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“However, the essence of models is deliberate simplification. Reality thus is more
complex than the model.”  Gordon, p. 679

I. Introduction

This paper examines how consumers and firms make decisions that have important
implications about transportation energy use in the face of uncertainty, and how they
form expectations that influence those decisions.  These issues are considered with
reference to how such behavior is represented in the Transportation Sector Module of the
National Energy Modeling System (NEMS).  Consumers and firms make decisions about
the types of vehicles they will purchase, how fuel efficient the vehicles should be, what
type of fuel will be used to power them and how much they will be used.  Manufacturers
decide what kinds of vehicles to offer for sale, how fuel efficient they should be, and
what fuels should power them.  These decisions involve monetary costs and benefits, as
well as trade-offs among non-monetary attributes.  All of these decisions are made in the
context of uncertainty about the future in which the vehicles will be purchased and used.

Human beings form expectations as a means of coping with uncertainty about the future.
If there were no uncertainty, expectations would always correspond to reality, which is to
say humans would possess perfect foresight.  Perfect knowledge of the future constitutes
one extreme of expectations.  Another extreme, perfect myopia, assumes that no
information is available to improve on the prediction that the future will be like the
present.  In between lie an infinity of possible ways of formulating expectations about the
future.  In the realm of economics both consumers and producers form expectations about
the future to guide their decision making in the present. Individuals may form a single
expectation about the future or may hold several different expectations simultaneously
(leading to hedging behavior).  How a formal model such as NEMS ought to represent
the expectations of consumers and firms is a complex question that depends partly on
what is known about how economic agents form expectations, partly on the importance
of expectations in energy markets, and partly on the purposes for which the model was
built.  These are extremely complex issues to which the authors are not able to provide
definitive answers.  We hope that we provide useful insights that will help advance the
state of discourse.

NEMS is a computer-based energy-economic modeling system of U.S. energy markets
through 2030 (EIA, 2007a).  It represents engineering and economic relationships via
mathematical equations and algorithms in order to project the production, import,
conversion, consumption and prices of energy in U.S. markets.  Exogenous to the models



computations are key assumptions about the macroeconomy and demographics, world
energy markets, technologies and technological change and consumer preferences. The
explicit incorporation of engineering relationships and technological change is a key
feature of the model.  In addition to developing projections of U.S. energy markets for a
variety of uses, NEMS is frequently used to evaluate impacts of proposed energy
policies, such as carbon or energy taxes, and energy efficiency standards.

The Transportation Sector Module represents energy demand, or end use, by the U.S.
transportation sector within NEMS.  It is comprised of four modules: Light-Duty
Vehicles, Air Travel, Freight Transport, and Miscellaneous Energy Use.  Its two main
objectives are to provide projections of transportation energy demand by fuel type, by
mode of transport and region in a way that is sensitive to technological change (EIA,
2007b, p. 3):

1. Generate projections of transportation energy demand at the national and the
census division levels.

2. Endogenously incorporate various technological innovations, macroeconomic
feedback, infrastructural constraints, and vehicle choice in making projections.

Key inputs to the NEMS model are, 1) the macroeconomic and demographic factors
exogenous to the NEMS model itself, 2) fuel prices not estimated endogenously within
NEMS (e.g., the world price of oil) and, 3) technology, consumer preference and policy
assumptions developed by the NEMS modelers but exogenous to the Transportation
Sector Module (TSM).  The TSM supplies estimates of regional fuel consumption by fuel
type to NEMS.  Prices and quantities are exchanged iteratively between the NEMS model
and the TSM until the larger NEMS model reaches a solution.

The model documentation makes it clear that predicting the future, as such, is not the
purpose of NEMS.  Rather, its intended purpose is to make “projections”, subject to key
assumptions about the states of the economy, world energy markets and technological
change, and to estimate the impacts of certain actions or decisions, most notably
government policies, on these “projections”.  We have put the word projections in
quotations in the previous sentences because the words forecast, prognosis and prediction
are synonyms for it.  However, the NEMS modelers are trying to make a distinction that
is clearly important to them.  They do not intend that NEMS outputs be considered their
best assessment of what will happen in the U.S. energy market.  Instead, it appears, they
intend their projections to be their best assessment of what would happen IF the many
assumptions that are inputs to their models were to hold, and if there were no “surprises”
that changed the fundamental but often unstated institutional and behavioral premises of
their models.

Thus, our first inference about the NEMS Transportation Module and its treatment of
uncertainty and expectations is that uncertainty is intended to be reflected by choosing
alternative input assumptions.  To reflect future uncertainty, NEMS modelers construct
scenarios that are structured sets of alternative input assumptions.  Scenarios can be and
are constructed for special purposes, but are regularly constructed to reflect alternative oil



price and macroeconomic assumptions.  Economic agents in NEMS respond differently
to the different assumptions, producing alternative projections.

Models are inherently simplifications of reality designed for specific analytical purposes.
Therefore, it is meaningless to point out that a model does not perfectly represent the way
that real agents form their expectations and make their decisions.  The important question
is whether such imperfections are important to the purposes of the model and whether it
is possible to more accurately represent both the uncertainties and the way economic
agents respond to them.

Outline of the paper

The remainder of this report is organized as follows.  Section II provides a brief overview
of energy use in the transportation sector and the key sources of uncertainty that affect
transportation decisions.  Section III discusses what is known about how key
transportation decisions that affect energy use are made by consumers and firms.  Section
IV summarizes the history and state of the economic art in modeling expectations.
Section V considers how expectations about the future are formed, first looking at
empirical, theoretical and experimental evidence for different kinds of expectations, and
then looking at how some energy economic models represent expectations.  Section VI
considers ways that expectations affecting key energy decisions are formed in the NEMS
Transportation Sector Module.  Finally, Section VII concludes with summary
observations on representing transportation investment decisions affecting energy use and
the representation of expectations and foresight in those decisions.

II. Energy Use and Uncertainty in the Transport Sector

Given the stated purposes of NEMS, our focus should be on the investment decisions by
firms and consumers that are likely to have the greatest impact on the quantity, type and
cost of energy use. We now turn to considering the kinds of uncertainty that appear to be
most important to transportation energy markets and begin with a brief review of how
energy is used in the transportation sector and historical trends in the key variables.

II.1 U.S. Energy use by mode and fuel type

Road transport accounts for most of transport energy use: almost 75% in 2005 (Table 1).
Within the highway mode light-duty vehicles (passenger cars and light trucks)
predominantly purchased by or for individuals account for the largest share of energy use,
58.4% of total transportation energy.  Medium and heavy trucks, purchased primarily by
firms, account for nearly half of the rest, 15.5% of total sector energy use.  Air transport,
dominated by domestic and international air carriers, is a distant second after road
transport, accounting for only 8.4% of total transportation energy use.  General aviation
comprises less than 10% of air transport energy use and only a fraction of that can be
attributed to personal aircraft. The third largest component of transport energy use (7.4%
of total) is labeled “OFF HIGHWAY” in Table 1, and comprises a mixture of ambiguous



uses (e.g., agricultural, mining and construction equipment, as well as recreational
vehicles like snowmobiles) that NEMS represents in several sectors.  The remaining
energy use is distributed among water 4.6%, pipeline 2.8%, and rail 2.2%.

The gross structure of transportation energy use is appropriately reflected in the structure
of the Transport Sector Module, which represents the light-duty vehicle market and
decision-making therein in the greatest detail, includes a freight module that pays greatest
attention to highway freight, and represents air travel with another module.

Liquified
petroleum Residual Natural

Gasoline Diesel fuel gas Jet fuel  fuel oil gas Electricity Total
HIGHWAY 17,280.00 4,683.50 62.9 0 0 15.6 0.7 22,042.7
Light vehicles 16,813.5 414.1 47.5 0 0 0 0 17,275.1
   Cars 9,089.0 51.2 9,140.2
   Light trucksb 7,697.6 362.9 47.5 8,108.0
   Motorcycles 26.9 26.9
Buses 6.5 167.7 0.2 0 0 15.6 0.7 190.7
   Transit 0.2 76.3 0.2 15.6 0.7 93.1
   Intercity 28.3 28.3
   School 6.3 63.1 69.4
Medium/heavy trucks 460.0 4,101.7 15.2 0 0 0 0 4,576.9
NONHIGHWAY 244.1 925.6 0 2,437.70 825.8 602.9 316.4 5,352.5
Air 38.9 0.0 0 2,437.70 0 0 0 2,476.6
   General aviation 38.9 203.5 242.4
   Domestic air carriers 1,861.50 1,861.5
   International air carriersc 372.7 372.7
Water 205.2 335.1 825.8 1,366.1
   Freight 292.7 825.8 1,118.5
   Recreational 205.2 42.4 247.6
Pipeline 0.0 0.0 0 0.0 0 602.9 239.5 842.4
Rail 0.0 590.5 0 0.0 0 0 73.1 663.6
   Freight (Class I) 571.4 571.4
   Passenger 19.1 73.1 92.2
         Transit 0.0 44.9 44.9
         Commuter 10.6 15.3 26.0
         Intercity 9.1 5.5 14.6
HWY & NONHWY TOTAL 17,524.1 5,609.1 62.9 2,437.7 825.8 618.5 317.2 27,384.6
OFF-HIGHWAY 733.8 1,469.6 0 0.0 0 0 0 2,203.4
   Agriculture 42.2 464.9 507.1
   Industrial & commercial 216.6 248.9 465.5
   Construction 34.2 741.6 775.8
   Personal & recreational 440.5 5.8 446.3
   Other 0.3 8.4 8.7
TOTAL 18,257.9 7,078.7 62.9 2,437.7 825.8 618.5 317.2 29,588.0

Source:
Davis and Diegel, 2007. Transportation Energy Data Book, Ed. 26, Table 2.5

     a Civilian consumption only.  Totals may not include all possible uses of fuels for transportation (e.g., snowmobiles).
  b Two-axle, four-tire trucks.

c 2000 data.  2001 data are not yet available.
d One half of fuel used by domestic carriers in international operation.

Table 1
Domestic Consumption of Transportation Energy by Mode and Fuel Type, 2005a

(trillion Btu)



II.2  Key sources of uncertainty

In the authors’ opinion, there are four principal sources of uncertainty for decision-
making within the TSM that are currently treated as exogenous to the model itself:

1. Energy prices, in particular the world price of petroleum,
2. Technological change both for transportation equipment and fuels,
3. Government policy for transportation and energy and,
4. Consumers’ preferences for vehicles and travel.

The price of oil is clearly a major cause of uncertainty for decision-making about
transportation investments. Indeed, it does not appear to be possible to predict the price
of oil with any useful degree of confidence. As Figure 1 shows, real oil prices fluctuated
almost entirely within a range of $10-$20 per barrel (2006 $) until 1974.  Since then, the
OPEC cartel has had a powerful but virtually unpredictable impact on world oil prices.
Figure 1 also shows the three oil price cases considered by the 2007 Annual Energy
Outlook (EIA, 2007c).  The three cases appear to approximately span the range of
historical oil prices since 1974, but do not reflect their volatility in any meaningful sense.
This is extremely significant with respect to modeling the formation of expectations by
consumers and firms about future oil prices.  If oil price paths are not modeled
realistically, what will be gained by modeling consumers’ and firms’ expectations about
future petroleum prices?
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Figure 1.  World Crude Oil Prices: History and Projections.

Today the future price of oil is as uncertain as it has ever been.  There are five key
sources of long run oil market uncertainty1:

1. the degree to which OPEC producers will expand production,

1 These omit the sources of shorter-run oil price uncertainty or volatility due to supply or demand shocks.



2. the extent of conventional oil resources and the rate at which they can be
produced (oil peaking),

3. the ability of other sources of energy for transportation (unconventional fossil
fuels, biofuels, electricity and hydrogen) to compete with petroleum fuels,

4. the extent to which nations will implement policies to increase energy efficiency
in transportation and discourage increased demand through carbon taxes and
carbon cap-and-trade systems, and

5. the rate of demand growth from global economic development and
“motorization.”

The first source of uncertainty reflects the fact that the order of magnitude difference
between short-run and long-run price elasticities of oil demand and supply gives OPEC
producers a wide range of choice of production strategies.  Inelastic short-run demand
and non-OPEC supply allow much higher prices in the over a period of a year or two than
can be sustained for a decade.  Years of extremely high prices are therefore likely to be
followed by years of relatively low prices.  On the other hand, OPEC could strive to
maintain moderately high prices within a target range and obtain similar gross revenues
(Gately, 2003). As a consequence, predicting future oil prices is nearly impossible.

The second source of uncertainty is the dependence of OPEC and rest-of-world oil
producers on the indefinite quantity of conventional oil resources that exists. There is
very substantial uncertainty about these quantities, as reflected in the wide uncertainty
band for estimates produced by the U.S. Geological Survey’s 2000 assessment (table 2):
a 90% confidence interval ranges from 2 to 4 trillion barrels (Ahlbrandt et al., 2006).  If
the lower bound is more correct, supplies from non-OPEC countries are now beginning to
peak and OPEC itself possesses limited resources.  Thus, unconventional sources of
liquid fuels must be developed rapidly and massively if the world’s growing demand for
liquid hydrocarbon fuels is to be accommodated.  If the upper bound estimate is more
correct, the non-OPEC peak may not come for two decades and global conventional oil
production might not peak until 2050, leaving time to develop unconventional resources
and increase energy efficiency at a more moderate pace (Greene, Hopson and Li, 2005).

Table 2.  USGS Estimates of World Conventional Petroleum Resources through 2025
Oil Natural Gas Liquids Total Petroleum

95% 50% 5% Mean 95% 50% 5% Mean 95% 50% 5% Mean
Undiscovered 394 683 1202 725 101 196 387 214 495 879 1589 939
Res. Growth 255 675 1094 675 26 55 84 55 281 730 1178 730
Proved Res. 884 884 884 884 75 75 75 75 959 959 959 959
Cum Prod. 710 710 710 710 7 7 7 7 717 717 717 717

TOTAL 2244 2953 3890 2994 210 334 553 351 2454 3286 4443 3345

Source: USGS, 2000, as modified to include natural gas plant liquids by Greene et al.,
2003. Units: billions of barrels.  Components may not add to totals due to rounding.

The AEO’s High, Reference and Low Oil price cases reflect differing judgments by oil
market experts about the quantity of conventional oil that exists and the degree to which
OPEC members will be willing and able to expand production.  They do not, however,
reflect the volatility that future oil prices will almost certainly possess.



The third and fourth sources of uncertainty reflect the potential impacts of technological
change and policy on petroleum demand. Recent history suggests that these can be
important. In the decade from 1976 to 1985 the world’s energy markets and
policymakers responded so strongly to higher oil prices and the fear of oil shortages that
oil prices collapsed in 1986 (Figure 2).  The future holds enormous uncertainty about
how strongly the nations of the world will respond to the threat of global climate change
and concerns about energy security, as well as the potential for technology to transform
the energy basis for transportation.

A perspective of more than a century suggests that the technology of vehicles and fuels
can produce radical changes in the transportation energy system.  Since the beginning of
the 19th century, the world’s transportation systems have transitioned from animal power,
to steam engines powered by biomass and then coal, and then to the petroleum age.
Recent history, however, provides little evidence of transformational change.  The U.S.
transportation system is as dependent on petroleum fuels today as it was half a century
ago (Figure 2).  Whether the future holds yet another transition to electricity or hydrogen,
or merely to conventional hydrocarbon fuels made from unconventional fossil resources
remains to be seen.  Given the relatively rapid progress recently achieved in battery and
fuel cell technologies, and the surprising success of hybrid electric vehicles, even a model
with a 25-year perspective, such as NEMS, must be capable of exploring the beginning of
sweeping, technology and or policy driven transitions.

U.S. Transportation Energy Use, 1950-2006
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Figure 2.  Transportation Energy Use by Type, 1950-2006.



Technological innovation is almost certain to have important implications for future
transportation energy use through 2030.   Fundamentally different technologies, such as
grid-connected hybrid electric vehicles or fuel cell vehicles are not at all likely to achieve
full market penetration by 2030 because of the lead time required for a new technology to
penetrate new vehicle sales and then the fleet of on-road vehicles.  Still, even the early
stages of a fundamental transition in transportation energy use would have enormous
significance.  Conventional internal combustion engine technologies, as well as hybrid
vehicles and biofuels, however, could have major effects by 2030.  It has been estimated
that technological advances could lead to an 80% improvement in conventional gasoline
engine efficiency (Kasseris and Heywood, 2007) and a tripling of hybrid vehicle
efficiency by 2030 (Kromer and Heywood, 2007).

The NEMS TSM does have an extensive capability to analyze exogenous technological
changes in transportation energy use.  Endogenous technological change is another
matter.  Representing the expectations of consumers and firms about technological
progress is inherently difficult because predicting technological progress is a problem
that modelers have yet to solve.  Tools such as learning curves are calibrated
retrospectively and applied to the future hypothetically.   Grübler (2006) put it this way:

“The question is what instigates the technological changes that lead to energy
transitions?  Unfortunately, technological change is very poorly understood and
even more poorly modeled. Useful generalizations can be inferred from history
but prediction of technological change remains elusive.” (Grübler 2006, p. 55)

Because they are the result of political decisions, policies are also inherently uncertain,
especially over a 25-year time horizon.  Nonetheless, policy decisions have had a
profound impact on transportation energy use and its determinants in the past.  Perhaps
the best example is the regulation of light-duty vehicle fuel economy.  From 1978
through today, the fuel economy of new passenger cars and light trucks have closely
tracked the Corporate Average Fuel Economy standards passed in 1975 (Figure 3).  As a
direct consequence, the average fuel economy of all light-duty vehicles in use gradually
improved as vehicle stocks turned over.  The standards led to a decoupling of light-duty
vehicle travel and fuel use whose effects are clearly evident (Figure 4).  Other policies,
such as renewable fuels standards, carbon cap-and–trade policies, vehicle subsidies, low-
carbon fuels standards, and research and development can have equally profound
impacts.



Figure 3.  New Light-duty Vehicle Fuel Economy and Standards

Figure 4.  Decoupling of Passenger Car Travel and Fuel Use, 1970-2005

Consumers’ and firms’ expectations about government policies can be every bit as
important as their expectations about energy prices.  If biofuel producers believe that
government ethanol subsidies will continue indefinitely, they will be more likely to make
substantial investments in ethanol production plants.  If manufacturers believe that higher
mandatory fuel economy standards will be enforced, they will not only begin redesigning
their product lines but may also expand their efforts in research and development.
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Indeed, it appears very likely that the technology edge Japanese manufacturers currently
hold in hybrid vehicle technology is due to their expectations that society would enforce
increasingly stringent environmental constraints on the motor vehicle industry. However,
predicting policy changes and predicting expectations about policy changes would appear
to be at least as difficult as predicting technological change.

Table 3 summarizes the four sources of uncertainty and how they are represented in
NEMS.  In general, the predictability of these sources of uncertainty is very low, much
lower than the predictability of transportation energy use itself.  Furthermore,
considerable methodological advances would be needed to improve predictions of these
factors.  In general, the NEMS model appropriately addresses these uncertainties via
scenario analyses.

Table 3. Sources of Uncertainty and Their Representation in NEMS Transport Module

III.How are transportation investment decisions made?

Transportation investments are made by consumers, governments and firms.  The three
groups have different objectives, use different methods for making investment decisions
and dominate in different segments of the transportation sector.  Investments can be
broadly divided between investments in infrastructure (roads, ports, rails, and pipelines)
and vehicles (cars, trucks, planes, trains and ships).  Consumers dominate investments in
passenger vehicles while governments make the largest share of investments in
infrastructure.  Firms make significant investments in both vehicles and infrastructure.
Firms account for nearly all investments in pipeline infrastructure and dominate the
markets for aircraft, locomotives and rail cars, as well as cargo carrying ships and trucks.

In our view, there are five key areas related to consumers’ and firms’ decision making
that are critical for transportation energy modeling:

1. Consumers’, firms’ and vehicle manufacturers’ decisions about new vehicle fuel
economy, especially the trade-off between the increased cost of fuel economy
technology and the uncertain value of future fuel savings.

2. The trade-off between vehicle energy efficiency and performance (acceleration,
speed and tractive capacity).

3. Consumers’ and firms’ decisions in the context of major energy transitions, such
as a transition from petroleum to hydrogen or electricity.

4. Decisions made chiefly by governments that affect the geography of the built
environment and the transportation infrastructure in the context of which travelers
and shippers make location and travel decisions.

Predictability NEMS’ Approach Potential
Oil Price Extremely low Scenarios Research needed
Technological Change Extremely low Scenarios Doubtful
Energy Policy Very low Special analyses Doubtful
Consumer Preferences Low History/assumptions Research needed



5. The certainty that consumers’ preferences, the relative values they attach to
attributes of vehicles and travel, will change over time.  In particular, we focus on
the effect of income on the value of travelers’ time and the implications for the
relative importance of energy costs versus time spent traveling.  A similar
argument can be made concerning the value density of commodities and the
modal choices of shippers.

The market for fuel economy

The actual mechanisms by which consumers make vehicle purchase decisions with
reference to fuel economy are relatively poorly understood.  Recent research indicates
that the ideal model of fully informed economically rational decision making does not
correspond to the way real consumers’ make decisions about fuel economy.

A U.S. Department of Energy (Opinion Research Corporation, 2004) survey asked half of
the respondents what they would pay for a vehicle that saved $400/year in fuel while the
other half were asked how much they would have to save annually in fuel to justify
paying an extra $1,200 for a more fuel efficient vehicle.  Payback periods can be
calculated by dividing the mean (or median) willingness to pay by the $400 in fuel
savings, and dividing the mean or median expected fuel savings into the $1,200
additional vehicle cost.  The response category “None” was interpreted to mean zero.
Consumers typically required payback periods between 1.5 and two years (Figure 5).
However, the response category “None” includes both non-responses and consumers who
would not pay anything more or would not require any fuel savings.  Excluding the
response category “None” results in payback periods between 1.8 and 2.6 years.  These
estimates are considered more correct than those that include the category “None”.

Payback Periods Inferred from Responses to Two Survey
Questions About Fuel Savings and Vehicle Cost
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As a practical matter, the concept that consumers will pay for 2-4 years of fuel savings
may be just a way of expressing consumers’ uncertainty and loss aversion.  Uncertainty
about the value of future fuel savings and loss aversion can explain consumers’ apparent
lack of interest in fuel economy improvement.  Uncertainty about the value of future fuel
savings is caused by a number of factors.  Despite the fact that every new vehicle carries
a prominent fuel economy label, consumers do not trust the accuracy of these estimates,
and for good reason.  The fuel economy any individual will realize depends on traffic
conditions (stop-and-go versus free-flowing) the individual’s driving style (aggressive
versus defensive), vehicle maintenance, climate and topography among other factors. In
addition, consumers also do not know with certainty what the future price of fuel will be.
They are not certain about how much driving they will do, how long their vehicle will
last, and a number of other factors.  Consumers are also not sure what precisely they are
paying, or trading off for increased fuel economy.  As a result, the net present value of an
investment in fuel economy is not a single number but rather a probability distribution.
Consumers, however, are known to be loss averse and will put greater weight on potential
losses than gains.  Uncertainty plus loss aversion appears to be a plausible alternative
model of consumer decision making about fuel economy.

Using data from a recent National Academy of Sciences (NRC, 2002) study of the costs
and benefits of fuel economy improvement, Greene et al. (2007) showed that uncertainty
plus loss aversion could lead to a significant market failure with respect to automotive
fuel economy.  A passenger car fuel economy improvement from 28 to 35 miles per
gallon that appeared to offer $400 in net present value became -$30 when uncertainty and
typical consumer loss aversion were taken into account. In light of the uncertainty/loss
aversion hypothesis, consumers’ apparent 2-year payback requirement does not prove
that consumers are not rational (in the economic sense).  Instead, the uncertainty/loss
aversion explanation implies that they are rational but recognize the very large
uncertainties in the choice they face, and they are loss averse.  If this hypothesis is valid,
correctly representing consumers’ uncertain expectations and loss aversion could be
essential to accurately representing how real world markets function.

Evidence from an in depth survey of the car-buying histories of 57 California households
indicates that, in fact, consumers do not use methods such as payback periods or present
value discounting to evaluate fuel economy differences when choosing a new vehicle
(Turrentine and Kurani, 2005).  As a general rule, consumers in the survey did not make
any kind of formal evaluation of future economic benefits.  Turrentine and Kurani’s
findings based on a non-representative sample of California households are generally
supported by the results of a 1,030 household, May 2007 national random sample survey.
In that survey, 39% of respondents indicated that they did not consider fuel economy at
all in their last vehicle purchase (Opinion Research, 2007).  Of those who did, only 14%
mentioned taking economic factors such as fuel costs or gasoline prices into
consideration.  Even with the much higher gasoline prices of summer 2007, the rational
economic model of consumer decision making was not in evidence.

These studies demonstrate how little we know about the ways real consumers and firms
actually make decisions about transportation energy related investments.  At the same



time, it emphasizes the importance of a realistic representation of consumers’ and firms’
decision making to making predictions about market outcomes and analyzing the impacts
of policies such as fuel economy standards.

For purposes of prediction, the use of short payback periods or high discount rates may
accurately simulate the uncertainty/loss aversion market failure.  For purposes of policy
analysis, the same methodology can lead to erroneous conclusions.  The fact that
consumers view future fuel savings as uncertain and are loss averse does not imply that
the realized fuel savings are not real or will not be fully appreciated by consumers when
they are received.2  The fuel savings implications of this are relatively easily handled:
simply count the full lifetime discounted present value of fuel savings rather than the
myopic valuation used to simulate consumer behavior.  What is more difficult is to
determine what effect higher levels of fuel economy would have on consumers’ surplus
and vehicle sales.  If fuel economy standards raise MPG to levels that would be optimal
considering full lifetime fuel savings but that are too high for myopic consumers, is there
a loss of consumers’ surplus?  Will vehicle sales decline?  Will manufacturers lose
revenue?  These are important questions for policy analysis to which we do not have firm
answers at the present time.

Until recently, it was assumed that firms, in contrast to individual consumers, acted as
fully informed, economically rational decision makers, basing their choices of vehicles
and fuels on net present values.  The Japanese government, however, directly challenged
this assumption in establishing fuel economy standards for heavy trucks (Wani, 2007), in
effect asserting that the fuel economy market failure might extend to firms’ decisions
about freight-hauling vehicles.  Whether this view is correct is not known due to the lack
of relevant research on the subject.  In general, however, it seems likely that the larger the
firm and the larger the share of energy in total costs, the more care will be taken in
making decisions about energy efficiency.  For example, fuel can comprise as little as
15% of the costs of airlines when oil prices are low and as much as 30% when prices are
high.  In either case, there is a strong economic incentive for airlines to make rational
decisions about aircraft efficiency and a strong incentive for the two major world aircraft
manufacturers to adopt cost-effective energy efficient technologies.  The fact that air
travel energy intensities have steadily  declined at an average rate of over 3% per year
over the past 35 years, while heavy truck and light-duty vehicle efficiencies decreased at
less than 1% per year, is consistent with the hypothesis that the larger the firm and the
more significant fuel costs, the greater the tendency to apply technological advances to

2 This assertion that the ex ante valuation of fuel economy under uncertainty by a prospective car buyer
may differ from the ex post valuation during vehicle operation would follow from a variety of behavioral
models, including hyperbolic discounting.  Consistent with the assertion, Toyota officials have observed
that even though rated vehicle fuel economy has not generally been high on the list of factors determining
consumers’ new vehicle purchase choices in the past, achieved fuel economy has proven to be relevant for
the subsequent level of consumer satisfaction reported by new car owners.  Recognizing this and with an
eye toward long-term customer satisfaction, certain manufacturers have incorporated added fuel economy
technology in their vehicles, but have been understated about fuel economy in marketing, even for hybrid
vehicles.  Instead, they have marketed the efficiency attributes of those vehicles primarily in terms their
associated environmental friendliness and technological sophistication (as well as emphasizing the usual
attributes of stylishness, safety, performance and reliability).



increasing energy efficiency.  Nonetheless, energy decision making by transportation
firms has been too little studied to draw firm conclusions at this time.

Figure 6.  Energy Intensity Trends of Automobile and Air Passenger Travel, 1970-2005.
Source: Davis and Diegel (2007), tables 2-13 and 2-14.

Figure 7.  Energy Intensity Measures of Freight Vehicles, 1970-2005.
Source: Davis and Diegel (2007) table 2-16.

Performance, weight and fuel economy

From an engineering perspective, fuel economy can be directly traded off for increased
vehicle power and weight.  Indeed, that is precisely what has happened in the light-duty
vehicle market over the past 25 years.  Technology that could have increased fuel
economy has been adopted and applied to vehicles to enhance performance.  Fuel



economy remained nearly constant (+2%) while vehicle horsepower increased +117%
and vehicle weight increased +29%.

Econometric analyses of the trade-off between fuel economy, horsepower and weight
have a reasonable chance of accurately measuring the rates at which these attributes are
valued in the marketplace.  Thus, calibration of the NEMS model has a good chance of
accurately simulating market behavior.  The chance is only good because of the strong
correlation between performance and other vehicle attributes, such as price and other
luxury features.  For prediction, this could be a sound modeling method.  For policy
analysis, however, this method may be deficient.  The reason is that much of the utility of
power and mass may be relative rather than absolute.  A consumer buying a heavier
vehicle in order to gain a safety advantage in the event of a collision with another vehicle
is imposing an external cost on other highway users.  This implies that the market
solution will be vehicles that are too heavy from the perspective of a social welfare
optimum.  While some of the utility of horsepower is clearly absolute, some of it is
almost certainly relative.  Why else would manufacturers advertise the “largest engine in
its class” or “the most horsepower in its class”?   Empirically estimated trade-off rates
may accurately predict consumer behavior, but in light of these relative utility
externalities they will also overestimate the consumer surplus losses generated by trading
off weight and performance for fuel economy.  This could lead to incorrect assessments
of the costs and benefits of key policies such as fuel economy standards or tax incentives.

These considerations of relative utility, however, raise complex issues at the forefront of
economic descriptive and welfare theory, regarding the endogeneity and interdependence
of individual preferences.  Work is underway on the characterization and estimation of
such preferences, and effective schemes for modeling them are only in the early phases.3

Decision making in major energy transitions

Energy transitions from one major technological system and fuel to another, such as
vehicle transitions from petroleum to hydrogen or electricity, by their nature involve
substantial, even radical change over long time scales.  As such, expectations about the
prospects of these changes are critical for economic behavior in the transportation sector.
The likelihood of potentially drastically different fuel or vehicle prices, the prospects for
new fuel and technological choices, the expected availability of supporting (production,
delivery and retailing) infrastructures, and the anticipated thrust of social priorities and
policy incentives will all influence consumers’ and firms’ decisions in the context of
major energy transitions. In cases where oil prices, markets, technologies and policies
change smoothly and gradually, such as in many of the long-term energy outlooks
projected with models like NEMS, the use of adaptive and other limited-foresight forms
of expectations may lead to outcomes little-different from the use of perfect or long-term

3 See, e.g. Postlewaite 1998: “There has traditionally been a reluctance to include such
concerns primarily because models that included them often allow such a broad range of
behavior that there are few, if any, restrictions on equilibrium behavior and, hence, such
models would have little or no predictive power.”



foresight.  Historically-based extrapolations in these cases are likely to produce a
reasonably accurate prediction of future outcomes and so limited foresight may also
provide a plausible description of actual firm and consumer behavior.  In contrast, in the
face of sweeping transitions not only may the future be very unlike the present, but in
some key periods the change may be rapid and “disruptive.”4  It would not be reasonable
for economic agents to assume the future will necessarily be much like the present, nor
would it be reasonable for modelers to assume that firms and consumers are incapable of
anticipating likely changes.  This is the essential challenge for modeling foresight in
transition analyses: limited foresight assumes agents are consistently unable to anticipate
even seemingly-obvious sea changes, and biases the analysis against change.  However,
since the scope and breadth of change is so great, perfect foresight by firms and
consumers is also problematic.  Exploring a range of of approaches may best highlight
the importance and implications of expectations.

Long-run expectations regarding transitions will play the greatest role for firms making
large fixed investments in long-lived infrastructure, such as in pipelines and fuel
production plants, or in new vehicle development, certification and production.
Consumers, in turn, when considering investments in new vehicle/fuel technology are
known to be attentive to expected fuel prices, anticipated vehicle performance and
reliability, the likely future development of supporting refueling and vehicle maintenance
infrastructure, and the projected future resale market for the vehicle. But the effective
life of their vehicle investment is shorter, so they need not anticipate so far into the
possible transition. As discussed at length in the above section on the market for vehicle
fuel economy, evidence supports the conclusion that the applicable time horizon for
actual consumer expectations is ordinarily short, compared to the functional lifetime of
the vehicle.  It is certainly short compared to the expected lifetime of many major
infrastructural investments.  Many of the factors of concern to new vehicle buyers,
including expected reliability, retail fuel availability and vehicle-value in use or resale,
are signaled to them by the market share for the new vehicle type.  Thus consumers,
when considering a new vehicle type, must effectively observe and project the future
market shares, i.e. vehicle choices by many other consumers in their vicinity and in the
market as a whole.  This need for consumers and firms to form expectations not just
about future prices, but about the future actions of other firms and consumers is a
particularly prevalent challenge in transition analysis.

4 For a discussion of disruptive technologies, see the defining article by Bower and Christensen (1995) and
the ensuing dialog.  This literature emphasizes the organizational challenges posed to incumbent firms in
managing disruptive change and new technologies, even when those technologies and their capabilities are
largely “foreseen” by firms.  The key factor identified by Bower and Christensen as leading to firm failures
in this context is the tendency of established firms to follow too closely the requests of the majority of their
current customers and the products they will currently accept, without being adequately attentive to the
prospects for emerging markets, niche markets, and the future needs of their customers.  Thus, to manage
and succeed in change, Bower and Christensen call for firms to be far more foresighted and forward-
looking than their customers may be.  Automotive firms are considered prime examples of those facing this
challenge.



Spatial structure, infrastructure and transportation choices

The demand for transportation services is strongly influenced by land development
decisions and infrastructure investments.  Land development decisions very likely
involve principle agent market failures, with developers making decisions such as
whether or not to include sidewalks or bike paths for the ultimate inhabitants of
neighborhoods.  Transportation decisions are also strongly influenced by infrastructure
investments made by government agencies rather than private markets.  A key feature of
governments’ transportation infrastructure decisions is the predominant provision of
highways as public goods without accounting for external costs such as traffic congestion
or the uncompensated portion of traffic crashes.  NEMS handles these factors by holding
public policies constant.  However, in the future these policies could change affecting
both the rates of growth of transportation demand and it modal distribution.

Income, the value of time and transportation choices

In most but not all cases, the NEMS Transportation Sector model assumes that key
economic parameters, such a price elasticities, remain constant throughout the forecast
period.  In many cases this is a reasonable approximation.  However, Small and van
Dender (2007) have recently shown that one key parameter, the fuel cost per mile
elasticity of vehicle travel, is strongly affected by income level.  Income appears to affect
travel behavior both through ability to pay and the value of time.  In general, as incomes
rise, the value of time increases, shifting consumer preferences to faster modes and
reducing the significance of monetary costs relative to time costs in travel decisions.
Similarly on the freight side, as the value of commodities increases relative to their mass
(so-called dematerialization of production) shippers preferences appear to shift in favor
of faster, more reliable and more flexible rather than cheaper modes.  As the time frame
of NEMS forecasts increases, greater attention will need to be paid to how key parameter
values may change as incomes rise and production dematerializes.

 “Economics is a leading example of uncertain knowledge; it is knowledge, yet it
is evidently uncertain.” Hicks p. 2.

IV. Modeling Uncertainty and Expectations

Modeling expectations is a complex and evolving field.  In addition to perfect foresight,
various methods of representing rational expectations as a function of historical
experience have been developed.  Recognizing that economic agents’ economic behavior
may fall short of perfect rationality, various forms of limited foresight have also been
developed.  Initially, economists favored adaptive expectation models that could be
readily calibrated to historical data.  These simple approaches were eventually replaced
by rational expectation methods, but there has recently been renewed interest in modeling
imperfect foresight.

All of methods proposed to date pose difficulties for economic modelers.  Perfect
foresight and rational expectation models have the advantage of retaining many of the



economic efficiency properties of classical models of market equilibrium but are
generally regarded as unrealistic.  Adaptive expectation and imperfect foresight models
suffer from the lack of a clear theoretical context.  Their choice and calibration therefore
can be ambiguous.  At the same time, predicted outcomes can be quite sensitive to
precisely which forms of imperfect expectations are employed and how they are
calibrated.

Finally, models with imperfect foresight and imperfect expectations can lead to chaotic
behavior.  Whether such behavior more accurately represents reality remains an open
question.  Nonetheless, use of such models creates at least the potential to conclude that
markets can be manipulated and outcomes controlled by exploiting the imperfections in
foresight and expectations.  This implies that great care should be taken to insure that the
representations of imperfect expectations employed are indeed correct.

IV.2 Imperfect Expectations and Various forms of Limited Foresight

Limited foresight expectations generally assume that agents have incomplete information
not just about the future, but about the structure and workings of the economy.

Adaptive expectations usually assume that forecasts of a given economic variable are
formed based on past observations of that same variable alone.  Forms of adaptive
expectations include static, simple adaptive, extrapolative, regressive, and unrestrictive
distributed lag (Jacobs and Jones 1977).  Let EtPt+k denote the expected value at time t of
a variable such as price k periods in the future, and let Pt be the actual realized value of
that variable at any time t.  Static, or completely myopic expectations assume that the
best predictor of the future is the current value5: EtPt+1 = Pt

. The simple adaptive
expectations model is typically a first-order partial adjustment of expectations based on
the current periods error (Parkin 1988):

EtPt+1 = Et-1Pt + b (Pt - Et-1Pt).
This common Koyck-lag form implies that expectations are a geometric weighted
average of all prior observations.6 Higher order error learning models (e.g. Carlson and
Parkin 1975) form expectations based on a weighted average of prior forecasting errors:
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Ideally, adaptive expectations parameters are empirically based.  For the groundbreaking
work in inflation expectations, the parameters of such partial adjustment models were
estimated from survey data regarding actual price expectations (Carlson and Parkin
1975).   More generally, however, expectations of agents are not directly observable, and
may at best be inferred from their behavior.  One appealing and practical attribute of the
Koyck (1954) transformation for first order adaptive expectations is its ease of empirical

5 A simple variant of static expectations is that the price (or other unknown variable) follows an AR(1)
process: EtPt+1 = a10 + a1Pt

6 That is: 
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application: parameters can be estimated solely from observed prior values of the
variable, no information on prior expectations is needed.

IV.3 Perfect Foresight and Rational Expectations

Perfect foresight models which are generally deterministic (non-stochastic) allow
expectations to match actual realized values: Et Pt+1 = Pt+1.  For technical parameters
such as the assumed technical efficiency of a conversion process, this assumption is not
usually controversial or even noted.  For future market prices, demands, and for future
technological performance parameters in cases of endogenous technological learning, or
in general for any endogenous outcomes of the model, the perfect foresight approach is
subject to greater question.  However, it is commonly applied because it is a natural
outcome of the simultaneous solution of the complete dynamic planning problem.

Rational expectations, originally proposed by Muth (1960,1961), are the analog of perfect
foresight in the context of explicit uncertainty.  If the future value of a variable has mean
Pt+1 and random error e t+1, that is Pt+1 = Pt+1 + e t+1, an agent with rational expectations
has perfect information about the mean (and distribution).

Both perfect foresight and rational expectations have the considerable advantage that they
are “model-consistent,” in that agents are assumed to possess all the information
contained in the model.  A guiding principle is that outcomes being forecast by the agents
in the model do not differ systematically from the equilibrium outcome, and firms and
consumers to not make systematic errors.  Alternative approaches to model-consistent
expectations necessarily imply that the modeler, and thereby the planners, have
information that is unavailable to or unused by consumers and producers.  These
foresighted methods are also advocated as being fundamentally consistent with the
principal theoretical construct underlying of most of microeconomics, that agents seek to
maximize value to themselves given their available information, abilities, and resources.
Thus, “rational expectations is the application of the principle of rational behavior to the
acquisition and processing of information and to the formation of expectations”
(Maddock and Carter 1982:51).

IV.4 Historical perspective on approaches to expectations in economic analysis

The history of expectations modeling in macro economics is one of early dominance of
imperfect expectations followed by its nearly complete replacement with rational
expectations.  Recently there is some renewed interest in modeling imperfect foresight.

Virtually all early work in macro-economics emphasized how various forms of imperfect
expectations influence economic outcomes and the role of policy.  Parkin’s review (1988)
reports that “the adaptive expectations hypothesis became popular for and was barely
challenged from the middle 1950s through the late 1960s.” It remained in extensive use
into the 1970s until the rational expectations hypothesis became dominant.  Jacobs and
Jones (1977) noted that in early macroeconomic work often the selection among these



adaptive approaches was “somewhat ad hoc rather than based on the statistical properties
of the resulting forecast.”  Parkin (1988:20-21) cites three reasons for the original appeal
of the adaptive expectations approach, all of which seem to be echoed by the current
advocates of limited foresight in energy-economic modeling: it was intuitively appealing
as descriptive of a learning process; it was empirically easy to employ (at least in the
simple Koyck lag form that eliminates unobserved expectations from the regression); and
it seemed to often “work” (generating reasonable parameters with a high degree of
explanatory power).  Also, compared to perfect foresight or rational expectation it
seemed to be much more tractable analytically.

The original introduction of rational expectations was controversial, because it seemed to
imply enormous information requirements and information processing capability on the
part of individual economic agents.  However, the support in the economics discipline for
imperfect foresight, and adaptive expectations in particular, diminished as Muth (1960)
and Lucas (1972) pointed out key theoretical flaws in the approach, including
implications of suboptimality.  While originally controversial, Romer’s text (Romer
2006:277) now notes “Today, this assumption of rational expectations seems no more
peculiar than the assumption that individuals maximize utility.”  To the extent that the
principles of rational behavior are now being questioned, then this motivation for rational
expectations may be diminished.  Conlisk (1996) surveys the evidence for bounded
rationality in economics, and argues that there are strong motivations for supplementing,
if not replacing, the rational expectations approach.  However, a theoretically coherent
and empirically validated replacement is not yet readily available.

The latest research supports and develops approaches using “heterogeneous
expectations,” under which rational expectations and adaptive expectations co-exist in the
model for different groups of agents (e.g., Branch 2004, Brock and Hommes 1997,
Carroll 2003).  For example, highly-informed firms or expert individuals may be rational
in expectations, and lead the opinions of adopters.  However, these experimental models
have a high degree of complexity and behavior that is only just being explored (e.g.
Branch and McGough 2004).

“Much of the work of economists is concerned with the future, with forecasts and with
planning. But forecasts are trivial and planning is useless unless they are based on fact;
and the facts which are at our disposal are facts of the past.”
Hicks, p. 62

V. How are Expectations of the Future Formed?

V.1 Empirical, experimental, or theoretical support for the different approaches

Expectations formation has been studied with survey data (Lovell 1986), empirical data
on economic behavior, and experimental data (e.g. Plott and Sunder 1988).  The evidence
is mixed.  Naish (1993:3) argues that “empirical tests of the rational expectations



hypothesis have proved largely unfavorable,” citing the reviews of Lovell (1986), Frankel
and Froot (1987) and Jacobs and Jones (1980).  In contrast, (Sargent 2007) and others
note the repeated validation of the efficient markets theory of stock prices.  One
implication of rational expectations is that stock prices follow a random walk.  Sargent
notes that literally hundreds of tests have been conducted and “the tests tend to support
the theory quite strongly.”

Hey (1994) used an experimental approach to investigate whether expectations are
formed rationally or adaptively, and concluded that there was evidence for a mixed
approach.  Chow (1989) tested whether stock price data and dividends are related to one
another in a manner conforming to the present value model under rational expectations.
He strongly rejected one important implication of the present value model under rational
expectations but found that under adaptive expectations that model can explain the data
well.

Naish’s principal claim, based on simulations, is that adaptive expectations are very close
to being optimal, for a wide range of parameter values and certain model types.  If losses
to firms or agents with adaptive expectations are generally small, Naish argues that the
substantially lower information and analytical costs of adaptive forecasting would make
it a generally efficient strategy for economic agents.7  He specifically suggests that “in an
imperfectly competitive world, where firms have different access to, and different
abilities to process information, universal rational behavior would be very unlikely.”
(Naish 1993:21)

V.2 Some Examples of Expectations in energy-economic modeling

The majority of large energy-economic models employ perfect foresight (complete
information) approaches to solve for dynamic market outcomes.  There is growing
interest in limited foresight approaches, perhaps because of expanded interest in
behavioral economics and known limitations of the rationality hypothesis.  Some
extremely large and heterogeneous models, such as NEMS, employ solution algorithms
that solve the model block-by-block, and pass current and future (dynamic) information
among blocks using rules that imply imperfect foresight.  In general, perfect foresight in a
dynamic model requires the simultaneous solution and equilibration of all components
over time.8  When this is not computationally tractable, some form of limited information
passing and foresight allows a solution, and limited foresight becomes a computational
necessity.  Some new models are taking hybrid approaches to limited foresight with
technological learning (e.g. Hedenus et al. 2006, Kouvaritakis et al 2000).

7 However, Naish also cleverly notes that individual agents cannot be believed to “rationally” choose
between adaptive or rational expectations-based behavior in a manner that minimizes the sum of their
analytical costs and performance losses, since that choice would first involve the costly full analysis of both
strategies!
8 Future conditions must be passed backward to the present to inform current investments, and current long-
lived decisions must be reflected forward on the determination of future conditions.



Hedenus et al. (2006) describe results from a energy systems model with learning
(induced technological change) and limited foresight.  As they point out, limited foresight
restores convexity to the optimization problem with learning-by-doing (by essentially
omitting it from the planning problem of un-foresighted firms), and also yields path-
dependent outcomes that can be difficult to explore in foresighted optimization models.
However, the details of their limited foresight approach are relegated to an unpublished
reference.  There is little basis on which to evaluate their claim that, while non-optimal
from a social planners perspective, the limited foresight approach has the advantage of
being “better suited for simulating market behavior” (p. 42).

VI. How are expectations about the future formed in the TSM of NEMS?

In general, the Transportation Sector Module limits its formal modeling of consumer and
investor expectations to the question of future fuel prices.  In the Light-Duty Vehicle
(LDV) module, for example, manufacturers base their decisions about adoption of fuel
economy technologies partly on their expectations of future fuel prices.  A type of linear
extrapolation is used to calculate expected future prices.  The difference between the five-
year moving average of fuel prices three years ago and four years ago (non-centered) is
used as a hypothetical annual price change.  If the change is negative, a value of 0 is used
instead.  The expected price t-years ahead is t times the calculated annual price change.
The LDV module also includes four adjustment factors for learning, but these appear to
be exogenously specified.

The representation of alternative fuel vehicle markets in the LDV module also includes a
feedback mechanism from alternative fuel market shares to fuel availability.  The number
of alternative fuel stations is a function of the current market share of the fuel, reflecting
myopic expectations.

In the Aircraft Fleet Efficiency submodule and the Freight Truck Stock Adjustment
submodule, a price threshold approach is used to represent the expectations of
manufacturers of transportation equipment.  Once the price of fuel exceeds an
exogenously specified a threshold or trigger value, a technology that has been
exogenously determined to be ready for large-scale market introduction on or before the
year in question is introduced.  The market penetration of that technology then follows a
logistic market penetration function that is a function of time but also dependent on the
price of fuel relative to the threshold price.  In the aircraft and truck freight modules, the
current price of fuel is used, implying static expectations.

“The more characteristic economic problems are problems of change, of growth
and retrogression, and of fluctuation. The extent to which these can be reduced
into scientific terms is rather limited; for at every stage in an economic process
new things are happening, things which have not happened before – at the most



they are rather like what has happened before.”  Sir John Hicks, Causality in
Economics, p. xi.

VII. Observations on Modeling Foresight in Transportation Investments

VII.1  Key Uncertainties for Which Expectations Are Important

There is no doubt that key factors that will determine future transportation energy use are
highly uncertain:  the price of petroleum, the rate and direction of technological change,
government policies with respect to climate change and oil dependence, and consumers’
preferences and firm behavior.  The answers to questions such as the following will
undoubtedly have a profound impact on the quantities and types of energy used by the
world’s transport systems and on the prices paid for energy, as well.

 Oil prices:
o How much conventional oil is there and at what rate can it be produced?
o Can and will OPEC expand its production to meet growing transport

demand at moderate prices?
 Technology:

o Can fuel cell vehicles be competitive with hybrids and advanced ICEs?
o Can batteries be improved to compete, making grid electricity a source of

energy for transportation?
o Can carbon sequestration be practical, making fossil energy compatible

with mitigating climate change?
o How much can biofuel production for transportation be increased?

 Government Policy:
o Will the world adopt and enforce strong GHG policies?
o Will countries like the U.S. and China adopt policies that achieve oil

independence?
 Consumer and firm behavior:

o Will consumers accept or prefer vehicles that can take energy from the
grid, or are in other ways different?

o Will firms invest in new technology development and production
facilities?

The remainder of this section reviews the major considerations in choosing among
approaches to expectations.

VII.2 Challenges and Merits of Using Each Expectations Approach

Perfect Foresight/Rational Expectations

A merit of the perfect foresight or rational expectations approach (given embedded
uncertainty) is that the results report self-consistent and economically efficient behavior.
For policy and planning purposes, the results may be interpreted as a least cost outcome.
Usually perfect information approaches pose greater computational challenges, since they



require the simultaneous solution of all time periods and markets.  Rational expectations
models require modern solution methods for stochastic optimization.  It must be
acknowledged that a number of large models using limited foresight do so because of the
reduced computational burden and (often) eased convergence, not because they are
employing a necessarily more sound theoretical or empirical foundation.  Neither perfect
foresight nor rational expectations approaches avoid the potential problems of multiple
equilibria (e.g. Deissenberg 2003, Obstfeld 1984), which occur particularly in cases of
self-reinforcing energy-economic systems.

Adaptive expectations and Imperfect Foresight: Benchmarking Expectations

A large challenge posed by the imperfect foresight approach is grounding the model’s
representation of expectations formation in our best understanding of how economic
agents actually perceive and anticipate the future.  There are a multiplicity of approaches
to expectations formation, and modeling experience and economic theory indicate that
the choice among them can strongly influence modeled outcomes.  Naish (1993:3)
reminds us that “as noted by Simon (1984), a primary reason the idea of rational
expectations became so popular was precisely because it removed the need to conduct
any empirical inquiry into how economic agents form their expectations.”  Arguably,
introducing complex and imperfect expectations into a model should be preceded by the
careful empirical analysis of the nature of those expectations.  To date virtually all
research on this topic has been in the area of macroeconomics, largely focusing on
inflation expectations.

Macroeconomic modeling continues to pay the greatest attention to expectations, and to
the implications of various specifications of expectations formations.  In some cases,
substantial ancillary effort is expended to specify an empirically grounded equation for
expectations.  For example, FRB/Global, a major global macro-economic model
developed by the Federal Reserve Bank, was recently extended to allow two treatments
of expectations formation: limited-information adaptive and rational. (Levin Rogers and
Tyron 1997:1)  “To represent limited-information expectations, FRB/US uses a core
vector autoregression with auxiliary equations (cf. Brayton and Tinsley 1996; Brayton et
al. 1997)” (Levin, Rogers and Tryon 1997:1)  They find the method of expectations
formation can have important implications for the simulation results.  Other modern
models which introduce  limited information use the Kalman filter to make forecasts (e.g.
Erceg, Guerrieri and Gust 2003)

Importance of choice of Expectations approach for modeling outcome

It is generally acknowledged that the specification of adaptive expectations can strongly
influence the modeled outcome.  For example, when most firms have complete
information and even only some firms have adaptive expectations, a wide variety of
outcomes is possible (Naish 1993:5).  From this one might conclude that rational
expectations is not a robust hypothesis, and that adaptive expectations are a useful
explanation for business cycles and other oscillatory behavior.  Alternatively, one can



view the ability of imperfect expectations to generate a wide range of outcomes as a two-
edged sword.

Depending on the specification, imperfect and adaptive expectations approaches can
induce a wide range of cyclical or even chaotic market outcomes over time.  For
example, with the simple cobweb model of market supply-demand equilibration over
time, Hommes (1994) found that adaptive expectations can diminish the price
fluctuations compared to what would be observed with the usual “naïve” (myopic) price
expectations.  However, he also found that chaotic price-quantity behavior can occur for
a large class of nonlinear, monotonic) supply and demand curves.  In general, the careful
choice of foresight specification can minimize some of this adverse behavior, by choice
of lags and adjustment rate, but care is needed.

Consistent modeling and Policy Analysis Under Limited Foresight

A second important caveat for limited foresight methods is the need to avoid modeling
experiments which imply that substantial gains are possible from policies which exploit
the assumed systematic forecasting errors of the modeled agent.  The risk here is falling
afoul of the “Lucas Critique:” it is erroneous to assume that exogenous expectational or
behavioral rules are invariant to policy.  Furthermore, it also can be a mistake to assume
markets can be manipulated by exploiting erroneous or biased expectations.  Sargent
(2007) points out:

“Rational expectations undermines the idea that policymakers can manipulate the
economy by systematically making the public have false expectations. Robert
Lucas showed that if expectations are rational, it simply is not possible for the
government to manipulate those forecast errors in a predictable and reliable way
for the very reason that the errors made by a rational forecaster are inherently
unpredictable.”

However, under imperfect expectations, these type of direct or indirect influences on
market outcomes through altering imperfect expectations might easily occur in the model.
It is not clear that such impacts are actually possible to achieve.  Regardless of the degree
of rationality assumed for firms, consumers and their expectations, there are strong
philosophical arguments for avoiding any policy analysis which assumes private agents
adopt systematically non-optimal strategies with respect to the government’s policy plans
and decision rules.  Under this principle, even adaptive private agents should be made
aware of future policies (e.g. taxes and regulations) being evaluated in the model.

VII.3. Need for a Case-dependent, Careful Exploratory Approach to Expectations

Clearly the unquestioning and universal application of any form of expectations is not
fully satisfactory.  Limited foresight methods continue to have intuitive appeal, and offer
tantalizing promise of greater realism.  But Naish’s (1993:21) final conclusion in support



of adaptive expectations actually highlights a challenge to analysts who would use that
approach for important policy studies:

“Also, adaptive expectations result in a much richer model. …with adaptive
expectations there is a vast array of possible outcomes depending on many
different parameters.”

Which outcome is to be trusted?  It seems we must be cautious, pending further careful
study of the actual formation of expectations in energy markets.

At the same time, there is growing awareness of the need to recognize some limits to
rationality in economic behavior. Conlisk’s (1996:692) survey summarizes four reasons
why some degree of limited rationality should be represented: (1) “wide-ranging
evidence that bounded rationality is important”; (2) models with bounds on rationality
“have excellent success in describing economic behavior”; (3) “the conditions of a
particular context may favor either bounded or unbounded rationality”; and (4) models
with bounded rationality “adhere to a fundamental tenet of economics” by respecting that
human cognition is a scarce resource.

Conlisk concludes with a wise call for a careful, case-dependent approach to
expectations:

“The survey stresses throughout that an appropriate rationality assumption is not
something to decide once for all contexts.  ...  As with other model ingredients,
however, we in practice want to work directly with the most convenient special
case which does justice to the context.  The evidence and models surveyed
suggest that a sensible rationality assumption will vary by context, depending on
such conditions as deliberation cost, complexity, incentives, experience, and
market discipline.”

There is little doubt that the expectations of consumers and firms can have important
impacts on the rate and extent of changes in transportation energy use.  But the question
is whether incorporating more realistic representations of consumers’ and producers’
expectations will improve the NEMS’ model’s ability to accomplish its purposes of
developing useful projections of future energy use and evaluating the impacts and
effectiveness of energy policies.  On the one hand, it seems clear that more realistic
representation of decision making in energy markets would be of great value, especially
for policy analyses.  On the other, it seems clear that substantial additional research is
needed to develop a more complete and accurate understanding of how these markets
function in the real world.
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