Approximate Heat Content of Petroleum and Natural Gas Liquids

Asphalt. The U.S. Energy Information Administration (EIA) adopted the thermal conversion factor of 6.636 million British thermal units (Btu) per barrel as estimated by the Bureau of Mines and first published in the *Petroleum Statement, Annual, 1956.*

Aviation Gasoline Blending Components. Assumed by EIA to be 5.048 million Btu per barrel or equal to the thermal conversion factor for *Aviation Gasoline (Finished).*


Butane-Propane Mixture. EIA adopted the Bureau of Mines calculation of 4.130 million Btu per barrel based on an assumed mixture of 60% normal butane and 40% propane. See *Normal Butane/Butylene* and *Propane/Propylene.*

Crude Oil Exports. • 1949–2014: Assumed by EIA to be 5.800 million Btu per barrel or equal to the thermal conversion factor for crude oil produced in the United States. See *Crude Oil Production.* • 2015 forward: Calculated annually by EIA based on conversion of American Petroleum Institute (API) gravity ranges of crude oil exports as reported in trade data from the U.S. Census Bureau. Specific gravity (SG) = 141.5 / (131.5 + API gravity). The higher heating value (HHV) in million Btu per barrel = SG * (7.801796 - 1.3213 * SG²).

Crude Oil Imports. Calculated annually by EIA as the average of the thermal conversion factors for each type of crude oil imported weighted by the quantities imported. Thermal conversion factors for each type were calculated on a foreign country basis, by determining the average American Petroleum Institute (API) gravity of crude oil imported from each foreign country from Form ERA-60 in 1977 and converting average API gravity to average Btu content by using National Bureau of Standards, Miscellaneous Publication No. 97, *Thermal Properties of Petroleum Products,* 1933.


Ethane/Ethylene. EIA adopted the Bureau of Mines thermal conversion factor of 3.082 million Btu per barrel as published in the *California Oil World and Petroleum Industry,* First Issue, April 1942.