White Paper on Development of A Liquid Fuels Market Module for NEMS

LFMM Technical Workshop U.S. Energy Information Administration September 30, 2009

Revised Presentation: October 14, 2009

Dave Hirshfeld MathPro Inc.

- 1. A perspective on refinery modeling
- 2. Some thoughts on the modeling platform
- 3. Forecasting (AEO and IEO) applications
- 4. Special studies
- 5. A proposed modeling approach
- 6. Model calibration
- 7. Representation of advanced biofuels supply

1. A perspective on refinery modeling

A model should be as simple as possible, but not simpler

It is better to be approximately right than precisely wrong

Analysis is done by analysts, not by models

2. Some thoughts on the modeling platform

Start fresh

Adopt best practice in system design

- User interface based on Web conventions and tools
- Data maintained in relational database
- "Facts" and "Choices" maintained in separate classes
- Crude assay library and assay manager
- Promote visibility symbolic modeling and model analysis components
- Advanced case management capabilities

3. Forecasting applications

Relatively simple and compact multi-region model adequate for forecasting applications

Model should encompass not only U.S. regions but also short-haul and European export regions

Model should produce estimates of

- Net refinery consumption of purchased fuel and power
- ▶ Refinery emissions of CO₂
- Energy density of transportation fuels

4. Special study applications

- Moderately detailed, but highly flexible, refining sector model template needed for special studies
- Model and platform should be capable of processing many cases in the course of any given study
- Model and platform should be capable of representing refining sector
 - At various levels of aggregation, and
 - With different routes for capacity investments

4. Special study applications (cont'd.)

- Special studies require modeling at various levels of aggregation
 - Aggregate national model
 - Regional models
 - Notional ("generic") models
- Notional models can capture various types of investment economics
 - "Grass roots"
 - ► Expansion
 - Retro-fitting to a new service
 - Capacity creep

5. Different applications ⇒ different models

- Two distinct LFMM models (see Exhibits 3 and 4)
 - Simple, multi-regional one for AEOs and IEOs
 - More complex, flexible modeling template for special studies
 - Both process-oriented optimization models
 - Same modeling platform
- EIA might want a third LFMM model, representing all U.S. refineries individually in highly simplified form
 - Spread-sheet based, non-optimizing
 - For identifying advantaged/disadvantaged refineries
 - For assessing credit trading programs

6. Model calibration

- Models should be *calibrated* annually to most-recent year regional operations, as reported
 - Production rates of primary refined products
 - Capacity utilization
 - Properties of gasoline and distillated pools
 - Refined product prices (marginal refining costs)
- Calibration addresses two vexing issues
 - Matching reported prices of refined products
 - Over-optimization due to aggregation
- Calibration establishes credibility

7. Representation of advanced biofuels

- Current status of advanced bio-fuels (e.g., cellulosic ethanol)
 - Uncertain technical and economic feasibility
 - Unknown time to achieve any given production volume
 - Inherent fragmentation of any future industry
 - ▶ No commercial production ⇒ no commercial data

Cellulosic and corn ethanol are intrinsically different
Maturity: technology, infrastructure, operating data, markets
Granularity: technology, feedstock, region

7. Representation of advanced biofuels (cont'd.)

- Granularity implies extensive, expensive, and continuing effort to
 - Capture and analyze data
 - Create and update formal supply models
- Without commercial data, one cannot forecast; one can only speculate
- Adding a virtual sector to the set of real sectors represented in NEMS would be pernicious