Annual Energy Outlook 2014: transportation modeling updates and preliminary results

For
Working Group 2
September 25, 2013 | Washington, DC

By
Trisha Hutchins and Nicholas Chase
Office of Transportation Energy Consumption and Efficiency Analysis
Overview

• Macroeconomic drivers
 – GDP, population, world oil price

• Light-duty vehicle
 – New travel demand module including population demographics
 – New region specific consumer behavior and E85 demand
 – Updated battery electric vehicle cost, efficiency, and availability

• Heavy-duty vehicle, freight rail, and domestic marine
 – New region, mode, and commodity specific freight travel demand
 – Updated freight rail and domestic marine efficiency
 – Added LNG as a fuel choice for freight locomotives
Real GDP is lower in the AEO2014

Source: AEO2014 preliminary
Population 16+ is lower in the AEO2014

Source: AEO2014 preliminary
World oil price is lower in the AEO2014

Source: AEO2014 preliminary
Light-duty vehicle
Light-duty vehicle travel

• Recent studies indicate possible structural shift in travel behavior
 – Decoupled link between travel behavior and economic growth
 – Population shifts to urban areas
 – Telecommuting, e-commerce, etc.
 – Travel by age cohort and the aging population

• New regional travel model
 – VMT estimated by Census Division and aggregated to national level
 – Based on travel behavior and regional licensing rates for males/females
 – 13 licensing rate age groups and 5 VMT age groups
Growth in driver licensing by age cohort

Source: AEO2014 preliminary
Driving population distribution by age group

Source: AEO2014 preliminary
Change in travel—16-19 year old age cohort

VMT per licensed driver (thousands/year)

Source: AEO2014 preliminary
Change in travel—20-34 year old age cohort

VMT per licensed driver (thousands/year)

Source: AEO2014 preliminary
Change in travel—35-54 year old age cohort

VMT per licensed driver (thousands/year)

Source: AEO2014 preliminary
Change in travel—55-64 year old age cohort

VMT per licensed driver (thousands/year)

Source: AEO2014 preliminary
Change in travel—65+ year old age cohort

VMT per licensed driver (thousands/year)

Source: AEO2014 preliminary
Licensed drivers increase over the projection period

licensed drivers (millions)

<table>
<thead>
<tr>
<th></th>
<th>History</th>
<th>2012</th>
<th>Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Source: AEO2014 preliminary
VMT per licensed driver decreases until 2024

Source: AEO2014 preliminary
LDV travel lower in AEO2014

Source: AEO2014 preliminary
Total LDV energy use is lower in AEO2014 due to less travel demand.

Source: AEO2014 preliminary
Consumer preference for E85

• E85 demand determined using a probability model developed by Greene at ORNL
 – Market share determined by fuel prices and E85 availability

• AEO2013 model assumed single consumer behavior across census divisions with differences in fuel availability and fuel prices determining demand

• New model will reflect differences in consumer behavior across census divisions
 – Model developed by Greene at ORNL
 – Market share determined by fuel prices and E85 availability
 – Potential issues related to inherent preference and habit formation
Consumer choice for E85

E85 market share

Assumes E85 is $0.10 cheaper per gallon of gasoline equivalent

E85 fuel availability

AEO2013

AEO2014
E85 consumption greater in AEO2014

billion gallons

Source: AEO2014 preliminary
Battery electric vehicle modeling updates

• Battery size (kWh)
 – Updated using OEM manufacturer websites for model year 2012 and 2013
 – Modified depth-of-discharge improvement

• Non-battery systems cost
 – EPA OMEGA model provides total cost for 2012 through 2025 (by vehicle type and by size class)
 – EPA/NHTSA 2017-2025 Final Rule JTSD provide near and long-term learning rates
 – These data used to develop non-battery systems cost by vehicle type and size class
Battery cost ($/kWh)
 - Battery costs vary by vehicle type (HEV, PHEV10, PHEV40, EV100, EV200)
 - Cost developed using current OEM price data, Argonne’s BatPaC model, and EPA/NHTSA’s 2017-2025 Final Rule JTSD

Battery vehicle model year availability
 - Availability by size class reflect recent manufacturer offerings and product announcements

Fuel economy equivalent
 - All-electric fuel efficiency calculated using battery size and vehicle all-electric range
Price of midsize plug-in hybrid electric vehicle with 40 mile range higher in AEO2014

<table>
<thead>
<tr>
<th>Time Period</th>
<th>AEO2014</th>
<th>AEO2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-term (2015)</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Medium-term (2025)</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Long-term (2040)</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>

thousand 2012$
Gasoline LDVs (including with micro hybridization) account for 82% of sales in 2040

U.S. light car and truck new sales millions

Projections

- Gasoline without hybridization
- Gasoline with micro hybridization
- E85 flex fuel
- Diesel
- Hybrid electric
- Plug-in hybrid electric
- Electric
- Gaseous and fuel cell

Source: AEO2014 preliminary
LDV energy consumption by fuel remains predominantly motor gasoline with only small shares of other fuels, mostly diesel.
Heavy-duty vehicle, freight rail, and domestic marine
Regionalize freight movement by mode and commodity

- Total freight ton-mile data available from
 - Railroad (Class I): U.S. Department of Transportation, Surface Transportation Board, Annual Reports (R-1) (1995-2011)

 - Commodity Flow Survey contains ton-mile data by origin and destination state by mode and by commodity

- Historic heavy-duty truck ton-mile and vehicle miles traveled data show direct relationship
Projecting regional freight movement by mode and commodity

• Ton-mile per dollar of industrial output
 – by census division and commodity derived from historical data (CFS2007) and NEMS Macro model value of industrial output

• Heavy-duty truck
 – ton-miles (vehicle miles traveled) projected using ton-mile per dollar value of output, by census division and commodity

• Freight rail
 – ton-miles split into non-coal and coal; non-coal projected using ton-mile per dollar value of output, by census division and commodity; while coal ton-miles use growth rate of coal ton-miles from NEMS coal module

• Domestic marine
 – ton-miles projected using ton-mile per dollar value of output by census division and commodity, with relationship showing phased-out historical rate of decline
Heavy-duty freight vehicle miles traveled lower in AEO2014 due to lower macroeconomic growth and new methodology.

Source: AEO2014 preliminary
Rail ton-miles higher and domestic marine ton-miles lower in AEO2014 due to methodology change

![Graph showing ton-miles traveled (billion) for history, 2012, and projection from 1995 to 2040 for Freight rail and Domestic marine.](source: AEO2014 preliminary)
Freight rail and domestic marine efficiency

• Freight rail efficiency (Btu/ton-mile)
 – Railroad (Class I): U.S. Department of Transportation, Surface Transportation Board, Annual Reports (R-1) have ton-mile and fuel consumption data (1995-2011)
 – Projected efficiency improves by 0.7% annually (1/2 historic rate)

• Domestic waterborne freight efficiency (Btu/ton-mile)
 – Transportation Energy Data Book (31st edition), Waterborne Commerce on Taxed Waterways
 – Projected efficiency improves by 0.8% annually (1/2 historic rate)
Freight rail and domestic marine efficiencies improve at ½ the historic rate

Btu / 1,000 ton-miles

Source: EIA, Annual Energy Outlook 2013; USDOT Surface Transportation Board; Transportation Energy Data Book Ed. 31
LNG Class I freight locomotives

• Price differential between LNG and diesel fuel has raised interest (fuel cost is 23% of total operating expense)

• BNSF will acquire 6 line-haul locomotives (3 from GE, 3 from EMD) in pilot program
 – Testing will begin in late 2013 and continue for at least 1 year
 – BNSF would “move quickly” if pilot program proves a success

• Canadian National Railways line-haul locomotive pilot program testing 2 ECI conversion kits (3,000 HP) and will acquire 2 line-haul locomotives from EMD (4,300 HP) with Caterpillar/EMD HPDI technology and Westport tender car
 – Conversion kit testing in Canada began in late 2012
 – Experiencing some mechanical and logistical challenges but too early to tell success/failure
Modeling LNG as a fuel choice for freight locomotives

- LNG fuel choice based on endogenous fuel economics calculation
 - Incremental cost of LNG engine + fuel tender = $1,000,000
 - Annual ton-miles travelled per locomotive = 70,868,670
 - Efficiency (Btu/ton-mile) is fuel neutral
 - Discount rate = 11.5% (Class I Railroad average return on equity)
 - Payback period = 15 years
 - LNG locomotives available as fuel starting in 2015
 - Class I Railroads pay about 80% of retail price of transportation diesel fuel
 - Phase-in of new/rebuild LNG locomotives over 5 years each for BNSF/GT; CSX, NS, UPRR; KCS/Soo
Total transportation energy consumption

Source: AEO2014 preliminary
Transportation energy consumption declines across projection, LDV energy share falls while HDV energy share rises

Source: AEO2014 preliminary
Motor gasoline declines as share of transportation fuel consumed while diesel fuel rises

Source: AEO2014 preliminary
Discussion/questions

Nicholas Chase | phone: 202-586-8851
 | email: nicholas.chase@eia.gov

Trisha Hutchins | phone: 202-586-1029
 | email: patricia.hutchins@eia.gov

John Maples | phone: 202-586-1757
 | email: john.maples@eia.gov

Annual Energy Outlook | www.eia.gov/forecasts/aeo
Annual vehicle miles traveled by licensed drivers

Source: NHTS and FHWA Highway Statistics
Decline in licensing rates for age cohorts under 54 years old while increase for age cohorts above

Source: NHTS
Driver licenses by age cohort

Source: FHWA Highway
Example: heavy-duty truck ton-mile distribution by census division and commodity, CFS2007

<table>
<thead>
<tr>
<th>census division</th>
<th>chemicals</th>
<th>rubber plastic</th>
<th>primary metals</th>
<th>proc food</th>
<th>paper products</th>
<th>petroleum products</th>
<th>stone, clay, glass, concrete</th>
<th>metal durables</th>
<th>other mfg</th>
<th>agri</th>
<th>mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.4%</td>
<td>0.1%</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.2%</td>
<td>1.1%</td>
<td>2.0%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.4%</td>
<td>0.5%</td>
<td>1.5%</td>
<td>0.5%</td>
<td>1.1%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.5%</td>
<td>3.1%</td>
<td>3.0%</td>
<td>1.1%</td>
<td>0.6%</td>
<td>1.1%</td>
<td>1.9%</td>
<td>2.4%</td>
<td>0.8%</td>
<td>1.6%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.8%</td>
<td>0.6%</td>
<td>1.9%</td>
<td>0.3%</td>
<td>0.4%</td>
<td>0.6%</td>
<td>0.6%</td>
<td>1.0%</td>
<td>1.8%</td>
<td>1.3%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.3%</td>
<td>1.3%</td>
<td>2.4%</td>
<td>1.1%</td>
<td>0.8%</td>
<td>1.5%</td>
<td>0.9%</td>
<td>3.4%</td>
<td>0.8%</td>
<td>1.9%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.8%</td>
<td>1.0%</td>
<td>0.9%</td>
<td>0.6%</td>
<td>0.3%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>1.5%</td>
<td>0.2%</td>
<td>1.3%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.5%</td>
<td>1.9%</td>
<td>2.1%</td>
<td>0.7%</td>
<td>1.5%</td>
<td>1.3%</td>
<td>1.1%</td>
<td>2.2%</td>
<td>0.7%</td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.6%</td>
<td>0.4%</td>
<td>0.8%</td>
<td>0.2%</td>
<td>0.4%</td>
<td>0.7%</td>
<td>0.2%</td>
<td>1.2%</td>
<td>0.4%</td>
<td>0.8%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.5%</td>
<td>0.9%</td>
<td>3.6%</td>
<td>0.9%</td>
<td>0.9%</td>
<td>1.1%</td>
<td>1.0%</td>
<td>3.3%</td>
<td>1.3%</td>
<td>1.0%</td>
<td></td>
</tr>
</tbody>
</table>
Example: heavy-duty truck ton-mile per dollar of industrial output

<table>
<thead>
<tr>
<th>census division</th>
<th>chemicals rubber plastic</th>
<th>primary metals</th>
<th>proc food</th>
<th>paper products</th>
<th>petroleum products</th>
<th>stone, clay, glass, concrete</th>
<th>metal durables</th>
<th>other mfg</th>
<th>agri</th>
<th>mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.07</td>
<td>0.33</td>
<td>0.25</td>
<td>0.27</td>
<td>1.63</td>
<td>0.31</td>
<td>0.01</td>
<td>0.10</td>
<td>0.02</td>
<td>3.68</td>
</tr>
<tr>
<td>2</td>
<td>0.09</td>
<td>0.28</td>
<td>0.32</td>
<td>0.25</td>
<td>0.93</td>
<td>0.26</td>
<td>0.03</td>
<td>0.18</td>
<td>0.19</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td>0.43</td>
<td>0.26</td>
<td>0.31</td>
<td>1.23</td>
<td>0.54</td>
<td>0.04</td>
<td>0.23</td>
<td>0.25</td>
<td>1.22</td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>1.31</td>
<td>0.22</td>
<td>0.14</td>
<td>2.04</td>
<td>0.70</td>
<td>0.04</td>
<td>0.21</td>
<td>0.58</td>
<td>1.44</td>
</tr>
<tr>
<td>5</td>
<td>0.14</td>
<td>0.53</td>
<td>0.24</td>
<td>0.39</td>
<td>4.66</td>
<td>0.56</td>
<td>0.04</td>
<td>0.21</td>
<td>0.16</td>
<td>0.83</td>
</tr>
<tr>
<td>6</td>
<td>0.15</td>
<td>0.35</td>
<td>0.24</td>
<td>0.37</td>
<td>2.85</td>
<td>0.75</td>
<td>0.04</td>
<td>0.34</td>
<td>0.07</td>
<td>0.65</td>
</tr>
<tr>
<td>7</td>
<td>0.14</td>
<td>0.57</td>
<td>0.28</td>
<td>0.38</td>
<td>2.26</td>
<td>0.85</td>
<td>0.03</td>
<td>0.39</td>
<td>0.17</td>
<td>0.06</td>
</tr>
<tr>
<td>8</td>
<td>0.23</td>
<td>0.75</td>
<td>0.22</td>
<td>0.33</td>
<td>21.62</td>
<td>0.61</td>
<td>0.01</td>
<td>0.29</td>
<td>0.18</td>
<td>0.11</td>
</tr>
<tr>
<td>9</td>
<td>0.13</td>
<td>0.76</td>
<td>0.44</td>
<td>0.29</td>
<td>1.87</td>
<td>0.67</td>
<td>0.02</td>
<td>0.32</td>
<td>0.17</td>
<td>0.15</td>
</tr>
</tbody>
</table>