Coal Consumption

Physical units
The State Energy Data System (SEDS) estimates the amount of coal consumed, in short tons, by the electric power sector and the end-use sectors. Most coal in the United States is consumed by the electric power sector. The U.S. Energy Information Administration (EIA) collects coal electricity data on Form EIA-923, “Power Plant Operations Report,” and predecessor forms. SEDS uses these data directly as estimates for electric power sector coal consumption. “ZZ” in the variable name is used to represent the two-letter state code:

CLEIPZZ = coal consumed by the electric power sector in each state, in thousand short tons.
CLEIPUS = ∑CLEIPZZ

SEDS uses seven data series to estimate state coal consumption for the industrial, commercial, residential, and transportation sectors. EIA’s Annual Coal Report (and earlier publications) publishes four U.S.-level coal consumption data series by sector, in thousands of short tons:

CLACPUS = coal consumed by the transportation sector in the United States (through 1977);
CLHCPUS = coal consumed by the residential and commercial sectors (commercial sector from 2008 forward) in the United States;
CLKCPUS = coal consumed by coke plants in the United States; and
CLOCPUS = coal consumed by other industrial users in the United States.

SEDS uses three state-level coal distribution/consumption series by sector, in thousand short tons. Before 2008, most of these data are coal distribution data. SEDS calculates state-level consumption estimates by applying these state shares to the U.S. consumption. In 2008, EIA discontinued its Form EIA-6A, “Coal Distribution Report—Annual,” the survey that collected coal distribution data, and SEDS uses Form EIA-3, “Quarterly Survey of Industrial, Commercial & Institutional Coal Users,” as the primary source for 2008 forward. While Form EIA-3 data are for coal consumption instead of distribution, SEDS uses the same data series codes to compile state shares for 2008 forward. Another change in the Form EIA-3 data is that residential consumers are no longer covered. The former EIA-6A combined “residential and commercial” sector series is replaced by the EIA-3 “commercial and institutional” sector series, which SEDS assumes is all commercial sector use. While the definitions change in 2008, SEDS uses the same series codes throughout the full time series.

Before 2008:

CLHDPZZ = coal distributed to the residential and commercial sectors in each state;
CLKDPZZ = coal distributed to coke plants in each state; and
CLODPZZ = coal distributed to other industrial users in each state.

For 2008 forward:

CLHDPZZ = coal consumed by the commercial sector in each state;
CLKDPZZ = coal consumed by coke plants in each state; and
CLODPZZ = coal consumed by other industrial users in each state.

SEDS sums the state data to calculate the U.S. totals.

Before 2008, SEDS assumes that state coal consumption by the combined residential and commercial sectors is proportional to the amount of coal distributed to the residential and commercial sectors in each state:

Before 2008:

CLHCPZZ = (CLHDPZZ/CLHDPUS) * CLHCPUS

To estimate residential coal consumption, EIA calculates the residential share of the combined residential and commercial series at the national level, CLRCSUS (see explanation on page 19). SEDS applies these ratios, as shown in Table TN2.1, to the combined series to estimate residential consumption. SEDS allocates the remainder to the commercial sector.

Before 2008:

CLRCPZZ = CLHCPZZ * CLRCSUS
CLRCPU = ∑CLRCPZZ
For 2008 forward, EIA collects state-level commercial and institutional coal use data, published in EIA’s Annual Coal Report. SEDS uses this series for commercial sector consumption and assumes residential sector coal consumption to be zero. SEDS maintains the same CLHDPZZ series code.

2008 forward:

\[
\begin{align*}
\text{CLKCPZZ} &= \frac{(CLKDPZZ)}{(CLKDPUS)} \times \text{CLKCPUS} \\
\text{CLOCPZZ} &= \frac{(CLODPZZ)}{(CLODPUS)} \times \text{CLOCPUS}
\end{align*}
\]

For all years:

\[
\text{CLICPZZ} = \text{CLKCPZZ} + \text{CLOCPZZ}
\]

The transportation sector accounted for less than 1% of total U.S. coal consumption in 1960 and decreased annually since then. EIA stopped reporting coal delivered to the transportation sector in 1978, and since then any small amount of coal consumed by the transportation sector are included in the other industrial category (CLOCPUS). There are no available data to estimate transportation sector consumption of coal by state. SEDS assumes that, when national-level data exist, state transportation sector coal consumption, CLACPZZ, is proportional to the state’s share of U.S. industrial sector coal consumption:

\[
\text{CLACPZZ} = \frac{(CLICPZZ)}{(CLICPUS)} \times \text{CLACPUS}
\]

SEDs sums all of the sectors to calculate each state’s total coal consumption, CLTCPZZ:

\[
\text{CLTCPZZ} = \text{CLRCPZZ} + \text{CLCCPZZ} + \text{CLICPZZ} + \text{CLACPZZ} + \text{CLEIPZZ}
\]

SEDs sums the sector totals of all of the states to calculate the U.S. total consumption estimates for each sector.

British thermal units (Btu)

SEDs uses five factors to convert coal consumption from physical units to Btu:

\[
\begin{align*}
\text{CLACKZZ} &= \text{the factor for converting coal consumed by transportation sector in each state from short tons to Btu (through 1977)}; \\
\text{CLEIKZZ} &= \text{the factor for converting coal consumed by the electric power sector in each state from short tons to Btu};
\end{align*}
\]
CLHCKZZ = the factor for converting coal consumed by the residential and commercial sectors in each state from short tons to Btu;
CLKCKZZ = the factor for converting coal consumed at coke plants in each state from short tons to Btu; and
CLOCKZZ = the factor for converting coal consumed by other industrial users in each state from short tons to Btu.

SEDS applies the electric power sector conversion factor for each state to the physical unit value to estimate coal consumed in Btu:
CLEIBZZ = CLEIPZZ * CLEIKZZ

SEDS applies the residential and commercial sectors’ state conversion factor to the physical unit values to estimate coal consumed in Btu:
CLRCBZZ = CLRCPZZ * CLHCKZZ
CLCCBZZ = CLCCPZZ * CLHCKZZ

SEDS estimates industrial sector coal Btu consumption in two steps. First, SEDS applies individual state conversion factors for both coal consumed at coke plants and at other industrial users. Then, SEDS sums the two series to calculate the total industrial sector coal consumption in Btu:
CLKCBZZ = CLKCPZZ * CLKCKZZ
CLOCBZZ = CLOCPZZ * CLOCKZZ
CLICBZZ = CLKCBZZ + CLOCBZZ

SEDS applies the transportation sector conversion factor for each state to the physical unit value to estimate coal consumed in Btu:
CLACBZZ = CLACPZZ * CLACKZZ

SEDS sums the sectors to calculate each state’s total coal consumption:
CLTCBZZ = CLRCBZZ + CLCCBZZ + CLICBZZ + CLACBZZ + CLEIBZZ

SEDS sums the states series to calculate the U.S. total coal consumption estimates in Btu. SEDS calculates each of the five sector U.S. average conversion factors as the U.S. consumption in Btu divided by the U.S. consumption in physical units.

Additional notes

1. The national-level coal consumption data series for the residential and commercial sectors (CLHCPUS), coke plants (CLKCPUS), and industries other than coke plants (CLOCPUS) are from a continuous data source. However, the data series used to develop state-level allocators by end-use sector (CLHDPZZ, CLKDPZZ, and CLODPZZ) vary for different time periods.

For 1960 through 1979, U.S. coal consumption is allocated by state based on the proportion of coal distributed to each state.

Beginning with 1980, state-level total coal consumption data are available; however, many of these data are withheld at the sector level. Withheld data are estimated by substituting residential and commercial coal distribution data for residential and commercial coal consumption. In many states, this leaves only one other sector withheld, which is derived by subtracting the other known sectors from the state total. In some cases withheld Census division values need to be subtracted out from known U.S. totals before the state-level estimates can be derived.

Beginning with 2001, additional state coal consumption values are withheld, making it no longer possible to subtract out estimates of coal consumed by coke plants for some states. To estimate the withheld consumption values, the known state-level coke plant coal consumption values are subtracted from the known Census division totals leaving a value to be distributed to the states that have withheld values in that division. Data for the same states from a different EIA data series on distribution of coal to coke plants are used to estimate the withheld consumption data. Distribution data for the three years before the year being estimated are summed for each state and its division and each state’s share of its division subtotal is used to allocate the withheld coke plant coal consumption to that state. For 2001, Utah was grouped with New York and Pennsylvania to create the subtotal used in the percentage calculations.

Beginning with 2006, some state-level total coal consumption values that are withheld are first estimated by applying published year-on-year percent changes onto earlier years’ published consumption values. In some cases, this would leave only one sector withheld, which is derived by subtracting the other known sectors from the state total.

In 2008, Form EIA-6A, “Coal Distribution Report—Annual,” was discontinued. From 2008 forward, estimates for coal consumption by sector are derived from Form EIA-3, “Quarterly Coal Consumption and Quality Report, Manufacturing and Transformation/Processing Coal Plants and Commercial and Institutional Coal Users.” Data for residential consumption are no longer covered and are assumed to be zero.
These derived series for the residential/commercial (before 2008), commercial/institutional (2008 forward), coke plant, and other industrial sectors are used in SEDS as the distribution data series to calculate coal consumption estimates by state and sector.

From 2012 forward, state-level consumption data are no longer withheld.

2. Total coal consumption by state for 1980 through 1989 published in the EIA Quarterly Coal Report does not sum to the U.S. totals due to a quantity called “Unknown” in the source tables. This unknown coal consumption is added to the residential, commercial, and “other industrial” sectors of Alabama, Illinois, Kentucky, Pennsylvania, Tennessee, and West Virginia in proportion to their total distribution of all coal.

3. Before 1974, data for distribution of bituminous coal and lignite by state include several groupings of states for which separate state data are not available. These groupings are: (1) Maine, New Hampshire, Vermont, and Rhode Island; (2) North Dakota and South Dakota; (3) Delaware and Maryland; (4) Georgia and Florida; (5) Alabama and Mississippi; (6) Arkansas, Louisiana, Oklahoma, and Texas; (7) Montana and Idaho; (8) Arizona and Nevada; and (9) Washington and Oregon. Beginning with 1974, individual state distribution data became available. To estimate the 1960 through 1973 state distribution data, the states are disaggregated in proportion to the individual states’ shares of each similar state grouping in 1974.

4. The sources used to develop thermal conversion factors for bituminous coal and lignite consumed by the electric power sector—the National Coal Association report and the Federal Power Commission’s (FPC) Form 423 and Federal Energy Regulatory Commission (FERC) Form 423—exclude Alaska. However, Alaska reported consumption of bituminous coal and lignite at electric utilities for all years, 1960 forward. Unpublished FPC heat rates for coal at electric utilities in Alaska were used for 1960 through 1972. The 1972 conversion factor (the last year for which a conversion factor was reported for Alaska) was used for 1973 through 1978. According to industry sources, new mines were opened in 1978 and a more representative factor was used for 1979 through 1997. For 1998 forward, the Alaska factor is calculated using the same methodology as used for other states.

Data sources
CLACKZZ — Factor for converting coal consumed by the transportation sector from physical units to Btu by state.

- 1960 through 1977: Assumed by EIA to be equal to the Btu conversion factor for bituminous coal and lignite consumption by industrial users other than coke plants.
- 1960 through 1973: Estimated by EIA by adjusting the 1974 average heat value of bituminous coal and lignite consumed by industrial users other than coke plants by the ratios of 1960 through 1973 national averages for the other industrial users to its 1974 average.
- 1974 through 1977: Calculated by EIA by assuming that the bituminous coal and lignite consumed by industrial users other than coke plants in each state contained heating values equal to those of bituminous coal and lignite received at electric utilities in each state from identified coal-producing districts as reported on Federal Energy Regulatory Commission (FERC) Form 423, “Monthly Report of Cost and Quality of Fuels for Electric Plants.” The average Btu content of coal delivered from each coal-producing district was applied to deliveries to other industrial users in each state and the sum total of the heat content was divided by total tonnages, yielding a weighted average. The coal distribution data by coal-producing district are reported on Form EIA-6, “Coal Distribution Report,” and predecessor Bureau of Mines Form 6-1419-Q.

- 1978 forward: Transportation sector coal is included in the other industrial category. Zero is entered for this variable.

CLACPUS — Coal consumed by the transportation sector in the United States.

- 1978 forward: Small amounts of bituminous coal and lignite consumed by the transportation sector are included in the other industrial category (see CLOCPUS). Zero is entered for this variable.

CLEIKZZ — Factor for converting coal consumed by the electric power sector from physical units to Btu by state.

- 1960 through 1988: Calculated by EIA as the consumption-weighted average of national-level anthracite conversion factors and state-level
bituminous coal and lignite factors using factors and consumption from SEDS.

Anthracite conversion factors:
- 1960 through 1972: EIA assumed that all anthracite consumed at electric utilities was recovered from culm banks and river dredging and was estimated to have an average heat content of 17.500 million Btu per short ton.
- 1973 through 1988: Calculated annually by EIA by dividing the heat content of anthracite receipts at electric utilities by the quantity of anthracite received at electric utilities. These data are reported on the FERC Form 423, “Monthly Report of Cost and Quality of Fuels for Electric Plants,” and predecessor forms.

Bituminous coal and lignite conversion factors:
- 1960 through 1972: EIA adopted the average thermal conversion factor of the Bureau of Mines, which used the National Coal Association (NCA) average thermal conversion factor for electric utilities calculated from FPC Form 1 and published in Steam Electric Plant Factors, an NCA annual report. The specific tables are:
 - 1960 and 1961: Table 1.
 - 1962 through 1972: Table 2.
- 1983 through 1988: The average heat content of coal received at steam electric plants 50 megawatts capacity or larger from FERC Form 423 and published in Btu per pound in the EIA, Cost and Quality of Fuels for Electric Utility Plants. The specific tables are:
 - 1983 and 1984: Table 58.
 - 1985 through 1988: Table 48.

Note: The state conversion factors for 1960 through 1972 are derived from actual consumption data, while the conversion factors for 1973 to 1988 are based on receipts of coal. The factors for 1960 through 1972 also may include some quantities of anthracite. These breaks in the series create some data discrepancies. In instances where a state had no receipts for a particular year but did report consumption, it is assumed that the coal received in one year is consumed during the following year and the Btu value of the previous year’s receipts is used. See Additional Note 4 on page 14 for Alaska calculations.

- 1989 forward: Calculated by dividing the total heat content of coal received at electric power plants (including electric utilities and independent power producers) by the total quantity consumed in physical units collected on Form EIA-923, “Power Plant Operations Report,” and predecessor forms, https://www.eia.gov/electricity/data/eia923/. See Additional Note 4 on page 14 for Alaska factors.

CLEIPZZ — Coal consumed by the electric power sector by state.

CLHCKZZ — Factor for converting coal consumed by the residential and commercial sectors from physical units to Btu by state.
- 1960 through 1997: Calculated by EIA as the consumption-weighted average of national-level anthracite conversion factors and state-level bituminous coal and lignite factors using factors and consumption from SEDS.

Anthracite conversion factors:
- Calculated annually by EIA by dividing the heat content of anthracite produced less the heat content of the anthracite consumed at electric utilities, net exports, and shipments to U.S. Armed Forces overseas by the quantity of anthracite consumption by all sectors other than the electric utility sector less the quantity of anthracite stock changes, losses, and “unaccounted for.”

Bituminous coal and lignite conversion factors:
- 1974 through 1997: Calculated by EIA by assuming that the bituminous coal and lignite consumed in the residential and commercial sector in each state contained heating values equal to those of bituminous coal and lignite received at electric utilities in each state from identified coal-producing districts as reported on the FERC Form 423, “Monthly Report of Cost and Quality of Fuels for Electric Plants.” The average Btu content of coal delivered from each coal-producing district was applied to deliveries to the residential and commercial sector in each state and the sum total of the heat content was divided by total tonnages, yielding a weighted average. The coal distribution data by coal-producing district are reported on
Form EIA-6, “Coal Distribution Report,” and predecessor Bureau of Mines Form 6-1419-Q.

- 1998 through 2000: Calculated by EIA from the average heat content of coal received for the residential and commercial sectors combined as reported on Form EIA-860, “Annual Electric Generator Report.” For states that are not represented in data on the Form EIA-860, it is assumed that the heat content of the coal receipts in residential and commercial sectors are equal to the heat content of coal received in the other industrial sector as reported on Form EIA-3A, “Annual Coal Quality Report—Manufacturing.” For states that are not represented in either Form EIA-3A data or Form EIA-860 data (CT, NH, RI, and VT), the heat content of coal receipts in MA is used for CT, NH, RI, and VT and the heat content of coal receipts in MD is used for DC, because the origin of the coal receipts are similar.

- 2001 through 2007: Calculated by EIA from the coal distribution data reported on Form EIA-6A, “Coal Distribution Report—Annual,” and the average heat content of coal reported on FERC Form 423 and Form EIA-423, “Monthly Cost and Quality of Fuels for Electric Plants.” Form EIA-6A provides distribution data for the combined residential and commercial sectors by state of origin to the destination state. FERC Form 423 and Form EIA-423 provide the average heat content of coal produced in the state of origin.

- 2008 forward: Calculated by EIA using unpublished data as the average heat content of coal received at commercial and institutional establishments consuming more than 1,000 short tons of coal annually from Form EIA-3, “Quarterly Survey of Industrial, Commercial & Institutional Coal Users.”

CLHCPUS — Coal consumed by the residential and commercial sectors (commercial sector from 2008 forward) in the United States.

- 1988 through 1990, 1992 through 1995: EIA, Quarterly Coal Report, October-December for each year. Data are from the report of the following year, i.e., 1988 final data are published in the Quarterly Coal Report, October-December 1989. The specific tables are
 - 1988 through 1990: Table 29.
 - 1995: Table 43.

CLHDPZZ — Coal distributed to the residential and commercial sectors (consumed by the commercial sector for 2008 forward) by state.

- 1960 through 1979: No data available. The 1980 state data are used for years 1960 through 1979.
- 1980 forward: The distribution data are published in
 - 1990 and 1991: EIA, Coal Distribution, January-December for each year, Table 16.
 - 1992 through 1994: EIA, Quarterly Coal Report, October-December for the following year, Table 10.
 - 1998 through 2000: EIA, Coal Industry Annual for each year, Table 64.

CLKCKZZ — Factor for converting coal consumed at coke plants from physical units to Btu by state.

- 1960 through 1997: Calculated by EIA as the consumption-weighted average of national-level anthracite conversion factors and state-level bituminous coal and lignite factors using factors and consumption
Anthracite conversion factors:
- Calculated annually by EIA by dividing the heat content of anthracite produced less the heat content of the anthracite consumed at electric utilities, net exports, and shipments to U.S. Armed Forces overseas by the quantity of anthracite consumption by all sectors other than the electric utility sector less the quantity of anthracite stock changes, losses, and “unaccounted for.”

Bituminous coal and lignite conversion factors:
 • 2001 forward: Calculated by EIA from data reported on Form EIA-5, “Quarterly Coal Consumption and Quality Report, Coke Plants” (through 2013) and Form EIA-3, “Quarterly Survey of Industrial, Commercial & Institutional Coal Users,” after Form EIA-5 was folded into Form EIA-3 in 2014. Coke plant data on tons of coal carbonized to create coke, the volatilities of the coal carbonized, and conversion factors based on coal volatility are used to calculate average conversion factors by state.

CLKCPUS — Coal consumed by coke plants in the United States.
- 1988 through 1995: EIA, Quarterly Coal Report, October-December for each year. Data are from the report of the following year, i.e., 1988 final data are published in the Quarterly Coal Report, October-December 1989. The specific tables are
 • 1988 through 1990: Table 27.
 • 1991 through 1994: Table 48.
 • 1995: Table 40.

CLKDPZZ — Coal distributed to coke plants (consumption for 2008 forward) by state.
- 1960 through 1979: Series is the sum of an anthracite data series and a bituminous coal and lignite data series:
 Anthracite:
 - No data available. The 1980 state data are used for years 1960 through 1979.
 Bituminous coal and lignite:
 - 1977 through 1979: EIA, Energy Data Reports, “Coal-Bituminous and Lignite.” The specific tables are
 • 1978: “Distribution of Bituminous Coal and Lignite Produced in the United States.”
 • 1979: “Overall Summary of Distribution of Bituminous, Subbituminous, and Lignite Coal Produced in the United States.”
 - 1980 forward: Consumption data became available for some states and are used for this distribution series when available. See Additional Note 1 on page 13 for an explanation of the estimation methodology.
 • 1980 through 1995: EIA, Quarterly Coal Report, October-December for each year. Data are from the report of the following year, i.e., 1982 final data are published in the Quarterly Coal Report, October-
The specific tables are:

- 1984, 1985, and 1987: Table 27.
- 1990: Table 27.
- 1995: Table 40.
- 1996 through 1999: EIA, unpublished data in short tons as published rounded to thousand short tons in EIA, Coal Industry Annual 2000, Table 73.
- 2000: EIA, unpublished data in short tons as published rounded to thousand short tons in EIA, Annual Coal Report 2001, Table 27.

1974 through 1997: Calculated by EIA by assuming that the bituminous coal and lignite consumed by industrial users other than coke plants in each state contained heating values equal to those of bituminous coal and lignite received at electric utilities in each state from identified coal-producing districts as reported on FERC Form 423, “Monthly Report of Cost and Quality of Fuels for Electric Plants.” The average Btu content of coal delivered from each coal-producing district was applied to deliveries to other industrial users in each state and the sum total of the heat content was divided by total tonnages, yielding a weighted average. The coal distribution data by coal-producing district are reported on Form EIA-6, “Coal Distribution Report,” and predecessor Bureau of Mines Form 6-1419-Q.

1998 through 2000: Calculated by EIA from unpublished data as the average heat content of coal received at manufacturing plants (other than coke plants) consuming more than 1,000 short tons of coal reported on Form EIA-3A, “Annual Coal Quality Report—Manufacturing Plants.”

2001 forward: Calculated by EIA using unpublished data as the average heat content of (1) coal received at manufacturing plants (other than coke plants) consuming more than 1,000 short tons of coal annually from Form EIA-3, “Quarterly Survey of Industrial, Commercial & Institutional Coal Users,” and predecessor forms; (2) coal consumed by coal mining facilities reported on Form EIA-7A, “Coal Production Report,” with heat contents for the coal producing state reported on Form EIA-923, “Power Plant Operations Report,” and predecessor forms; and, before 2007, (3) coal distributed to agricultural, mining, and construction sectors reported on Form EIA-6A, “Coal Distribution Report—Annual” with heat contents for the coal producing state reported on FERC Form 423 and Form EIA-423, “Monthly Cost and Quality of Fuels for Electric Plants.”

• 1988 through 1999: EIA, *Quarterly Coal Report, October-December* for each year. Data are from the report of the following year, i.e., 1988 final data are published in the *Quarterly Coal Report, October-December 1989*. The specific tables are
 – 1991 through 1994: Table 49.
 – 1995: Table 41.
 – 1996 through 1999: Table 42.

CLODPZZ — Coal distributed to industrial plants (other than coke plants) (consumption for 2008 forward) by state.

• 1960 through 1979: Series is the sum of an anthracite data series and a bituminous coal and lignite data series:
 Anthracite:
 – No data available. The 1980 state data are used for years 1960 through 1979.
 Bituminous coal and lignite:
 – 1977 through 1979: EIA, *Energy Data Reports, “Coal—Bituminous and Lignite.”* The specific tables are
 • 1978: “Distribution of Bituminous Coal and Lignite Produced in the United States.”
 • 1979: “Overall Summary of Distribution of Bituminous, Subbituminous, and Lignite Coal Produced in the United States.”
 – 1980 through 1995: EIA, *Quarterly Coal Report, October-December* for each year. Data are from the report of the following year, i.e., 1982 final data are published in the *Quarterly Coal Report, October-December 1983*. The specific tables are
 • 1980: Unpublished data.
 • 1984 through 1990: Table 28.
 • 1991 through 1994: Table 49.
 • 1995: Table 41.

CLRCUS — Residential sector share of coal consumed by the residential and commercial sectors combined.

• 1960 through 2007: Calculated by EIA. It is first assumed that an occupied coal-heated housing unit consumes fuel at the same Btu rate as an oil-heated housing unit. Then, for the years in which data are available on the number of occupied housing units by heating source (1960, 1970, 1973 through 1981, and subsequent odd-numbered years), residential use of coal is estimated by the following steps: a ratio is created of the number of occupied housing units heated by coal to the number of housing units heated by oil; the ratio is multiplied by the Btu quantity of distillate fuel oil used by the residential sector to estimate the Btu quantity of coal used by the residential sector; and the residential sector’s share of residential and commercial use is calculated. The missing years’ shares are interpolated.
• 2008 forward: Discontinued.
Coal Coke Imports and Exports

Physical units
Net imports of coal coke is a component of total U.S. energy consumption. There is no attempt to estimate state allocations of this energy source and all of it is considered to be used by the industrial sector. Net imports of coal coke are included in the U.S. data but not in the state-level data in all tables of total energy consumption and industrial sector energy consumption. Variables for net imports of coal coke into the United States are

\[
\begin{align*}
\text{CCIMPUS} &= \text{coal coke imported into the United States, in thousand short tons; and} \\
\text{CCEXPUS} &= \text{coal coke exported from the United States, in thousand short tons.}
\end{align*}
\]

Net imports is calculated:

\[
\text{CCNIPUS} = \text{CCIMPUS} - \text{CCEXPUS}
\]

British thermal units (Btu)
The factor for converting coal coke from short tons to Btu is 24.80 million Btu per short ton:

\[
\begin{align*}
\text{CCIMBUS} &= \text{CCIMPUS} \times 24.80 \\
\text{CCEXBUS} &= \text{CCEXPUS} \times 24.80 \\
\text{CCNIBUS} &= \text{CCIMBUS} - \text{CCEXBUS}
\end{align*}
\]

Data sources
CCIMPUS — Coal coke imported into the United States.

- 1980 through 1990: EIA, *Quarterly Coal Report* (October-December of the following year). The specific tables are
 - 1980: Table 7.
 - 1981 through 1984: Table A10.
 - 1985 through 1987: Table A11.
 - 1988 through 1990: Table A10.

CCEXPUS — Coal coke exported from the United States.

- 1980 through 1990: EIA, *Quarterly Coal Report* (October-December of the following year). The specific tables are
 - 1980: Table 8.
 - 1981 through 1984: Table A12.
 - 1985 through 1987: Table A11.
 - 1988 through 1990: Table A10.