Estimating the Price Elasticity of Demand for Fuel

EIA Meeting January 30, 2017

Kenneth Gillingham
Yale University

Long literature in this area

Only more recently have studies paid closer attention to exogenous sources of variation and instrumental variable strategies.

- I have a series of recent papers using odometer reading data to better understand the demand for driving
- These data are generally from vehicle inspections
 - CA: Gillingham (2013) Identifying Elasticity of Driving
 - PA: Gillingham et al. (2015) Heterogeneity in Response
 - Denmark: Gillingham & Munk-Neilsen (2017) Tale of Two
 Tails

Relationship between Elasticities

The driving elasticity and gasoline demand elasticity are tightly linked:

$$\beta_{G,P}g = \beta_{M,C} - \beta_{E,P}g - \beta_{E,P}g\beta_{M,C}$$

Where each of these is and elasticity and

- G is gasoline demand
- P^g is the price of gasoline
- M is the miles driven
- C is the cost per mile of driving
- E is the fuel economy in miles per gallon

Source: Gillingham (2011)

Key Findings

- During times of price shocks, consumers are more responsive
 - The responsiveness is lower during times of low and stable fuel prices
- The medium-run elasticity is around -0.1 to -0.25
 - Is likely larger in the long-run
- Lower fuel economy vehicles are more responsive
- Vehicles in urban areas with access to public transport are also more responsive
- This work can inform the elasticity of gasoline demand