Accommodating Variable Renewable Energy in the Integrated Planning Model

Ryan Sims Clean Air Markets Division, U.S. EPA

July 11, 2016

What is the Integrated Planning Model?

- The Integrated Planning Model (IPM) is a longterm capacity expansion and production costing model for analyzing the North American electric power sector.
 - Multi-regional, deterministic, dynamic linear programming model.

Finds the least-cost solution to meeting electricity demand subject to environmental, transmission, fuel, reserve margin, and other system operating constraints.

Inputs and Outputs of IPM

Key Methodological Features of IPM

- IPM is a flexible modeling tool for obtaining short- and long-term projections of production activity in the electric generation sector.
 - Model run years
 - Model plants
 - Endogenous fuel modules

- Perfect competition
- Solves with perfect foresight by time segment

Key Methodological Features of IPM: Transmission

- IPM represents power transmission as energy and capacity transfers among the IPM regions.
- Projected transfers are determined by the IPM optimization subject to constraints on the maximum flow on a transmission link.
 - Constraints are based on public sources, where possible
 - Two types of constraints bilateral and joint
- IPM's also includes interregional transmission losses, wheeling charges, and congestion costs.
- IPM may allow, or disallow, new interregional transmission build options.
 - Disabling this capability under high VRE scenarios would increase system costs through the development of inferior resources, increased congestion costs, etc.

Variable Renewable Energy in IPM

- IPM currently contains build options for utility-scale solar photovoltaic (PV), concentrated solar power (CSP), and wind technologies.
- NREL data serve as the primary source for many of the characteristics of wind and solar build options, including:
 - Capital and fixed costs
 - Total resource availability
 - Performance
 - Average annual capacity factor
 - Hourly generation profiles
- Build options for new renewable energy are provided at the smaller of the state- or IPM region-level.

Modeling High VRE Scenarios: Variability

- Recognizing the variable nature of RE, wind and solar capacity in IPM is assigned partial credit towards satisfying a region's reserve margin requirements.
 - The capacity credit associated with wind and solar is dependent on the seasonal average generation available per MW of capacity and the shape of the hourly generation profile (i.e., a peak-coincident resource like solar is assigned a higher contribution to reserve)
- The cost of each IPM region meeting the reserve margin requirement is reflected in seasonal capacity prices, expressed in \$/kW-yr
 - Variable RE only receive capacity revenues associated with their contribution to the reserve margin

Modeling High VRE Scenarios: Capital Cost

The EPA's version of IPM contains short-term capital cost adders through 2030 that apply if the new capacity deployed in a model run year exceeds certain upper bounds.

ID Number	Plant Type		2016		2018			2020			2025				2030		
		′	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3
	Biomass	Upper Bound (MW)	658	438		1,315	877	-	1,315	877	<u> </u>	3,288	2,192	-	3,288	2,192	-
'		Adder (\$/kW)	-	1,285	3,322	•	1,285	3,322	-	1,285	3,322	-	1,285	3,322	-	1,285	3,322
2	Coal Steam	Upper Bound (MW)	6,913	4,609	-	13,826	9,218	•	13,826	9,218	-	34,566	23,044		34,566	23,044	•
!		Adder (\$/kW)	-	916	2,370	-	916	2,370	-	916	2,370	-	916	2,370	-	916	2,370
3	Combined Code	Upper Bound (MW)	46,157	30,771	-	92,314	61,542		92,314	61,542	-	230,784	153,856		230,784	153,856	•
	Combined Cycle	Adder (\$/kW)	-	313	809	•	313	809	-	313	809	/	313	809	-	313	809
	Combustion Turbine	Upper Bound (MW)	23,668	15,778	-	47,335	31,557	•	47,335	31,557	-	118,338	78,892		118,338	78,892	-
	Compliation rurbine	Adder (\$/kW)	-	200	518	-	200	518	-	200	518	-	200	518	-	200	518
	Fuel Cell	Upper Bound (MW)	600	400	-	1,200	800	•	1,200	800	-	3,000	2,000	•	3,000	2,000	-
5		Adder (S/kW)	-	2,215	5,727	-	2,215	5,727	-	2,215	5,727	-	2,215	5,727	-	2,215	5,727
		Upper Bound (MW)	314	210	-	629	419	•	629	419	-	1,572	1,048		1,572	1,048	-
6	Geothermal	Adder (\$/kW)	-	2,140	5,535	-	2,133	5,517	· · ·	2,133	5,517		2,113	5,465	· · ·	2,088	5,400
	IGCC and Advanced Coal with	Upper Bound (MW)	2,400	1,600	-	4,800			4,800			12,000			12,000	8,000	
·/	Carbon Capture	Adder (\$/kW)	-	944	2,441		944	2,441	-	944	2,441	-	944	2,441	-	944	2,441
	Landfill Gas	Upper Bound (MW)	600	400	-	1,200	800		1,200	800	-	3,000	2,000	-	3,000	2,000	•
· _ * _ !	Landhe Gas	Adder (\$/kW)	-	2,708	7,003		2,701	6,987	-	2,701	6,987	-	2,683	6,939	-	2,660	6,879
		Upper Bound (MW)	11,244	7,496		22,488	14,992		22,488	14,992		56,220	37,480		56,220	37,480	
9	Nuclear	Adder (\$/kW)	-	1,789	4,626		1,789	4,626	-	1,789		-	1,789	4,626	-	1,789	4,626
		Upper Bound (MW)	920	614	-	1,841	1,227	•	1,841	1,227	-	4,602	3,068	•	4,602	3,068	-
10	Solar Thermal	Adder (\$/kW)	-	1,382	3,575		1,357	3,511	· · ·	1,334	3,450	-	1,273	3,292	-	1,208	3,125
		Upper Bound (MW)	7,441	4,961	-	14,882			14,882	9,922		37,206	24,804		37,206	24,804	-
11	Solar PV	Adder (S/kW)		607	1,569		521	1,347	· · ·	436	1,128	-	396	1,025		355	919
		Upper Bound (MW)	15,700	10,466		31,399			31,399	20,933		78,498	52,332		78,498	52,332	
12	Onshore Wand	Adder (S/kW)		523	1,352		514	1,330		507			492	1,274		485	1,253
		Upper Bound (MW)	600	400		1,200	800		1,200	800		3,000	2,000		3,000	2,000	-
13	Offshore Ward	Adder (S/kW)		1,589	4,111		1,504	3,891		1,421			1,248	3,226		1,207	3,122
		Upper Bound (MW)	1,451	967	-	2,902	1,934		2,902	1,934		7,254	4,836		7,254	4,836	
14	Hudro	Adder (S/kW)		504	1,303		504	1,303	· · ·	504			504	1,303	· · ·	504	1,303

- Additionally, wind and solar resource totals are divided into cost steps, which represents a variety of factors that affect development cost, including distance to transmission, topography, population density, etc.
 - At high levels of penetration may double the cost of accessing that resource.

Modeling High VRE Scenarios: Future Approaches

- The translation of grid integration challenges into the IPM modeling framework can take two forms – costs and constraints.
- Future modeling approaches are contingent on available data and suitability for the IPM modeling platform, but may include:
 - Instituting grid integration cost curves for high levels of penetration
 - Introduction of distributed generation technologies
 - Expansion of energy storage technologies
 - Evaluating the costs, non-cost barriers, and opportunities for transmission expansion

Additional information can be found at:

https://www.epa.gov/airmarkets/power-sector-modeling

Contact: Ryan Sims - <u>sims.ryan@epa.gov</u> Power Sector Modeling Team – <u>powersectormodeling@epa.gov</u>