Notes and Sources

Table Notes and Sources

Note: Tables indicated as sources in these notes refer to the tables in Appendixes A, B, C, and D of this report.

Table 2. State appliance efficiency standards and potential future actions: Appliance Standards Awareness Project, web site www.standardssasap.org, and various State web sites.

Table 6. Assumptions used in comparing conventional and plug-in hybrid electric vehicles: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Table 7. Conventional vehicle and plug-in hybrid system component costs for mid-size vehicles at volume production: Electric Power Research Institute, Advanced Batteries for Electric-Drive Vehicles, 1009299 (Palo Alto, CA, May 2004), web site www.spinnovation.com/sn/Batteries/Advanced_Batteries_for_Electric-Drive_Vehicles.pdf. Note that this is one cost estimate among several that were used in the analysis and that PHEV system costs increase as the all-electric range of the vehicle increases.

Table 9. Crude oil and natural gas production and prices in two cases, 2020 and 2030: Tables A12, A14, and D14.

Table 10. Estimated recoverable resources from oil shale in Colorado, Utah, and Wyoming: U.S. Department of Energy, Strategic Significance of America’s Oil Shale Resource, Volume II, Oil Shale Resources, Technology, and Economics (Office of Naval Petroleum and Oil Shale Reserves, Washington, DC, March 2004), pp. 1-5, web site www.fossil.energy.gov/programs/reserve/npr/publications/npr_strategic_significance2.pdf. Includes natural gas and natural gas liquids, which constitute 15 to 40 percent of the total recoverable Btu content, depending on the specific shale rock characteristics and the process used to extract the oil and natural gas.

Table 11. Assumptions for comparison of three Alaska North Slope natural gas facility options: Gas Conversion Efficiency: LNG facility efficiency does not include any LNG tanker losses while in transit; pipeline efficiency based on averages cited in documentation for the Alaska Gasline Inducement Act, web site http://gov.state.ak.us/agia; LNG and GTL losses based on levels cited in technical literature. Source: B. Patel, Gas monetisation: A Techno-economic Comparison of Gas-To-Liquid and LNG (Glasgow, Scotland: Foster Wheeler Energy Limited, 2005). Capital Costs: Gathering and treatment costs based on ConocoPhilips AGIA proposal costs. LNG capital costs based on liquefaction plant estimates provided by Robert Baron, a DOE Fossil Energy consultant, and prorated AGIA gas pipeline costs based on the mileage from the North Slope to Valdez, and escalated by 20 percent to reflect the cost of building over the Alaska Range mountains in a seismic active zone. GTL North Slope capital cost based on $110,000 per daily stream barrel as cited in K. Nelson, “Legislators Told GTL a No-Go for ANS Gas,” Petroleum News, Vol. 12, No. 10 (March 11, 2007), web site www.petroleumnews.com/tnads/786285153.shtml. Operating Costs: Pipeline operating costs based on EIA’s NGTDM model values. LNG operating costs based on study by Robert Baron. GTL operating costs are based on EIA’s INGM model.

Figure Notes and Sources

Note: Tables indicated as sources in these notes refer to the tables in Appendixes A, B, C, and D of this report.

Figure 4. Proposed CAFE standards for passenger cars by vehicle footprint, model years 2011-2015: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Figure 5. Proposed CAFE standards for light trucks by vehicle footprint, model years 2011-2015: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Figure 7. Value of fuel saved by a PHEV compared with a conventional ICE vehicle over the life of the vehicles, by gasoline price and PHEV all-electric driving range: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Figure 8. PHEV-10 and PHEV-40 battery and other system costs, 2010, 2020, and 2030: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Figure 9. Incremental cost of PHEV purchase with EIA2008 tax credit included compared with conventional ICE vehicle purchase, by PHEV all-electric driving range, 2010, 2020, and 2030: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Figure 10. PHEV fuel savings and incremental vehicle cost by gasoline price and PHEV all-electric driving range, 2030: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Figure 11. PHEV fuel savings and incremental vehicle cost by gasoline price and PHEV all-electric driving range, 2010 and 2020: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Figure 12. PHEV annual fuel savings per vehicle by all-electric driving range: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Notes and Sources

Figure 15. Average internal rates of return for three Alaska North Slope natural gas facility options in three cases, 2011-2020: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Figure 16. Average internal rates of return for three Alaska North Slope natural gas facility options in three cases, 2021-2030: Energy Information Administration, Office of Integrated Analysis and Forecasting.

Figure 27. Average annual growth rates of real GDP, labor force, and productivity in three cases, 2007-2030: Appendix B, Table B4.

Figure 28. Average annual inflation, interest, and unemployment rates in three cases, 2007-2030: Appendix B, Table B4.

Figure 41. Residential market penetration by renewable technologies in two cases, 2007, 2015, and 2030: AEO2009 National Energy Modeling System, runs AEO2009.D120908A and BLDFRZN.D121008A.

Figure 44. Efficiency gains for selected commercial equipment in three cases, 2030: Energy Information Administration, Technology Forecast Updates—Residential and Commercial Building Technologies—Advanced Adoption Case (Navigant Consulting, Inc., September 2007); and AEO2009 National Energy Modeling System, runs AEO2009.D120908A, BLDFRZN.D121008A, and BLDBEST.D121008A.

Figure 45. Additions to electricity generation capacity in the commercial sector in two cases, 2008-2016: AEO2009 National Energy Modeling System, runs AEO2009.D120908A and AEO2009NO.D121108A.

Figure 53. Sales shares of hybrid light-duty vehicles by type in three cases, 2030: AEO2009 National Energy Modeling System, run AEO2009.D120908A.

Figure 57. Levelized electricity costs for new power plants, 2020 and 2030: AEO2009 National Energy Modeling System, run AEO2009.D120908A.

Figure 62. Nonhydroelectric renewable generation capacity in three cases, 2010-2030: Appendix D, Table D10.

Figure 63. Regional growth in nonhydroelectric renewable electricity generation, including end-use generation, 2007-2030: AEO2009 National Energy Modeling System, run AEO2009.D120908A.

Figure 72. Liquids production from gasification and oil shale, 2007-2030: AEO2009 National Energy Modeling System, run AEO2009.D120908A.

Figure 74. RFS credits earned in selected years, 2007-2030: AEO2009 National Energy Modeling System, run AEO2009.D120908A.

