Onshore Lower 48 Oil and Gas Supply Submodule:

Miscible CO₂ EOR Cost Tables and Price Supply Curve

September 16, 2009

Dana Van Wagener Oil and Gas Division Office of Integrated Analysis and Forecasting

Objective

- Determine technical and economical recoverable resource due to CO₂ miscible flooding
- CO₂ sources to include
 - Natural sources
 - Industrial sources

Methodology Overview

* National Carbon Sequestration Database

** For AEO2008-COGAM Database For AEO2009-New NRG Database

> Energy Information Administration Official Energy Statistics from the U.S. Government

Screening Criteria

- API gravity > 22
- **Reservoir pressure > minimum miscibility pressure**
- **Depth** > 2500 feet
- Oil viscosity < 10cp
- Oil saturation > 20% pore volume
- Sandstone vs. carbonate

Potential Targets for CO₂ EOR 2,235 Candidate Reservoirs and Fields

Total Oil In Place – 165 Billion Barrels For Screened CO₂ EOR Candidate Reservoirs

Source: OLOGSS Model (2009) NRG & Associates Database (2006)

Energy Information Administration Official Energy Statistics from the U.S. Government

Target for Enhanced Oil Recovery

- "Target resource" is the remaining oil in place to which current and future production technologies can be applied.
- "Technical recovery" is the oil which can be <u>produced over</u> <u>40 years</u> using the existing technology. This does not include:
 - Economics
 - Availability of CO₂
 - Infrastructure or other development constraints

Technical Recovery

- Uses CO₂ PM model to estimate the CO₂ EOR production for each candidate reservoir based upon
 - Oil Saturation
 - API gravity
 - Reservoir Pressure
 - Hydrocarbon Pore Volume
 - Other Key Parameters
- Technical Recovery is based upon a 40 year project lifespan

Technical Recovery Life-cycle Production for 40 Years

Energy Information Administration Official Energy Statistics from the U.S. Government

Types of CO₂ Considered

- Natural Sources ~ 1 TCF/yr (55.6)
- **Industrial Sources** ~ 24 TCF/yr (1,334.2)
 - Fossil Fuel Plants
 - Refineries
 - Hydrogen Plants
 - Cement Plants
 - Ammonia Plants
 - Others to be determined

Note :Values in () are in Million Tons (MMtn) per year

Natural Sources of CO₂

CURRENT CO₂ SOURCES, PIPELINES

1094 B	cf/yr	(60.81	MMtn/y	r)
	•	× .	v	

Common	Dinalina	States Supplied	Daily Rate
Source	ripenne	States Supplied	MMCF/D
LaDargo	LoDorgo	Wyoming	250
Labarge	Labarge	Colorado	330
Jackson Dome	Denbury-Jackson	Mississippi	220
MaElmo Domo	Cortez	Texas	1,300
WCEIIIIO Doille	McElmo Creek	Utah	60
Sheep Mountain	Shoop Mountain	Toxos	480
Dome	Sheep Mountain	Texas	480
Bravo Dome	Bravo	Texas	482
Val Verde Gas Plants	Val Verde	Texas	70
Oklahoma	Local Dinalina	Oklahoma	25
Fertilizer Plant	Local Pipeline	Okidholilla	35
		Total Daily Rate	2,997

Industrial Sources of CO₂ – Fossil Fuel Plants

Industrial Sources of CO₂ – Ethanol Plants

Industrial Sources of CO₂ – Other Plant Types

Energy Information Administration Official Energy Statistics from the U.S. Government

Volume of CO₂ Available (MMtn)

		Annual Volume	Annual Volume of Industrial CO ₂ Available (MMtn)								
	OGSM Region	of Natural CO ₂ Available	Fossil Fuel Plants	Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants			
East Coast			721.58	24.68	15.12	0.67		1.71			
Gulf Coast		4.45	218.47	64.04	7.28	8.12	6.56				
Midcontinent		0.72	41.80	5.72		0.44	0.44	4.29			
Southwest		41.25		16.23							
Docky Mountain	Rocky Mountain (OGSM)	6.34	161.60	3.11		0.28					
Kocky Mountain	Northern Great Plains (OLOGSS)		63.04	1.95		0.50					
West Coast			3.34			9.06					
Total		52.76	1209.83	115.73	22.40	19.07	7.00	6.00			

Volume of CO₂ Available (Bcf)

	OCSM Pagion	Annual Volume	Annual Volume of Industrial CO ₂ Available (Bcf)							
	OGSM Region Coast Coast Ontinent west y Mountain Rocky Mountain (OGSM)	Available	Fossil Fuel Plants	Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants		
East Coast			12980	444	272	12		31		
Gulf Coast		80	3930	1152	131	146	118			
Midcontinent		13	752	103		8	8	77		
Southwest		742		292						
Dealey Mountain	Rocky Mountain (OGSM)	114	2907	56		5				
	Northern Great Plains (OLOGSS)		1134	35		9				
West Coast			60			163				
Total		949	21763	2082	403	343	126	108		

Cost of CO₂

Natural Sources

-
$$CO_2$$
 Price = $f(oil price, state)$

- Industrial Sources
 - Capture Costs
 - Pipeline Transportation Tariff

-
$$CO_2$$
 Price = $f(capture costs, pipeline tariff)$

CO₂ Capture Costs

• Depends on plant type

- Pulverized Coal Plants
- Natural Gasification Combined Cycle (NGCC) Plants
- Integrated Gasification Combined Cycle (IGCC) Plants
- Hydrogen Plants (stand alone or within refinery)
- Cement Plants
- Refinery (includes CO₂ form process heaters and FCC's)
- Ammonia Plants

• Depends on plant age

- Existing plant
- New plant

CO₂ Capture Costs (\$/tn)

							(Capture C	Costs (\$/tr	ı)					
	OGSM Region	Fossil Fu	iel Plants	Refi	neries	Cemen	t Plants	Hydrog	en Plants	Ammon	ia Plants	Ethano	l Plants	New IGO	CC Plants
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
East Coast		38.31	63.32	35.00	55.00	35.00	55.00	6.00	12.00	6.00	12.00	6.00	12.00	25.00	40.00
Gulf Coast		38.31	63.32	35.00	55.00	35.00	55.00	6.00	12.00	6.00	12.00	6.00	12.00	25.00	40.00
Midcontinent		38.31	63.32	35.00	55.00	35.00	55.00	6.00	12.00	6.00	12.00	6.00	12.00	25.00	40.00
Southwest		38.31	63.32	35.00	55.00	35.00	55.00	6.00	12.00	6.00	12.00	6.00	12.00	25.00	40.00
Deely Mountain	Rocky Mountain (OGSM)	38.31	63.32	35.00	55.00	35.00	55.00	6.00	12.00	6.00	12.00	6.00	12.00	25.00	40.00
ROCKY MOUIITAIII	Northern Great Plains (OLOGSS)	38.31	63.32	35.00	55.00	35.00	55.00	6.00	12.00	6.00	12.00	6.00	12.00	25.00	40.00
West Coast		38.31	63.32	35.00	55.00	35.00	55.00	6.00	12.00	6.00	12.00	6.00	12.00	25.00	40.00

CO₂ Capture Costs (\$/Mcf)

			Capture Costs (\$/Mcf)												
	OGSM Region	Fossil Fu	iel Plants	Refi	neries	Cemen	t Plants	Hydrog	en Plants	Ammon	ia Plants	Ethano	l Plants	New IGC	CC Plants
			Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
East Coast		2.13	3.52	1.95	3.06	1.95	3.06	0.33	0.67	0.33	0.67	0.33	0.67	1.39	2.22
Gulf Coast		2.13	3.52	1.95	3.06	1.95	3.06	0.33	0.67	0.33	0.67	0.33	0.67	1.39	2.22
Midcontinent		2.13	3.52	1.95	3.06	1.95	3.06	0.33	0.67	0.33	0.67	0.33	0.67	1.39	2.22
Southwest		2.13	3.52	1.95	3.06	1.95	3.06	0.33	0.67	0.33	0.67	0.33	0.67	1.39	2.22
Doolay Mountain	Rocky Mountain (OGSM)	2.13	3.52	1.95	3.06	1.95	3.06	0.33	0.67	0.33	0.67	0.33	0.67	1.39	2.22
Rocky Mountain N	Northern Great Plains (OLOGSS)	2.13	3.52	1.95	3.06	1.95	3.06	0.33	0.67	0.33	0.67	0.33	0.67	1.39	2.22
West Coast		2.13	3.52	1.95	3.06	1.95	3.06	0.33	0.67	0.33	0.67	0.33	0.67	1.39	2.22

Pipeline Transportation Tariff

• Pipeline transportation tariff depends on

- Length (calculated using GIS)
- Capacity (volume available/required)
- Base pressure
- Operating Pressure
- Number of stages for compressor
- Other

© INTEK, INC.

Used in the Pipeline Tariff $Calculation Model^{\bigcirc}$

Example: Determining Average Pipeline Length

Std Deviation = 43 mi

Pipeline Transportation Tariff

• Average pipeline length will be calculated for each OGSM region and source type

• Regional source-specific pipeline tariffs are determined

Pipeline Transportation Tariffs (\$/tn)

			Regional Pipeline Tariff (\$/tn)								
	OGSM Region		Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants				
East Coast		7.02	7.73	7.56	7.56	7.56	8.81				
Gulf Coast		7.02	7.56	7.38	7.56	7.73	9.17				
Midcontinent		7.02	7.73	7.20	7.56	7.20	9.35				
Southwest		7.02	7.73	7.38	7.56	7.56	9.17				
Decky Mountain	Rocky Mountain (OGSM)	7.02	7.73	7.38	7.56	7.56	9.17				
Rocky Mountain	Northern Great Plains (OLOGSS)	7.02	7.73	7.56	7.56	7.56	9.17				
West Coast		7.02	7.73	7.38	7.56	7.56	9.17				

Pipeline Transportation Tariffs (\$/Mcf)

			Regional Pipeline Tariff (\$/Mcf)								
	OGSM Region		Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants				
East Coast		0.39	0.43	0.42	0.42	0.42	0.49				
Gulf Coast		0.39	0.42	0.41	0.42	0.43	0.51				
Midcontinent		0.39	0.43	0.4	0.42	0.4	0.52				
Southwest		0.39	0.43	0.41	0.42	0.42	0.51				
Deeley Mountain	Rocky Mountain (OGSM)	0.39	0.43	0.41	0.42	0.42	0.51				
	Northern Great Plains (OLOGSS)	0.39	0.43	0.42	0.42	0.42	0.51				
West Coast		0.39	0.43	0.41	0.42	0.42	0.51				

Capture Cost Technology Case Definitions

- Low technology case has higher capture costs
- Average technology case has average capture costs
- High technology case has lower capture costs

Note: Goal is to achieve lower capture costs in the future

Total CO₂ Cost at Wellhead (\$/tn)

Average Capture Technology Case

				Average Captur	re Costs + Pipeli	ne Tariffs (\$/tn)	*	
	OGSM Region	Fossil Fuel Plants	Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants	New IGCC Plants
East Coast		57.83	52.73	52.56	16.56	16.56	17.81	40.20
Gulf Coast		57.83	52.56	52.38	16.56	16.73	18.17	40.23
Midcontinent		57.83	52.73	52.20	16.56	16.20	18.35	40.17
Southwest		57.83	52.73	52.38	16.56	16.56	18.17	40.23
Deely Mountain	Rocky Mountain (OGSM)	57.83	52.73	52.38	16.56	16.56	18.17	40.23
Rocky Mountain	Northern Great Plains (OLOGSS)	57.83	52.73	52.56	16.56	16.56	18.17	40.26
West Coast		57.83	52.73	52.38	16.56	16.56	18.17	40.23

Total CO₂ Cost at Wellhead (\$/tn)

High Capture Technology Case

				Minimum Captu	re Costs + Pipel	ine Tariffs (\$/tr	ı) *	
	OGSM Region	Fossil Fuel Plants	Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants	New IGCC Plants
East Coast		45.33	42.73	42.56	13.56	13.56	14.81	32.70
Gulf Coast		45.33	42.56	42.38	13.56	13.73	15.17	32.73
Midcontinent		45.33	42.73	42.20	13.56	13.20	15.35	32.67
Southwest		45.33	42.73	42.38	13.56	13.56	15.17	32.73
Doolay Mountain	Rocky Mountain (OGSM)	45.33	42.73	42.38	13.56	13.56	15.17	32.73
Rocky Mountain	Northern Great Plains (OLOGSS)	45.33	42.73	42.56	13.56	13.56	15.17	32.76
West Coast		45.33	42.73	42.38	13.56	13.56	15.17	32.73

Total CO₂ Cost at Wellhead (\$/tn)

Low Capture Technology Case

				Maximum Captu	ure Costs + Pipel	ine Tariffs (\$/tn)	*	
	OGSM Region	Fossil Fuel Plants	Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants	New IGCC Plants
East Coast		70.34	62.73	62.56	19.56	19.56	20.81	47.70
Gulf Coast		70.34	62.56	62.38	19.56	19.73	21.17	47.73
Midcontinent		70.34	62.73	62.20	19.56	19.20	21.35	47.67
Southwest		70.34	62.73	62.38	19.56	19.56	21.17	47.73
Doolay Mountain	Rocky Mountain (OGSM)	70.34	62.73	62.38	19.56	19.56	21.17	47.73
Rocky Mountain	Northern Great Plains (OLOGSS)	70.34	62.73	62.56	19.56	19.56	21.17	47.76
West Coast		70.34	62.73	62.38	19.56	19.56	21.17	47.73

Total CO₂ Cost at Wellhead (\$/Mcf)

Average Capture Technology Case

				Average Capture	e Costs + Pipelin	e Tariffs (\$/Mcf)*	
	OGSM Region	Fossil Fuel Plants	Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants	New IGCC Plants
East Coast		3.22	2.94	2.93	0.92	0.92	0.99	2.23
Gulf Coast		3.22	2.93	2.92	0.92	0.93	1.01	2.24
Midcontinent		3.22	2.94	2.91	0.92	0.90	1.02	2.23
Southwest		3.22	2.94	2.92	0.92	0.92	1.01	2.24
Deelay Mountain	Rocky Mountain (OGSM)	3.22	2.94	2.92	0.92	0.92	1.01	2.24
Rocky Mountain	Northern Great Plains (OLOGSS)	3.22	2.94	2.93	0.92	0.92	1.01	2.24
West Coast		3.22	2.94	2.92	0.92	0.92	1.01	2.24

Total CO₂ Cost at Wellhead (\$/Mcf)

High Capture Technology Case

OGSM Region		Minimum Capture Costs + Pipeline Tariffs (\$/Mcf) *						
		Fossil Fuel Plants	Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants	New IGCC Plants
East Coast		2.52	2.38	2.37	0.75	0.75	0.82	1.82
Gulf Coast		2.52	2.37	2.36	0.75	0.76	0.84	1.82
Midcontinent		2.52	2.38	2.35	0.75	0.73	0.85	1.82
Southwest		2.52	2.38	2.36	0.75	0.75	0.84	1.82
Rocky Mountain	Rocky Mountain (OGSM)	2.52	2.38	2.36	0.75	0.75	0.84	1.82
	Northern Great Plains (OLOGSS)	2.52	2.38	2.37	0.75	0.75	0.84	1.82
West Coast		2.52	2.38	2.36	0.75	0.75	0.84	1.82

Total CO₂ Cost at Wellhead (\$/Mcf)

Low Capture Technology Case

OGSM Region		Maximum Capture Costs + Pipeline Tariffs (\$/Mcf) *						
		Fossil Fuel Plants	Refineries	Cement Plants	Hydrogen Plants	Ammonia Plants	Ethanol Plants	New IGCC Plants
East Coast		3.91	3.49	3.48	1.09	1.09	1.16	2.65
Gulf Coast		3.91	3.48	3.47	1.09	1.10	1.18	2.65
Midcontinent		3.91	3.49	3.46	1.09	1.07	1.19	2.65
Southwest		3.91	3.49	3.47	1.09	1.09	1.18	2.65
Rocky Mountain	Rocky Mountain (OGSM)	3.91	3.49	3.47	1.09	1.09	1.18	2.65
	Northern Great Plains (OLOGSS)	3.91	3.49	3.48	1.09	1.09	1.18	2.65
West Coast		3.91	3.49	3.47	1.09	1.09	1.18	2.65

CO₂ Availability Assumption revised 9-21-07

- Natural sources of CO₂ are available immediately ۲
- Availability of industrial sources of CO₂ is delayed for infrastructure ulletdevelopment
 - Hydrogen Plants:
 - Ammonia Plants:
 - **Ethanol Plants**
 - **Cement Plants:**
 - **Refineries:**
 - Fossil Fuel Plants:

- 4 Years (Pipeline)
- 4 Years (Pipeline)
- 4 Years (Pipeline)
- 5 Years (Capture & Pipeline)
- 8 Years (Capture & Pipeline)
- 8 Years (Capture & Pipeline)

Economic Module

- The Economic Module will pick the most economic CO₂ available in any given region subject to availability of CO₂ for the life cycle of the project.
- Other development and economic assumptions:
 - 10 year development schedule for a CO_2 EOR project
 - 15% ROR
 - 34.5% Federal tax rate
 - 12.5% royalty rate on Federal lands
 - EOR tax credit
 - 8 year MACRS depreciation schedule

Model Levers Available for R&D default HCPV now = 1.0 (9-21-07)

R&D Area	Levers				
■CO ₂ capture technology improvement	Reduction in capture costs				
Acceleration of capture technology	 Capture technology R&D Phase Years Capure technology & pipeline construction phase Years Market acceptance phase Years Rate of acceptance Ultimate market acceptance Availability of CO₂ 				
 Increase injection rate 	 Value of CO₂ injection - 0.4 HCPV[*] (default) - Others to be determined 				
Economic risk	■Rate of Return (ROR)				

*HCPV = Hydrocarbon Pore Volume

Industrial CO₂ Availability Assumptions see revised table in e-mail 9-21-07

Source Type	R&D Phase (Years)	Infrastructure Development (Years)	Market Acceptance (Years)	Annual Market Acceptance (%)	Ultimate Market Acceptance (%)	
Ammonia Plants	2	2	5	20%	100%	
Ethanol Plants	2	2	5	20%	100%	
Hydrogen Plants	2	2	5	20%	100%	
Cement Plants	6	4	5	20%	100%	
Refineries	6	4	5	20%	100%	
Fossil Fuel Plants	6	8	5	20%	100%	

Industrial CO₂ Availability Assumptions has been modified (9-21-07)

• Example: Cement Plants

- Start year: 2015
- Capture Technology Development 5 years
- Construction lead time: 4-5 years
- Market Acceptance period: 5 years
- Maximum \overline{CO}_2 availability: 2025

Sample Price Supply Curves

• Three cases

- AEO 2007 Low Price case
- AEO 2007 Reference Price case
- AEO 2007 High Price case

• Sample results

- Total CO₂ injected
- Regional and national oil production

Supporting data for all cases is provided in attached text files

Price Supply Curve Assumptions

- Lower 48 Onshore only
 - Does not include the Gulf of Mexico and Alaska
- Average CO₂ capture and transportation costs
- 1.0 HCPV (revised 9-21-07)
- 100% of all existing industrial sources is available
 - Using availability assumptions on page 32
- Natural sources of CO₂ are available immediately
- No planned industrial CO₂ sources

