
Center for Strategic and International Studies
October 14, 2020 | Washington, DC

Thaddeus J. Huetteman, Team Lead, Electricity Analysis
U.S. Energy Information Administration

- Africa generation projection includes major growth and contains uncertainty
 - Expanding urbanization, but large rural population without electricity access
 - Lower pace of transmission development and grid integration
 - New opportunities associated with off-grid generation

- Uncertainties masked by single region, centralized grid-only view of Africa
 - Results in *over-optimized* projected generation mix in which hydro and solar dominate

Single Region Africa

<table>
<thead>
<tr>
<th>Year</th>
<th>Billion KWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>700</td>
</tr>
<tr>
<td>2030</td>
<td>800</td>
</tr>
<tr>
<td>2050</td>
<td>1,000</td>
</tr>
</tbody>
</table>

IEO2020 regional differences include greater electricity demand growth potential in the Africa South region

- Africa North
 - Greater electricity access
 - More mature electric sector infrastructure
 - Significant reliance on natural gas

- Africa South
 - Lower electricity access
 - Higher potential for electricity demand growth and investment
 - Significant reliance on coal/hydro, with new offshore gas reserves discovered in Mozambique and Tanzania

- Full electric access by 2030, met by:
 - Maximum Grid Expansion
 - Maximum Off-grid Expansion

IEO2020 highlights regional differences in generation mix growth

• Highlights transmission limits between regions

• Differing role of natural gas in Africa North and coal in Africa South

• Natural resources availability influences generation fuel-mix

• Expanding investment in LNG facilities for both import/export

Comparative Reference (Two Region)

IEO2020 calculates bounds for off-grid generation in Africa South and potential for significant expansion of renewables

• Assumes Africa South reaches full electricity access by 2030 with incremental demand by sector:
 – Residential: unserved urban and rural areas achieve full electricity access by 2030 at average electricity consumption levels
 – Commercial/Industrial: replacement of lost load for commercial and industrial customers attributed to Africa’s less reliable power supply and delivery systems

• Maximum Grid Expansion case assumes full incremental demand is met by least cost dispatch of centralized-grid power

• Maximum Off-Grid Expansion case assigns incremental demand to be met by off-grid supply either in mini-grid or stand-alone solar photovoltaic systems
Africa South Maximum Grid Expansion maintains growth in fossil fuel generation versus solar growth in Maximum Off-Grid case.

Africa South electricity generation by fuel source in Comparative Reference (Two-Region) case (CRC)

Change in Africa South generation from CRC by fuel source: Maximum Grid Expansion/ Maximum Off-grid cases

IEO2020 projects opportunities for growth in renewables and fossil generation in Africa North and South

Conclusion: Off-grid development could increase solar generation, but bypass of centralized grid is unlikely

• Lack of interconnection and slow transmission infrastructure development reinforces reliance on regional fuels

• Greater off-grid development boosts solar share

• Limited interregional transmission and grid cost-competitiveness at higher demand levels make bypass of the grid less likely

• Demand growth for fossil fuels in Africa projected to increase demand for imports, including LNG