Table CT1. Energy consumption estimates for selected energy sources in physical units, selected years, 1960-2022, Vermont | | | | | | | Petroleum | | | | | | | | | |--------------|--|-----------------------------|-------------------------------------|-------------------------|--------------------------|--------------------------------|---|--------------------------|--|---------------------------|--------------------------------|-----------------|------------------------------|--| | | | | | | | relioleulli | | | | - | Hydro- | | | | | | Coal | Natural
gas ^a | Distillate
fuel oil ^b | HGL ^c | Jet
fuel ^d | Motor
gasoline ^e | Residual
fuel oil | Other ^f | Total | Nuclear
electric power | electric
power ^g | Wind | Fuel
ethanol ^h | Biodiesel | | Year | Thousand short tons | Billion
cubic feet | | | | Thousand barrels | | | | м | illion kilowatthour | s | Thousan | d barrels | | | | _ | | | | | | | | _ | | | | | | 1960
1965 | 137
105 | 0 | 2,958
4 285 | 404
450 | 82
79
121 | 3,332
3,789 | 478
910 | 1,178
1,059 | 8,431
10,572 | 0 | 873
714 | 0
0 | NA
NA | NA
NA | | 1965
1970 | 105
87 | 3 | 4,285
5,741 | 450
542 | 121 | 5.077 | 910
905 | 1,059
898 | 10,572
13,285 | Ō | 786 | 0 | NA | NA | | 1971
1972 | 79
56 | 3 | 5,391
5,674 | 590
699 | 112
255 | 5,331
5,677 | 916
944 | 944
778 | 13,285
14,026 | 0
169 | 742
942 | 0
0 | NA
NA | NA
NA | | 1973 | 79
56
59
60
31 | 4 | 6.047 | 685 | 219 | 5.763 | 870 | 711 | 14.295 | 1 598 | 1.059 | 0 | NA | NA | | 1974
1975 | 60 | 5 | 5,071 | 703
833 | 204
177 | 5,626 | 526
796 | 643
502 | 12,772 | 2,483
3,561 | 991 | 0 | NA | NA | | 1975
1976 | 31
24 | 4 | 4,642
5,470 | 833
946 | 1//
142 | 5,698
6,013 | /96
1.250 | 502
579 | 12,647
14,400 | 3,561
3,260 | 938
1 090 | 0 | NA
NA | NA
NA | | 1977 | 24
29 | 4 | 5,360 | 946 | 137 | 6,125 | 1,250
1,142 | 542 | 14,400
14,252 | 3,260
3,538 | 1,090
958 | Ö | NA | NA | | 1978 | 19 | 4 | 5,280 | 1,199
541 | 134 | 6,309 | 979
347 | 579
542
515
633 | 14.416 | 3.241 | 874 | 0 | NA | NA | | 1979
1980 | 24
22
42
50
46
55
80
26 | 4
4 | 5,486
4,095 | 541
666 | 172
155 | 5,830
5,437 | 347
471 | 506 | 13,008
11,331 | 3,449
2,979 | 930
813 | 0 | NA
NA | NA
NA | | 1981 | 42 | 4 | 3,819 | 626 | 82
91 | 5,506 | 348 | 430
407 | 10,811 | 3,569 | 1,003 | ŏ | 0 | NA | | 1982 | 50 | 4 | 2,699 | 862 | 91 | 5,529 | 359 | 407 | 9.946 | 4,174 | 846 | 0 | 0 | NA | | 1983
1984 | 46
55 | 4
5 | 3,439
4,085 | 866
646 | 106
173 | 5,579
5,821 | 318
434 | 482
872 | 10,791
12,031 | 2,870
3,336 | 1,006
949 | 0 | 0 | NA
NA | | 1985 | 80 | 5 | 4.583 | 791
867 | 201 | 5,813
5,966 | 122
471 | 1,065
967 | 12,574
12,693 | 2.999 | 922 | ŏ | ŏ | NA | | 1986 | 26 | 5 | 4,289 | 867 | 133 | 5,966 | 471 | 967 | 12,693 | 2,058 | 1,044 | 0 | 0 | NA | | 1987
1988 | 12
11 | 5
6 | 4,817
5.144 | 1,101
1,157 | 181
143 | 6,530
6,797 | 338
238 | 983
1,022 | 13,950
14,500 | 3,536
4,114 | 995
879 | 0 | 0 | NA
NA | | 1989 | 9 | 6 | 4.969 | 1.504 | 143
220 | 6.554 | 191 | 986 | 14,424 | 3,607 | 1.047 | Ö | Ŏ | NA
NA | | 1990 | 8 | 7 | 4,566
4,762 | 1,401
1,634 | 180 | 6,696 | 237 | 419
878 | 14,424
13,499
14,472 | 3,616 | 1,365
1,053 | 0 | 0 | NA | | 1991
1992 | 12
20 | 8 | 4,762
5,532 | 1,634 | 162
116 | 6,772
6,879 | 264
277 | 8/8
6/3 | 14,472
15,350 | 4,108
3,735 | 1,053 | 0 | 0 | NA
NA | | 1993 | 6 | 7 | 5,539 | 1,912
1,641 | 124 | 7.096 | 474 | 643
384
522 | 15,359
15,259 | 3,735
3,372 | 921
981 | ő | ő | NA | | 1994 | 5 | 7 | 5.358 | 1.663 | 138 | 7,154
7,211 | 281 | 522 | 15,117
15,121
15,882 | 4.316 | 1,039
973 | 0 | 0 | NA | | 1995
1996 | 3
2 | 7
7 | 5,361
5,732 | 1,673
1,834 | 127
99 | 7,211
7,331 | 215
282 | 535
603 | 15,121
15,882 | 3,859
3,799 | 9/3
1 231 | 0 | 0 | NA
NA | | 1997 | 110 | 8 | 5 344 | 1 540 | 106 | 7,606 | 323
274 | 1,153
752 | 16,073
15,650 | 4,267
3,358 | 1,231
1,067 | ő | ő | NA | | 1998 | 2 | 8 | 5,215 | 1,777 | 121 | 7.510 | 274 | 752 | 15,650 | 3,358 | 1.194 | 0 | 0 | NA | | 1999
2000 | 82
1 | 8
10 | 5,441
5,276 | 1,617
1,769 | 143
144 | 7,699
8,394 | 220
309 | 612
721 | 15,732
16,613 | 4,059
4,548 | 1,196
1,221 | 14
12 | 0 | NA
NA | | 2001 | 2 | 8 | 5.371 | 2,425 | 120 | 8.021 | 241 | 806 | 16 984 | 4.171 | 884 | 12 | ő | | | 2002 | 1 | 8 | 4,866 | 2,425
2,352 | 65
68 | 8,164 | 253
292 | 466 | 16,166
16,468 | 3,963 | 884
1,115 | 10 | 0 | (s)
(s) | | 2003
2004 | 1 | 8 | 5,408
5,861 | 1,867 | 68
309 | 8,304
8,407 | 292
297 | 530
1,037 | 16,468
17,899 | 4,444
3,858 | 1,154
1,187
1,211 | 11
11 | 0 | (s) | | 2005 | i | 8 | 5,194 | 1,987
2,234 | 309
423 | 8,408 | 297
300 | 693 | 17,899
17,251 | 4.072 | 1,211 | 11 | 48 | (s)
2 | | 2006
2007 | 1 | 8 | 5,085 | 2 288 | 376 | 8,406 | 260 | 591
689
227 | 17,006
16,668 | 5,107
4,704 | 1,519
647 | 11 | 68 | 4 | | 2007
2008 | 1 | 9 | 4,917
4,420 | 2,152
2,263 | 317
266 | 8,354
7,987 | 238
227 | 689 | 16,668
15 300 | 4,704
4,895 | 647
1,493 | 11
10 | 98
510 | 6
5 | | 2009 | 0 | 9 | 4,807 | 2 423 | 512 | 7,964 | 195 | 854 | 15,390
16,755
16,158 | 5,361 | 1.486 | 12 | 749 | 6 | | 2010 | Ó | 8 | 4 607 | 2,353
2,191
2,353 | 161 | 7.866 | 157 | 1 015 | 16,158 | 4.782 | 1,347
1,425
1,151 | 14
33
107 | 685 | 4 | | 2011
2012 | 0 | 9 | 4,791
4,227 | 2,191 | 183
185 | 7,618
7,409 | 150
93 | 912
844 | 15,845
15,111 | 4,907
4,989 | 1,425 | 33 | 688
711 | 15 | | 2012 | 0 | 10 | 4 388 | 2 673 | 171 | 7.549 | 127 | 924 | 15,833 | 4.846 | 1,131 | 236 | 725 | 59 | | 2014 | 0 | 11 | 4,597
5,092 | 2,795
2,783 | 195 | 7,465
7,417 | 127
85
44
37
50
28
23 | 924
921
887 | 15,833
16,058 | 5,061 | 1,286
1,175
1,139 | 236
311 | 699 | 15
12
59
56
71 | | 2015
2016 | 0 | 12
12 | 5,092
4.777 | 2,783
2,399 | 191
209 | 7,417
7,410 | 44
37 | 887
790 | 16,415
15,623 | 0 | 1,139 | 325
291 | 683
699 | /1
120 | | 2017 | 0 | 12 | 4,737 | 2.348 | 151 | 7,394 | 50 | R 852 | 15,623
R 15,532
R 15,331
R 15,639 | Ö | 1,078
1,280 | 291
305 | 716 | 126 | | 2018 | 0 | 14 | 4.744 | 2,835
2,679 | 161 | 6,819 | 28 | H 744 | R 15,331 | 0 | 1,268
1,337 | 373 | 679 | 65 | | 2019
2020 | 0 | 14
13 | 4,838
4,614 | 2,679
2,548 | 170
153 | 7,253
6,005 | 23
15 | R 676
R 800 | P 15,639
R 14,136 | 0 | 1,337
1,130 | 377
384 | 719
594 | 53
57 | | 2021 | 0 | 13 | R 4,340 | 2,602 | 208 | 6,606 | 34
35 | H 780 | R 14,569 | 0 | 1,093 | 338 | 660 | 120
126
65
53
57
R 43
34 | | 2022 | Ō | 13 | R 4,340
4,278 | 2,506 | 230 | 6,592 | 35 | 775 | 14,416 | Ō | 1,141 | 409 | 664 | 34 | | | | | | | | | | | | | | | | | a Includes supplemental gaseous fuels that are commingled with natural gas. b Beginning in 2009, includes biodiesel blended into distillate fuel oil. Beginning in 2011, includes renewable diesel blended into distillate fuel oil. Excludes biofuels product supplied. c Hydrocarbon gas liquids, include natural gas liquids and refinery olefins. d Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other petroleum." There is a discontinuity in this time series between 2009 and 2010 because of data source and methodology changes, see technical notes. Beginning in 1993, includes fuel ethanol blended into motor gasoline. f Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, petroleum coke, and the "other petroleum products" category. See Technical Notes, Section 4. ⁹ Conventional hydroelectric power. For 1960 through 1989, includes hydroelectric pumped-storage, which cannot be separately identified. h Includes denaturant, Because of differences in data sources and estimation methods, the ratio of fuel ethanol consumption and motor gasoline consumption should not be interpreted as the average ethanol blend rate. NA = Not available. Where shown, R = Revised data and (s) = Value less than 0.5. Notes: Totals may not equal sum of components due to independent rounding. The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Data Source: U.S. Energy Information Administration, State Energy Data System. See Technical Notes. Table CT2. Primary energy consumption estimates, selected years, 1960-2022, Vermont (trillion Btu) | | | | | | Fossi | fuels | | | | | | Fossil fuels
(as commingled) | | |--------------|------------|--|--|-------------------|--------------------------|--|----------------------|--------------------|----------------|----------------|--|--|---| | Year | Coal | Natural gas
excluding
supplemental
gaseous fuels ^a | Distillate
fuel
oil
excluding
biofuels ^a | HGL ^b | Jet
fuel ^c | Petroleum Motor gasoline excluding fuel ethanol a | Residual
fuel oil | Other ^d | Total | Total | Natural gas
including
supplemental
gaseous fuels ^a | Distillate
fuel oil
including
biofuels ^a | Motor
gasoline
including
fuel ethanol ^a | | 1960 | 3.5 | 0.0 | 17.2 | 1.5 | 0.4 | 17.5 | 3.0 | 6.9 | 46.6 | 50.1 | 0.0 | 17.2 | 17.5 | | 1965 | 2.7 | 0.0 | 25.0 | 1.7 | 0.4 | 19.9 | 5.7 | 6.2 | 58.9 | 61.6 | 0.0 | 25.0 | 19.9 | | 1970
1971 | 2.1
1.9 | 2.7
3.1 | 33.4
31.4 | 2.1
2.2 | 0.7
0.6 | 26.7
28.0 | 5.7
5.8 | 5.4
5.6 | 73.9
73.7 | 78.7
78.7 | 2.7
3.1 | 33.4
31.4 | 26.7
28.0 | | 1972 | 1.4 | 3.8 | 33.1 | 27 | 1.4 | 29.8 | 5.9 | 4.5 | 77.4 | 82.6 | 3.8 | 33.1 | 29.8 | | 1973 | 1.5 | 4.2 | 35.2 | 2.6
2.7 | 1.2 | 30.3
29.6 | 5.5 | 4.1 | 78.9 | 84.6 | 4.2 | 35.2 | 30.3 | | 1974
1975 | 1.5
0.7 | 4.8
4.0 | 29.5
27.0 | 2.7 | 1.1
1.0 | 29.6
29.9 | 3.3
5.0 | 3.7
2.9 | 69.9
69.0 | 76.2
73.7 | 4.8 | 29.5
27.0 | 29.6
29.9 | | 1976 | 0.6 | 3.7 | 31.9 | 3.1
3.6 | 0.8 | 31.6 | 7.9 | 3.3 | 79.0 | 83.3 | 4.0
3.7 | 31.9 | 31.6 | | 1977 | 0.7 | 4.0 | 31.2 | 3.5 | 0.8 | 32.2 | 7.2 | 3.1 | 78.0 | 82.7 | 4.0 | 31.2 | 32.2 | | 1978
1979 | 0.5
0.6 | 3.8
4.4 | 30.8
32.0 | 4.4
2.0 | 0.7
1.0 | 33.1
30.6 | 6.2
2.2 | 2.9
3.7 | 78.2
71.4 | 82.5
76.4 | 3.8
4.4 | 30.8
32.0 | 33.1
30.6 | | 1979 | 0.5 | 4.0 | 23.9 | 2.5 | 0.9 | 28.6 | 3.0 | 2.9 | 61.6 | 66.1 | 4.4 | 23.9 | 28.6 | | 1981 | 1.0 | 4.4 | 22.2 | 2.3 | 0.5 | 28.9 | 2.2 | 2.5 | 58.6 | 64.0 | 4.4 | 22.2 | 28.9 | | 1982
1983 | 1.3
1.2 | 4.3
4.3 | 15.7
20.0 | 3.2
3.2 | 0.5
0.6 | 29.0
29.3 | 2.3
2.0 | 2.4
2.8 | 53.1
57.9 | 58.7
63.4 | 4.3
4.3 | 15.7
20.0 | 29.0
29.3 | | 1984 | 1.4 | 4.8 | 23.8 | 2.5 | 1.0 | 30.6 | 2.7 | 5.2 | 65.7 | 71.9 | 4.8 | 23.8 | 30.6 | | 1985 | 2.0 | 5.0 | 26.7 | 2.5
3.0
3.3 | 1.1 | 30.5 | 0.8 | 6.4 | 68.5 | 75.4 | 4.8
5.0 | 23.8
26.7 | 30.5 | | 1986
1987 | 0.7
0.3 | 5.0
5.1 | 25.0
28.1 | 3.3 | 0.7
1.0 | 31.3
34.3 | 3.0
2.1 | 5.9
6.0 | 69.2
75.7 | 74.8
81.1 | 5.0
5.1 | 25.0
28.1 | 31.3
34.3 | | 1988 | 0.3 | 5.5 | 30.0 | 4.2
4.4 | 0.8 | 35.7 | 1.5 | 6.2 | 78.5 | 84.3 | 5.5 | 30.0 | 35.7 | | 1989 | 0.2 | 6.1 | 28.9 | 5.7
5.3 | 1.2 | 34.4 | 1.2
1.5 | 6.0 | 77.6 | 83.9 | 6.1
6.7 | 28.9 | 34.4
35.2 | | 1990
1991 | 0.2
0.3 | 6.7
7.0 | 26.6
27.7 | 5.3
6.2 | 1.0
0.9 | 35.2
35.6 | 1.5
1.7 | 2.4
5.5 | 72.0
77.6 | 78.9
84.8 | 6.7
7.0 | 26.6
27.7 | 35.2
35.6 | | 1991 | 0.5 | 7.0 | 32.2 | 7.3 | 0.9 | 36.1 | 1.7 | 4.0 | 82.0 | 90.1 | 7.0 | 32.2 | 36.1 | | 1992
1993 | 0.1 | 7.6
7.2 | 32.2
32.3 | 7.3
6.2 | 0.7 | 36.1
37.0 | 3.0 | 4.0
2.2 | 81.4 | 88.8 | 7.6
7.2 | 32.2
32.3 | 36.1
37.0 | | 1994
1995 | 0.1 | 7.3 | 31.2
31.2 | 6.3
6.3 | 0.8
0.7 | 37.3
37.5 | 1.8 | 3.2 | 80.6
80.4 | 88.0
87.8 | 7.3
7.3
7.5 | 31.2
31.2 | 37.3
37.5 | | 1995 | 0.1
(s) | 7.3
7.5 | 33.4 | 7.0 | 0.7 | 38.2 | 1.4
1.8 | 3.3
3.7 | 84.6 | 92.1 | 7.5 | 31.2
33.4 | 37.5
38.2 | | 1997 | (s)
2.7 | 8.3 | 31.1 | 5.9 | 0.6 | 39.6
39.1 | 2.0 | 7.3 | 86.5 | 97.5 | 8.3 | 31.1 | 39.6 | | 1998
1999 | 0.1
2.0 | 7.8
8.1 | 30.3 | 6.8 | 0.7 | 39.1
40.1 | 1.7 | 4.4 | 83.0
83.8 | 90.9 | 7.8 | 30.3 | 39.1 | | 2000 | | 10.5 | 31.7
30.7 | 6.2
6.7 | 0.8
0.8 | 43.7 | 1.4
1.9 | 3.7
4.2 | 88.1 | 93.9
98.6 | 8.1
10.6 | 31.7
30.7 | 40.1
43.7 | | 2001 | (s)
0.1 | 7.9 | 31.3 | 9.2
8.9 | 0.7 | 41.7 | 1.5 | 4.9 | 89.2 | 97.2 | 8.0 | 31.3 | 41.7 | | 2002 | (s) | 8.4 | 28.3 | 8.9 | 0.4 | 42.4 | 1.6 | 2.8 | 84.5 | 92.9 | 8.4 | 28.3 | 42.4 | | 2003
2004 | (s)
(s) | 8.4
8.7 | 31.5
34.1 | 7.1
7.6 | 0.4
1.8 | 43.2
43.7 | 1.8
1.9 | 3.1
6.3 | 87.1
95.3 | 95.5
104.1 | 8.5
8.7 | 31.5
34.1 | 43.2
43.7 | | 2005 | (s) | 8.4 | 30.2 | 7.6
8.5 | 2.4 | 43.5 | 1.9 | 4.1 | 90.5 | 99.0 | 8.4 | 34.1
30.2 | 43.7 | | 2006 | (s) | 8.1 | 29.5 | 8.6
8.2 | 2.1 | 43.3
42.6 | 1.6 | 3.5
4.2 | 88.7
86.8 | 96.8 | 8.1 | 29.5 | 43.6 | | 2007
2008 | (s)
0.0 | 8.9
8.7 | 28.4
25.5 | 8.2
8.6 | 1.8
1.5 | 42.6
39.0 | 1.5
1.4 | 4.2
1.3 | 86.8
77.5 | 95.7
86.1 | 8.9
8.7 | 28.4
25.5 | 43.0
40.8 | | 2009 | 0.0 | 8.7 | 27.7 | 9.3 | 2.9 | 37.9 | 1.2 | 5.4 | 84.4 | 93.1 | 8.7 | 27.8 | 40.5 | | 2010 | 0.0 | 8.5 | 26.5 | 9.0 | 0.9 | 37.5 | 1.0 | 6.5 | 81.5 | 90.0 | 8.5
8.7 | 26.6 | 39.9 | | 2011
2012 | 0.0
0.0 | 8.7
8.3 | 27.5
24.2 | 8.4
9.0 | 1.0
1.0 | 36.2
35.0 | 0.9
0.6 | 5.9
5.5 | 79.9
75.4 | 88.6
83.7 | 8.7 | 27.6
24.4 | 38.6
37.5 | | 2013 | 0.0 | 9.7 | 25.0 | 10.3 | 1.0 | 35.7
35.3 | 0.8 | 6.0 | 78.7 | 88.4 | 9.7 | 25.3 | 38 2 | | 2014 | 0.0 | 10.9 | 26.2 | 10.7 | 1.1 | 35.3 | 0.5 | 5.9 | 79.8 | 90.7 | 10.9 | 26.5 | 37.8 | | 2015
2016 | 0.0
0.0 | 12.2
12.4 | 29.0
27.0 | 10.7
9.2 | 1.1
1.2 | 35.1
35.0 | 0.3
0.2 | 5.7
R 5.1 | 81.9
77.7 | 94.1
90.1 | 12.2
12.4 | 29.3
27.5 | 37.5
37.5 | | 2017 | 0.0 | 12.3 | 26.8 | 9.0 | 0.9 | 34.9 | 0.3 | 5.5 | 77.4 | 89.7 | 12.3 | 27.3 | 37.4 | | 2018 | 0.0 | 14.2 | 26.9 | 10.9 | 0.9 | 32.1 | 0.2 | 4.8 | 75.8 | 90.0 | 14.2 | 27.3 | 34.5 | | 2019
2020 | 0.0
0.0 | 14.4
13.6 | 27.5
26.2 | 10.3
9.8 | 1.0
0.9 | 34.1
28.3 | 0.1
0.1 | 4.3
5.1 | 77.4
_ 70.4 | R 91.8
84.0 | 14.4
13.6 | 27.9
26.6 | 36.6
30.3 | | 2021 | 0.0 | 13.8 | ^R 24.9 | 10.0 | 1.2 | 31.1 | 0.2 | 5.0 | R 72.2 | R 86.0 | 13.8 | R 25.0 | 33.4 | | 2022 | 0.0 | 14.0 | 24.5 | 9.6 | 1.3 | 31.0 | 0.2 | 5.0 | 71.5 | 85.6 | 14.0 | 24.7 | 33.3 | ^a Supplemental gaseous fuels (SGF) and biofuels are consumed with natural gas and petroleum products. In this table, SGF and biofuels are removed from natural gas and petroleum so that a fossil fuel total can be calculated without double-counting. Biofuels are included in "Renewable energy." b Hydrocarbon gas liquids, include natural gas liquids and refinery olefins. ^c Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other petroleum." There is a discontinuity in this time series between 2009 and 2010 because of data source and methodology changes, see technical notes. ^d Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, petroleum coke, and the "other petroleum products" category. See Technical Notes, Section 4. Where shown, R = Revised data and (s) = Value less than +0.05 and greater than -0.05 trillion Btu. Notes: · Totals may not equal sum of components due to independent rounding. · The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Data Source: U.S. Energy Information Administration, State Energy Data System. See Technical Notes. http://www.eia.gov/state/seds/ Table CT2. Primary energy consumption estimates, selected years, 1960-2022, Vermont (continued) (trillion Btu) | Peer Power Wood and a | | | | | | | | Renewable en | ergy | | | | | | | | |--|--------------|--------------|----------------|------------------|------------|------------|------------|--------------|--------------------|------------|--------------------------------------|--------------------------------------|--------------------|-------------------------------|--|---| | Nuclear Pydro- | | | | | | Bior | mass | | | | | | | Not | | | | 1965
0.0 H 2-4 6.9 NA NA NA NA NA 6.9 0.0 NA NA H, 4 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 | Year | electric | eléctric | | | Biodiesel | | and co- | Total ^f | | Solar ^{f,j} | Wind | Total ^f | interstate
flow of | Electricity
net
imports | Total ^f | | 1970 0.0 | | | R 3.0 | 7.9 | NA | NA | | | 7.9 | | NA | | R _{_10.9} | R 5.4 | 0.2 | R 66.7 | | 1973 17.4 | | | Roz | 6.9
6.5 | | | | | | | | | H 9.4
R g 2 | H 9.7
R 21 5 | 0.1
0.2 | R 80.8
R 109.5 | | 1973 17.4 93.6 6.1 NA NA NA NA 6.1 0.0 NA NA HA H9.8 P.10.3 1975 20.2 9.2 8.6 NA | 971 | 0.0 | R 2.5 | 6.8 | NA | NA | NA | NA | 6.8 | 0.0 | NA | NA | R 9.3 | R 24.6 | 0.2 | R 112.8
R 119.6 | | 1975 39.2 H 3.2 6.6 NA NA NA NA NA NA NA N | 972 | 1.8 | H 3.2
R 3.6 | 6.2 | NA
NA | NA
NA | NA
NA | NA
NA | 6.2 | | NA
NA | NA
NA | H 9.4 | H 10 2 | 0.3
0.2 | H 119.6 | | 1975 39.2 H 3.2 6.6 NA NA NA NA NA 6.6 0.0 NA NA P1.17 H 3.77 3 | 974 | 27.7 | н 3.4 | 5.8 | NA | NA | NA | NA | 5.8 | 0.0 | NA | NA | R 9.2 | _R -1.0 | 0.3 | R 122.3
R 112.3 | | 1978 35.5 | 975 | 39.2 | R 3.2 | 6.6 | | | | | | | | NA | R 9.8 | R -12.8 | 0.3 | H 110 2 | | 1978 35.5 | 976 | 36.0 | R 3.7 | 8.0
9.4 | NA
NA | NA
NA | NA
NA | NA
NA | 8.0
9.4 | 0.0 | NA
NA | NA
NA | R 12.6 | R -7.6 | 0.2
0.3 | R 127.5
R 126.2 | | 986 21.8 | 978 | 35.5 | H 3.0 | 11.4 | NA | NA | NA | NA | 11.4 | | NA | NA | n 14 4 | R -2.1 | 0.4 | H 130.6 | | 986 21.8 | 979 | 37.5
32.5 | R 3.2 | 12.7 | | | | | | | | NA
NA | n 15.9
R 17.2 | n -2.6
R 5 1 | 0.5
0.6 | R 127.7
R 121.6 | | 1986 | 981 | 39.4 | н 3.4 | 14.3 | 0.0 | NA | NA | 0.0 | 14.3 | 0.0 | NA | NA | R 17.8 | R -4.9 | 0.6 | R 121.6
R 116.9 | | 986 21.8 | 982 | | H 2.9 | | | | | | | | | NA
0.0 | H 16 7 | H -11.7 | 0.7
0.7 | R 110.6
R 118.4 | | 1986 | 984 | 36.2 | R 3.2 | 16.1 | | NA | NA | | 16.1 | | 0.0 | 0.0 | R 19.4 | R -0.2 | 0.7 | R 128.1
R 130.5 | | 1986 | 985 | | R 3.1 | 17.3 | | | | | 17.3 | | 0.0 | 0.0 | H 20 4 | R 1.7 | 1.1 | R 130.5 | | 1988 | 986
987 | | нз4 | 13.0
12.8 | | | | | 13.0
12.8 | | | 0.0 | H 16.5 | n -8.0 | 5.7
7.8 | R 124.4
R 134.0 | | 2001 | 988 | 43.6 | Ran | 12.6 | 0.0 | NA | NA | 0.0 | 12.6 | 0.0 | 0.0 | 0.0 | H 15 6 | R _{-11.8} | 9.6 | R 141.4
R 138.9 | | 2001 | 989
aan | 38.2
38.3 | R 3.6 | 9.1
5.3 | | NA
NA | | | 9.1
5.3 | | | 0.0 | n 12.7
Raa | R -12.5 | 6.7
5.8 | ⁿ 138.9
R 120.2 | | 2001 | 991 | 43.1 | H 3.6 | 6.3 | 0.0 | NA | NA | 0.0 | 6.3 | 0.0 | (s) | 0.0 | R 9.9 | R -15.3 | 5.8 | R 120.2
R 128.4 | | 2001 | 992 | | H 3.1 | 6.5 | | | | | 6.5 | | | 0.0 | H 9.6 | H -11.2 | 7.1
8.9 | R 134.6 | | 2001 | 993 | 35.4
45.1 | нзь | 8.3 | 0.0 | NA
NA | NA
NA | | 8.3 | 0.0 | | 0.0 | R 11.9 | R -23.0 | 10.4 | R 132.3
R 132.3
R 130.0
R 135.6
R 141.5 | | 2001 | 995 | 40.5 | н з.з | 9.1 | | NA | NA | | 9.1 | | | 0.0 | H 12.5 | R -24.3 | 13.5 | R 130.0 | | 2001 | 996 | 39.9
44.8 | Hae | 9.1
9.0 | 0.0 | NA
NA | | | 9.1
9.0 | 0.0 | | 0.0 | R 12.7 | R -27.1 | 12.0
13.6 | R 141.5 | | 2001 | 998 | 35.2 | H 4 1 | 8.1 | 0.0 | NA | NA | 0.0 | 8.1 | 0.0 | (s) | 0.0 | H 12 2 | R -19.6 | 13.2 | n 131 9 | | 2001 | 999 | 42.4
47.4 | H 4.1
R 4.2 | 8.4 | | NA
NA | | | 8.4 | (s) | (s) | H (s)
R (s) | H 12.6
R 13.0 | H -43.7
R -29.0 | 26.2
13.4 | R 131.4
R 143.5 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2001 | 43.6 | R 3 0 | 8.0 | | | | | 8.0 | (s) | | R (s) | R 11 1 | R -17.7 | 10.2 | R 144.4 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2002 | 41.4 | H 3.8 | 11.2 | 0.0 | (s) | | | 11.2 | (s) | | R (s) | H 15.1 | R -13.9 | 8.3
6.5 | H 143 8 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2003 | 46.3 | R 4.1 | | 0.0 | (S)
(S) | | | 12.2 | (S) | (S)
(S) | R (s) | R 14.1 | R -9.1 | 6.6 | R 146.6
R 156.0 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2005 | 42.5 | H 4 1 | 12.0 | 0.2 | (s) | NA | 0.0 | 12.2 | (s) | | R (s) | H 16 / | R -10.6 | 7.2 | R 154.5
R 151.2
R 151.6 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2006 | 53.3
49.3 | R 5.2 | 12.4
12.1 | 0.2 | (s) | NA
NA | | 12.6
12.5 | (s) | (2) | n (s)
R (s) | H 1// R | n -25.1
R -16.6 | 8.3
8.5 | ^D 151.2
R 151.6 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2008 | 51.2 | R 5 1 | 12.1 | 1.8 | (s) | NA | 0.0 | 13.9 | (s) | 0.1 | R (s) | P 19.1 | R -24.9 | 8.5 | H 140.1 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2009 | 56.1 | H 5.1 | 16.8 | 2.6 | | | | 19.5 | (s) | 0.1 | H (s) | H 24.7 | H -31.6 | 8.7
8.3 | R 151.0
R 150.0 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2011 | 51.4 | R49 | 16.2 | 2.4 | | 0.0 | | 18.7 | | Ro1 | R 0.1 | H 23.8 | R -26.6 | 8.6 | H 145 7 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2012 | 52.3 | нза | 14 0 | 2.5 | 0.1 | 0.0 | 0.0 | 16.6 | (s) | R 0.2 | R 0.4 | R 21 0 | R -69.4 | 39.2
40.1 | R 126 8 | | 2015 00 B00 B040 04 04 00 00 B070 6 B04 B14 B005 B070 | 2013
2014 | 50.6
52.9 | R 4.4 | 18.3
18.0 | 2.5
2.4 | 0.3 | 0.0 | | 21.1
20.8 | (S) | R 0.2 | ⁿ 0.8
R 1 1 | R 26.6 | n -/1.3
R -70.5 | 40.1
38.1 | R 134.3
R 137.3 | | 2016 0.0 H3.7 H21.8 2.4 0.6 0.0 0.0 H24.9 (s) H0.6 H1.0 H30.2 H-20.0 3
2017 0.0 H3.4 H21.3 2.5 0.7 0.0 0.0 H24.5 (s) H0.8 H1.0 H30.8 H-26.1 3 | 2015 | 0.0 | H39 | R 24.3 | 2.4 | 0.4 | 0.0 | 0.0 | R 27 0 | (s) | R 0.4 | R 1 1 | R 32 5 | R -27.0 | 36.8 | R 137.3
R 136.5 | | - 2017 0.0 GH.H G21.0 2.0 0.7 0.0 0.0 G24.0 (5) G0.0 G1.0 G30.0 G-20.1 0 | 2016 | | H 3.7
H 4 4 | H 21.8
R 21.2 | 2.4 | 0.6 | 0.0 | | H 24.9
B 24.5 | (s) | H 0.6 | H 1.0
R 1.0 | H 30.2
R 30.9 | H -20.0
R -26.1 | 30.6
35.3 | R 130.8
R 129.5 | | 2018 0.0 R4.3 R24.6 2.4 0.4 0.0 0.0 R27.3 (s) R0.9 R1.3 R33.8 R-23.6 3 | | 0.0 | H 4.3 | H 24.6 | 2.5 | 0.7 | 0.0 | 0.0 | H 27.3 | (S)
(S) | Rna | H13 | H 33.8 | R -23.6 | 35.3 | H 133 4 | | 2019 0.0 R4.6 R23.2 2.5 0.3 0.0 0.0 R26.0 (s) R1.1 R1.3 R33.0 R-40.1 2 2020 0.0 R3.9 R18.5 2.1 0.3 0.0 0.0 R20.9 (s) R1.3 R1.3 R27.4 R-40.0 2 | 019 | 0.0 | R 4 6 | R 23 2 | 2.5 | 0.3 | 0.0 | 0.0 | R 26.0 | (s) | R 1 1 | H 1 2 | R 33 0 | R -40.1 | 48.2 | H 132 Q | | 2019 0.0 R3.9 R18.5 2.1 0.3 0.0 0.0 R20.9 (s) R1.3 R1.3 R27.4 R-40.0 2 2021 0.0 R3.7 R19.3 2.3 0.2 0.0 0.0 R21.8 (s) R1.3 R1.2 R28.1 R-39.4 | 2020
2021 | | R 3.9 | 18.5
R 19.3 | 2.1
2.3 | 0.3 | 0.0
0.0 | | 1120.9
R 21.8 | | ⁿ 1.3
R _{1.3} | ⁿ 1.3
R _{1.2} | R 27.4 | ''-40.0
R _{-39.4} | 48.0
47.4 | R 119.3
R 122.1 | | 2022 0.0 3.9 21.3 2.3 0.2 0.0 0.0 23.8 (s) 1.5 1.4 30.6 -38.2 | 2022 | | | 21.3 | 2.3 | 0.2 | | | 23.8 | (s) | 1.5 | | | -38.2 | 46.8 | 124.8 | e Conventional hydroelectric power. For 1960 through 1989, includes hydroelectric pumped-storage, which cannot be separately identified. f There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. 9 Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. h Excludes denaturant. Because of differences in data sources and estimation methods, the ratio of fuel ethanol consumption and motor gasoline consumption should not be interpreted as the average ethanol blend rate. Pre-2005 estimates are not comparable to those for later years. See Section 5 of Technical Notes. Losses and co-products from the production of biodiesel and fuel ethanol. Solar thermal and photovoltaic energy. k Includes the energy losses associated with the generation, transmission, and distribution of the electricity flowing across state lines. A positive number indicates that more electricity came into the state than went out of the state during the year. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. | Electricity traded with Canada and Mexico. Calculated by converting net imports in kilowatthours by 3,412 Btu per kilowatthour. NA = Not available. NA = Not available. Where shown, R = Revised data and (s) = Value less than +0.05 and greater than -0.05 trillion Btu. Notes: Totals may not equal sum of components due to independent rounding. The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Data Source: U.S. Energy Information Administration, State Energy Data System. See Technical Notes. http://www.eia.gov/state/seds/ Table CT3. Total end-use sector energy consumption estimates, selected years, 1960-2022, Vermont | | | | | | | Petroleum | | | | Bion | nass | | | | | | | | |--------------|---------------------|-----------------------------|-------------------------------------|------------------|--------------------------|--------------------------------|----------------------|-------------------------|--------------------|--|-------------------------------------|---------------------------------|------------------------------|----------------------|-------------------------------|--------------------|---|---| | | Coal | Natural
gas ^a | Distillate
fuel oil ^b | HGL [©] | Jet
fuel ^d | Motor
gasoline ^e | Residual
fuel oil | Other ^f | Total | Hydro-
electric
power ^{g,h} | | | | | Electricity | | Electrical | | | Year | Thousand short tons | Billion
cubic feet | | | 1 | Thousand barrels | 3 | | | Million
kilowatt-
hours | Wood
and
waste ^{h,i} | Losses
and co-
products j | Geo-
thermal ^h | Solar ^{h,k} | Million
kilowatt-
hours | End use h,m | system
energy
losses ⁿ | Total h,m | | 1960 | 118 | 0 | 2,949 | 404 | 82 |
3,332 | 477 | 1,178 | 8,421 | 64 | | | | | 875 | | | | | 1970 | 32 | 3 | 5,474 | 542 | 121 | 5,077 | 882 | 898 | 12,994 | 62 | | | | | 2,612 | | | | | 1980
1990 | 13
8 | 4
6 | 4,050
4,558 | 666
1,401 | 137
180 | 5,437
6,696 | 471
237 | 506
419 | 11,267
13,491 | 70
17 | | | | | 3,951
4,716 | | | | | 2000 | 0 | 9 | 5,116 | 1,769 | 144 | 8,394 | 309 | 721 | 16,454 | 20 | | | | | 5,639 | | | | | 2005 | 1 | 8 | 5,181 | 2,234 | 423 | 8,408 | 300 | 693 | 17,239 | 21 | | | | | 5,883 | | | | | 2006 | 1 | 8 | 5,077 | 2,288 | 376 | 8,406 | 260 | 591 | 16,998 | 22 | | | | | 5,795 | | | | | 2007 | 1 | 9 | 4,909 | 2,152 | 317 | 8,354 | 238 | 689 | 16,659 | 2 | | | | | 5,864 | | | | | 2008
2009 | 0 | 9 | 4,414
4,804 | 2,263
2,423 | 266
512 | 7,987
7,964 | 226
194 | 227
854 | 15,383
16,751 | 21
25 | | | | | 5,741
5,497 | | | | | 2010 | 0 | 8 | 4,602 | 2,353 | 161 | 7,866 | 157 | 1,015 | 16,153 | 25 | | | | | 5,595 | | | | | 2011 | 0 | 9 | 4,785 | 2,191 | 183 | 7,618 | 149 | 912 | 15,838 | 24 | | | | | 5,550 | | | | | 2012 | 0 | 8 | 4,225 | 2,353 | 185 | 7,409 | 93 | 844 | 15,108 | 23 | | | | | 5,511 | | | | | 2013 | 0 | 10 | 4,380 | 2,673 | 171 | 7,549 | 127 | 924 | 15,825 | 0 | | | | | 5,588 | | | | | 2014 | 0 | 11 | 4,589 | 2,795 | 195 | 7,465 | 85 | 921 | 16,051 | 0 | | | | | 5,570 | | | | | 2015
2016 | 0 | 12
12 | 5,087
4,769 | 2,783
2,399 | 191
209 | 7,417
7,410 | 44
37 | 887
790 | 16,410
15,615 | 0 | | | | | 5,521
5,516 | | | | | 2017 | 0 | 12 | 4,722 | 2,348 | 151 | 7,394 | 50 | R 852 | R 15.517 | 0 | | | | | 5,424 | | | | | 2018 | 0 | 14 | 4,736 | 2,835 | 161 | 6,819 | 28 | R 744 | R 15.324 | 0 | | | | | 5,531 | | | | | 2019 | 0 | 14 | 4,835 | 2,679 | 170 | 7,253 | 23 | R 676 | R 15,636 | 0 | | | | | 5,428 | | | | | 2020 | 0 | 13 | 4,610 | 2,548 | 153 | 6,005 | 15 | R 800 | R 14,131 | 0 | | | | | 5,331 | | | | | 2021
2022 | 0 | 13
13 | R 4,334
4,267 | 2,602
2,506 | 208
230 | 6,606
6,592 | 34
35 | ^R 780
775 | R 14,563
14,405 | 0 | | | | | 5,413
5,470 | | | | | 2022 | - | 10 | 4,207 | 2,300 | 230 | 0,332 | | 773 | Trillion | | | | | | 3,470 | D | D | | | 1960 | 3.0 | 0.0
2.7 | 17.2
31.9 | 1.5
2.1 | 0.4
0.7 | 17.5
26.7 | 3.0
5.5 | 6.9
5.4 | 46.6
72.2 | R _{0.2}
R _{0.2} | 7.9
6.5 | | NA
NA | NA
NA | 3.0
8.9 | | ^R 6.0
^R 18.3 | ^R 66.7
^R 109.5 | | 1970
1980 | 0.8
0.3 | 3.7 | 23.6 | 2.1 | 0.7 | 28.6 | 3.0 | 2.9 | 61.3 | R 0.2 | 13.9 | | NA
NA | NA
NA | 13.5 | | R 28.7 | R 121.6 | | 1990 | 0.2 | 6.0 | 26.6 | 5.3 | 1.0 | 35.2 | 1.5 | 2.4 | 72.0 | R 0.1 | 4.3 | | 0.0 | (s) | 16.1 | R 98.6 | R 21.6 | R 120.2 | | 2000 | (s) | 9.5 | 29.8 | 6.7 | 0.8 | 43.7 | 1.9 | 4.2 | 87.1 | R 0.1 | 4.9 | 0.0 | (s) | (s) | 19.2 | R 120.9 | R 22.6 | R 143.5 | | 2005 | (s) | 8.4 | 30.1 | 8.5 | 2.4 | 43.7 | 1.9 | 4.1 | 90.6 | R 0.1 | 6.8 | | (s) | (s) | 20.1 | R 126.0 | R 28.6 | R 154.5 | | 2006 | (s) | 8.0 | 29.5 | 8.6 | 2.1 | 43.6 | 1.6 | 3.5 | 88.9 | R 0.1 | 6.5 | | (s) | R (s) | 19.8 | | R 27.7
R 29.5 | R 151.2
R 151.6 | | 2007
2008 | (s)
0.0 | 8.8
8.6 | 28.4
25.5 | 8.2
8.6 | 1.8
1.5 | 43.0
40.8 | 1.5
1.4 | 4.2
1.3 | 87.0
79.2 | (s)
R 0.1 | 6.0
6.5 | | (s)
(s) | 0.1 | 20.0
19.6 | | R 26.0 | R 140.1 | | 2009 | 0.0 | 8.6 | 27.8 | 9.3 | 2.9 | 40.5 | 1.4 | 5.4 | 87.1 | R 0.1 | 11.2 | | | 0.1 | 18.8 | R 125 8 | | R 151.1 | | 2010 | 0.0 | 8.4 | 26.6 | 9.0 | 0.9 | 39.9 | 1.0 | 6.5 | 83.9 | R _{0.1} | 12.5 | | | 0.1 | 19.1 | R 124.1 | R 25.9 | R 150.0 | | 2011 | 0.0 | 8.6 | 27.6 | 8.4 | 1.0 | 38.6 | 0.9 | 5.9 | 82.4 | R 0.1 | 10.6 | | (s) | R _{0.1} | 18.9 | H 120 Q | R 25.0 | R 145.8 | | 2012 | 0.0 | 8.3 | 24.4 | 9.0 | 1.0 | 37.5 | 0.6 | 5.5 | 78.0 | R 0.1 | 9.1 | 0.0 | | R 0.1 | 18.8 | R 114.4 | R 125 | R 126.9 | | 2013
2014 | 0.0 | 9.7
10.8 | 25.2
26.4 | 10.3 | 1.0 | 38.2
37.8 | 0.8
0.5 | 6.0
5.9 | 81.5
82.5 | 0.0 | 11.5 | | | R 0.2
R 0.2 | 19.1
19.0 | R 121.9
R 124.2 | R 12.4
R 13.1 | R 134.4
R 137.3 | | 2014 | 0.0 | 10.8 | 26.4 | 10.7
10.7 | 1.1 | 37.8
37.5 | 0.5 | 5.9
5.7 | 82.5
84.6 | 0.0 | 11.7
R 17.8 | 0.0 | (s)
(s) | R 0.3 | 19.0
18.8 | | | R 136.5 | | 2016 | 0.0 | 12.4 | 27.5 | 9.2 | 1.2 | 37.5 | 0.3 | R 5.1 | 80.6 | 0.0 | R 15.2 | 0.0 | | R 0.3 | 18.8 | | R 3.3 | R 130.7 | | 2017 | 0.0 | 12.3 | 27.2 | 9.0 | 0.9 | 37.4 | 0.3 | 5.5 | 80.2 | 0.0 | R 15.2 | 0.0 | (s) | R 0.5 | 18.5 | R 126.7 | R 2.6 | R 129.3 | | 2018 | 0.0 | 14.2 | 27.3 | 10.9 | 0.9 | 34.5 | 0.2 | 4.8 | 78.5 | 0.0 | R 18.5 | 0.0 | (s) | R 0.5 | 18.9 | R 130.7 | R 2.8 | R 133.4 | | 2019 | 0.0 | 14.4 | 27.8 | 10.3 | 1.0 | 36.6 | 0.1 | 4.3 | 80.2 | 0.0 | R 17.3 | | | R 0.6 | 18.5 | | R 1.9 | R 132.9 | | 2020
2021 | 0.0 | 13.6
13.8 | 26.5
R 25.0 | 9.8
10.0 | 0.9
1.2 | 30.3
33.4 | 0.1
0.2 | 5.1
5.0 | R 72.8
R 74.7 | 0.0 | R 12.1
R 12.2 | 0.0 | (s)
(s) | R 0.7
R 0.7 | 18.2
18.5 | | R 2.0
R 2.2 | R 119.3
R 122.1 | | | | | 25.0 | | | | 0.2 | | | | | | | 0.8 | | | | 124.8 | | 2022 | 0.0 | 14.0 | 24.6 | 9.6 | 1.3 | 33.3 | 0.2 | 5.0 | 74.0 | 0.0 | 15.3 | 0.0 | (s) | 0.8 | 18.7 | 122.9 | 2.0 | | ^a Includes supplemental gaseous fuels that are commingled with natural gas. b Beginning in 2009, includes biodiesel blended into distillate fuel oil. Beginning in 2011, includes renewable diesel blended into distillate fuel oil. Excludes biofuels product supplied. ^C Hydrocarbon gas liquids, include natural gas liquids and refinery olefins. d Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other petroleum." e Beginning in 1993, includes fuel ethanol blended into motor gasoline. f Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, petroleum coke, and the "other petroleum products" category. See Technical Notes, Section 4. g Conventional hydroelectric power. For 1960 through 1989, includes hydroelectric pumped-storage, which cannot be separately identified. h There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste J Losses and co-products from the production of biodiesel and fuel ethanol. k Solar thermal and photovoltaic energy. ¹ Electricity sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service providers. ^m Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in End Use and Total. For 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. Beginning in 2009, includes a small amount of wind energy consumed by the commercial and industrial sectors. Beginning in 2021, adjusted for the double-counting of biofuels product supplied. n Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. — = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Total end-use sector consumption estimates are the sum of the consumption estimates for the residential, commercial, industrial, and transportation sectors. Totals may not equal sum of components due to independent rounding. The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Data Source: U.S. Energy Information Administration, State Energy Data System. See Technical Notes. http://www.eia.gov/state/seds/ Table CT4. Residential sector energy consumption estimates, selected years, 1960-2022, Vermont | | | | | Petro | oleum | | Biomass | | | | | | | |----------------------|---------------------|-----------------------------|------------------------|-------------------|-------------------|-------------------------|------------------------------------|---------------------------------|-----------------------|---|--------------------------|---|--| | | Coal ^a | Natural
gas ^b | Distillate
fuel oil | HGL ^c | Kerosene | Total | | | | Electricity ⁹ | | Electrical
system | | | Year | Thousand short tons | Billion
cubic feet | | Thousar | nd barrels | | Wood d | Geothermal ^e | Solar ^{e,f} | Million
kilowatthours | End use e,h | energy
losses i | Total ^{e,h} | | 1960 | 45 | 0 | 2.044 | 208 | 701 | 2,953 | | | | 451 | | | | | 1965
1970 | 45
27 | Ö | 2,044
3,110 | 208
255
287 | 649 | 4,014
4,596 | | | | 678 | | | | | 1970 | 16 | 1 | 3,873 | 287 | 436 | 4,596 | | | | 1,216 | | | | | 1975
1980
1985 | 5 | 1 | 3,101 | 447 | 235
230
514 | 3,783
2,688
3,481 | | | | 1,427 | | | | | 1980 | 2
10 | - 1 | 2,171
2,482 | 287
484 | 230 | 2,688 | | | | 1,781
1,538 | | | | | 1990 | 10 | 2 | 2,402 | 894 | 103 | 3,401 | | | | 1,336 | | | | | 1995 | (s) | 2 | 2,293
2,321 | 985 | 193
180 | 3,380
3,487 | | | | 1,809
1,973 | | | | | 2000 | (s) | 3 | 2 450 | 1.059 | 326 | 3.836 |
 | | 2.037 | | | | | 2005
2006 | (s) | 3 | 2,257
2,119 | 1,456
1,354 | 381
355
248 | 4,094
3,828 | | | | 2,189
2,142 | | | | | 2006 | (s) | 3 | 2,119 | 1,354 | 355 | 3,828 | | | | 2,142 | | | | | 2007 | (s) | 3 | 2,157 | 1,286 | 248 | 3,691 | | | | 2,170 | | | | | 2008
2009 | 0 | 3 | 1,869 | 1,291 | 109
168
150 | 3,269
3,752
3,366 | | | | 2,133
2,122 | | | | | 2010 | 0 | 3 | 2,022
1,675 | 1,561
1,541 | 150 | 3,752 | | | | 2,128 | | | | | 2011 | ŏ | 3 | 1,769 | 1,289 | 104 | 3.162 | | | | 2,125 | | | | | 2012 | Ö | 3 | 1,428 | 1,308 | 104
51 | 3,162
2,788 | | | | 2,125
2,095 | | | | | 2013 | 0 | 3 | 1,622 | 1,568 | 50 | 3 240 | | | | 2.125 | | | | | 2014
2015 | 0 | 4 | 1,767
1,885 | 1,660
1,609 | 79
65 | 3,507
3,559 | | | | 2,121 | | | | | 2015 | 0 | 4 | 1,885 | 1,609 | 65 | 3,559 | | | | 2,089 | | | | | 2016
2017 | 0 | 4 | 1,738
1,784 | 1,447
1,673 | 86
60
58 | 3,271
3,518 | | | | 2,056
2,023 | | | | | 2017 | 0 | 4 | 1,831 | 1,849 | 58 | 3,738 | | | | 2,116 | | | | | 2019 | Ö | 4 | 1.996 | 1.839 | 67 | 3.902 | | | | 2.082 | | | | | 2020 | 0 | 4 | 1,870 | 1,576 | 72 | 3,518 | | | | 2,157 | | | | | 2021 | 0 | 4 | 1,677 | 1,692 | 60 | 3,429 | | | | 2,174 | | | | | 2022 | 0 | 4 | 1,668 | 1,545 | 53 | 3,267 | | | | 2,187 | | | | | | | | | | | | Trillion Btu | | | | | | | | 1960 | 1.1 | 0.0 | 11.9 | 0.8 | 4.0 | 16.7 | 3.5
2.7
2.1
2.5 | NA | NA | 1.5 | 22.8 | R 3.1
R 4.6 | R 25.9
R 33.0
R 42.3
R 39.6 | | 1965
1970 | 0.7 | 0.0 | 18.1 | 1.0 | 3.7 | 22.8 | 2.7 | NA | NA | 2.3
4.1 | 28.5 | R 4.6 | R 33.0 | | 1970 | 0.4 | 1.1 | 22.6 | 1.1 | 2.5
1.3 | 26.1 | 2.1 | NA | NA | 4.1 | 33.8 | R 8.5 | n 42.3 | | 1975
1980 | 0.1
0.1 | 1.1 | 18.1
12.6 | 1.7 | 1.3
1.3 | 21.1
15.1 | 2.5 | NA
NA | NA
NA | 4.9
6.1 | 29.7
26.8 | R 9.9 | H 39.6 | | 1985 | 0.1 | 1.3
1.4 | 14.5 | 1.1
1.9 | 2.9 | 10.1 | 4.3
3.1 | NA
NA | NA
NA | 5.2 | 29.3 | R 12.9
R 10.7
R 8.3
R 7.5
R 8.2
R 10.6 | R 39.7 | | 1985
1990
1995 | (s) | 21 | 13.4 | 3.4 | 1.1 | 19.2
17.9 | 2.0 | 0.0 | | 6.2 | 28.2 | R 8 3 | R 36.5 | | 1995 | (s) | 2.1
2.3 | 13.5 | 3.8 | 1.0 | 18.3 | 2.2 | 0.0 | (s)
(s) | 6.7 | 29.5 | R 7.5 | R 37.0 | | 2000 | (s) | 2.9 | 14.3 | 4.1 | 1.8 | 20.2 | 1.6 | (s)
(s)
(s)
(s) | (s) | 6.7
7.0
7.5
7.3
7.4
7.3
7.2
7.3
7.2
7.1
7.3 | 31.6 | _R 8.2 | R 39.8 | | 2005 | (s) | 3.1 | 13.1 | 5.6 | 2.2 | 20.9 | 3.9 | (s) | (s) | 7.5 | 35.4 | H 10.6 | H 46.0 | | 2006
2007 | (s) | 2.9
3.2 | 12.3
12.5 | 5.2 | 2.0 | 19.5 | 3.5
3.8
4.3 | (s) | (s) | 7.3 | 33.2 | R 10.3
R 10.9
R 9.7 | H 43.5 | | 2007 | (s)
0.0 | 3.2 | 12.5 | 4.9
5.0 | 1.4
0.6 | 18.8
16.4 | 3.8 | (S) | 0.1 | 7.4 | 33.3
31.1 | '' 10.9
B o 7 | H 44.3 | | 2008 | 0.0 | 3.1
3.2 | 10.8
11.7 | 6.0 | 1.0 | 18.6 | 4.3
8.5 | (8) | 0.1
0.1 | 7.3 | 37.7 | R 9.7 | 40.6
R 47.5 | | 2010 | 0.0 | 3.1 | 9.7 | 5.9 | 0.9 | 16.4 | 9.2 | (s)
(s)
(s) | 0.1 | 7.2 | 36.1 | Rag | R 45.9 | | 2011 | 0.0 | 3.2 | 10.2 | 5.0 | 0.6 | 15.7 | 8.9 | (s) | | 7.2 | 36.1
R 35.2
R 31.3 | R 9.6
R 4.8 | R 44.8 | | 2012 | 0.0 | 3.2
3.0
3.5 | 8.2
9.3 | 5.0 | 0.3 | 13.6 | 8.9
7.4
9.7 | (s)
(s)
(s) | 0.1
P 0.1 | 7.1 | R 31.3 | R 4.8 | R 36.1 | | 2013 | 0.0 | 3.5 | 9.3 | 6.0 | 0.3 | 15.7 | 9.7 | (s) | R 0.1 | 7.3 | н 36 2 | R 4.7
P 5.0 | H 41.0 | | 2014 | 0.0 | 3.9 | 10.2 | 6.4 | 0.4 | 17.0 | 9.8
R 14.9
R 12.4 | (s) | R 0.2 | 7.2 | R 38.1 | H 5.0 | H 43.1 | | 2015 | 0.0 | 3.9
3.6 | 10.9 | 6.2 | 0.4 | 17.4
16.0 | n 14.9 | (s) | R 0.2
R 0.3 | 7.1
7.0 | 43.6
B 20.4 | R 1.0
R 1.2 | R 44.7 | | 2016
2017 | 0.0
0.0 | 3.6 | 10.0
10.3 | 5.6
6.4 | 0.5
0.3 | 16.0
17.0 | n 12 5 | (s)
(s)
(s)
(s)
(s) | R 0.3 | 7.0
6.9 | 43.6
R 39.4
R 40.4 | R 1.2 | R 39,7
R 39,9
R 36,5
R 37.0
R 39,8
R 46,0
R 43,3
R 40,8
R 47,5
R 45,9
R 44,8
R 36,1
R 41,0
R 43,1
R 44,7
R 44,7 | | 2018 | 0.0 | 4.2 | 10.5 | 7.1 | 0.3 | 18.0 | R 15 8 | (s) | R ₀₄ | 7.2 | H 45 6 | R 1.1 | R 46.7 | | 2018
2019 | 0.0 | 4.2
4.3 | 11.5 | 7.1 | 0.4 | 18.9 | R 14.8 | (s) | Ro4 | 7.2
7.1 | R 45 6 | R 0.7 | R 46.7
R 46.3 | | 2020 | 0.0 | 4.0 | 10.8 | 6.1 | 0.4 | 17.2
16.5 | R 15.8
R 14.8
R 9.6
R 9.6 | (s) | R 0.5 | 7.4 | R 38.6
R 38.0 | R 0.8 | R 39.4
R 38.9 | | 2021
2022 | 0.0
0.0 | 3.9
4.1 | 9.7 | 6.5 | 0.3 | 16.5 | H 9.6 | (s)
(s)
(s) | R 0.5
R 0.5
0.5 | 7.4
7.4
7.5 | H 38.0 | R 0.9
0.8 | R 38.9
41.4 | | | | 4.1 | 9.6 | 5.9 | 0.3 | 15.9 | 12.6 | | | | 40.6 | | | a Beginning in 2008, data are no longer collected and are assumed to be zero. b Includes supplemental gaseous fuels that are commingled with natural gas. ^c Hydrocarbon gas liquids, assumed to be propane only. d Wood and wood-derived fuels. There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. Solar thermal and photovoltaic energy. Includes solar thermal energy consumed as heat by the commercial and industrial g Electricity sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service providers. h Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in End Use and Total. i Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. —— = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: • Totals may not equal sum of components due to independent rounding. • The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Data Source: U.S. Energy Information Administration, State Energy Data System. See Technical Notes. http://www.eia.gov/state/seds/ Table CT5. Commercial sector energy consumption estimates, selected years, 1960-2022, Vermont | | | | | | Pet | roleum | | | | Biomass | | | | | | | |----------------------|--------------------------|-----------------------------|---------------------|-------------------|----------------|--------------------------------|----------------------|------------------|--|-------------------------------------|-------------------------|----------------------|--------------------------|------------------------|---|----------------------------| | | Coal | Natural
gas ^a | Distillate fuel oil | HGL ^b | Kerosene | Motor
gasoline ^c | Residual
fuel oil | Total d | Hydro-
electric
power ^{e,f} | | | Solar ^{f,h} | Electricity ⁱ | | Electrical | | | Year | Thousand short tons | Billion
cubic feet | | | Thousa | and barrels | | | Million
kilowatthours | Wood
and
waste ^{f,g} | Geothermal ^f | Mill
kilowat | | End use ^{f,j} | system
energy
losses ^k | Total ^{f,j} | | 1960 | 31 | 0 | 418 | 96 | 43 | 127 | 225 | 909 | NA | | | NA | 233 | | | | | 1965
1970 | 21
13 | 0 | 636
792 | 117
132 | 40
27 | 24
25 | 225
422
414 | 1,239
1,390 | NA
NA | | | NA
NA | 303
609 | | | | | 1975 | 11 | i | 634
620 | 206 | 15 | 30
33 | 373
237 | 1,257
1,065 | NA | | | NA | 709 | | | | | 1980
1985 | 9
36 | 1 2 | 620
591 | 206
132
223 | 44
36 | 33
40 | 237
24 | 1,065
914 | NA
NA | | | NA
NA | 923
959 | | | | | 1990 | 6 | 2 | 669 | 411 | 12 | 41 | 119 | 1.253 | 0 | | | (s) | 1,526 | | | | | 1995 | 3 | 3 | 692 | 453 | 14 | 7 | 71 | 1,236 | 0 | | | (s) | 1,647 | | | | | 2000
2005 | 1 | 3 | 1,040
858 | 487
511 | 23
31
26 | 7 | 101
145 | 1,659
1,552 | 0 | | | (s)
(s) | 1,956
2,051 | | | | | 2006 | | 2 | 858
812 | 516 | 26 | 7 | 145
130 | 1,552
1,491 | Ō | | | (s) | 2,027 | | | | | 2007
2008 | 1 | 3 | 766
561 | 642
778 | 27
6 | 7 | 87
109 | 1,529
1,461 | 0 | | | (s)
(s) | 2,059
2,043 | | | | | 2009 | Ö | 2 | 701 | 766 | 14 | 7 | 89 | 1,576 | ő | | | (s) | 1,991 | | | | | 2010
2011 | 0 | 2 2 | 668
647 | 736
826 | 8 | 7 | 59
53
36 | 1,477
1,541 | 0 | | | (s) | 2,021
2,009 | | | | | 2011 | 0 | 2 | 527 | 971 | 3 | 7 | 36 | 1,541
1,544 | 0 | | | 4 | 2,009
1,994 | | | | | 2013 | 0 | 5 | 567 | 996 | 3 | 7 | 37
24 | 1,610 | 0 | | | 5 | 2,017 | | | | | 2014
2015 | 0 | 5
6 | 619
826 | 1,045
1,094 | 6
5 | 131 | 24
17 | 1,701
2,073 | 0 | | | 8
18 | 2,031
2,011 | | |
 | | 2016 | ŏ | 6 | 576
555 | 896 | 6 | 133 | 19 | 1,629 | ŏ | | | 24 | 2,014 | | | | | 2017
2018 | 0 | 6
7 | 555
548 | 548
907 | 4 | 135
140 | 27
11 | 1,269
1,609 | 0 | | | 40
47 | 1,977
2,004 | | | | | 2019 | 0 | 7 | 558 | 796 | 6 | 141 | 6 | 1,507 | 0 | | | 57 | 1,934 | | | | | 2020 | 0 | 7 | 525 | 905 | 7 | 141 | .8 | 1,587
R 1,601 | 0 | | | 66 | 1,806 | | | | | 2021
2022 | 0 | 7
7 | 582
572 | 858
910 | 4 | 143
147 | 15
15 | 1,647 | 0 | | | 70
79 | 1,867
1,916 | | | | | | | | | | | | | Tril | lion Btu | | | | , | | | | | 1960 | 0.8 | 0.0 | 2.4
3.7 | 0.4 | 0.2 | 0.7 | 1.4 | 5.1
7.2 | NA | 0.1 | NA | NA | 0.8 | 6.8 | R 1.6 | R 8.4 | | 1960
1965
1970 | 0.8
0.5
0.3
0.2 | 0.0
0.6 | 3.7
4.6 | 0.4
0.5 | 0.2
0.2 |
0.1
0.1 | 1.4
2.7
2.6 | 7.2
8.0 | NA
NA | 0.1
(s) | NA
NA | NA
NA | 1.0 | 8.7
11.0 | R 2.0
R 4.3 | R 10.8
R 15.2 | | 1975 | 0.3 | 0.8 | 3.7 | 0.8 | 0.1 | 0.2 | 2.3
1.5 | 7.1 | NA | (s) | NA | NA | 2.1
2.4
3.1 | 10.5 | H 4.9 | H 15.5 | | 1980 | 0.2 | 0.8 | 3.6 | 0.5 | 0.2 | 0.2 | 1.5 | 6.0 | NA | (s)
0.1 | NA | NA | 3.1 | 10.3 | R 6.7 | H 17.0 | | 1985
1990 | 0.9
0.1 | 1.6
2.0 | 3.4
3.9 | 0.9
1.6 | 0.2
0.1 | 0.2
0.2 | 0.1
0.7 | 4.9
6.5 | NA
0.0 | 0.1 | NA
0.0 | NA
(s) | 3.3
5.2
5.6 | 10.6
14.1 | R 6.7
R 7.0 | R 17.3
R 21.1 | | 1990
1995 | 0.1
0.1 | 2.0
2.7 | 4.0 | 1.6
1.7 | 0.1 | (s) | 0.4 | 6.3 | 0.0 | 0.2
0.3
0.3 | 0.0 | (s) | 5.6 | 15.0 | R 6.3
R 7.8 | R 21.1
R 21.2
R 26.2 | | 2000
2005 | (s) | 2.6
2.6 | 6.1
5.0 | 1.9
2.0 | 0.1
0.2 | (s) | 0.6
0.9 | 8.7
8.1 | 0.0
0.0 | 0.3
0.6 | 0.0
0.0 | (s)
(s) | 6.7
7.0 | 18.3
18.3 | H 7.8
R 10.0 | H 26.2
R 28.3 | | 2005 | (s) | 2.4 | 4.7 | 2.0 | 0.2 | (s) | 0.8 | 7.7 | 0.0 | 0.6 | 0.0 | (s) | 6.9 | 17.6 | Ro7 | R 27 3 | | 2007 | (s)
0.0 | 2.6 | 4.4 | 2.5 | 0.2 | (s) | 0.5 | 7.6 | 0.0 | 0.6 | 0.0 | (s) | 7.0 | 17.9 | R _{10.4} | R 28.3 | | 2008
2009 | 0.0
0.0 | 2.6
2.5
2.5 | 3.2
4.1 | 2.5
3.0
2.9 | (s)
0.1 | (s) | 0.7
0.6 | 7.0
7.7 | 0.0
0.0 | 0.7
1.2 | 0.0
0.0 | (s)
(s) | 7.0
6.8 | 17.1
18.2 | R 10.4
R 9.2
R 9.1 | R 28.3
R 26.4
R 27.3 | | 2010 | 0.0 | 2.4 | 3.9 | 2.8 | (s) | (s) | 0.4 | 7.1 | 0.0 | 1.2 | 0.0 | (s) | 6.9 | 17.6 | H 9.4 | H 27.0 | | 2011 | 0.0 | 2.5
2.3 | 3.7 | 3.2 | (s) | (s) | 0.3 | 7.3 | 0.0 | 1.3 | 0.0
0.0 | (s) | 6.9 | 18.0 | R 9.0
R 4.5 | R 27.0
R 21.9 | | 2012
2013 | 0.0 | 2.3
4.8 | 3.0
3.3 | 3.7
3.8 | (s)
(s) | (s)
(s) | 0.2
0.2 | 7.0
7.4 | 0.0
0.0 | 1.2
1.4 | 0.0 | R (s) | 6.8
6.9 | 17.4
20.5 | R 4 5 | R 24.9 | | 2014 | 0.0
0.0 | 4.8
4.9 | 3.3
3.6 | 3.8
4.0 | (s) | (s) | 0.2 | 7.8 | 0.0 | 1 4 | 0.0 | H (s) | 6.9 | 21.1 | R48 | R 24.9
R 25.8 | | 2015
2016 | 0.0
0.0 | 6.1
6.4 | 4.8
3.3 | 4.2
3.4 | (s)
(s) | 0.7
0.7 | 0.1
0.1 | 9.8
7.6 | 0.0
0.0 | R 2.4
R 2.4 | 0.0
0.0 | R 0.1
R 0.1 | 6.9
6.9 | R 25.1
R 23.3 | R 1.0
R 1.2 | R 26.1
R 24.5 | | 2017 | 0.0 | 6.4 | 3.2 | 2.1 | (s) | 0.7 | 0.2 | 6.2 | 0.0 | H25 | 0.0 | R 0.1 | 6.7 | R 21 9 | H ₁ n | H 22 Q | | 2018 | 0.0 | 7.6 | 3.2 | 3.5 | (s) | 0.7 | 0.1 | 7.4 | 0.0 | 2.5
2.3
2.3 | 0.0 | [™] 0.2 | 6.8 | R 24.6 | R 1.0 | R 25.6 | | 2019
2020 | 0.0
0.0 | 7.6
7.3 | 3.2
3.0 | 3.1
3.5 | (s) | 0.7
0.7 | (s)
0.1 | 7.1
7.3 | 0.0
0.0 | 2.3 | 0.0
0.0 | R 0.2
R 0.2 | 6.6
6.2 | R 23.8
R 23.3 | R 0.7
R 0.7 | R 24.4
R 23.9 | | 2021 | 0.0 | 7.8 | 3.4 | 3.3 | (s) | 0.7 | 0.1 | 7.5 | 0.0 | 2.3 | 0.0 | R 0.2
R 0.2 | 6.4 | R 24.2 | н 0.8 | R 25.0 | | 2022 | 0.0 | 7.7 | 3.3 | 3.5 | (s) | 0.7 | 0.1 | 7.6 | 0.0 | 2.5 | 0.0 | 0.3 | 6.5 | 24.6 | 0.7 | 25.3 | ^a Includes supplemental gaseous fuels that are commingled with natural gas. other fossil fuels from which they are mostly derived, but should be counted only once in End Use and Total. For 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. Beginning in 2009, includes a small amount of wind energy consumed by commercial utility-scale facilities. b Hydrocarbon gas liquids, assumed to be propane only. Beginning in 1993, includes fuel ethanol blended into motor gasoline. There is a discontinuity in this time series between 2014 and 2015 because of coverage. See Technical Notes, Section 4. d Includes small amounts of petroleum coke not shown separately. ^e Conventional hydroelectric power. For 1960 through 1989, includes hydroelectric pumped-storage, which cannot be separately f There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. h Solar thermal and photovoltaic energy. Excludes a small amount of solar thermal energy consumed as heat that is included in the Electricity sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service providers. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the k Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. —— = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. The commercial sector includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Data Source: U.S. Energy Information Administration, State Energy Data System. See Technical Notes. http://www.eia.gov/state/seds/ Table CT6. Industrial sector energy consumption estimates, selected years, 1960-2022, Vermont | | | | | | Petrol | eum | | | | Bior | nass | | | | | | | |------------|---------------------|-----------------------------|---------------------|------------------|-----------------------------|-------------------|--------------------|--------------------|--|--------------------|-----------------------|------------------------------|----------------------|--------------------------|------------------|----------------------------|----------------| | | Coal | Natural
gas ^a | Distillate fuel oil | HGL ^b | Motor gasoline ^c | Residual fuel oil | Other ^d | Total | Hydro-
electric
power ^{e,f} | | Losses | | Solar ^{f,i} | Electricity ^j | | Electrical | | | Year | Thousand short tons | Billion cubic feet | | | Thousand | d barrels | | | Million
kWh | Wood and waste f,g | and co-
products h | Geo-
thermal ^f | Mi
k | llion
Wh | End use f,k | system
energy
losses | Total f,k | | 960 | 41 | Ō | 234
316 | 99
77 | . 0 | 252
484 | 346 | 931 | 64
53 | | | | NA | 191 | | | | | 965
970 | 14 | 0 | 316
463 | 77
121 | 100
68 | 484
466 | 301
372 | 1,278
1,489 | 53
62 | | | | NA
NA | | | | | | 970
975 | 3 | 1 | 364 | 179 | 77 | 400
421 | 196 | 1,489 | 67 | | | | NA
NA | | | | | | 980 | 2 | 2 | 501 | 245 | 19 | 235 | 156 | 1,155 | 70 | | | | NA
NA | | | | | | 985 | 6 | 2 | 500 | 70 | 117 | 98 | 445 | 1.230 | 70 | | | | NA | 1,518 | | | | | 990 | 1 | 2 | 554 | 85 | 81 | 115 | 146 | 981 | 17 | | | | (s) | 1,381 | | | | | 995
000 | 0 | 2 | 328
381 | 220
223 | 89
79 | 144
207 | 278
277 | 1,058
1,166 | 18
20 | | | | (s)
(s) | 1,484
1,646 | | | | | 005 | 0 | 3 | 560 | 259 | 235 | 156 | 210 | 1,100 | 21 | | | | (s) | 1,644 | | | | | 006 | 0 | 3 | 509 | 411 | 264 | 130 | 149 | 1,463 | 22 | | | | (s) | 1,626 | | | | | 007 | Ō | 3 | 396 | 220 | 198 | 151 | 352 | 1,318 | 2 | | | | (s) | 1,635 | | | | | 800 | 0 | 3 | 519 | 165 | 115 | 117 | 352
59
622 | 976 | 21
25 | | | | (s) | 1 565 | | | _ | | 009 | 0 | 3 | 533 | 91 | 114 | 105 | 622 | 1,466 | 25 | | | | (s) | 1,383 | | | - | |)10
)11 | 0 | 3 | 551
678 | 74
74 | 149
149 | 97 | 798 | 1,668
1,740 | 25 | | | | (s) | 1,446
1,417 | | | | |)12 | 0 | 3 | 608 | 74 | 149 | 96
56 | 743
739 | 1,740 | 24
23 | | | | (s) | 1,417 | | | _ | | 013 | ő | 1 | 497 | 107 | 129 | 96
56
90 | 819 | 1,642 | 0 | | | | (s)
(s) | 1,446 | | | _ | | 014 | Ō | 2 | 539 | 86
75 | 124 | 61 | 786 | 1,595 | Ö | | | | (s) | 1,418 | | | - | |)15 | 0 | 2 | 521 | 75 | 95 | 27 | _ 759 | 1,477 | 0 | | | | (s) | 1,422 | | | _ | | 16 | 0 | 2 | 550 | 52 | 91 | 14 | R 643 | 1,350 | 0 | | | | (s) | 1,446 | | | _ | | 17 | 0 | 2 | 591 | 124
77 | 92 | 16 | R 736 | R 1,560
R 1,425 | 0 | | | | 2 | 1,424 | | | _ | |)18
)19 | 0 | 2 | 603
619 | 41 | 93
90 | 17
16 | R 634
R 557 | R 1,324 | 0 | | | | 2 | | | | _ | | 20 | Õ | 2 | 696 | 65 | 91 | 7 | H 682 | R 1.540 | ŏ | | | | 2 | 1,369 | | | _ | |)21 | Ō | 2 | 571 | 50 | 90 | 17 | R 648 | R 1,377 | Ö | | | | 2 | 1,371 | | | | |)22 | 0 | 2 | 578 | 49 | 93 | 18 | 654 | 1,392 | 0 | | | | 2 | 1,367 | | | | | | | | | | | | | | Trillion Bt | | | | | | | | | | 960 | 1.1 | 0.0 | 1.4 | 0.4 | 0.0 | 1.6 | 2.2 | 5.5 | R 0.2 | 4.4 | NA | NA | NA | 0.7 | R 11.9 | R 1.3 | R 13. | | 965 | 0.4 | 0.0 | 1.8 | 0.3 | 0.5 | 3.0 | 1.9 | 7.6 | R 0.2
R 0.2 | 4.1 | NA | NA | NA
NA | 1.2 | R 13.5
R 17.2 | R 2.4
R 5.5 | 1115 | | 970
975 | 0.1
0.1 | 1.1
1.5 | 2.7
2.1 | 0.4
0.6 | 0.4
0.4 | 2.9
2.6 | 2.4
1.1 | 8.8
6.9 | R 0.2 | 4.3
4.1 | NA
NA | NA
NA | NA
NA | | R 15.8 | R 6.0 | R 22.
R 21. | | 980 | | 1.6 | 2.9 | 0.9 | 0.4 | 1.5 | 0.9 | 6.3 | R 0.2 | 9.5 | NA
NA | NA
NA | NA
NA | 4.3 | R 21.9 | R 9 1 | R 31. | | 985 | (s)
0.1 | 1.9 | 2.9 | 0.2 | 0.6 | 0.6 | 2.8 | 7.2
5.5 | R 0.2 | 11.2 | 0.0 | NA | NA | | R 25.8 | R 10 5 | R 36. | | 990 | (s)
0.0 | 1.8 | 3.2 | 0.3 | 0.4 | 0.7 | 0.8 | 5.5 | R 0.1 | 2.1 | 0.0 | 0.0 | (s) | 4.7 | R 14.3 | R 6.3 | R 20. | | 995 | | 2.1 | 1.9 | 0.8 | 0.5 | 0.9 | 1.8 | 5.9 | B 0.1 | 3.2 | 0.0 | 0.0 | (s) | 5.1 | H 16.3 | H 5 6 | R 22. | | 000 | 0.0 | 4.0
2.6 | 2.2
3.3 | 0.8
0.9 | 0.4
1.2 | 1.3
1.0 | 1.7 | 6.4
7.7 | R 0.1
R 0.1 | 3.0
2.2 |
0.0
0.0 | 0.0
0.0 | (s) | 5.6
5.6 | R 19.1
R 18.2 | R 6.6
R 8.0 | R 25.
R 26. | |)05
)06 | 0.0 | 2.8 | 3.3 | 1.4 | 1.4 | 0.8 | 1.3
1.0 | 7.7 | R 0.1 | 2.2 | 0.0 | 0.0 | (S) | 5.5
5.5 | R 18.4 | R 7.8 | R 26 | | 007 | 0.0 | 3.0 | 2.3 | 0.7 | 1.0 | 1.0 | 2.3 | 7.3 | (s) | 1.6 | 0.0 | 0.0 | (s) | 5.6 | 17.5 | R 8.2 | R 25 | | 800 | 0.0 | 3.0 | 3.0 | 0.6 | 0.6 | 0.7 | 0.4 | 5.3 | R 0 1 | 1.5 | 0.0 | 0.0 | (s) | 5.3 | 17.5
R 15.2 | R ₇₁ | R 25
R 22 | | 009 | 0.0 | 2.9 | 3.1 | 0.3 | 0.6 | 0.7 | 4.1 | 8.7 | R 0.1 | 1.4 | 0.0 | 0.0 | (s) | 4.7 | H 17.9 | R 6.4 | H 24 | | 10 | 0.0 | 2.9 | 3.2 | 0.3
0.3 | 0.8 | 0.6 | 5.3 | 10.1 | R 0.1 | 2.2 | 0.0 | 0.0 | (s) | 4.9 | R 20.2 | R 6.7 | R 26 | |)11
)12 | 0.0 | 2.8 | 3.9 | 0.3 | 0.8 | 0.6 | 4.9 | 10.5 | R 0.1
R 0.1 | 0.4 | 0.0 | 0.0 | (s) | 4.8 | R 18.7 | R 6.4
R 3.2 | R 25 | |)12 | 0.0
0.0 | 2.7
1.3 | 3.5
2.9 | 0.3
0.4 | 0.6
0.7 | 0.4
0.6 | 4.9
5.4 | 9.6
9.9 | 0.0 | 0.4
0.4 | 0.0
0.0 | 0.0
0.0 | (s)
(s) | 4.9
4.9 | R 17.8
16.6 | R 3.2 | R 21
R 19 | |)14 | 0.0 | 1.9 | 3.1 | 0.4 | 0.7 | 0.6 | 5.4
5.1 | 9.9 | 0.0 | 0.4 | 0.0 | 0.0 | (S) | 4.9 | | Raa | R 20 | |)15 | 0.0 | 2.1 | 3.0 | 0.3 | 0.5 | 0.2 | 5.0 | 8.9 | 0.0 | 0.4 | 0.0 | 0.0 | (s) | 4.9 | 16.3 | R 0.7 | H 17. | | 16 | 0.0 | 2.1
2.2 | 3.2 | 0.2
0.5 | 0.5 | 0.1 | 4.2 | 8.1 | 0.0 | 0.4 | 0.0 | 0.0 | (s) | 4.9 | 15.7 | Rog | R 16 | | 017 | 0.0 | 2.3 | 3.4 | 0.5 | 0.5 | 0.1 | 4.8 | 9.3 | 0.0 | 0.2 | 0.0 | 0.0 | (s) | 4.9 | 16.6 | R 0.7 | R 17 | | 018 | 0.0 | 2.4 | 3.5 | 0.3 | 0.5 | 0.1 | 4.1 | 8.5 | 0.0 | 0.2 | 0.0 | 0.0 | (s)
(s) | 4.8 | 15.9 | R 0.7 | R 16 | | 019
020 | 0.0 | 2.5 | 3.6 | 0.2 | 0.5 | 0.1 | 3.6
R 4.5 | 7.9 | 0.0 | 0.2 | 0.0
0.0 | 0.0 | | 4.8 | | R 0.5
R 0.5 | R 15 | |)20
)21 | 0.0
0.0 | 2.3
2.1 | 4.0
3.3 | 0.2
0.2 | 0.5
0.5 | (s)
0.1 | 4.2 | 9.2
8.3 | 0.0
0.0 | 0.2
0.2 | 0.0 | 0.0
0.0 | (s)
(s) | 4.7
4.7 | 16.4
15.3 | R 0.6 | R 15 | | | | 2.3 | 3.3 | 0.2 | 0.5 | 0.1 | 4.3 | 8.4 | 0.0 | 0.2 | 0.0 | 0.0 | (3) | 4.7 | 15.5 | 0.5 | 16. | a Includes supplemental gaseous fuels that are commingled with natural gas. the other fossil fuels from which they are mostly derived, but should be counted only once in End Use and Total. For 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. Beginning in 2009, includes a small amount of wind energy consumed by industrial utility-scale facilities. Incurred in the generation, transmission, and distribution of électricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. KWh = Kilowatthours. —— Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. The industrial sector includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Data Source: U.S. Energy Information Administration, State Energy Data System. See Technical Notes. http://www.eia.gov/state/seds/ b Hydrocarbon gas liquids, include natural gas liquids and refinery olefins. c Beginning in 1993, includes fuel ethanol blended into motor gasoline. There is a discontinuity in this time series between 2014 and 2015 because of coverage. See Technical Notes, Section 4. d Includes asphalt and road oil, kerosene, lubricants, petroleum coke, and the "other petroleum products" category. See Technical Notes, Section 4. e Conventional hydroelectric power. For 1960 through 1989, includes hydroelectric pumped-storage, which cannot be separately identified. f There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. ⁹ Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. Losses and co-products from the production of biodiesel and fuel ethanol. Solar thermal and photovoltaic energy. Excludes a small amount of solar thermal energy consumed as heat that is included in Electricity sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service providers. k Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and Table CT7. Transportation sector energy consumption estimates, selected years, 1960-2022, Vermont | | | | | | | Pe | | | | | | | | | |----------------------|---------------------|-----------------------------|--------------------------|-------------------------------------|------------------|--------------------------|--|--------------------------------|----------------------|----------------------|--------------------------|------------------------|----------------------|----------------------| | | Coal | Natural
gas ^a | Aviation gasoline | Distillate
fuel oil ^b | HGL ^c | Jet
fuel ^d | Lubricants | Motor
gasoline ^e | Residual
fuel oil | Total | Electricity ^f | | Electrical
system | | | Year | Thousand short tons | Billion
cubic feet | | | | Thous | sand barrels | | | | Million
kilowatthours | End use ^{g,h} | energy
losses i | Total ^{g,h} | | 1960 | 1 | 0 | 19 | 254 | (s) | 82 | 68 | 3,205 | 0 | 3,629 | 0 | | | | | 1965 | (s)
(s) | 0 | 19
25 | 254
185
346 | (s)
1 | 82
79 | 68
44
49
45
52
47
53 | 3,665 | Ö | 4,000 | 0 | | | | | 1970 | | 0 | 14
11 | 346 | 3 | 121 | 49 | 4,985 | 2 2 | 5,519 | 0 | | | | | 1975
1980 | (s)
0 | 0 | 25 | 504
757 | 2 | 129
137 | 45
52 | 5,591
5,386 | 0 | 6,284
6,359 | 0 | | | | | 1985 | Ŏ | (s) | 22 | 977 | 13
11 | 201 | 47 | 5.656 | Ö | 6,916 | Ŏ | | | | | 1990 | 0 | (s) | 22
15
12 | 1,043 | 11 | 180 | 53 | 6,574 | 3 | 7,878 | 0 | | | | | 1995
2000 | 0 | (s)
(s) | 12 | 1,981 | 15
0 | 127 | 51 | 7,116
8,309 | 0 | 9,302 | 0 | | | | | 2005 | 0 | (s) | 40
26 | 1,245
1,506 | 8 | 144
423 | 54
46 | 8,166 | 0 | 9,793
10,174 | 0 | | | | | 2006 | ŏ | (s) | 16 | 1,636 | 8 | 376 | 45
46 | 8,135 | Ō | 10,216 | ŏ | | | | | 2007 | 0 | (s) | 16 | 1,589 | 4 | 317 | 46 | 8,149 | 0 | 10,122 | 0 | | | | | 2008
2009 | 0 | (s)
(s) | 10
11 | 1,464
1,548 | 29
5 | 266
512 | 43
38 | 7,865
7,843 | 0 | 9,677
9,957 | 0 | | | | | 2010 | 0 | (s) | 9 | 1,709 | 2 | 161 | 50 | 7,710 | 0 | 9,641 | 0 | | | | | 2011 | Ŏ | (s) | 8 | 1,691 | 2 | 183
185 | 50
47
43 | 7,463 | ŏ | 9,394 | ŏ | | | | | 2012 | 0 | (s) | 8 | 1.661 | 4 | 185 | 43 | 7,463
7,276 | 0 | 9.176 | 0 | | | | | 2013 | 0 | (s) | 7 | 1,694
1,664 | 2 | 171 | 45 | 7,413
7,335 | 0 | 9,333
9,248 | 0 | | | | | 2014
2015 | 0 | (s) | 4
7 | 1,664
1,856 | 4
5 | 195
191 | 45
51 | 7,335
7,191 | 0 | 9,248
9,301 | 0 | | | | | 2016 | 0 | (s) | 7 | 1,906 | 5 | 209 | 45
45
51
R 49 | 7,186 | 5 | 9,366 | 0 | | | | | 2017 | ŏ | (s) | 7 | 1,906
1,792 | 2 | 209
151 | 44 | 7,167 | 7 | 9,171 | Ö | | | | | 2018 | 0 | (s) | 9 | 1.754 | 2 | 161 | 39 | 6,587 | 0 | 8,552 | 0 | | | | | 2019
2020 | 0 | (s) | 9 | 1,661 | 3 2 | 170 | 38 | 7,022
5,773 | 0 | R 8,904 | 0 | | | | | 2020 | 0 | (s)
(s) | 9 | 1,519
R 1,504 | 1 | 153
208 | 39
38
32
R 34 | 6,373 | 2 | 7,486
R 8,156 | 0 | | | | | 2022 | Ö | (s) | 9 | 1,449 | i | 230 | 35 | 6,352 | 2 | 8,099 | Ō | | | | | | | | | | | | Tri | Ilion Btu | | | | | | | | 1960 | (s) | 0.0 | 0.1 | 1.5 | (s) | 0.4 | 0.4 | 16.8 | 0.0 | 19.3 | 0.0 | 19.3 | 0.0 | 19.3 | | 1965
1970 | (s) | 0.0
0.0 | 0.1
0.1 | 1.1
2.0 | (s)
(s) | 0.4
0.7 | 0.3 | 19.3
26.2 | 0.0 | 21.2 | 0.0
0.0 | 21.2
29.3 | 0.0
0.0 | 21.2
29.3 | | 1970 | (s)
(s) | 0.0 | 0.1 | 2.0 | (S)
(S) | 0.7 | 0.3
0.3
0.3 | 29.4 | (s)
(s) | 21.2
29.3
33.4 | 0.0 | 29.3
33.4 | 0.0 | 33.4 | | 1980 | 0.0 | 0.0 | 0.1 | 4.4 | (s)
0.1 | 0.8 | 0.3
0.3 | 28.3
29.7 | 0.0
0.0 | 33.9
37.0 | 0.0 | 33.9
37.0 | 0.0 | 33.9
37.0 | | 1980
1985 | 0.0 | (s) | 0.1 | 4.4
5.7 | | 1.1 | 0.3 | 29.7 | 0.0 | 37.0 | 0.0 | 37.0 | 0.0 | 37.0 | | 1990 | 0.0
0.0 | (s)
(s) | 0.1 | 6.1 | (s)
0.1 | 1.0 | 0.3
0.3
0.3 | 34.5
37.0 | (s)
0.0 | 42.1
49.7 | 0.0 | 42.1 | 0.0 | 42.1 | | 1995
2000 | 0.0 | (S)
(S) | 0.1
0.2 | 11.5
7.2 | 0.1 | 0.7
0.8 | 0.3 | 43.2 | 0.0 | 49.7
51.8 | 0.0
0.0 | 49.7
51.8 | 0.0
0.0 | 49.7
51.8 | | 2005 | 0.0 | (s) | 0.1 | 8.8 | | 2.4 | 0.3 | 42 4 | 0.0 | 54.0 | 0.0 | 54.0 | 0.0 | 54.0 | | 2006 | 0.0 | (s) | 0.1 | 9.5
9.2
8.5 | (s)
(s) | 2.4
2.1 | 0.3
0.3
0.3
0.3 | 42.2
41.9 | 0.0 | 54.2 | 0.0 | 54.2 | 0.0 | 54.2 | | 2007 | 0.0 | (s) | 0.1 | 9.2 | (s)
0.1 | 1.8
1.5 | 0.3 | 41.9 | 0.0 | 53.3
50.6 | 0.0 | 53.3 | 0.0 | 53.3 | | 2008 | 0.0 | (s)
(s) | 0.1
0.1 | 8.5
g g | | 1.5 | 0.3 | 40.2
39.9 | 0.0 | 50.6
50.1 | 0.0
0.0 | 50.6
52.1 | 0.0
0.0 | 50.6
52.1 | | 2009
2010 | 0.0
0.0 | (s) | (s) | 8.9
9.9 | (s)
(s) | 2.9
0.9 | 0.2
0.3 | 39.9
39.1 | 0.0
0.0 | 52.1
50.2 | 0.0 | 52.1
50.2 | 0.0 | 52.1
50.2 | | 2011 | 0.0 | 0.1 | (s) | 9.8 | (s) | 1.0 | 0.3 | 37.8 | 0.0 | 48.9 | 0.0 | 49.0 | 0.0 | 49 0 | | 2012 | 0.0 | 0.1
0.1 | (s)
(s)
(s) | 9.6
9.8 | (s)
(s) | 1.0 | 0.3
0.3 | 36.8
37.5 | 0.0 | 47.8
48.6 | 0.0 | 47.9
48.7 | 0.0 | 47.9
48.7 | | 2013 | 0.0 | 0.1 |
(s) | 9.8 | (s) | 1.0 | 0.3 | 37.5 | 0.0 | 48.6 | 0.0 | 48.7 | 0.0
0.0 | 48.7 | | 2014
2015 | 0.0
0.0 | 0.1
0.1 | (s)
(s) | 9.6
10.7 | (s)
(s) | 1.1
1.1 | 0.3
0.3 | 37.1
36.4 | 0.0
0.0 | 48.1
48.5 | 0.0
0.0 | 48.2
48.6 | 0.0 | 48.2
48.6 | | 2016 | 0.0 | 0.1 | (s) | 11.0 | (s) | 1.2 | 0.3 | 36.4
36.3 | (s) | 48.9 | 0.0 | 49.0 | 0.0 | 49.0 | | 2017 | 0.0 | (s) | (s)
(s)
(s) | 10.3 | (s) | 0.9 | 0.3 | 36.2 | (s)
(s)
0.0 | 47.7 | 0.0 | 47.8 | 0.0 | 47.8 | | 2018 | 0.0 | (s) | (s) | 10.1 | (s) | 0.9 | 0.2 | 33.3 | 0.0 | 44.6 | 0.0 | 44.6 | 0.0 | 44.6 | | 2019
2020 | 0.0
0.0 | (s) | (S) | 9.6
_ 8.7 | (s)
(s) | 1.0
0.9 | 0.2
0.2 | 35.5
29.2 | 0.0
0.0 | 46.3
_ 39.0 | 0.0
0.0 | 46.3
39.0 | 0.0
0.0 | 46.3
_ 39.0 | | 2020
2021
2022 | 0.0
0.0
0.0 | (s) | (s)
(s)
(s)
(s) | R 8.7
8.4 | | 1.2
1.3 | 0.2
0.2
0.2 | 32.2
32.1 | (s)
(s) | R 42.4 | 0.0 | R 42.5 | 0.0
0.0
0.0 | R 42.5
42.2 | | 0000 | 0.0 | (s) |) <u>s</u> (| 8.4 | (s)
(s) | 13 | 0.2 | 32.1 |) [| 42.1 | 0.0 | 42.2 | 0.0 | 42.2 | a Transportation use of natural gas to operate pipelines and, since 1990, also includes vehicle fuel. b Beginning in 2009, includes biodiesel blended into distillate fuel oil. Beginning in 2011, includes renewable diesel blended into distillate fuel oil. C Hydrocarbon gas liquids, assumed to be propane only. d Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Industrial sector, Other petroleum." There is a discontinuity in this time series between 2009 and 2010 because of data source and methodology changes, see technical notes. e Beginning in 1993, includes fuel ethanol blended into motor gasoline. f Electricity sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service providers. Sales to public railroads and railway systems only. Excludes electric vehicles. ⁹ There is a discontinuity in this time series between 1980 and 1981 due to the expanded coverage of fuel ethanol beginning in 1981. ^h For 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. ⁱ Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. ^{— =} Not applicable. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Page: Information Administration. State Energy Data Data Source: U.S. Energy Information Administration, State Energy Data System. See Technical Notes. http://www.eia.gov/state/seds/ Table CT8. Electric power sector consumption estimates, selected years, 1960-2022, Vermont | | | | | Petro | leum | | | | Biomass | | | | | | |----------------------|---------------------|-----------------------------|-------------------------------------|----------------|-----------------------------------|----------------|------------------------------|---|-----------------------------|-------------------------|-------------------------|----------------------------------|---|--| | | Coal | Natural
gas ^a | Distillate
fuel oil ^b | Petroleum coke | Residual
fuel oil ^c | Total | Nuclear
electric
power | Hydroelectric power ^d | Wood | Geothermal ^f | Solar ^{f,g} | Wind ^f | Electricity
net
imports ^h | | | Year | Thousand short tons | Billion
cubic feet | | Thousan | d barrels | | Million kil | owatthours | and
waste ^{e,f} | | Million ki | ilowatthours | | Total ^{f,i} | | 1960 | 19 | 0 | 8 | 0 | 1 | 9 | 0 | 809 | | 0 | NA | NA | 64
41
50
75
187 | | | 1960
1965
1970 | 19
43
55 | 0 | 38
268
86
63
34 | 0 | 3 | 42 | 0 | 661
724 | | 0 | NA | NA | 41 | | | 1970 | 55 | 0 | 268 | 0 | 23 | 291
87 | 0 | /24 | | 0 | NA
NA | NA
NA | 50 | | | 1975
1980 | 13
9 | (s) | 63 | 0 | (s)
0 | 63 | 3,561
2,979 | 871
743 | | 0 | NA
NA | NA
NA | 187 | | | 1985 | 28 | (s) | 34 | Ö | Ō | 34 | 2,999 | 852 | | 0 | 0 | 0 | 321 | | | 1990
1995 | 0 | | 8 | 0 | 0 | 8
39 | 3,616
3,859 | 1,348
954 | | 0 | 0 | 0 | 1,710 | | | 1995 | 0 | (s) | 39 | 0 | 0 | 39 | 3,859 | 954 | | 0 | 0 | 0 | 3,954 | | | 2000
2005 | 0 | (s) | 159
12 | 0 | 0 | 159
12
8 | 4,548
4,072 | 1,201
1,190 | | 0 | 0 | 12
11 | 3,917
2,121 | | | 2006 | Ŏ | (s) | 8 | ŏ | ő | 8 | 5.107 | 1.497 | | ŏ | ŏ | 11 | 2.429 | | | 2007 | Ö | (s) | 9 | Ö | 0 | 9 | 4.704 | 645 | | 0 | 0 | 11
10 | 2.488 | | | 2008 | 0 | (s) | 6 | 0 | 1 | 7 | 4,895 | 1,472 | | 0 | 0 | 10 | 2,493 | | | 2009
2010 | 0 | (s)
(s) | 3 | 0 | 1 | 4 | 5,361
4,782 | 1,461
1,322 | | 0 | 0 | 12
14
33 | 2,563
2,426 | | | 2010 | 0 | (5) | 7 | 0 | 1 | 7 | 4,762 | 1,401 | | 0 | 2 | 33 | 2,522 | | | 2012 | ŏ | (s) | 2 | ŏ | (s) | 3 | 4.989 | 1,128 | | ŏ | 5 | 107 | 11,499 | | | 2013 | 0 | (s) | 8 | 0 | `Ó | 8 | 4,846 | 1,286 | | 0 | 17 | 236
311 | 11,499
11,739
11,157 | | | 2014 | 0 | (s) | 8 | 0 | 0 | 8 | 5,061 | 1,175 | | 0 | 24 | 311 | 11,157 | | | 2015
2016 | 0 | (s)
(s) | 5 | 0 | 0 | 5
8 | 0 | 1,139
1,078 | | 0 | 48 | 325
291 | 10,791
8,955 | | | 2017 | 0 | (S) | 15 | 0 | 0 | 15 | 0 | 1,280 | | 0 | 59
99 | 305 | 10,336 | | | 2018 | Ö | (s) | 8 | Ö | ő | 8 | Ö | 1,268
1,337 | | Ö | 107 | 373
377 | 9,720 | | | 2019 | 0 | (s) | 3 | 0 | 0 | 3 | 0 | 1,337 | | 0 | 147 | 377 | 14,133 | | | 2020
2021 | 0 | (s) | 5 | 0 | 0 | 5 | 0 | 1,130 | | 0 | 183 | 384 | 14,065 | | | 2021 | 0 | (s)
(s) | 6
11 | 0 | 0 | 6
11 | 0 | 1,093
1,141 | | 0 | 173
202 | 338
409 | 13,904
13,703 | | | | | ,, | | | | | Trillion Btu | · | | | | | | | | 1960
1965 | 0.5
1.2 | 0.0 | (s)
0.2 | 0.0
0.0 | (s) | 0.1 | 0.0
0.0 | R 2.8
R 2.3 | 0.0 | 0.0 | NA | NA | 0.2
0.1 | R 3.6
R 3.8 | | 1965 | 1.2 | 0.0 | 0.2 | 0.0 | (s) | 0.2 | 0.0 | H 2.3 | 0.0 | 0.0 | NA | NA | 0.1 | H 3.8 | | 1970
1975 | 1.4
0.3 | 0.0
0.6 | 1.6
0.5 | 0.0
0.0 | 0.1 | 1.7
0.5 | 0.0
39.2 | R 2.5
R 3.0 | 0.0
0.0 | 0.0
0.0 | NA
NA | NA
NA | 0.2
0.3 | R 5.7
R 43.8 | | 1975 | 0.3 | 0.6 | 0.5 | 0.0 | (s)
0.0 | 0.4 | 39.2
32.5 | R 2.5 | 0.0 | 0.0 | NA
NA | NA
NA | 0.3 | H 37 0 | | 1985 | 0.2
0.7 | 0.1 | 0.2 | 0.0 | 0.0 | 0.2 | 31.9 | R 2.5
R 2.9
R 4.6
R 3.3
R 4.1 | 2.9 | 0.0 | 0.0 | 0.0 | 11 | R 37.0
R 39.8 | | 1990
1995 | 0.0 | 0.7 | 0.2
(s)
0.2 | 0.0
0.0 | 0.0 | (s)
0.2 | 38.3 | R 4.6 | 1.0 | 0.0 | 0.0
0.0 | 0.0 | 5.8
13.5 | H 50.4 | | 1995 | 0.0 | 0.1 | 0.2 | 0.0 | 0.0 | 0.2 | 40.5 | H 3.3 | 3.4 | 0.0 | 0.0 | 0.0 | 13.5 | R 61.1 | | 2000
2005 | 0.0
0.0 | 1.0 | 0.9
0.1 | 0.0
0.0 | 0.0
0.0 | 0.9
0.1 | 47.4
42.5 | " 4.1
R 4.1 | 3.9
5.3
5.8 | 0.0
0.0 | 0.0
0.0 | R (s) | 13.4
7.2
8.3
8.5
8.5
8.7
8.3
8.6 | R 70.8
R 59.2
R 72.6
R 66.2
R 70.4 | | 2006 | 0.0 | (s)
(s) | (s) | 0.0 | 0.0 | (s) | 53.3 | R 4.1
R 5.1
R 2.2
R 5.0 | 5.8 | 0.0 | 0.0 | R (s)
R (s) | 7.2
8.3 | R 72.6 | | 2007
2008 | 0.0
0.0 | (s) | (s)
0.1 | 0.0
0.0 | 0.0 | 0.1 | 49.3
51.2 | R 2.2 | 6.0
5.6 | 0.0 | 0.0
0.0 | R /ei | 8.5 | R 66.2 | | 2008 | 0.0 | (s) | (s)
(s)
(s) | 0.0 | (s) | (s) | 51.2 | H 5.0 | 5.6 | 0.0 | 0.0 | R (s)
R (s)
R (s) | 8.5 | H 70.4 | | 2009 | 0.0 | 0.1 | (s) | 0.0 | (s) | (s) | 56.1 | R 5.0
R 4.5
R 4.8 | 5.7
6.5 | 0.0 | 0.0 | H (s) | 8.7 | R 75.6
R 69.4
R 70.5 | | 2010
2011 | 0.0
0.0 | 0.1
(s) | (S)
(S) | 0.0
0.0 | (s)
(s) | (s) | 50.0
51.4 | Π 4.5
R 4.9 | 5.5
5.5 | 0.0
0.0 | 0.0
(s) | R 0.1 | 8.3 | R 70 5 | | 2012 | 0.0 | (s) | (s) | 0.0 | (s) | (s) | 52.3 | R 3.8 | 5.0 | 0.0 | (s) | R 0.4 | 39.2 | R 100.8 | | 2012
2013 | 0.0 | (s) | (s) | 0.0 | 0.0 | (s) | 52.3
50.6 | R 3.8
R 4.4 | 5.0
6.8 | 0.0 | Rnii | R 0.4
R 0.8
R 1.1
R 1.1 | 39.2
40.1 | R 100.8
R 102.8 | | 2014 | 0.0 | (s) | (s)
(s) | 0.0 | 0.0 | (s) | 52.9 | H ₄ n | 6.4
6.5
6.6 | 0.0 | R 0.1
R 0.2
R 0.2 | H 1.1 | 38.1
36.8
30.6 | R 102.6
R 48.6
R 42.1 | | 2015 | 0.0 | (s) | (s) | 0.0
0.0 | 0.0
0.0 | (s) | 0.0
0.0 | R 3.9
R 3.7 | 6.5 | 0.0 | n 0.2 | P 1.1
R 1.0 | 36.8 | n 48.6 | | 2016 | 0.0
0.0 | (s) | (s)
0.1 | 0.0 | 0.0 | (s)
0.1 | 0.0 | R 4 4 | 6.2 | 0.0
0.0 | R 0.2 | R 1 0 | 30.0 | H 42.1 | | 2017
2018 | 0.0 | (s) | (s) | 0.0 | 0.0
0.0 | (s) | 0.0
0.0 | R 4.4
R 4.3
R 4.6
R 3.9 | 6.1 | 0.0 | R 0.3
R 0.4 | R13 | 35.3
33.2 | R 47.3
R 45.2 | | 2019 | 0.0 | (s) | (s) | 0.0 | 0.0 | (s) | 0.0 | R 4.6 | 5.9 | 0.0 | R 0.5
R 0.6 | R 1.3 | 48.2 | H 60.5 | | 2020 | 0.0 | (s) | (s) | 0.0 | 0.0 | (s) | 0.0 | H 3.9 | 6.4 | 0.0 | H 0.6 | R 1.3
R 1.3
R 1.2 | 48.0 | R 60.2 | | 2021
2022 | 0.0
0.0 | (s)
(s) | (s)
0.1 | 0.0
0.0 | 0.0
0.0 | (s)
0.1 | 0.0 | R 3.7
3.9 | 7.1
6.0 | 0.0
0.0 | R 0.6
0.7 | ⁿ 1.2
1.4 | 47.4
46.8 | R 60.1
58.8 | | 2022 | 0.0 | (5) | 0.1 | 0.0 | 0.0 | U. I | 0.0 | 5.9 | 0.0 | 0.0 | 0.7 | 1.4 | 40.0 | 50.0 | a Includes supplemental gaseous fuels that are commingled with
natural gas. b Prior to 1980, based on oil used in internal combustion and gas turbine engine plants. For 1980 through 2000, distillate fuel oil includes fuel oil Nos. 1 and 2, and small amounts of kerosene and jet fuel. C Prior to 1980, based on oil used in steam plants. For 1980 through 2000, residual fuel oil includes fuel oil Nos. 4, 5, and 6. Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. Solar thermal and photovoltaic energy. h Electricity traded with Canada and Mexico. Btu value calculated by converting net imports in kilowatthours by 3,412 Btu per kilowatthour. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in the total. ⁻⁻⁼ Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than +0.5 and greater than -0.5 or Btu value less than +0.05 and greater than -0.05. Notes: Totals may not equal sum of components due to independent rounding. The electric power sector consists of electricity-only and combined-heat-and-power (CHP) plants within the NAICS 22 category whose primary business is to sell electricity, or electricity and heat, to the public. Through 1988, data are for electric utilities only. Beginning in 1989, data include independent power producers. The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Data Source: U.S. Energy Information Administration, State Energy Data System. See Technical Notes. http://www.eia.gov/state/seds/