Onshore Lower 48 Oil & Gas Supply Submodule

Methodology Peer Review

December 6 – 7, 2006 Vienna, VA

Peer Review Agenda Wednesday, December 6, 2006

Time	Торіс	Presenter
8:30-8:45 AM	Welcoming Remarks	Dana Van Wagener/Philip Budzik
8:45-9:15	Overview of NEMS – Reason for New Model – Expectation of Peer Review – New NEM Design	Dana Van Wagener/Philip Budzik
9:15-10:15	Overall System Logic – Logic Flow – Envisioned Product – New Enhancements	INTEK, Inc./Serco
10:15-10:30	Coffee Break	
10:30-11:30	Resource Module - Data Description & Sources ^o Discovered ^o Undiscovered ^o Production ^o Reserves - Future Updates	INTEK, Inc./Serco
11:30-12:00	Technology Screening Module	INTEK, Inc/Serco

Peer Review Agenda Wednesday, December 6, 2006

Time	Торіс	Presenter
12:00-1:00 PM	Lunch	
1:00-1:45	Process Module –Type Curves	INTEK, Inc./Serco
1:45-2:45	Technology Levers/User Options	INTEK, Inc./Serco
2:45-3:00	Coffee Break	
3:00-5:00	Economic Module –Model Description/Logic Flow –Economics –Ranking of Projects –Selection of Projects	INTEK, Inc./Serco

Peer Review Agenda Thursday, December 7, 2006

Time	Торіс	Presenter
8:30-10:15 AM	Development Economic & Constraints	INTEK, Inc./Serco
10:15-10:30	Coffee Break	
10:30-11:30	Open Discussions	All
11:30-12:00	Summary of Comments & Concluding Remarks	INTEK, Inc./Serco
12:15 PM	Meeting Adjourned	Dana Van Wagener

Overview of NEMS

Dana Van Wagener Oil and Gas Modeling Specialist Energy Information Administration US Department of Energy

NEMS Overview

- Functional model for many analytical needs
- Extensively developed and adapted to maintain relevancy beyond simple updates and periodic extensions of the forecast horizon
- Unnecessary and impractical to start from scratch

NEMS Redesign

- Initial outreach efforts
- Interest varies throughout DOE
- General Feedback
 - Extend the horizon to 2050 or later
 - Add significant technological and program detail
 - Enhance integration of U.S. energy markets with both the macro economy and world markets
 - Add representations of energy infrastructure
 - Drill down dynamically to more regional detail
 - Add uncertainty analysis and stochastic scenarios
 - Add automatic diagnostics
 - Add transparency
 - > And ... by the way, solve in less than one hour

NEMS – Next Steps

- Expect further discussions with DOE and external stakeholders on projects and priorities
- Initiated testing of alternative optimization software
- Initiated review and redesign of several NEMS modules in FY06 and proposed for FY07
- Expect to initiate review on technology choice by sector and foresight used in consumer decision making in the Spring of 2007
- Additional module reviews to be done in priority order and as funds become available

Characteristics of the Proposed Onshore component of OGSM

- Capability to address more policy and financial issues that affect the profitability of oil and natural gas drilling
- More technology levers
- Easy to maintain & update
- Fast execution time

Purpose of Peer Review

- Solicit input on modeling and analytic issues related to onshore oil and natural gas supply
- Identify/discuss limitations of proposed methodology
- Evaluate/discuss issues raised by the peer review panel

Onshore Lower 48 Oil & Gas Supply Submodule

Methodology Peer Review

December 6 – 7, 2006 Vienna, VA

Onshore Lower 48 Oil & Gas Supply Submodule

System Overview

Agenda

- Goal of OLOGSS
- OLOGSS Interaction with NEMS
- Overall System Logic
- Capabilities

Goal of OLOGSS

- To forecast Oil & Gas supply from Lower 48 Onshore
- Existing Fields/Reservoirs
- New Discoveries
- Reserves Growth
 EOR / ASR
 - Improved Technology

EK

- Compiles Raw Data to Create Input Files For Use in the Model
- Check for Quality, Consistency, Completeness
- Aggregate and Process Data Based on "Unit of Analysis"
- Allocate Resources per OLOGSS Regions

Proposed OLOGSS Regions

Original Onshore OGSM Regions

New OLOGSS Regions

INTEK

INTEK

Capabilities of Proposed OLOGSS

- Model Entire Oil & Gas Resource in Lower 48
 - Conventional
 - Unconventional
 - Tight Sand
 - Oil Shale
 - Continuous Formations, etc
- Ability to Model
 - > Technology Change / Improvements
 - Land Access Issues
 - Legislative Policy Issues (Royalty Relief, Tax Credits, etc...)
- Easy to Maintain and Update

Onshore Lower 48 Oil & Gas Supply Submodule

Master Database & Resource Module

Agenda

- Goal and Objective
- Description of the Master Database
- Description of the Resource Module
- Unit of Analysis

Goal and Objective

- To Process Raw Data for Use in the Process and Timing Modules
- Resource Data has:
 - Enough Checks & Balances for Quality Control
 - Internally Consistent
 - Complete with no Missing Values
 - All Resources are Accounted

Summary of Sources of Resource Data

Required Data	Source
Production Data	HPDI, EIA
Field/Reservoir Properties	NRG data *
Undiscovered Resource Estimates	USGS, MMS
Regional/Play Level Reserves Estimates	EIA

* Supplemented by COGAM Databases

- Aggregate and Process Data Based on "Unit of Analysis"
- Allocate Resources per OLOGSS Regions

What is the Unit of Analysis

- Well (W)?
- Cell (C)?
- Reservoir (R)?
- Field (F)?
- Play (P)
- Basin (B)?
- State (S)?
- Region (Rg) ?

Important Definitions

- <u>Reservoir</u>: Occurrence of Reservoir Rocks of Sufficient Quantity and Quality to Permit the Containment of Oil and Gas in Volumes Sufficient for an Accumulation of the Minimum Size
- <u>Field</u>: An Individual Producing Unit Consisting of a Single Pool or Multiple Pools of Hydrocarbons Grouped on, or Related to, a Single Structural or Stratigraphic Feature
- <u>Accumulation</u>: An Accumulation is Defined by the USGS as a Discrete Field or Pool of Hydrocarbon Localized in a Structural or Stratigraphic Trap by The Buoyancy of Oil or Gas in Water
- <u>Cell</u>: A cell is a quarter of a square mile of land surface in continuous formations. These are coded by USGS as predominantly oil producing, gas producing, both oil and gas producing or dry. The resource in each cell is characterized by its estimated ultimate recovery based on geologic characteristics of the continuous formation/accumulation
- <u>Play</u>: A play is defined as a set of known or postulated oil and/or gas accumulations sharing similar geologic, geographic, and temporal properties, such as source rock, migration pathways, timing, trapping mechanism, and hydrocarbon type.

Unit of Analysis Is Resource Specific

Proposed Unit of Analysis

Resource Type		исе Туре	Sources of Data	Unit of Analysis	
Discovered		Conventional			
	0II -	Unconventional	NRG	Well	
Gas	Cas	Conventional	HPDI / IHS EIA		Aggregated to Play Level
	Gas	Unconventional			
Dudiscovered Gas		Conventional	USGS Reserves Estimates MMS Play Level Properties (NRG)		
	UII -	Unconventional		Conventional: Accumulation	
	0.00	Conventional		Unconventional - Cells Aggregated to Play Level	
	Gas	Unconventional			

Role of Resource Description Module

- Defining the Play Level Resource Estimates
 - Both Oil & Gas
 - Both Discovered & Undiscovered
- Identifying the Number of Wells for Each Play (Active)
- Assigning Average Geologic Properties to Each Play/Well
- Creating the Play/Resource Specific Data Files

Discovered Resources – Define Well Profile

- Map NRG Database to EIA database using a crosswalk table
- Calculate average well production profile for each active well
- Assign reservoir properties to each well

Reservoir/Field Properties Used for Analysis

Original Volumetrics

- Original-Oil-In-Place
- Reservoir Area
- Net Thickness
- Porosity
- Average Initial Water Saturation
- Average Initial Oil Saturation
- Average Initial Gas Saturation
- Average Formation Volume Factor

Current Volumetrics

- Current Oil Saturation (Swept Zone)
- Current Oil Formation Volume Factor

Development and Performance Data

- Recovery Efficiency
- Well Spacing

Geologic Data

- Lithology
- Depth
- Temperature
- Original and Current Pressure
- Permeability
- Gross Thickness
- Dip Angle
- Geologic Age Code
- Geologic Play, Depositional System, Trap Type

Fluid Data

- Average Oil Gravity and Viscosity
- Initial GOR
- Current GOR
- Gas Impurities

Discovered Resources - Average Play Level Properties

- Assign each reservoir to USGS defined size class
- Calculate average properties for each size class
 - When no discovered field is in a size class, assign play level properties

Example: Assigning Average Porosity --(Raw Data)--

Accumulation Distribution for Play 401:

Play No. Oil/ Gas		Number of				Siz	e Cl	ass I	Distr	ibut	ion f	rom	1 to	15			
	Accumulations	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
401	Oil	25	1	2	3	4	5	3	4	2	1	0	0	0	0	0	0

6 known reservoirs belong to play 401:

Known Reservoir	Field Name	Recoverable (MMBL)	Porosity
Α	AA	8.5	34%
В	СС	3.6	28%
С	AA	5.4	31%
D	BB	11.3	33%
Ε	CC	7.4	27%
F	AA	6.1	26%

Step 1: Group known reservoirs by field name, and determine size class

Group No	Field Name	Reservoirs	Recoverable (MMBBL)	Total Recoverable (MMBBL)	Size Class
1	AA	A, C, F	8.5, 5.4, 6.1	20.0	5
2	BB	D	11.3	11.3	3
3	CC	B, E	3.6, 7.4	11.0	4

Step 2: Calculate recoverable weighted average porosity for each group Weighted Average Porosity = Sum(Porosity*Recoverable)/Sum(Recoverable)

Group No	Reservoir	Porosity	Recoverable (MMBBL)	Product	Weighted Average Porosity
	А	34%	8.5	2.89	
1	С	31%	5.4	1.674	
	F	26%	6.1	1.586	
	Total		20.0	6.15	30.8%
2	D	33%	11.3	3.730	
2	Total		11.3	3.730	33.0%
	В	28%	3.6	1.01	
3	E	27%	7.4	1.998	
	Total		11.0	3.008	27.4%

Step 3: Calculate play average porosity

Play Average Porosity = sum(Weighted Average Porosity for each Group*Total Recoverable)/ sum(Total Recoverable)

Group No	Weighted Average Porosity	Total Recoverable (MMBBL)	Product	Play Average Porosity
1	30.8%	20.0	6.16	
2	33.0%	11.3	3.72	
3	27.4%	11.0	3.0096	
Total		42.3	12.889	30.5%

Play 401 Average Porosity: 0.2990

Step 4: Assign average porosity to size classes without known reservoir data

Size class	Accumulation	Average Porosity	Explanation
1	1	30.5%	Play Average
2	2	30.5%	Play Average
3	3	33.0%	Known Reservoir Average
4	4	27.5%	Known Reservoir Average
5	5	30.3%	Known Reservoir Average
6	3	30.5%	Play Average
7	4	30.5%	Play Average
8	2	30.5%	Play Average
9	1	30.5%	Play Average

Undiscovered Resources – Resource Estimates

Conventional

- Use 2005 Update for Resource Estimates
- Determine Number of Accumulations in Each Size Class
- Unconventional
 - Use 2005 USGS
 Update for Resource
 Estimate
 - Assign Number of Cells to Each Play Based on Size Class

What are the Size Classes?

Conventional

Size Class Number		ulation Size ACF		ulation Size IBbl
	Minimum	Maximum	Minimum	Maximum
0	> 3	6	> 0.5	1
1	> 6	12	>1	2
2	> 12	24	> 2	4
3	> 24	48	>4	8
4	>48	96	> 8	16
5	>96	192	>16	32
6	> 192	384	> 32	64
7	> 384	768	> 64	128
8	>768	1,536	> 128	256
9	> 1,536	3,072	> 256	512
10	> 3,072	6,144	> 512	1,024
11	> 6,144	12,228	> 1,024	2,048
12	> 12,228	24,576	> 2,048	4,096
13	> 24,576	49,152	> 4,096	8,192
14	> 49,152	98,304	> 8,192	16,384
15	> 98,304	196,608	> 16,384	32,768

Unconventional

Size Class Number		R Volume ICF		t Volume Bbl
	Minimum	Maximum	Minimum	Maximum
1	> 0	36	> 0	6
2	> 36	72	> 6	12
3	> 72	120	> 12	20
4	> 120	180	> 20	30
5	> 180	300	> 30	50
6	> 300	450	> 50	75
7	>450	600	> 75	100
8	> 600	1,200	> 100	200
9	> 1,200	1,800	> 200	300
10	> 1,800	3,000	> 300	500

Defined by USGS

INTEK

Number of Accumulations by Size Class

Undiscovered Resource – Assign Properties

 For Each Accumulation / Cell

Assign Play Level Properties Based on

- Size Class
- Play Average

Binning of Resource Data

- Due to the Proprietary Nature of the Resource Data, the Discovered Resource Will be Classified in Pseudo-Bins Based on its Production Volumes and Depth
- Each Well is Assigned a Size and Depth Bin Category

50

Example of Binning Wells

Well Number	Average Production (BOE)	Average Depth (FT)	Size Category	Depth Category
1	9	4500	1	3
2	8	4350	1	3
3	15	3700	2	2
4	25	4500	3	3
5	25	2900	3	2
6	30	5100	3	3
7	45	4625	3	3
8	7	3975	1	2
9	12	4150	2	3
10	18	4300	3	3
11	13	4450	2	3
12	5	4750	1	3
13	9	4950	1	3
14	38	4600	3	3
15	40	5150	3	3

- Assume 15 Wells in a Hypothetical Play
- The Size Category and Depth Category Are Determined for Each Well

Example of Binning Wells (Cont)

Size Category	Depth Category	Bin Population
1	2	1
1	3	3
2	2	2
2	3	2
3	2	1
3	3	6

- The Bin Population Is the Total Number of Wells in Each Size and Depth Category Combination
- The Empty Bins Are Not Shown

Example of Well Binning (Cont)

- Decline Curve Analysis is Used to Determine the Size Category of Each Well in Subsequent Years (for Future Technology Advancements)
 - This Well is in:

 > Bin 3
 Year 1 4

 > Bin 2
 Year 5 14
 - Bin 1 Year 15 25

53

Summary

 Resource Description Module will Process and Create the Data Required for the Following Resources

≻ Oil

- Conventional
- Unconventional
- Gas
 - Conventional
 - Unconventional

Onshore Lower 48 Oil & Gas Supply Submodule

Process Module & Technical Screening

Discussion Items

- Goal
- Process Model
- Production Profile Function Approach
- Technology Screening Criteria

Goal & Objective

 To Forecast Future Production Potential from Oil & Gas Fields Based on their

Geologic Properties

Petrophysical Properties

Bin/Play Level

Three Phases of Future Production

- Existing Production
 From Currently Producing Oil & Gas Fields
- Reserves Growth
 > ASR / EOR
 > Infill Drilling
- Undiscovered Resource

Existing Production

- Use Production Profile Function Approach for Both
 > Oil
 - Gas
- QA/QC Process
 - Perform Back Casting Analysis to Validate Decline Curve

Reserves Growth

- Production Profile Functions for Estimating Reserves Growth
 - ➢ Oil
 - Advanced Secondary Recovery
 - Enhanced Oil Recovery
 - Infill Drilling
 - Gas
 - Infill Drilling

Processes Modeled

Oil	Gas
- Water Flooding	- Conventional
- Polymer Flooding	- Water Drive
- CO2 Flooding	- Tight Sands
- Steam Flooding	- Coal / Shale
- Infill Drilling	
- Profile Modification	
- Horizontal Wells	

Production Profile Development Procedure

- Identify predictive model for a specific process
- Identify variables critical to the process (4-5 / process)
- Run predictive model by changing one variable at a time
 - Number of runs = "n" variables X "m" changes
- Generate a production profile equation as a function of n variables

Prod _{iyr} =
$$f(var_1, var_2, ..., var_n)$$
 _{iyr}

Example: Generic Production Profile Curves for CO₂ Flooding

Critical Variables

- Depth
- Minimum Miscibility Pressure (mmp)
- > WAG
- CO₂ Pore Volume Injected
- Permeability (k)
- Porosity (Φ)

Production Profile = $f(Depth, mmp, k, \Phi)$

Technology Screening

- Every Size Class Oil Bin will be Assigned to One Or More Possible Processes for ASR/EOR
- For Gas Bins, Technology Screening will be Applied Based on Lithology, Drive Mechanism, and Geologic Properties

Existing Screening Criteria for EOR Processes

	Alkaline	МСР	CO2 Miscible Flooding	Imp. Steam Flooding	Adv. Steam Flooding	In-situ Combustion
Oil Gravity, API	< 30		≥ 25	10 to 34		10 to 35
In-situ Oil Viscosity, cp	<90	< 40		≤ 15,000		≤ 5, 000
Depth, ft				≤ 3,000	≤ 5,000	≤ 11,500
Net Pay, ft				≥ 20	≥15	≥ 20
Reservoir Temp. (°F)	< 200	< 200				
Porosity, Φ				≥ 20 *	≥15*	≥ 20*
Avg. Perm., md	> 20	> 40		≥ 250	≥10	≥ 35
Transmissibility, md-ft/cp				≥ 5		≥ 5
Reservoir Pressure, psi			≥MMP	≤ 1,500	≤ 2,000	≤ 2,000
Minimum Oil Content at Start (So*Ф)				≥ 0.10	≥ 0.08	≥ 0.08
Salinity of Formation Brine, ppm	< 100,000	< 100,000				
Rock Type	Sandstone	Sandstone	Sandstone or Carbonate	Sandstone or Carbonate	Sandstone or Carbonate	Sandstone or Carbonate

*Ignore if Soi*Por. is satisfied

Gas Technology Screening

	Lithology	Permeability	Depth	Drive	Other TBD	
Conventional	Sandstone Carbonates		All Depths			
Tight Sands	Sandstone Carbonates	<= 0.1	All Depths			
Coal/Shale	Coal/Shale		All Depths			
Water Drive	Sandstone Carbonates		All Depths	Water Drive		

Onshore Lower 48 Oil & Gas Supply Submodule

Modeling & Technology Options

Discussion Items

- Phases of Technology Development
- Uncertainty
- How We Account for Uncertainty
- The Technology Penetration Curve

Three Phases of Technology Development

Three Phases of Technology Development RD&D Phase (Outcome) Technology May be a Success Chances Fechnology May be Unsuccessful of > Performance May Be a Fraction of Targeted Goals Success Implementation Phase Effective or Not Effective Market Lack of Understanding Acceptance Lack of Access to Technology

Summary of Uncertainties

	Technology	Economic	Market
Existing Technology		 ✓ 	\checkmark
Advanced Technology		\checkmark	\checkmark
New Technology	V	\$	V
	To k	t be discussed	later
			IN7

Modeling Uncertainty & Risk

- Identify Critical Parameters Affecting Each Technology
- Generate Technology/Market Penetration Curve

$$Imp_{X} = f(Y_{d}, Y_{c}, Y_{a}, U_{P}, P_{s}, P_{i})$$

Name	Parameter		
Yd	Number of years required to develop technology		
Yc	First year of commercialization		
Ya	Number of years to fully penetrate the market		
UP	Ultimate market penetration (%)		
Ps	Probability of success		
Pi	Probability of Implementation		
Impx	Percent of industry implementing the technology in a given year x		

72

Effect of Market Penetration Curve on Technologies

Three Major Effects:

- Effect on Overall Production Profile of the Resource
- Effect on Economics of the Resource
- Combination of Both

Effects of Technology Development

INTEK

Impacts of Multiple Technologies

Rules will be Developed to Identify Interactions

Example

- Reservoir Characteristics Help Improve Production by 15%
- Drilling Bit Improvements Help Reduce Drilling Cost by 10%

These Technologies are Mutually Exclusive, Additive, or Synergetic

Onshore Lower 48 Oil & Gas Supply Submodule

Economic/Timing Module

Discussion Items

- Role of Timing/Economic Module
- Overall Logic
 - System / Timing Module
- Components of Timing Module
 - Input Data
 - Exploration Conventional & Unconventional
 - Discovered Resource
 - Selection & Ranking
 - Resource Development Constraints
- Model Applications
- Reports

Role of Timing/Economic Module

- Projects Future Oil & Gas Supply at Play Level
 - Production from Existing Fields/Reservoirs
 - Reserves Growth in Existing Fields/Reservoirs
 - Exploration in Undiscovered Fields/Reservoirs
- Development of Resources is Subject to the Following Constraints:
 - Access to Resource
 - Technology
 - Economics
 - Infrastructure
 - Drilling
 - CO₂ Availability
 - Pipeline
 - Others

Processes Modeled

Oil	Gas
- Water Flooding	- Conventional
- Polymer Flooding	- Water Drive
- CO2 Flooding	- Tight Sands
- Steam Flooding	- Coal / Shale
- Infill Drilling	
- Profile Modification	
- Horizontal Wells	

Overall System Logic Flow

A-Input Data

- Resource Data
 - Discovered
 - Undiscovered
- Process Production Profile Parameters
- Cost Data
- Constraints
- Economic Parameters (Price, ROR, etc...)
- Fiscal Data
- User Defined
 - > Technology Levers
 - Economic Levers
 - Control Variables

Capital Cost Data

- Resource/process independent:
 - Drilling & completion
 - > Workover
 - Surface and Subsurface facilities
- Resource/process dependent:
 - Gas processing facilities
 - CO₂ injection plants
 - Steam generators
 - Environmental costs

 $f(CO_2 \text{ injection volume})$ f(steam injection volume)

Operating Cost Data

- Fixed operating costs:
 - Direct annual operating costs
 - Secondary production costs
- Variable operating costs:
 - Lifting cost
 - Gas processing cost
 - ≻ CO₂ cost
 - Chemical
 - Recycling
 - Environmental costs
 - G&A on Capital and Operating Costs factors

f(*depth*) _{region}

(\$/Bbl, \$/Mcf) (\$/Bbl, \$/Mcf) (\$/Mcf) (\$/Bbl) (\$/Bbl, \$/Mcf) (\$/Bbl, \$/Mcf)

Developing Cost Equations

- Determine historical cost data
- Determine corresponding oil price
- Normalize all costs data to a fixed oil price (\$30/bbl)
- Develop regional cost equations as a function of critical parameters :
 - Depth
 - Production Rate
 - Injection Rate
 - Others (TBD)

Test cost equation for validity

Cost Adjustment Factors

- Capital and operating costs vary with supply & demand and also oil price
- Cost adjustment multipliers will be used to capture the impact of oil price changes
- Use National Petroleum Council (NPC) methodology for price impacts

NPC Methodology For Price Impacts

• Determine the ratio of the change between the current oil price and the fixed price

Term = (Oil Price_{current} – Fixed Price) Fixed Price

Apply adjustment multipliers for various cost categories:

•		
Cost Category	Factor _x	
Tangible Investments	0.2	
Intangible Investments	0.4	
Operating Costs - Fixed	0.2	
CO ₂	0.39	
Polymer	0.3913	
Other Costs	0.25	\square
Source: COGAM		-

$(Cost Multiplier)_x = 1 + (Factor)_x (Term)$

To be validated against current > data

Other Economic Parameters

- Other economic parameters includes:
 - Depreciation schedule
 - Depletion rate
 - Amortization schedule
 - Environmental costs
 - Lease acquisition costs
 - Geological & geophysical costs
- Oil & Gas prices:
 - > Annual oil & gas prices
 - Fixed or variable

Model Levers

- Technology levers
 - Value of all levers
 - Implementation & market penetration curves
 - Interaction of Technologies
- Economic Levers
 - > ROR
 - Risk
- User defined run controls
 - Types of Output
 - Single or Multiple Cases
 - > Other

Economic Risk

- Economic Risk is Modeled Using Rate of Return
- Two Components of Rate of Return
 - Cost of Capital

- 6% to 8% (historical average)

> Technology Risk

- Varies with Technology

Detailed Timing/Economic Module Flowchart

- 1: Step Where Technology Levers Will Be Used
- 2: Step Where Economic Levers Will Be Used
- 3: Step Where Resource Access Levers Will Be Used

EK

INT

B: Populate Bins

An Example of Bin Populations

The population of bins in YEAR I at the beginning of the YEAR loop for a play:

Size Bin	Depth Bin	Number of Wells
1	1	10
2	2	11
3	4	6
2	3	4
3	2	7
4	1	3

Note: Only bins with data are shown in this example

 \mathbf{F}

Exploration Sub Module

- Objective: to Evaluate Economic Potential For Undiscovered Oil & Gas Resources
 - Conventional
 - Unconventional
- Based on Undiscovered Resource Estimates

Ultimate Goal of the Exploration Model

 To Determine the Discovery Order of Accumulation/Cell within a Region/Play

Exploration -Conventional Resource-

Exploration: Conventional Resource

- Proposed Method to Calculate Probability
 Volume based
- Exploration effectiveness is modeled using :
 - Technology factors
 - Favorability factors (such as resource access)

Methodology Accommodates Theories & Methods Developed by Industry/Government

104

Modeling Conventional Exploration

- Rules for Exploration:
 - First explore the plays with the largest remaining reserves
 - Use the volume to calculate the probability of discovery of each class in the play
 - Aggregate and normalize the class discovery probabilities to determine the discovery probability of the play
 - Make selections using the cumulative probabilities and a pseudo-random number

Modeling Conventional Exploration (Cont.)

- Adjust probabilities using:
 - > Technology levers
 - Resource access levers
- Add to list for competition with other resources

Adjusting Probabilities for Conventional Exploration

Exploration Technology Factor How Do We Model the Effects of Exploration Technologies?

Exploration -Unconventional Resource-

Exploration: Unconventional Resource

- Modeled using a two step process
- Step 1: Determine probable exploration/ development schedule for all cells in each play
 - > Use pseudo Monte Carlo methodology
 - Run every year
- Step 2: Determine the development order for all plays while incorporating:
 - Technology
 - Resource access

Important Definitions

- Unit of Analysis: Play
- Exploration Unit: Cell (as defined by USGS)
- Annual Drilling Package:
 - In a play
 - Randomly selected set of cells

Modeling Unconventional Exploration

- Calculate probability of discovery of Each cell bin as a function of EUR
- Create drilling packages using pseudo random methodology
- Select first package
- Run economics
 - If economic: Select next package
 - If not economics: Add next package for next year and run economics
- Repeat process for next package
- Determine discovery order using probabilities
- Add to list for competition with other resources

Exploration Economics

- All Exploration Costs are Assumed to be Sunk Costs
- Full Development Economics is Performed on Each Accumulation/Cell
 - Development Drilling Costs
 - Lease Acquisition Cost
 - Capital Equipment Cost for New Producers
 - Fixed and Variable Operating Costs
 - Only Primary Production is Considered for Economic Calculation

Exploration -Discovered Resource-

D: Production Decline Submodule

- For each play & bin:
 - Assign & calculate average historical production profile
 - Perform decline curve analysis at bin level using bin size/depth as one of the production profile parameters
 - Perform economics of the future profile

D: Production Decline Submodule (Cont.)

If economic:

- Scale economics and production from one well to the number of wells in the bin
- Aggregate the production from that bin
- Tag the bin as economic (section G)
- If uneconomic:
 - Tag the uneconomic bin for reserves growth (section E)
- Repeat for each bin and each play

E: Reserve Growth Submodule

- Aggregate the wells in uneconomic bins
- Determine which bins can not be combined in pseudo-projects due to:
 - Depth
 - Average play properties
- Create pseudo-projects by selecting wells using pseudorandom methodology

E: Reserve Growth Submodule (Cont.)

• For each pseudo-project:

- Determine, using screening criteria applied to the play average properties, which reserve growth processes are applicable
- Using process specific type curves, and model levers, determine the potential additional production from EACH reserve growth process
- Apply technology levers as applicable
- Calculate life cycle economics on pseudo projects using process specific costs & schedule
- Calculate investment efficiency
- Store the project for ranking
- Repeat this process for all pseudo projects

F: Project Ranking Submodule

- Read the list of projects
 - Reserve growth projects from step E
 - Exploration projects from step C
 - Read YEAR
- For Every Region:
- Rank projects by:
 - Investment efficiency (reserves growth)
 - Probability of discovery (exploration)
- If YEAR >1:
 - Add the "Economic Undeveloped" projects from YEAR – 1 to the top of the list
- Transfer list of potential projects to Timing/Selection (step G)

G: Timing & Aggregation Submodule

- Read list of ranked projects
- Read constraint data and model levers
 - For every region:
 - Check project at top of the list
 - Determine if sufficient constraints are available
 - Determine project's resource access category
 - Check that development of project would not exceed play level estimates

G: Timing & Aggregation Submodule (Cont.)

- Check if project has passed the "shut in" window
- If project has passed "shut in":
 - Calculate shut-in costs
 - Calculate environmental costs
 - Tag as "Shut in"
 - Examine next project
- If project has not passed "shut in" window:

G: Timing & Aggregation Submodule (Cont.)

- If constraints are available:
 - Time in project
 - Tag as "Economic Developed"
 - Remove from list
 - Remove duplicate projects
 - Calculate remaining constraints
 - Check next project
- If constraints are not available:
 - Read remaining projects for that region
 - Tag the economic projects as "Economic Undeveloped"
 - Tag the project, for potential shut in, in YEAR + 1
 - Delete uneconomic projects

G: Timing & Aggregation Submodule (Cont.)

- End the reading and evaluation of projects
- Repeat for all projects/regions and run aggregation

Economics

 Each Project will be Subject to Detailed Full Cycle Cashflow Analysis

Onshore Lower 48 Oil & Gas Supply Submodule

Resource Development Constraints

Resource Development Constraint Data

Resource Development Constraints

- Constraints will be Used for Future Development of Various Resources
 - Drilling
 - Number of Rigs
 - Depth Rating
 - Capital Constraints
 - E&P Capital
 - Others
 - CO₂ Availability
 - Access to Land Federal/State
 - Others to be Defined

Sources of Resource Development Constraints

Resource Development Constraint	Data Source
Drilling Constraints	
Number of Rigs	API, Baker Hughes, Smith Bits
Rig Depth Rating	API, Baker Hughes, Smith Bits
Development Drilling	EIA, API, IPAA, OGJ
Exploratory Drilling	EIA, API, IPAA, OGJ
Capital Expenditures	EIA, API
Other Constraints	
CO ₂ Availability/Pipeline capacity	OGJ, Kinder Morgan, NATCARB

US Historical Drilling Activity

Wells Drilled Annually is Function of Oil Price

So is Footage Drilled

Relationship between Oil Price and Drilling

With 1 year Lag Without Lag 50,000 50,000 **Fotal # of Wells Drilled** otal # of Wells Drilled ۲ 40,000 40,000 30,000 30,000 20,000 20,000 10,000 10,000 10 20 30 40 50 10 15 20 25 30 35 40 Oil Price (\$/Bbl) Oil Price (\$/Bbl)

Source: 2005 Annual Energy Review (EIA)

INTEK

Capital Expenditures - Onshore

• Major U.S. Companies' Expenditures for Onshore Crude Oil and Natural Gas Exploration and Development

Relationship between Oil Price and Capital Expenditures

Without Lag

With 1 year Lag

Source: 2005 Annual Energy review (EIA)

Major U.S. Companies Expenditures for Onshore Oil and Natural Gas Exploration & Development Expenditures adjusted to 2004 Dollars

CO₂ Constraints

- Natural Sources
- Industrial Sources
 - Existing Connected to Infrastructure
 - Existing Not Connected to Infrastructure
 - ▶ New Sources CTL, Power Plants, Oil Shale Retort, etc ...

Natural CO₂ Sources – Existing Infrastructure

CURRENT CO2 SOURCES, PIPELINES

Industrial CO₂ Sources – Fossil Fuel Plants

Industrial CO₂ Sources – Other Plant Types

Resource Access

- Play Specific
 - % of Resource on Federal Lands Accessible for Development
 - % of Resource on Federal Lands Not Accessible for Development
- Other Limiting Factors to be Determined

Onshore Lower 48 Oil & Gas Supply Submodule

Model Applications

Model Applications

- Future Production Profile
 - Business As Usual (BAU) Case
 - > Advanced Technology Scenario
- Different Resource Access Scenarios
- Development of New Resources

Model Applications

- Effect on Onshore Lower 48 Oil & Gas Production as a result of:
 - New Tax Incentives
 - Environmental Regulation
 - Proposed Legislation Changes
 - Proposed Tax Law Changes
 - Other Policy Analyses

Overall System Logic Flow

Reports Module: Role in OLOGSS

- The Reports Module transfers the results from the OLOGSS to:
 - Other OGSM modules
 - NEMS
 - User
- Allows iteration of supply and demand

Reports Module: Summary of Outputs

- Production Price Supply Curves
 - > Oil
 - Natural Gas
 - Non-associated
 - Associated-dissolved
 - Reported by
 - Resource Access Category
 - Play
 - State
 - Region
 - National

Reports Module: Summary of Outputs (Contd...)

- Drilling statistics disaggregated by
 - Exploratory
 - Developmental
 - For oil and gas
 - Reported by
 - Play
 - State
 - Region
 - National

Reports Module: Summary of Outputs (Contd...)

- Economic Reports
- Resource Development Constraints Utilized
- Detailed reports for analysis of
 - Technology
 - Changes in taxes
 - Access issues
- Other reports to be determined

OPEN DISCUSSION

