Technology Modeling In EIA's New Oil & Gas Model

April 21, 2008 Tulsa, Oklahoma

> **Presented by:** Michael Schaal, EIA

Hitesh Mohan, INTEK

AGENDA

- Scope of EIA's NEMS Model
- Overview of Onshore Lower 48 Oil & Gas Model
- Technology Modeling in OLOGSS
- Effects of R & D Improvements
- Summary

EIA NEMS Model

Analytical Capabilities of NEMS

- Impacts On The Production And Price Of Crude Oil And Natural Gas Resulting From Improvements In Explorations And Production Technologies.
- Responses Of The Energy And Economic Systems To Changes In World Market Conditions As A Result Of Changing Levels Of Foreign Production And Demand In The Developing Countries.
- Impacts Of New Technologies On Consumption And Production Patterns And Emissions.
- Impacts Of Existing And Proposed Energy Tax Policies On The U.S Economy And Energy Systems.
- Effects Of Specific Policies, Such As Standards Or Renewable Tax Credits, On Energy Consumption.
- Impacts Of Energy Prices, Energy Consumption, Electricity Generation In Response To Carbon Mitigation Policies Such As Carbon Fees, Limits On Carbon Emissions, Or Permit Trading Systems.

New Onshore Lower 48 Oil & Gas Model (OLOGSS)

Capabilities of OLOGSS

- Model Entire Oil & Gas Resource in Lower 48 States
 - Conventional
 - Unconventional
 - Tight Sand
 - Oil Shale
 - Continuous Formations, etc
- Ability to Model
 - Technology Change / Improvements
 - Land Access Issues
 - Legislative Policy Issues (Royalty Relief, Tax Credits, etc)

Overview Of System Logic

Effect of Technology Advances

- Three Major Effects:
- Effect on Overall Production Profile of the Resource
- Effect on Economics of the Resource
- Combination of Both

Improvement of Project Economics

Three Phases of Technology Development:

Possibilities of Phase Outcomes

- RD & D Phase (Outcome)
- -Technology May be a Success
- -Technology May be Unsuccessful
- - Performance May be a fraction of Targeted Goals
- Implementation Phase
- -Effective or Not Effective
- -Lack of Understanding
- -Lack of Access to Technology

Impacts of Multiple Technologies

Example:

- Reservoir Characteristics Help Improve Production by 15%
- Drilling Bit Improvements Help Reduce Drilling Cost by 10%

These Technologies are Mutually Exclusive, Additive, and/or Synergetic

Why We Are Here

- To Identify Technologies/ Technology Groups
- Discuss Possible Outcomes of Such Technologies
- Suggest Target Improvement
- Market Acceptance & Possibility of Success

Technology Development Path

Technology Groups

- A. Reservoir Characterization/Management
- B. Drilling/Completion
- C. Stimulation/ Fracturing
- D. Specific Processes

A: Reservoir Characterization / Management

A: Reservoir Characterization / Management Targets

** % of Total Operating Cost

R & D Focus	Possible Outcomes	Target (%)	Market Acceptance	Probability Of Success %	Cost to Apply Technology (%) **
• Seismic 4D	Reduce Dry Hole RateIncrease Resource Recovery	- 20 + 5-10	50-70	60-80	10
• Geological Modeling	Define Reservoir HeterogeneityOptimize Productivity	Qualitative + 4-6	60-80	80-90	2-4
Logging Tools	Define Reservoir HeterogeneityIncrease Resource Accessibility	Qualitative + 4-6	80-90	60-80	4-6
• Downhole Sensors	Reduce Real Time and CostOptimize Productivity	- 6-8 + 4-7	50-60	50-70	6-8
• Reservoir Simulators	Increases Resource AccessibilityReduces Real-Time and Cost	+ 4-6 - 2-5	75-80	80-90	3-4
• Project Management	- Optimize Well Planning & Constructions	Qualitative	80-90	80-90	2-4

B: Drilling/ Completion

B: Drilling/Completion Targets

** % of Total Operating Cost

R & D Focus	Possible Outcomes	Target (%)	Market Acceptance (%)	Probability Of Success	Cost to Apply Technology (%) **
• Down Hole Seismic	Increase Accuracy of Formation EvaluationIncrease Resource Development	Qualitative "	50-70	65	7-9
• Drilling Cutters	Increase Rate Of PenetrationDecrease Rig Time	+ 4-6 - 5-7	50-60	70	2-4
• Drilling Fluids	Increase Drilling EfficiencyReduce Drilling Cost	+ 4-7 - 6-8	50-70	55	2-4
• Down hole Logging While Drilling	Stability in Pay ZoneIncrease Drilling Efficiency	Qualitative "			
• Advanced Completion Techniques	Multiply Zone CompletionsReduce Near WellBore Damage				

C: Stimulation/Fracturing

C: Stimulation / Fracturing Targets

** % of Total Operating Cost

R & D Focus	Possible Outcomes	Target (%)	Market Acceptance (%)	Probability Of Success (%)	Cost to Apply Technology (%) **
• Micro Hole Fracture Techniques	Increase Resource RecoveryIncrease Production Rates	+ 4-7 + 5-7	60	65	5-8
Borehole Imaging	Increase Target EfficiencyReduce Stimulation Time	+ 2-3 - 6-8	55	60	5-6
 Advanced Stimulation Techniques 	 Increase Target Efficiency Increase Production Rates & Reduce Well Cleanup Times Reduce Skin 	+ 6-9 + 6-8 - 10	60	68	4-5
• Hydraulic Fracturing Monitors	- Increase Production Rates & Reduce Well Cleanup Times	+ 5-6	65	65	3-6
•Well Bore Flow Modeling	- Define Types Of Stimulation Required	Qualitative	62	60	2-4

Specific Processes

- CO2 EOR
 - Increase Injection Rate ---> By How Much?
 - Volume of CO2 Injected
 - 0.4 HCPV Normally Used
 - Is 1.0 HCPV or Higher A new industry practice?
 - Use of Industrial CO₂
 - How soon do you think capture technologies can be commercialized
 - EIA assumes 4- 8 years depending on source of emission.
 - How much is the operator willing to pay for CO₂delivered at well head?

Summary

- All target improvements will be calculated in the process and timing models.
- Variables will be defined to address such target improvements.
- EIA expects to complete this model by June/July 2008
 Testing and final results by September 2008
- EIA will present preliminary results to this committee in August 2008 for comments and suggestions.

Other Technologies Not Considered

Targets for Other Technologies

** % of Total Operating Cost

R & D Focus	Possible Outcomes	Target (%)	Market Acceptance (%)	Probability Of Success (%)	Cost to Apply Technology (%) **

