange rates: Norwegian evidence. Econometrics Journal, 7, 476– 504.

Akram, Q. F. (2009). Commodity prices, interest rates and the dollar. Energy Economics, 31(6), 838-851.

- Bacchetta, P., and Van Wincoop, E. (2004). A scapegoat model of exchange-rate fluctuations. *American Economic Review*, 94(2), 114-118.
- Bal, D. P., and Rath, B. N. (2015). Nonlinear causality between crude oil price and exchange rate: a comparative study of China and India. *Energy Economics*, 51, 149–156.
- Balke, N. S., and Fomby, T. B. (1997). Threshold Cointegration. *International Economic Review*, 38(3), 627-645.
- Basher, S. A., Haug, A. A., and Sadorsky, P. (2016). The impact of oil shocks on exchange rates: A Markovswitching approach. *Energy Economics*, 54, 11-23.
- Baumeister, C., Guérin, P., and Kilian, L. (2015). Do high-frequency financial data help forecast oil prices? The MIDAS Touch at Work. *International Journal of Forecasting*, 31(2), 238-252.
- Baumeister, C., Kilian, L., and Lee, T. K. (2014). Are there gains from pooling real-time oil price forecasts? *Energy Economics*, 46, 33-43.
- Baumeister, C., and Kilian, L. (2015). Forecasting the real price of oil in a changing world: A forecast combination approach. *Journal of Business & Economic Statistics*, 33(3), 338-351.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

- Beckmann, J., and Czudaj, R. (2013a). Oil prices and effective dollar exchange rates. *International Review* of Economics & Finance, 27(1), 621-636.
- Beckmann, J., and Czudaj, R. (2013b). Is there a homogeneous causality pattern between oil prices and currencies of oil importers and exporters? *Energy Economics*, 40(1), 665-678.
- Beckmann, J., Berger, T., and Czudaj, R. (2016). Oil price and FX-rates dependency. *Quantitative Finance*, 16(3), 477-488.
- Beckmann, J., and Czudaj, R. (2017). Exchange rate expectations and economic policy uncertainty. *European Journal of Political Economy*, forthcoming.
- Beckmann, J., and Schüssler, R. (2016). Forecasting exchange rates under parameter and model uncertainty. *Journal of International Money and Finance*, 60, 267-288.
- Benhmad, F. (2012). Modeling nonlinear Granger causality between the oil price and U.S. dollar: A wavelet based approach. *Economic Modelling*, 29(4), 1505-1514.
- Bénassy-Quéré, A., Mignon, V., and Penot, A. (2007). China and the relationship between the oil price and the dollar. *Energy Policy*, 35(11), 5795-5805.
- Bloomberg, S. B., and Harris, E. S. (1995). The commodity–consumer price connection: Fact or fable? Federal Reserve Board of New York. *Economic Policy Review*, 21-38.
- Bodart, V., Candelon, B., and Carpantier, J.-F. (2012). Real exchanges rates in commodity producing countries: A reappraisal. *Journal of International Money and Finance*, 31(6), 1482-1502.
- Bodenstein, M., Erceg, C. J., and Guerrieri, L. (2011). Oil Shocks and external adjustment. *Journal of International Economics*, 83(2), 168-184.
- Bouoiyour, J., Selmi, R., Tiwari, A. K., and Shahbaz, M. (2015). The nexus between oil price and Russia's real exchange rate: Better paths via unconditional vs conditional analysis. *Energy Economics*, 51, 54–66.
- Buetzer, S., Habib, M. M., and Stracca, L. (2016). Global exchange rate configurations: Do oil shocks matter? *IMF Economic Review*, 64(3), 443-470.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

- Camarero, M., and Tamarit, C. (2002). A panel cointegration approach to the estimation of the peseta real exchange rate. *Journal of Macroeconomics*, 24(3), 371-393.
- Chaudhuri, K., and Daniel, B. C. (1998). Long-run equilibrium real exchange rates and oil prices. *Economics Letters*, 58(2), 231-238.
- Chen, S.-S., and Chen, H.-C. (2007). Oil prices and real exchange rates. *Energy Economics*, 29(3), 390-404.
- Chen, Y.-C., Rogoff, K. S., and Rossi, B. (2010). Can Exchange Rates Forecast Commodity Prices? *Quarterly Journal of Economics*, 125(3), 1145-1194.
- Cheng, K. C. (2008). Dollar depreciation and commodity prices. *IMF, World Economic Outlook*, April, 48–50.
- Cifarelli, G., and Paladino, G. (2010). Oil price dynamics and speculation: A multivariate financial approach. *Energy Economics*, 32(2), 363-372.
- Clostermann, J., and Schnatz, B. (2000). The determinants of the euro-dollar exchange rate. Synthetic fundamentals and a non-existing currency. *Konjunkturpolitik, Applied Economics Quarterly*, 46, 207-230.
- Conrad, C., and Lamla, M. J. (2010). The high-frequency response of the EUR-USD exchange rate to ECB Communication. *Journal of Money, Credit and Banking*, 42, 1391–1417.
- Coudert, V., Mignon, V., and Penot, A. (2008). Oil price and the dollar. *Energy Studies Review*, 15(2), 45-58.
- De Vita, G., and Trachanas, E. (2016). Nonlinear causality between crude oil price and exchange rate: A comparative study of China and India' A failed replication (negative Type 1 and Type 2). *Energy Economics*, 56(C), 150-160.
- Della Corte, P., Sarno, L., and Tsiakas, I. (2009). An economic evaluation of empirical exchange rate models. *Review of Financial Studies*, 22(9), 3491-3530.
- De Schryder, S., and Peersman, G. (2015). The U.S. dollar exchange rate and the demand for oil. *Energy Journal*, 36(3), 263-285.

Drachal, K. (2016). Forecasting spot oil price in a dynamic model averaging framework -

Have the determinants changed over time? *Energy Economics*, 60, 35-46.

- Engel, C., and West, K. D. (2005). Exchange rates and fundamentals. *Journal of Political Economy*, 113, 485-517.
- Engle, R. F., and Granger, C. W. J. (1987). Cointegration and error correction: Representation, estimation and testing. *Econometrica*, 55, 251-276.
- Fan, Y., and Xu, J.-H. (2011). What has driven prices since 2000? A structural change perspective. *Energy Economics*, 33(6), 1082-1094.
- Ferraro, D., Rogoff, K., and Rossi, B. (2015). Can oil prices forecast exchange rates? An empirical analysis of the relationship between commodity prices and exchange rates. *Journal of International Money and Finance*, 54, 116-141.
- Fratzscher, M. (2009). What explains global exchange rate movements during the financial crisis? *Journal of International Money and Finance*, 28, 1390-1407.
- Fratzscher, M., Schneider, D., and Van Robays, I. (2014). Oil prices, exchange rates and asset prices. *Working Paper Series No 1689*, European Central Bank.
- Golub, S. (1983). Oil prices and exchange rates. The Economic Journal, 93(371), 576-593.
- Ghosh, S. (2011). Examining crude oil price Exchange rate nexus for India during the period of extreme oil price volatility. *Applied Energy*, 88(5), 1886–1889.
- Groen, J. J., and Pesenti, P. A. (2011). Commodity prices, commodity currencies, and global economic developments. *Commodity Prices and Markets, East Asia Seminar on* Economics, 20, 15-42, University of Chicago Press.
- Habib M. M., and Kalamova M. (2007). Are there oil currencies? The real exchange rate of oil exporting countries. *European Central Bank Working Paper Series No 839*.
- Huang, Y., and Guo, F. (2007). The role of oil price shocks on China's real exchange rate. *China Economic Review*, 18(4), 403-416.
- Jawadi, F., Louhichi, W., Ameur, H. B., and Cheffou, A. I. (2016). On oil-US exchange rate volatility relationships: An intraday analysis. *Economic Modelling*, 59(C), 329-334.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

- Jiang, J., and Gu, R. (2016). Asymmetrical long-run dependence between oil price and US dollar exchange rate—Based on structural oil shocks. *Physica A: Statistical Mechanics and its Applications*, 456(C), 75-89.
- Johansen, S. (1988). Statistical analysis of cointegration vectors. *Journal of Economic Dynamics and Control*, 12, 231-254.
- Kilian, L., and Taylor, M. (2003). Why is it so difficult to beat the random walk forecast of exchange rates? Journal of International Economics, 60(1), 85-107.
- Kilian, L., and Vega, C. (2011). Do energy prices respond to U.S. macroeconomic news? A test of the hypothesis of predetermined energy prices. *Review of Economics and Statistics*, 93(2), 660-671.
- Kohlscheen, E., Avalos, F. H., and Schrimpf, A. (2016). When the walk is not random: commodity prices and exchange rates. *BIS Working Papers No 551.*
- Krugman, P. (1983). Oil and the dollar. In B. Jagdeeps, & P. Bulfordh (Eds.), Economic interdependence and flexible exchange rates. Cambridge, MA: MIT Press.
- Lizardo, R. A., and Mollick, A. V. (2010). Oil price fluctuations and U.S. dollar exchange rates. *Energy Economics*, 32(2), 399-408.
- Meese, R. A., and Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample? *Journal of International Economics*, 14(1-2), 3-24.
- Reboredo, J. C. (2012). Modelling oil price and exchange rate co-movements. *Journal of Policy Modeling*, 34(3), 419-440.
- Reboredo, J., and Rivera-Castro, M. A. (2013). A wavelet decomposition approach to crude oil price and exchange rate dependence, *Economic Modelling*, 32 (C), 42-57.
- Rossi, B. (2012). The changing relationship between commodity prices and equity prices in commodity exporting. *Economics Working Papers 1405*, Department of Economics and Business, ICREA-Universitat Pompeu Fabra.

Rossi, B. (2013). Exchange rate predictability. Journal of Economic Literature, 51(4), 1063-1119.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

- Sarno, L. (2005). Towards a solution to the puzzles in exchange rate economics: Where Do We Stand? *Working Papers 05-11*, Warwick Business School, Finance Group.
- Taylor, M. P., Peel, D. A., and Sarno, L. (2001). Nonlinear mean-reversion adjustment in real exchange rates: towards a solution to the purchasing power parity puzzles. *International Economic Reviews*, 42(4), 1015–1042.
- Trehan, B. (1986). Oil prices, exchange rate and the US economy. Economic Review, 4, 3-21.
- Turhan, M. I., Sensoy, A., and Hacihasanoglu, E. (2014). A comparative analysis of the dynamic relationship between oil prices and exchange rates. *Journal of International Financial Markets, Institutions and Money*, 32(C), 397-414.
- Yousefi, A., and Wirjanto, T. S. (2004). The empirical role of the exchange rate on the crude-oil price formation. *Energy Economics*, 26(5), 783-799.
- Wright, J. (2008). Bayesian Model Averaging and exchange rate forecasts. *Journal of Econometrics*, 146(2), 329-341.
- Zhang, Y.-J., Fan, Y., Tsai, H.-T., and Wei, Y.-M. (2008). Spillover effect of US dollar exchange rate on oil prices. *Journal of Policy Modeling*, 30(6), 973-991.

Zhang, Y.-J. (2013). The Links between the Price of Oil and the Value of US Dollar. *International Journal of Energy Economics and Policy*, 3(4), 2013, 341-351.

Appendix

Table A.1. Literature review

Author / Year / Journal	Year	Methodology	Variables Included	Countries	In-sample / out-of sample	Result / Causality
Ahmad and Hernandez	2013	TAR (threshold	Real oil prices, real	Fifteen largest oil	1970:01–2012:01	Evidence for
(2013); Journal of		autoregressive) and M-TAR	exchange rates, oil price:	producers and	(monthly data)	cointegration in six of the
International Financial		(momentum threshold	WTI and average of WTI,	largest oil		twelve countries studied
Markets, Institutions &		autoregressive)	Brent and Dubai.	consumers in the		and additional
Money				world (excluding		asymmetric adjustment in
				de facto fixed		four countries of which
				regimes): Brazil,		Brazil, Nigeria and the
				Canada, Eurozone,		UK show higher
				India, Iran, Japan,		adjustment after a
				South Korea,		positive shock than after
				Mexico, Nigeria,		a negative shock. Real
				Norway, UK,		exchange rate
				Venezuela		appreciation following a
						rise in the real oil prices
						is eliminated faster than a
						depreciation following a
						fall in the real oil prices.
						(Opposite for the
						Eurozone)

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Akram; Econometrics 2004 Journal (2004)	2004	Non-linear econometric model - framework of Ozkan and Sutherland (1998), equilibrium correction model	krone/ECU exchange rate index, oil price	Norway	1.1.1986 – 12.8.1998 (daily)	Strong evidence for a non-linear negative relationship between the value of the Norwegian
		equilibrium correction model (EqCMs)			The out-of sample: 1998:1 to 2000:4	value of the Norwegian krone and crude oil prices (change in oil prices has a strong impact on the exchange rate when oil prices are particularly low, i.e. below 14 USD) Non-linear model outperforms the random walk model in out-of-sample forecasting of the exchange rate over a period of 12 quarters
Alquist et al. (2011)	2011	Comparison of different models (AR, ARMA, VAR, nonparametric models)	WTI crude oil price, oil futures, US refiners' acquisition costs, US Real GDP	USA	Out-of-sample: 1973:1 – 2009:12	The paper provides a vast overview on oil price forecasting addressing a wide range of different issues.

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Altarturi et al. (2016);	2016	Wavelet coherency e.g.	WTI crude oil price,	OPEC	1999:02 - 2016:03	Countries with currencies
International Journal of		CWT),	exchange rate: log nominal		(daily data)	pegged
Energy Economics and Policy			effective OPEC currencies			to USD are lagging
			to USD)			against oil price changes,
						while countries with
						a floating exchange rate
						and countries with
						undisclosed weighted
						basket of international
						currencies lead changes
						in oil price.
Amano, van Norden (1998);	1998	Johansen-Juselius	Morgan Guaranty 15-	Germany, Japan,	In-Sample (s. S&C)	Rise in oil prices by 10%
Review of International		cointegration test,	country real effective	United States	1973:01 - 1993:06	causes deprecation of
Economics		Phillips and Hansen's fully	exchange rate.		(monthly)	Mark (0.9%) and Yen
		modified least-squares	Domestic price of oil (US			(1.7%) and an
		estimator (FMLS)	price of West Texas			appreciation of USD
			intermediate crude oil price			(2.6%).
			index)			
		Meese and Rogoff			Out-of-sample	Forecast based on oil
		Methodology			(updated Data to	prices perform better than
					March 1995, using	random walk.
					Meese and Rogoff's	
					methodology to	
					forecast, beginning	
					1985)	

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Amano, van Norden (1998);	1998	Johansen-Juselius	Real effective (i.e. trade-	US	In sample: 1972:2 –	Stabil long run link
Journal of International		cointegration test,	weighted) value of the US		1993:01 (monthly)	between oil prices and the
Money and Finance		Single-equation error-	Dollar and US real price of			US real effective
		correction model (ECM)	oil (s.a.)			exchange rate. Price of
						oil Granger-causes the
						exchange rate and not
						vice versa. (Higher prices
		•••				leads to appreciation)
					Out-of-sample:	Single-equation has
					1985:12 - 1993:01	significant ability to
						predict EX changes out-
						of-sample.
Bal, Rath (2015); Energy	2015	Hiemstra and Jones (1994)	Real effective exchange	India, China	1994:01 - 2013:04	Oil price do not linear
Economics		nonlinear Granger causality	rate (REER) of China		(monthly data)	Granger cause EXR (both
		test to the VAR residuals	(RXC) and India (RIX),			countries).
See also: De Vita, Trachanas		GARCH (1,1): robustness	Crude oil price (real terms			Significant bi-directional
(2016).		check	and deflated by US CPI)			nonlinear Granger
						causality: lagged
						information from oil
						price influences the EXR
						and vice versa (India).
						China: EXR causes oil
						price (nonlinear and
						unidirectional).

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Basher, Haug and Sadorsky.	2012	Structural VAR model	Global oil production, oil	Emerging markets	1988:01 - 2008:12	EXR respond to
(2012); Energy Economics			prices (WTI), global real		(Monthly data)	movements in oil prices
			economic activity (index),			(short run). Positive oil
			EXR, MSCI emerging			price shock leads to a
			stock market index,			drop in trade-weighted
			interest rates (TED			exchange rate. No
			spread). Dummy (1) to			evidence for impact of
			capture Asian financial			EXR shocks on Oil price
			crises (Sept. 1998).			
Basher, Haug and Sadorsky.	2016	SVAR, Markov-switching	world oil supply, global	Exporting: Brazil,	1976:02 - 2014:02	Oil demand shock leads
(2016); Energy Economics		model	real economic activity, oil	Canada, Mexico,	(monthly data)	to significant exchange
			prices, and exchange rates.	Norway, Russia		rate appreciation
				and the United		pressures in oil exportin
				Kingdom.		economies.
				Importing: India,		Only limited evidence
				Japan, South Korea		that oil supply shocks
						affect exchange rates fo
						either
						oil exporting or oil
						importing countries

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Beckmann, Czudaj (2013a);	2013	Markov-switching vector	Trade-weighted nominal	US	1974:01 - 2011:11	Effective depreciation of
International Review of		error correction model (MS-	and real effective		(monthly data)	the dollar triggers an
Economics and Finance		VECM)	exchange, three different			increase in oil
			country indices (broad,			Prices (in nominal terms)
			main, OITP), WTI crude			Increase in real oil prices
			oil price (in USD/barrel),			is associated with a real
			US CPI, three-month			appreciation of the dollar
			treasury bill rate.			(stem from price effects)
Beckmann, Czudaj (2013b);	2013	Markov-switching vector	WTI nominal oil price	Oil exporting:	1974:01 - 2011:12	Most important causality
Energy Economics		error correction model (MS-	expressed in USD, CPI and	Brazil, Canada,	(monthly data)	runs from exchange rates
		VECM)	exchange rates of 12 oil	Mexico, Norway,		to oil
			exporting and importing	Russia;		prices, with a
			countries	Oil importing:		depreciation of the dollar
			against the US dollar	Euro Area, India,		triggering an increase in
				Japan, South		oil prices. Nonlinearities
				Africa, South		are an important issue
				Korea, Sweden,		when analyzing oil
				and the UK		prices.

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Beckmann, Berger, Czudaj	2016	Static and dynamic copula	WTI nominal oil price	Oil exporting:	2003:09 - 2013:09	The intensity of
(2016); Quantitative Finance		approach	expressed in USD and	Brazil, Canada,	(daily data)	relationship between oil
			exchange rates of 12 oil	Mexico, Norway,		prices and FX-rates has
			exporting and importing	Russia; Oil		increased over time and
			countries	importing: Euro		the increased tail
			against the US dollar	Area, India, Japan,		dependency shows that
				South Africa,		extreme events are
				South Korea,		likelier to occur
				Sweden, and the		simultaneously for both
				UK		variables. Currencies of
						oil importers and oil
						exporters display a
						different dependency
						structure against the US
						dollar in the case of rising
						oil prices with the latter
						appreciating and the
						former depreciating.

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Bénassy-Quéré et al. (2007);	2007	Johansen (1988) and	Dollar real effective	US, Japan, China,	1974:01- 2004:11	Rise of oil price (10%)
Energy Policy		Johansen and Juselius	exchange rate, real EXR	Eurozone (theory)	(monthly data)	coincides with an
		Cointegration(1990), VECM	against Euro (from			appreciation of USD (4
			1978:12), oil price			3%) in the long run.
						Causality from Oil to
						Dollar. Slow adjustmen
						speed (half-life deviation
						of about 6,5 years)
Benhmad (2012); Economic	2012	Wavelet approach (DTW:	Real oil price (average of	US	1970:02 - 2010:02	Strong bi-directional
Modelling		discrete wavelet transform).	Brent, WTI and Dubai		(monthly data).	causal relationship
			Fateh), REER (USD),			between the real oil pri-
						and the
						real dollar exchange rat
						for large time horizons.
						But for the first frequer
						band (3-month) causali
						runs from oil price to
	** ** ***					exchange rate.

Author / Year / Journal	Year	Methodology	Variables Included	Countries	In-sample / out-of sample	Result / Causality
Bodart et al. (2012); Journal	2012	Unit root tests (LLC, IPS,	Real effective exchange	14 developing	1980-2008	Price of the dominant
of International Money and		INVN), panel cointegration	rate, price of leading	countries whose		commodity has a
Finance		tests following Fachin	export commodity, with	exports are highly		significant long-run
		(2007), 3 panel cointegration	and without common time	concentrated on		impact on the real
		techniques: fully modified	dummies	one specific		exchange rate when
		OLS, dynamic OLS, BKN		commodity (>10%)		exports of the leading
		following Bai et al. (2009)				commodity contribute
						at least 20% of total
						exports. The larger this
						share, the large the effe
Bouoiyour et al. (2015);	2015	ARDL bounds testing	Oil price, real exchange	Russia	1993Q1 - 2009Q4	Oil price causes sharp
Energy Economics		approach, wavelet coherence	rate, GDP, government		(Quarterly data)	real EXR in lower
		(WTC?), wavelet-based	spending, terms of trade,			frequencies.
		signal detection	productivity differential			The link between oil
		Frequency domain approach				price and real exchange
						rate seems conditioning
						upon GDP, governmen
						expenditures, terms of
						trade and productivity
						differentia

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Chaban (2009); Journal of	2009	Extension of Hau and Rey	Exchange rate returns (dep.	Australia, Canada,	1980:01-2006:11	Compared to Hau and
International Money and		(2006) to commodity-	Variable), equity returns,	New Zealand	(monthly data)	Rey (2006), the portfolio-
Finance		producing countries with	commodity returns, equity		(Table 4: quarterly	rebalancing motive is
		well-developed equity	flows		regression)	weaker in the three
		markets; structural VAR				countries. In contrast,
		model addressing the				positive correlation
		simultaneity issue (three				between equity returns
		endogenous variables,				and exchange rate returns
		exogenous commodity				and no significant
		returns)				correlation between
						equity flows and
						exchange rate returns.
						Possible explanation:
						positive equity return
						shock affects commodity-
						exporting countries via
						comm. Prices: less need
						to rebalance portfolios
Chaudhuri and Daniel (1998);	1998	Engel-Granger cointegration,	Real EXR (foreign	16 OCED countries	1973:01 - 1996:02	Real USD producer price
Economic Letters		ECM	currency price of USD),		(monthly data)	EXR and real price of oil
			real oil price (United Arab		except It & SWE	are cointegrated for the
			Emirates price of oil)		(end	most industrial countries.
					1993:11),Belgium	
					(1980:01 – 1996:03)	

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Chang (2014); North	2014	Symmetrized copula	Crude oil (WTI), nominal	Australia, Canada	4.1.1990 - 28.6.2016	Exceedance Correlations
American Journal of		framework? 4000758	exchange rate,	New Zealand	(daily data)	between oil and exchange
Economics and Finance						rate returns are both
						positive and symmetrical
Chen and Chen (2007);	2007	Johansen, Panel	Real Oil Price (world oil	G7 (Canada,	1972:01 - 2005:10	Cointegrated relationship
Energy Economics		cointegration techniques	price, United Arab	France, Germany,	(monthly data) in-	between real oil prices
		(Pedroni 2004?), FMOLS,	emirates price, Brent,	Italy, Japan, UK,	sample (1972:01 -	and real exchange rates.
		DOLS, PMG (pooled mean	WTI) real exchange rate,	US)	1990:12) & out-of-	Forecast based on oil
		group)	CPI + implementing		sample	prices perform better than
			structural breaks,			those on random walk.
						Predictability is higher in
						the long run.

Author / Year / Journal	Year	Methodology	Variables Included	Countries	In-sample / out-of sample	Result / Causality
Chen, Rogoff and Rossi	2010	In-sample BIVARIATE	dollar spot prices	Commodity	In-Sample and out-	structural link between
(2010); The Quarterly Journal		GRANGER-CAUSALITY	in the world commodity	Currencies	of-sample	exchange
of Economics		TESTS , ANDREWS'S	markets to construct	Australia		rates and commodity
		(1993) QLR TEST FOR	country-specific,	(from 1984:1 to		prices through the terms-
		INSTABILITIES and out-	export-earnings-weighted	2008:1)		of-trade and
		of-sample forecasting (AR)	commodity price indices;	Canada (from		income effects: Exchange
			nominal effective	1973:1 to 2008:1),		rates are very useful in
			exchange rates; Dow	Chile (from 1989:3		forecasting future
			Jones-AIG Futures and	to 2008:1)		commodity prices (causal
			Spot indices; forward price	New Zealand (from		interpretation: because
			data from Bloomberg for a	1987:1 to 2008:1)		approach is robust to
			selected set of metal	South Africa (from		parameter instabilities
			products—gold, silver,	1994:1 to 2008:1).		and because commodity
			platinum, and copper-to			prices are essentially
			compare with our			exogenous to the
			exchange rate-based			exchange rates
			forecasts			

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Coudert et al. (2008); Energy	2008	Johansen (1988) and	Real oil price, US effective	US	1974:01 - 2004:11	Causality runs from Oil
Studies Review		Johansen and Juselius (1990)	exchange rate, (BEER: net		(monthly data)	prices to EXR Increase in
		Cointegration, VAR, BEER	foreign assets, terms of			oil leads to appreciation
		model	trade)			of USD in the long run.
						Adjustment very slow
						(6.5 Years). Link (BEER
						model) through US net
						foreign asset position.
De Schryder and Peersman	2015	Oil demand model: panel	Total oil consumption per	65 oil-importing	1971-2008	An appreciation of the
(2015); Energy Journal		error correction model	capita, global real US	countries that do		US dollar exchange rate
		(ECM), panel error	dollar crude oil price, real	not have the US		leads to a significant
		correction test of	GDP per capita, real US	dollar as their local		decline in oil demand.
		Gengenbach, Urbain,	dollar effective exchange			This effect is
		Westerlund (2008), PANIC	rate, linear time trend,			considerably larger than
						the impact of a shift in
						the global crude US
						dollar oil price which

Author / Year / Journal	Year	Methodology	Variables Included	Countries	In-sample / out-of sample	Result / Causality
		test (Bai and Ng 2002),	country-specific constant,	currency (23		may be a consequence of
		Mean Group (MG) estimator	common components of	OECD, 42 non-		a stronger pass-through
		and FE, PANIC	residuals of MG regression	OECD countries)		of changes in the US
		decomposition to estimate	as proxy for omitted			dollar exch. rate to
		common components in the	common variables			domestic end-user oil
		residuals (adj. MG)				product prices rel. to
						changes in global crude
						oil price
De Vita, Trachanas (2016);	2016	Ng and Perron Test (unit	see Bath and Rat (2015)	India, China	1994:01 - 2013:04	'Pure replication' and a
Energy Economics		root), model see Bath and			(monthly data)	'reanalysis' of Bal and
"A failed replication" – see		Rat (2015)				Rath (2015).
Bal and Rath (2015)						Oil price is level
						stationary I(0).
						No evidence for
						nonlinear or cointegrated
						causality for India and
						China

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Ferraro, Rogoff and Rossi	2015	"Pseudo" out-of-sample fit	Canadian-USD nominal	Canada	In Sample and out-	Empirical results sugges
(2015), Journal of		with realized fundamentals	Exchange rate, spot price		of-Sample.	that commodity prices
International Money and		(commodity price model)	crude oil (WTI), Canadian		12/14/1984 to	can predict commodity
Finance			and US interest rates,13		11/05/2010	currencies' exchange
					(daily, monthly and	rates at a daily frequency
					quarterly (end-of-	in the sense of having a
					sample)	stable "out-of-sample fit
						relationship (not eviden
						at quarterly and monthly
						frequencies).
Fratzscher, Schneider and	2014	structural six-variable VAR	effective dollar exchange		02.01.2001 -	Bi-directional causality
van Robays (2014); ECB			rate, WTI crude oil price in		19.10.2012 (daily	between the US dollar
Working Paper Series			USD, Dow Jones Ind. Avg.		data)	and oil prices since the
			Index (US stock returns),			early 2000s. Causality
			US short-term interest rates			between oil prices and
			(three-month Certificate of			exchange rates runs
			Deposit), proxy for risk			negative in both
			and a proxy for the			directions. Oil prices an
			financialization of oil			the US dollar are
			markets ¹⁴			significantly affected by
						changes inequity marke
						returns and risk

¹³ In addition, we consider other currencies and commodities. The Norwegian krone-US, South African rand-US dollar and Australian Dollar-US dollar nominal exchange rates are from Barclays Bank International (BBI). The Chilean peso-US dollar exchange rate is from WM Reuters (WMR). Besides the oil price series described above, we use prices for copper and gold.

¹⁴ Weekly open interest in the NYMEX oil futures market gathered by the Commodities Futures Trading Commission (CFTC)

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage

discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S.

Energy Information Administration

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Ghosh (2011); Applied	2011	GARCH and EGARCH	Brent crude oil, rupee-	India	2.7.2007 -	Increase in the oil price
Energy		model	dollar exchange rate in		28.11.2008 (daily	return leads to a
			nominal terms. Daily		data)	depreciation of
			returns on oil price and			Indian Rupee (to US
			EXR.			Dollar). Positive and
						negative oil price shocks
						have similar effects, in
						terms of magnitude,
						on exchange rate
						volatility in India
						(symmetric effect).
Habib, Bützer and Stracca	2016	Two-stage approach:	REER, bilateral nominal	43 countries (12	1986:01 - 2013:12	Main Result: For the full
(2016); IMF Economic Review		 Sign restriction identification 	EXR with USD, IMF	advanced and 31	(monthly and	set of 43 countries
		scheme (VAR)	Special Drawing Rights,	emerging)	quarterly data)	there is no systematic
		2. Fixed effects	CPI, stock market returns,			evidence of a relationship
		pooled panel model	interest rates (mainly			between the oil or the
		"first identify oil supply and	money market), foreign			commodity trade balance
	demand shocks using a sign restrictions identification	exchange reserve, self-			and exchange rate	
		0 0	constructed EMP index			movements following oil
		(exchange market			price shocks. Countries	
			pressure), currency crisis			with a higher oil surplus

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
		scheme, and then condition	dummy, Oil price: US			tend to lean against
		exchange rates and other	crude oil imported			appreciation pressures by
		macro variables in each	acquisition cost by			accumulating foreign
		individual country to the	Refiners denominated in			exchange reserves.
		shocks estimated	SDR, oil trade balance (as			In Countries with floating
		in the first stage in a panel	share of GDP), commodity			currencies nominal
		setting"	trade balance, Index of			appreciation in the wake
			Industrial Production from			of oil demand shocks.
			OECD			
Huang and Guo (2007); China	2007	Four-dimensional structural	Real world oil price, real	China	1990:01 - 2005:10	Real oil price shock leads
Economic Review		VAR (SVAR) model	industrial prod., REER		(monthly data)	to minor appreciation of
			(deflate nominal RNB by			REER in the long run.
			PPI), relative CPI			
Husain et al. (2015); IMF	2015					
Staff Discussion Note						
Jawadi et al. (2016);	2016	Continuous-time jump-	USD/EURO exchange rate.	US	2014:08 - 2016:01	Negative relationship
Economic Modelling		diffusion model, GARCH			(intraday data)	between the US
						dollar/euro and oil
						returns, indicating
						that a US\$ appreciation
						decreases oil price.
						Further evidence for
						volatility spillover from
						the US exchange market
						to the oil market.

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Jiang, Gu (2016); Physica A	2016	SVAR, multifractal detrended	world economic activity	US (see currencies	Exchange rate: 4. Jan.	Cross-correlations between
		cross-correlation analysis (MF	index, world oil production,	[13])	2000 - 31. Dec. 2014	oil prices and exchange rate
		DCCA and MF-ADCCA,	WTI oil price, trade weighted		(daily data)	exist in the long run. Cross
		asymmetric,	US Dollar Index, bilateral		Other variables:	correlations are multifracta
			exchange rates (between the		1994:01 - 2014:12	they are more persistent in
			US dollar and other		(monthly data)	small fluctuations than that
			currencies ¹⁵)			in large fluctuations.
						MF-ADCCA : cross-
						correlations between oil
						prices and exchange rates
						are significantly asymmetr
Kohlscheen et al. (2016); BIS	2016	First-differences, pseudo out-	Nominal exchange rate,	11 major	In-sample and out-	Economically and
Working Paper		of-sample prediction (Meese	commodity export price	commodity-	of-sample, 2004:01 -	statistically significant
		and Rogoff 1983), compare		exporting countries	2015:02 (daily data),	link between commodit
				(Australia, Canada,		prices and exchange
				Norway, Brazil,		rates, even at high
						frequencies. This link

- -

~

¹⁵ CAD/USD (Canada/US), MXN/USD (Mexico/US), NOK/USD (Norway/US), GBP/USD (UK/US), JPY/USD (Japan/US), AUD/USD (Australia/US), EUR/USD (EU/US), KRW/USD (Korea/US). Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
		MSPE of baseline model	index (CXPI), country FE,	Chile, Colombia,	Malaysia: 2005:08-	remains unaffected whe
		with that of pure random	year dummies	Mexico, Peru,	2015:02, Russia:	changes in uncertainty
		walk, DM test		South Africa,	2009:02-2015:02	and risk appetite are
				Russia, Malaysia)		considered. Implies that
						currency movements ar
						not purely random
Narayan (2013); Journal of	2013	GLS-based time series	Real oil price (Brent), real	14 Asian	1990 - 2009	Oil price is an importan
Asian Economics		predictive regression model	exchange rate,	countries16	(monthly data)	predictor of exchange
		(Westerlund and Narayan			In-sample and out-	rates of Bangladesh,
		(2012))			of-sample	Cambodia, Hong Kong
						and Vietnam vis-a`-vis
						the US dollar

- -

. .

_

¹⁶ Importers: Japan, China, Hong Kong, Vietnam, Indonesia, the Philippines, Bangladesh and Cambodia. Exporters: India, Korea, Thailand, Singapore, and Malaysia Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

Author / Year / Journal	Year	Methodology	Variables Included	Countries	In-sample / out-of sample	Result / Causality
Lizardo and Mollick (2010),	2010	VAR and VECM (?)	Oil price (WTI), nominal	US (to other	1975 – 2008:01? In	Relationship between Oil
Energy Economics			exchange rate (USD), US	countries)	sample and out-of-	price and US EXR
			money supply (M1)		sample	(against major currencies
			relative to the foreign			Increase in real oil price
			money supply, US			lead to significant
			industrial production			depreciation of USD
			(relative to foreign ¹⁷ Ind			against net oil exporter
			Prod.),			currencies (Canada,
						Mexico, Russia) and to
						an appreciation against
						oil importers (e.g. Japan)
						Robustness exercises also
						show that oil price shock
						are associated in the
						short-run with a decrease
						in the value of the USD
						relative to all currencies
						as well as to the trade
						weighted broad and
						major indexes

¹⁷ Canada, Denmark, Euro Zone (Germany, France, Italy, Netherlands, Belgium/Luxembourg, Ireland, Spain, Austria, Finland, Portugal, Greece, and Slovenia), Japan, Norway, Mexico, Russia, Sweden, and the United Kingdom Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage

discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S.

Energy Information Administration

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Pershin et al. (2016), Journal of Policy Modeling	2016	Johansen and Juselius (1990) cointegration (VAR)	Nominal EXR, crude oil prices - Brent, short term interbank interest rates (repo). (+ structural breaks)	Selected African countries: Botswana, Kenya Tanzania	01.12.2003 – 02.07.2014 (daily data)	No general rule. ?!?!
Rautava (2004), Journal of Comparative Economics	2004	VAR and VECM	Real GDP, real federal government revenues, REER of Ruble (endogenous variables), price of crude oil	Russia	1995:01 – 2002:04 (quarterly data)	XXXXXX
Reboredo (2012), Journal of Policy Modeling	2012	Marginal distribution model: TGARCH Copula models	EXR (USD per unit of foreign currency), Crude oil price in USD(WTI)	EU (EURO), Australia, Canada, UK, Japan, Norway, Mexico, TWEXB (US Federal Reserve's Broad Trade Weighted Exchange Index)	04.01.2000 – 15.06.2010 (daily data)	Increase in oil prices is weakly associated with USD depreciation and vice versa. Copula models: tail independence between oil prices and exchange rates in the periods before and after the financial crisis.

Author / Year / Journal	Year	Methodology	Variables Included	Countries	In-sample / out-of sample	Result / Causality
Reboredo and Rivera-Castro	2013	Wavelet multi-resolution	EXR(foreign currency per	EU (EURO),	04.01.2000 -	Oil prices and exchange
(2013); Economic Modelling		analysis	unit of USD), Crude oil	Australia, Canada,	07.10.2011 (daily	rates were independent in
			price in USD (WTI)	UK, Japan,	data)	the pre-crisis period.
				Mexico, Norway,		Evidence of contagion
				TWEXB		and negative dependence
						after the onset of the
						crisis. Oil prices led
						exchange rates and vice
						versa in the crisis period
						but not in the pre-crisis
						period
Tiwari et al. (2013a); Energy	2013	Discrete wavelet transform	Crude oil price (WTI),	Romania	1986:02 - 2009:03	Oil price have strong
Economics.		(DWT) approach and scale-	REER.		(monthly data)	influence on the REER i
		by-scale Granger causality				the short run, but also fo
		tests				large time horizons.

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Tiwari et al. (2013b);	2013	Wavelet (DWT), non-linear	Real oil price (WTI),	India	1993:04 - 2010:12	Causal relationship
Economic Modelling		causality tests.	REER (Rupee)		(monthly data)	between oil price and the
						real effective exchange
						detected at higher time
						scales (low frequency)
						but not at lower time
						(high frequency) scales.
						Unidirectional causality
						from exchange rates to oil
						prices at scale 16-32
						month and bi-directional
						causality at scale 31-64
						month.
Turhan et al. (2014); Journal	2014	Consistent dynamic	Crude oil price Brent,	G20, excluding	02/01/2000 -	Link between oil prices
of International Financial		conditional correlation model	Exchange rates (USD/	Argentina, China	17/04/2013 (daily	and exchange rates has
Markets, Institutions &		(cDCC),	local currency)	and Saudi Arabia	data).	intensified in the last
Money				(controlled		decade; they became
				currency regime)		strongly negatively
						correlated (which also
						associates an increase in
						the oil prices with the US
						dollar depreciation
						against other currencies.

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
						Two events related with
						significant shifts in the
						correlation levels e.g.
						Iraq-war 2003 and GFC
						(global financial crises)
						in 2008. No effect of
						ongoing Eurozone debt
						crises on oil price
						exchange rate correlation
						pattern.
Tiwari and Albulsecu (2016);	2016	Continuous wavelet	Oil price (Average of	India	1980:01 - 2016:02	Exchange rate
Applied Energy		approach (CWT), Markov	Brent, Dubai, and WTI),		(monthly data)	Granger-causes the oil
		regime-switching	India-US real exchange			price in the long run. In
		VAR (MRS-VAR),	rate			the short run it's the
		asymmetric multi-horizon				opposite. The relationship
		Granger-causality test.				is non-linear, asymmetric
						and indirect (exist only in
						the post-reform period).
Uddin et al. (2013); Economic	2013	Wavelet analysis: continuous	REER (Real exchange	Japan	1983:06 - 2013:05	Strength of co-movement
Modelling		wavelet transform (CWT)	rates), Real oil prices		(monthly and	regarding the return on
		and Wavelet coherence			quarterly data)	the real effective
		(WTC).				exchange rate and oil
						price growth, differ and
						deviates over the time
						horizon

Author / Year / Journal	Year	Methodology	Variables Included	Countries	In-sample / out-of sample	Result / Causality
Wang, Wu (2012); Economic Modelling	2012	Linear causality: VECM, Nonlinear: BDS test statistic, Diks and Panchenko (2006)'s nonlinear Granger causality test	crude oil, gasoline, heating oil and natural gas prices and trade-weighted exchange rates.	US	Jan. 2. 2003 – June 3. 2011 (daily data) (divided in 2 sup- periods (03—07;07- 11)	After financial crises: bi directional nonlinear causality between petroleum prices and exchange rate. Pre-crise , unidirectional linear causality running from petroleum prices to
7hours of al (2009).	2008		Nominal miaga W/TI anda	TIC	04.01.2000	exchange Rates.
Zhang et al. (2008); Journal of Policy Modeling	2008	VAR, (T)GARCH, VaR : Granger causality in risk,	Nominal prices: WTI crude oil price (USD/barrel),	03	04.01.2000 – 31.05.2005	Mean Spillover: Significant long-term
· · · · · · · · · · · · · · · · · · ·		GED	Spot (nominal) exchange			equilibrium cointegratin
			rate of euro against dollar.			relationship can be
						identified between the
						two markets. This
						suggests a crucial reason
						for the fluctuation in
						crude oil price. Volatilit
						spillover: No significant
						evidence Risk spillover:
						compared with the
						powerful oil market, the
						impact of US dollar
						exchange rate is
						confirmed to be relative
						partial

					In-sample / out-of	
Author / Year / Journal	Year	Methodology	Variables Included	Countries	sample	Result / Causality
Zhang (2013); International	2013	Engle-Granger (1987)	Real crude oil price (WTI,	US	1973:01 - 2010:06	No cointegration of Oil
Journal of Energy Economics		residual-based cointegration	deflated by US CPI),		(monthly data)	price and the value of
and Policy		test (ECM), Johansen and	REER ¹⁸ of USD			USD but considering
		Juselius (1990) rank				structural breaks (1986
		cointegration test.				& 2005) existence of
						significant long run
						relationship.

¹⁸ defined as the real trade-weighted value of the US dollar against the currencies of a broad group of major US trading partners (euro area, Canada, Japan, Mexico, China, United Kingdom, Taiwan, Korea, Singapore, Hong Kong, Malaysia, Brazil, Switzerland, Thailand, Philippines, Australia, Indonesia, India, Israel, Saudi Arabia, Russia, Sweden, Argentina, Venezuela, Chile, and Columbia).

Joscha Beckmann, Robert Czudaj and Vipin Arora | U.S. Energy Information Administration | This paper is released to encourage

discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S.

Energy Information Administration

Shortcuts:

Methodology	Variables
DWT: Discrete wavelet transform	BEER: Behavioral Equilibrium Exchange Rate
ECM: Error correction model	EMP Index: Exchange market pressure
EqCM: Equilibrium correction model	GFC: Global financial crises
FMLS: Fully modified least-squares estimator	REER: Real effective exchange rate
GARCH: Generalized autoregressive conditional	TED Spread: Treasury Bill Eurodollar Difference
heteroscedasticity TGARCH: Threshold GARCH,	OITP: Other important trading partners
EGARCH: Exponential GARCH	WTI: West Texas Intermediate crude oil price
GED: Generalized error distribution	
VaR: Value at Risk	
VAR: Vector auto regression	
SVAR: Structural VAR	