Note 1. Coverage of Electricity Statistics. Data in Section 7 cover the following:

Through 1984, data for electric utilities also include institutions (such as universities) and military facilities that generated electricity primarily for their own use; beginning in 1985, data for electric utilities exclude institutions and military facilities. Beginning in 1989, data for the commercial sector include institutions and military facilities.

The generation, consumption, and stocks data in Section 7 are for utility-scale facilities—those with a combined generation nameplate capacity of 1 megawatt or more. Data exclude distributed (small-scale) facilities—those with a combined generator nameplate capacity of less than 1 megawatt. For data on distributed solar photovoltaic (PV) generation in the residential, commercial, and industrial sectors, see Table 10.6.

Note 2. Classification of Power Plants into Energy-Use Sectors. The U.S. Energy Information Administration (EIA) classifies power plants (both electricity-only and combined-heat-and-power plants) into energy-use sectors based on the North American Industry Classification System (NAICS), which replaced the Standard Industrial Classification (SIC) system in 1997. Plants with a NAICS code of 22 are assigned to the Electric Power Sector. Those with NAICS codes beginning with 11 (agriculture, forestry, fishing, and hunting); 21 (mining, including oil and gas extraction); 23 (construction); 31–33 (manufacturing); 2212 (natural gas distribution); and 22131 (water supply and irrigation systems) are assigned to the Industrial Sector. Those with all other codes are assigned to the Commercial Sector. Form EIA-860, "Annual Electric Generator Report," asks respondents to indicate the primary purpose of the facility by assigning a NAICS code from the list at http://www.eia.gov/survey/form/eia_860/instructions.pdf.

Note 3. Electricity Forecast Values. Data values preceded by "F" in this section are forecast values. They are derived from EIA's Short-Term Integrated Forecasting System (STIFS). STIFS is driven primarily by data and assumptions about key macroeconomic variables, energy prices, and weather. The electricity forecast relies on additional variables such as alternative fuel prices (natural gas and oil) and power generation by sources other than fossil fuels, including nuclear, renewables, and hydroelectric power. Each month, EIA staff review the model output and make adjustments, if appropriate, based on their knowledge of developments in the electricity industry.

The STIFS model results are published monthly in EIA's Short-Term Energy Outlook, which is accessible on the Web at http://www.eia.gov/forecasts/steo/.

Table 7.1 Sources

Net Generation, Electric Power Sector
1949 forward: Table 7.2b.

Net Generation, Commercial and Industrial Sectors
1949 forward: Table 7.2c.

Trade

2016 forward: EIA, Form EIA-111, "Quarterly Electricity Imports and Exports Report"; and for forecast values, EIA Short-Term Integrated Forecasting System (STIFS).

T&D Losses and Unaccounted for
1949 forward: Calculated as the sum of total net generation and imports minus end use and exports.

End Use
1949 forward: Table 7.6.

Table 7.2b Sources

Table 7.2c Sources

Industrial Sector, Hydroelectric Power, 1949–1988

All Data, 1989 Forward

Table 7.3b Sources

Table 7.4b Sources

Table 7.6 Sources

Retail Sales, Residential and Industrial

Retail Sales, Commercial

2004 forward: EIA, EPM, April 2020, Table 5.1.

Retail Sales, Transportation

2004 forward: EIA, EPM April 2020, Table 5.1.

Direct Use, Annual

2019: Sum of monthly estimates.

Direct Use, Monthly

1989 forward: Annual shares are calculated as annual direct use divided by annual commercial and industrial net generation (on Table 7.1). Then monthly direct use estimates are calculated as the annual share multiplied by the monthly commercial and industrial net generation values. For 2019, the 2018 annual share is used.