State Energy Data System 2020
Production Technical Notes
Section 1. Introduction

The U.S. Energy Information Administration’s (EIA) State Energy Data System (SEDS) provides Members of Congress, federal and state agencies, and the general public with comparable state-level data on energy production, consumption, prices, and expenditures. The SEDS energy production database provides annual time series of the production of primary energy sources by state, generally for 1960 forward. EIA’s Office of Energy Demand and Integrated Statistics compiles data from information collected by EIA (and its predecessor agencies) and other publicly available sources.

Purpose

Various EIA surveys collect energy production data in physical units and publish the data in reports on the EIA website. However, most EIA data are published only for the latest time period or for a shorter time series and do not include earlier historical data. Also, it is not possible to compare production across fuels that are reported in different physical units or to calculate total energy production. The SEDS energy production database converts physical unit production into common units of heat, called British thermal units (Btu), and provides a standardized set of state energy production data for comparisons over time, across fuels, and across states.

Coverage

The primary energy sources used to calculate total energy production in the state energy production database include:

- Coal
- Crude oil
- Natural gas, marketed production\(^1\)
- Nuclear electric power
- Renewable energy

Production data for coal, crude oil, and natural gas come from EIA sources and earlier reports published by other agencies. SEDS converts the production data from physical units (short tons, barrels, and cubic feet) to British thermal units (Btu) using estimated heat content conversion factors. The EIA heat content per unit of physical unit (i.e., thermal conversion factors) represents the gross (or higher or upper) energy content of the fuel.

Nuclear electric power production in Btu, which also equals consumption, is the nuclear electricity net generation multiplied by the average heat rate of the nuclear power plants.

Renewable energy includes biofuels, geothermal, hydroelectric power, solar, wind, wood, and biomass waste. Biofuels include fuel ethanol and biodiesel. SEDS estimates state-level production of fuel ethanol and biodiesel, in thousand barrels, using data provided by some states and plant capacity data. SEDS defines biofuel production in Btu as the total heat content of biomass inputs (or feedstock) used in the production of fuel ethanol and biodiesel. That is, it includes the losses and co-products from the production of the biofuel. SEDS assumes that production of other renewable energy equals consumption, except for wood production for 2016 forward. See Section 6 for the description of renewable energy concepts and estimation procedures.

To avoid double-counting, production (generation) of electricity, a secondary energy source, is not covered in this report (see the EIA Electricity Data Browser for state electricity generation data). SEDS counts production of domestically produced fossil fuels used for electricity generation as production in the producing state. For example, SEDS counts coal production in the state that the mine is located, even if the coal is transported to another state to generate electricity. SEDS counts production of nuclear fuels and renewable energy used for electricity generation as production in the electricity generating state.

Sections 2 through 6 of this documentation describe the data sources and the estimation methodologies used to derive the production series for each energy source.

\(^1\) SEDS presents marketed production for natural gas, in contrast to the Monthly Energy Review, EIA’s national energy publication, which presents production data for dry natural gas and natural gas plant liquids. See discussion in Section 4.
Comparability
To maintain internal consistency, SEDS calculates U.S. estimates as the sum of all states, District of Columbia, and federal offshore production, if any. U.S. totals may not exactly equal the national data published in other EIA publications because of rounding or differences in estimation methods. The box below summarizes the differences between the U.S. production estimates in SEDS and the U.S. production data published in the Monthly Energy Review (MER).

<table>
<thead>
<tr>
<th>Differences between U.S. production estimates in SEDS and MER</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIA’s Monthly Energy Review (MER) and SEDS publish annual time series of production data at the U.S. level in both physical units and Btu. The differences between the physical unit production data in SEDS and MER are minor and mostly because of rounding. Because SEDS computes the Btu production of coal and natural gas using state-level conversion factors, instead of a U.S.-level factor as the MER does, the differences between the U.S. Btu production data are more noticeable for those fuels.</td>
</tr>
<tr>
<td>Coal</td>
</tr>
<tr>
<td>Using the state-level conversion factors from EIA’s Office of Energy Production, Conversion, and Delivery, SEDS U.S. coal production estimates in Btu are usually within 1% of the MER estimates. For 1989 forward, the MER’s coal production in Btu also includes waste coal supplied, which is not included in the SEDS estimates.</td>
</tr>
<tr>
<td>Crude oil</td>
</tr>
<tr>
<td>There is no noticeable difference in the crude oil production data presented in SEDS and MER.</td>
</tr>
<tr>
<td>Natural gas</td>
</tr>
<tr>
<td>SEDS uses state-level thermal conversion factors for dry natural gas and regional-level thermal conversion factors for natural gas plant liquids to calculate natural gas marketed production in Btu. In contrast, MER uses U.S.-level thermal conversion for dry natural gas and natural gas plant liquids. The differences between the SEDS U.S. series and the sum of the two MER series are less than 0.5% in most years. The maximum difference is 2.1% in 1997. No attempt has been made to reconcile the two sets of estimates.</td>
</tr>
<tr>
<td>Nuclear energy</td>
</tr>
<tr>
<td>The SEDS and MER U.S. production estimates are the same for nuclear-generated power.</td>
</tr>
<tr>
<td>Renewable energy</td>
</tr>
<tr>
<td>The SEDS and MER U.S. production estimates for biofuels differ because of data coverage. For biofuels, SEDS includes only ethanol and biodiesel production. In contrast, MER includes ethanol, biodiesel, renewable diesel, and other biofuels production. The SEDS and MER U.S. production estimates are the same for geothermal, hydroelectric power, solar, wind, wood, and biomass waste.</td>
</tr>
</tbody>
</table>
Section 2. Coal

EIA collects annual coal production in short tons from U.S. coal producers on Form EIA-7A, “Annual Survey of Coal Production and Preparation” and its predecessor forms. State production data are available in the Annual Coal Report and its predecessor publications as described under Sources below. EIA’s Office of Energy Production, Conversion, and Delivery (EPCD) provides the state data used in SEDS. Beginning in 2001, the EPCD coal production data also include a small volume of refuse recovery coal.

EPCD also develops the state-level thermal conversion factors, in Btu per pound. For all years, the conversion factors are the heat contents of coal delivered to electric power plants (reported on Form EIA-923, “Power Plant Operations Report” and predecessor forms). EPCD assumes that the 1960-1971 factors are the same as the 1972 factors. For states that have a significant amount of their coal consumed in coke plants, other manufacturing industries, or exported, EPCD adjusts the conversion factors to reflect a higher heat content of coal produced for such uses. Consequently, the resultant U.S.-level Btu production estimates for the earlier years deviate more from the MER, which uses a U.S.-level average thermal conversion factor.

Variable names and definitions

The independent data series identifying codes for coal data are: (“ZZ” represents the two-letter state code in the variable names):

- CLPRPZZ = Coal production, in thousand short tons, by state; and
- CLPRKZZ = Factor for converting coal production from thousand short tons to billion Btu, by state.

SEDS calculates coal production in billion Btu using the following formula:

\[
\text{CLPRBZZ} = \text{CLPRPZZ} \times \text{CLPRKZZ}
\]

SEDS calculates the U.S. total coal production, CLPRPUS and CLPRBUS, as the sum of the states’ values. The average thermal conversion factor for the U.S. total is:

\[
\text{CLPRKUS} = \frac{\text{CLPRBUS}}{\text{CLPRPUS}}
\]

Data sources

CLPRPZZ — Coal production in thousand short tons by state.

- 1989-2000: EIA, Coal Industry Annual, annual reports, Table 1.
- 2001 forward: EIA, Annual Coal Report, annual reports, Table 1.

CLPRKZZ — Factor for converting coal production from thousand short tons to billion Btu, by state.

Section 3. Crude Oil

EIA’s Office of Energy Production, Conversion, and Delivery (EPCD) compiles production of crude oil (including lease condensate) in thousand barrels. Before 1976, the U.S. Department of the Interior, Bureau of Mines, compiled the data. For 1981 forward, annual state-level data are from EIA, Petroleum Data, Crude Oil Production. Before 1981, the data are from the publications described in the sources below.

Before 2015, EIA converted crude oil production data in thousand barrels to billion Btu using a fixed conversion factor of 5.8 million Btu per barrel. For 2015 forward, EIA calculates the crude oil thermal conversion factors using gravity ranges of crude oil production data from the American Petroleum Institute (API).

Federal offshore production

For 1981 forward, the EIA data source provides federal offshore crude oil production data in the Petroleum Administration for Defense District (PADD) 3 (Gulf Coast) and PADD 5 (West Coast) regions. Before 1981, the source data included federal offshore crude oil production in the Gulf of Mexico with Alabama, Louisiana, and Texas, and that in the Pacific region with California.

For 1960—1981, to maintain compatibility of state-level production over time, SEDS assigns U.S. Department of the Interior crude oil production from the Gulf of Mexico (GOM) Planning Areas to PADD 3 and production from the Federal Pacific Offshore area to PADD 5. SEDS removes the Central GOM production from Louisiana, Western GOM production from Texas, Eastern GOM production from Alabama, and the Pacific production from California.

Variable names and definitions

The independent data series identifying codes for crude oil data are (“ZZ” represents the two-letter state code or federal offshore region in the variable names):

- PAPRPZZ = Crude oil production (including lease condensate), in thousand barrels, by state or federal offshore region; and
- COPRKUS = Factor for converting crude oil production from thousand barrels to billion Btu.

SEDs calculates crude oil production in billion Btu using the following formula:

\[\text{PAPRBZZ} = \text{PAPRPZZ} \times \text{COPRKUS} \]

The U.S. total crude oil production, PAPRPUS and PAPRBUS, is the sum of the states and federal offshore regions.

Data sources

PAPRPZZ — Crude oil production (including lease condensate), in thousand barrels, by state or federal offshore region.

COPRKUS — Factor for converting crude oil production from thousand barrels to billion Btu.

Section 4. Natural Gas (Marketed Production)

EIA's Office of Energy Production, Conversion, and Delivery (EPCD) collects and compiles natural gas production data in cubic feet.

There are different ways to measure natural gas production, because natural gas goes through many stages of processing. SEDS publishes data for marketed natural gas production. Gross withdrawals cover the full well stream volume extracted from oil and natural gas wells. Marketed production is gross withdrawals minus gas used for repressuring, venting and flaring, and nonhydrocarbon gases removed in treating and processing operations. Dry natural gas production is the product that is ready for pipeline transmission and distribution. Natural gas processing plants also separate some gross withdrawals as liquids (called natural gas plant liquids, or NGPLs) from the marketed gas stream. EIA reports NGPLs in gallons, barrels, and cubic feet. The cubic feet volume of NGPL extracted (previously known as extraction loss) is called NGPL production, gaseous equivalent. For more information on natural gas terms and definitions, sources, and explanatory notes see: http://www.eia.gov/dnav/ng/TblDefs/ng_prod_sum_tbldef2.asp.

SEDS uses the concept of marketed production, in contrast to EIA's Monthly Energy Review (MER), which presents production of dry natural gas and NGPL separately. MER considers liquids extracted from natural gas production to be petroleum products, and MER's national NGPL production data come from EIA's petroleum surveys. MER calculates the Btu content of NGPL using the weighted thermal conversion factors for each NGPL component by its national production volume. SEDS does not use this method because production data for the NGPL components are not available at the state level. Instead, SEDS publishes state-level data for natural gas marketed production, which is the sum of dry natural gas and NGPL production, gaseous equivalent.

SEDS uses state-level thermal conversion factors of natural gas delivered to consumers to convert dry natural gas production data from cubic feet to Btu. For NGPL, SEDS uses regional-level thermal conversion factors, weighted by the production volume of each NGPL component, to convert state-level NGPL production data from cubic feet to Btu. State-level marketed production is the sum of the two estimates.

Dry production
For 1982 forward, annual state-level dry natural gas production data are from EIA, Natural Gas Data, Gross Withdrawals and Production, Dry Production table. For 1970-1981, the data are from EIA, Historical Natural Gas Annual 1930 Through 2000.

Federal offshore production

For all years, SEDS includes federal Pacific offshore production in California, as reported by EIA.

Conversion factors
EPCD compiles state-level thermal conversion factors for natural gas delivered to consumers (NGTCK). SEDS assumes that conversion factors for dry natural gas production are equal to those for natural gas delivered to consumers. SEDS uses the NGTCK factors to convert dry production of natural gas from million cubic feet to billion Btu, which are available at http://www.eia.gov/state/seds/sep_use/total/csv/use_convfac.csv.

SEDS calculates average conversion factors for dry natural gas from the federal offshore GOM using the conversion factors of Alabama, Louisiana, and Texas, weighted by the production shares of the Eastern, Central, and Western GOM Planning Areas.
NGPL production, gaseous equivalent

For 1970 forward, annual state-level NGPL production, gaseous equivalent, data are from EIA, Natural Gas Data, Gross Withdrawals and Production, NGPL Production, Gaseous Equivalent table. For 2012 forward, the source reports NGPL production, gaseous equivalent, for the GOM federal offshore production. Before 2012, the source allocated the production to the states that processed the GOM natural gas. No attempt was made to adjust the change in classification.

Conversion factors

The products covered in NGPL, such as propane and ethane, have different thermal conversion factors, and no state-level production data for the individual products are available from the natural gas surveys. However, EIA collects production data in barrels for each NGPL product in its petroleum surveys and publishes the data for the Petroleum Administration for Defense District (PADD) refining districts. SEDS derives the thermal conversion factors for NGPL production, gaseous equivalent, in a multi-step process.

First, SEDS calculates production-weighted averages for NPGL using the thermal conversion factors of the five major products comprising NGPL at the PADD refining district level. The thermal conversion factors for the five NGPL products in million Btu per barrel are:

- Ethane 2.783
- Propane 3.841
- Butane 4.353
- Isobutane 4.183
- Natural gasoline 4.638

Then, SEDS converts the PADD refining district factors from million Btu per barrel to thousand Btu per cubic foot, using an annual ratio of U.S. total NGPL production in thousand barrels from the petroleum surveys and U.S. total NGPL production (gaseous equivalent) in million cubic feet from the natural gas surveys. SEDS then applies the district-level thermal conversion factors to the NGPL production, gaseous equivalent, for each state in the district to calculate the Btu estimates.

Marketed production

For 1970 forward, marketed natural gas production, in cubic feet and Btu, is the sum of dry natural gas production and NGPL production.

Federal offshore production

For 1960 through 1969, SEDS assigns U.S. Department of the Interior federal offshore marketed production for the Gulf of Mexico (GOM) Planning Areas. SEDS removes Eastern GOM production from Alabama, Central GOM production from Louisiana, and Western GOM production from Texas.

Variable names and definitions

For 1970 forward, the independent data series identifying codes for natural gas data are ("ZZ" represents the two-letter state code in the variable names):

\[^2\]For a description and maps of PADD refinery districts, see Appendix A of Petroleum Supply Monthly.
NGPRPZZ = Dry natural gas production, in million cubic feet, by state or federal offshore GOM;
NGTCKZZ = Factor for converting dry natural gas production from million cubic feet to billion Btu, by state or federal offshore GOM;
NGELPZZ = NGPL production, gaseous equivalent, in million cubic feet, by state; and
NGELKZZ = Factor for converting NGPL production, gaseous equivalent, from million cubic feet to billion Btu, by state.

SEDS calculates dry natural gas production and NGPL production in Btu as:

\[
\begin{align*}
\text{NGPRBZZ} &= \text{NGPRPZZ} \times \text{NGTCKZZ} \\
\text{NGELBZZ} &= \text{NGELPZZ} \times \text{NGELKZZ}
\end{align*}
\]

Marketed production is the sum of dry natural gas production and NGPL production:

\[
\begin{align*}
\text{NGMPPZZ} &= \text{Marketed natural gas production, in million cubic feet, by state} \\
&= \text{NGPRPZZ} + \text{NGELPZZ} \\
\text{NGMPBZZ} &= \text{Marketed natural gas production, in billion Btu, by state} \\
&= \text{NGPRBZZ} + \text{NGELBZZ} \\
\text{NGMPKZZ} &= \text{Derived thermal conversion factor for natural gas marketed production} \\
&= \frac{\text{NGMPBZZ}}{\text{NGMPPZZ}}
\end{align*}
\]

For 1960 through 1969, the independent data series is:

\[
\begin{align*}
\text{NGMPPZZ} &= \text{Marketed natural gas production, in million cubic feet, by state.}
\end{align*}
\]

SEDS estimates the Btu content of marketed production using the 1970 state-level thermal conversion factors:

\[
\begin{align*}
\text{NGMPBZZ} &= \text{NGMPPZZ} \times 1970's \text{ NGMPKZZ}
\end{align*}
\]

The U.S. marketed production, NGMPPUS and NGMPBUS, is the sum of the states and federal offshore GOM. SEDS derives the U.S. conversion factor, NGMPKUS, using the same formula for the states.

Additional note

Because of the complexity in accounting for interstate flow of “raw” (unprocessed) natural gas, there are a few cases in which NGPL production is greater than marketed production at the state level. Most of the cases are in Illinois in the early years. For these cases, SEDS uses a simple average of the thermal conversion factors for dry natural gas and NGPL for the specific state and year to convert the marketed production from cubic feet to Btu.

Data sources

NGPRPZZ — Dry natural gas production, in million cubic feet, by state or federal offshore GOM.

- 1970-2000: EIA, *Historical Natural Gas Annual 1930 Through 2000*. Sources for the data are:
 - 1970-1975: Data are based on reports received from state agencies’ responses to informal data requests and the United States Geological Survey (USGS).

- 1970-1997: Sources for GOM federal offshore production are:

NGELPZZ — Natural gas plant liquids production, gaseous equivalent, in million cubic feet, by state.

• 1970-2000: EIA, *Historical Natural Gas Annual 1930 Through 2000*. Sources for the data are:
 – 1970-1975: Data are based on reports received from state agencies’ responses to informal data requests and the United States Geological Survey (USGS).

NGMPPZZ — Marketed natural gas production, in million cubic feet, by state.

NGTCKZZ — Factor for converting dry natural gas production from million cubic feet to billion Btu, by state. Assumed by EIA to be equal to the thermal conversion factor for dry natural gas consumption.

• 1970-1979: EIA adopted the thermal conversion factors calculated annually by the American Gas Association and published in *Gas Facts*.
• 1997 forward: EIA, *Natural Gas Annual*, Table 16, and unpublished revisions.
Electric power plants use nuclear energy to generate electricity. SEDS assumes nuclear energy production equals consumption.

Nuclear energy consumption in Btu is the product of nuclear electricity net generation and the average heat rate of the nuclear power plants. The definition, data sources, and estimation methodology are described in Section 6: Electricity, SEDS Consumption Technical Notes.

SEDS uses the state-level consumption estimates in billion Btu from the SEDS consumption database for production.

Variable name and definition
The independent data series identifying codes for nuclear energy data are ("ZZ" represents the two-letter state code in the variable names):

- **NUETBZZ** = Nuclear electric power consumed, in billion Btu.

Data source
Btu consumption estimates from SEDS are available in comma-separated value (CSV) format: http://www.eia.gov/state/seds/sep_use/total/csv/use_all_btu.csv.

Additional note
Data for electric power generation are net generation data. Negative generation denotes that electric power consumed for plant use exceeds gross generation. A few such cases can be found in electric power generated by nuclear power plants.
Section 6. Renewable Energy

Renewable energy production in SEDS includes biofuels (biodiesel and fuel ethanol), wood and waste, and noncombustible renewable energy sources (hydroelectric power, and geothermal, solar, and wind energy).

Biofuels

SEDS estimates annual state-level production for two biofuels: biodiesel and fuel ethanol. SEDS also estimates the losses and co-products\(^3\) associated with each fuel separately.

Biodiesel

Production in physical units

For 2001 forward, EIA publishes U.S.-level biodiesel production data in the *Monthly Energy Review* (MER) and SEDS estimates state-level biodiesel production. When available, SEDS uses state reported biodiesel production data. For states without reported data, SEDS estimates state-level biodiesel production using data from EIA’s *Monthly Biodiesel Production Report* and other sources.

For 2009 forward, SEDS uses published and unpublished data from EIA Form EIA-22M, “Monthly Biodiesel Production Survey” to estimate production of the states with no published data. The *Monthly Biodiesel Production Report*, generated from the survey, publishes production data by Petroleum Administration for Defense District (PADD) and capacity data by state for 2009 forward. Because of the volatility of biodiesel production, instead of nameplate capacity, SEDS uses unpublished monthly data on plant-level operating status to compute an annual average “operating capacity” for each plant and aggregate them to the state level. SEDS uses operating capacity data for 2014 for 2013. To estimate missing state production, SEDS subtracts the available state biodiesel production data from the total production of the corresponding PADD and allocates the remainder to the other states in the PADD using the share of the state’s operating capacity.

For 2001 through 2008, PADD-level production data do not exist and nameplate capacity data are sporadic. SEDS uses the reported production data from specific states and estimates the rest as follows. First, SEDS computes a set of operating capacity estimates by state for 2001-2008 using the 2009 operating capacity data and information on start date and capacity expansion for individual plants. Then, SEDS subtracts the available state biodiesel production data from the U.S. total and allocates the remainder to the other states proportionally to the share of the state’s operating capacity.

Heat content of biomass inputs to the production of biodiesel

To convert biodiesel production to British thermal units (Btu), SEDS uses EIA’s biodiesel thermal conversion factor of 5.359 million Btu per barrel, as listed in MER, Appendix A.

Because biodiesel is produced from soybeans, corn, and other biomass inputs, EIA defines the total heat content of biofuel from biodiesel to be the total biomass inputs (feedstock) used to produce biodiesel. At the national level, EIA uses soybean oil input to the production of biodiesel (million Btu soybean oil per barrel biodiesel) as the factor to estimate total biomass inputs to the production of biodiesel. EIA defines losses and co-products from biodiesel production as total biomass inputs minus biodiesel produced.

SEDS allocates the MER U.S.-level losses and co-products from biodiesel production to the states using the state-level biodiesel production estimates. The state total heat content of biomass inputs to the production of biodiesel is the sum of the Btu values of biodiesel production and the losses and co-products.

\(^3\) Losses and co-products are the difference between the heat content of the biomass inputs to the production of biofuels and the heat content of the biofuels produced.
Variable names and definitions

The independent data series identifying codes for biodiesel data are (“ZZ” represents the two-letter state code in the variable names):

- **BDPRPUS** = Biodiesel production, in thousand barrels, United States;
- **BDPRPZZ** = Biodiesel production, in thousand barrels, by state; and
- **BDLCBUS** = Losses and co-products from biodiesel production, in billion Btu, United States.

The heat content data series are:

- **BDPRBZZ** = Biodiesel production, in billion Btu, by state
 \[= BDPRPZZ \times 5.359\]
- **BDLCBZZ** = Losses and co-products from biodiesel production, in billion Btu, by state
 \[= BDLCBUS \times (BDPRBZZ / BDPRBUS)\]
- **BDFDBZZ** = Biomass inputs to the production of biodiesel, in billion Btu, by state
 \[= BDPRBZZ + BDLCBZZ\]

The U.S. totals that are not from external sources are the sum of the states’ values.

Data Sources

- **BDPRPUS** — Biodiesel production, in thousand barrels, United States.

- **BDPRP (PADD-level)** — Biodiesel production, in million gallons, Petroleum Administration for Defense District.

- **BDPRPZZ** — Biodiesel production, in thousand barrels, by state.
 - 2001 forward: Production data from available state data sources and EIA estimates based on operating capacity data from EIA Form EIA-22M, “Monthly Biodiesel Production Survey” and other sources.

- **BDLCBUS** — Losses and co-products from the production of biodiesel, in billion Btu, United States.

Fuel ethanol

Production in physical units

For 1981 forward, EIA publishes U.S.-level fuel ethanol production data in the *Monthly Energy Review* (MER) and SEDS estimates annual state-level fuel ethanol production. When available, SEDS uses reported fuel ethanol production data. For states without reported data, SEDS estimates state-level fuel ethanol production using data from various sources.

For 2010 forward, EIA estimates state-level fuel ethanol production for SEDS using data from Form EIA-819 “Monthly Report of Biofuels, Fuels from Non-Biogenic Wastes, Fuel Oxygenates, Isooctane, and Isooctene” and monthly plant-level operating production capacity from the Nebraska Energy Office. SEDS uses unpublished EIA-819 ethanol production data for 12 states in PADD 2 that would not result in the disclosure of identifiable data reported by operators using Form EIA-819. These 12 states in PADD 2 cover about 90% of total U.S. production.

For the remaining states, SEDS allocates the PADD region remainder proportionally to the states using their operating production capacity. SEDS uses monthly data on plant-level operating production capacity to compute the annual average state-level operating capacity. SEDS subtracts the available state fuel ethanol production data from the corresponding PADD total production and allocates the remainder to the other states in the PADD using the share of the state’s operating capacity.

Before 2010, SEDS estimates state-level fuel ethanol production using state reported data and state-level operating production capacity estimates. SEDS obtained production data from Iowa and Washington (through 2009), and...
Minnesota, Nebraska, and South Dakota (through 2007). These five states accounted for about two-thirds of total U.S. fuel ethanol production in 2007. SEDS allocates the remaining portion of the U.S. fuel ethanol production to the other states using state-level operating production capacity estimates.

SEDS compiles state-level operating capacity data from multiple sources. For 2005 through 2009, SEDS uses monthly plant-level data published by the Nebraska Energy Office (which were based on operating capacity data from the Renewable Fuels Association and plant locations for multi-state companies) to compile the annual average state-level operating capacity. SEDS also uses the January 2005 capacity data to approximate 2004 capacity. For 1992 through 1994, SEDS uses operating capacity data as of January 1, 1993 through 1995 published in EIA's Petroleum Supply Annual. For the remaining years, SEDS collects information on plant opening, expansion, and closing to estimate state-level capacity. When no information is available for a state, SEDS estimates capacity using linear interpolation for 1995 through 2003 and assumes capacity before 1992 to be the same as 1992.

Heat content of biomass inputs to the production of fuel ethanol

EIA defines the heat content of biofuel from fuel ethanol to be the total biomass inputs (feedstock, mostly corn) used to produce fuel ethanol. At the national level, EIA uses corn input to the production of fuel ethanol (million Btu corn per barrel fuel ethanol) as the factor to estimate total biomass inputs. The losses and co-products from fuel ethanol is equal to total biomass inputs minus fuel ethanol produced.

Before calculating the heat content of fuel ethanol produced, SEDS makes an adjustment to the fuel ethanol volume in physical units to remove the denaturant (typically natural gasoline added to the ethanol to make it unfit for human consumption). For 2009 forward, EIA’s Monthly Energy Review estimates the volume of denaturant for the United States using survey data. Before 2009, EIA assumes the denaturant to be 2% of fuel ethanol production. SEDS applies the annual national adjustment ratio to the states.

SEDS converts the adjusted fuel ethanol production in physical units to Btu using EIA’s undenatured ethanol thermal conversion factor of 3.539 million Btu per barrel. SEDS estimates state-level losses and co-products by applying the state fuel ethanol production shares to the national losses and co-products. The heat content of the biomass inputs to the production of fuel ethanol is equal to the sum of the fuel ethanol production and losses and co-products.

Variable names and definitions

The independent data series identifying codes for fuel ethanol data are (“ZZ” represents the two-letter state code in the variable names):

- `ENPRPUS` = Fuel ethanol production, including denaturant, in thousand barrels, United States;
- `ENPRPZZ` = Fuel ethanol production, including denaturant, in thousand barrels, by state;
- `EMPRPUS` = Fuel ethanol production, excluding denaturant, in thousand barrels, United States; and
- `EMLCBUS` = Losses and co-products from the production of fuel ethanol, in billion Btu, United States.

The computed data series are:

- `EMPRPZZ` = Fuel ethanol production, excluding denaturant, in thousand barrels, by state
 = `ENPRPZZ - (EMPRPUS / ENPRPUS)`
- `EMPRBZZ` = Fuel ethanol production, excluding denaturant, in billion Btu, by state
 = `EMPRPZZ * 3.539`
- `EMLCBZZ` = Losses and co-products from fuel ethanol production, in billion Btu, by state
 = `EMLCBUS * (EMPRBZZ / EMPRBUS)`
- `EMFDBZZ` = Biomass inputs to the production of fuel ethanol, in billion Btu, by state
 = `EMPRBZZ + EMLCBZZ`

The U.S. totals that are not from external sources are the sum of the states’ values.

4 Some data in the earlier years for Minnesota, Nebraska, South Dakota, and Wisconsin are not available and SEDS estimates them using plant capacity information or with assumptions.
Data sources

ENPRPUS — Fuel ethanol production, including denaturant, in thousand barrels, United States.

EMPRPUS — Fuel ethanol production, excluding denaturant, in thousand barrels, United States.

EMLCBUS — Losses and co-products from the production of fuel ethanol, in billion Btu, United States.

ENPRPZZ — Fuel ethanol production, including denaturant, in thousand barrels, by state.

Total biofuels

Total biofuel data series are:

\[BFPRPZZ = \text{Biofuel production, in thousand barrels, by state} \]
\[BFPRPZZ = BDPRPZZ + ENPRPZZ \]

\[BFFDBZZ = \text{Biomass inputs to the production of biofuels, in billion Btu, by state} \]
\[BFFDBZZ = BDFDBZZ + EMFDBZZ \]

The U.S. totals are the sum of the states’ values.

Wood and waste

In general, EIA accounts for wood and waste energy production when they are consumed as energy. For 2016 forward, EIA collects data on densified biomass fuel (mostly wood pellets) production and exports. Because the United States exports about two-thirds of the densified biomass pellets, which are not domestically consumed, EIA defines wood energy production for 2016 forward as wood energy consumption plus densified biomass exports.

EIA calculates total U.S. densified biomass exports in British thermal units (Btu) from survey Form-63C, “Densified Biomass Fuel Report” and are available as an intermediate data series in EIA’s *Monthly Energy Review*.

To allocate the U.S. densified biomass exports to the states, SEDS assumes that all densified biomass exports are utility wood pellets produced in the South Census Region. First, SEDS aggregates the annual operating capacity of the plants in the South Central Region that generally export densified biomass to the state-level, using EIA’s *Monthly Densified Biomass Fuel Report*, Table 1. SEDS calculates state-level exports by applying the state’s operating capacity share to the U.S. total densified biomass exports. Total state-level wood energy production is the sum of the estimated wood exports and consumption.

Before 2016, SEDS assumes wood energy production is equal to the SEDS wood consumption estimates.

Consumption estimates of wood and waste energy, in billion Btu, are from the SEDS consumption dataset.

Variable names and definitions

The independent data series identifying codes for renewable energy data are (“ZZ” represents the two-letter state code in the variable names):

\[WDEXBZZ = \text{Densified biomass exports, in billion Btu, by state (available for 2016 forward);} \]
\[WDTCBZZ = \text{Wood energy total consumption, in billion Btu, by state;} \]
\[WSTCBZZ = \text{Biomass waste energy total consumption, in billion Btu, by state.} \]
Other data series in billion Btu are:

\[
\text{WDPRBZZ} = \text{Wood energy production, in billion Btu, by state}
\]
\[
\quad = \text{WDTCBZZ \quad \text{before 2016}}
\]
\[
\quad = \text{WDTCBZZ + WDEXBZZ \quad \text{for 2016 forward}}
\]

\[
\text{WWPRBZZ} = \text{Wood and waste energy production, in billion Btu, by state}
\]
\[
\quad = \text{WDPRBZZ + WSTCBZZ}
\]

The U.S. totals are the sum of the states’ values.

Data sources

- **WDEXBUS** — Densified biomass exports, in billion Btu, United States.

- **WDEXBZZ** — Densified biomass exports, in billion Btu, by state.
 - 2016 forward: Estimated by EIA using capacity data from EIA’s *Monthly Densified Biomass Fuel Report*, Table 1 and information on the likelihood of exports.

Btu consumption estimates from SEDS are available in comma-separated value (CSV) format: http://www.eia.gov/state/seds/sep_use/total/csv/use_all_btu.csv.

Noncombustible renewable energy sources

Noncombustible renewable energy sources covered in SEDS include:

- Geothermal energy
- Conventional hydroelectric power
- Solar thermal and photovoltaic energy
- Wind energy

EIA assumes that the production of noncombustible renewable energy is equal to consumption. The estimation methods and data sources for renewable energy consumption are described in Section 5: Renewable Energy, *SEDS Consumption Technical Notes*.

Variable names and definitions

The independent data series identifying codes for renewable energy data are (“ZZ” represents the two-letter state code in the variable names):

\[
\text{GETCBZZ} = \text{Geothermal energy total consumption, in billion Btu, by state;}
\]
\[
\text{HYTCBZZ} = \text{Conventional hydroelectric power total consumption, in billion Btu, by state;}
\]
\[
\text{SOTCBZZ} = \text{Solar thermal and photovoltaic energy total consumption, in billion Btu, by state;}
\]
\[
\text{WYTCBZZ} = \text{Wind energy total consumption, in billion Btu, by state.}
\]

The noncombustible renewable energy production series is:

\[
\text{NCPRBZZ} = \text{Noncombustible renewable energy production, in billion Btu, by state}
\]
\[
\quad = \text{GETCBZZ + HYTCBZZ + SOTCBZZ + WYTCBZZ}
\]

The U.S. totals are the sum of the states’ values.

Data sources

Btu consumption estimates from SEDS are available in comma-separated value (CSV) format: http://www.eia.gov/.
Noncombustible renewable energy sources are mostly consumed by the electric power sector. Data for electric power generation are net generation data. Negative generation denotes that electric power consumed for plant use exceeds gross generation. A few such cases can be found in electric power generated by hydroelectric power plants.

Total renewable energy

Total renewable energy production is:

\[\text{REPRBZZ} = \text{Renewable energy production, in billion Btu, by state} = \text{BFFDBZZ} + \text{WWPRBZZ} + \text{NCPRBZZ} \]

The U.S. totals are the sum of the states’ values.