Annual Energy Outlook 2013: Modeling Updates in the Transportation Sector

John Maples, Patricia Hutchins, Nicholas Chase
Office of Energy Consumption and Efficiency Analysis
August 14, 2012 | Washington, DC
Overview

• Light-duty vehicle
 – Light-duty vehicle technology update based on EPA/NHTSA Notice of Proposed Rule for model years 2017 through 2025

• Heavy-duty vehicle
 – Natural gas vehicle cost, owner/operator acceptance, and refueling availability

• Potential future updates
 – Battery and non-battery systems cost by vehicle range
 – Heavy-duty vehicle technology
 – Improve representation of HD national program and heavy-duty vehicle market
 – Natural gas for rail
Light-duty vehicle modeling update

• Light duty vehicle technology list update to include most recent information from

 – Joint Rulemaking to Establish CAFE and GHG Emissions Standards, MY 2012-2016

 – Average Fuel Economy Standards, Passenger Cars and Light Trucks, MY 2011, Final Regulatory Impact Analysis

 – Assessment of Fuel Economy Technologies for Light-Duty Vehicles, National Academies, 2010

• Changes include:

 – Inclusion of new technologies, cost and fuel economy benefits

 – Technology market penetration for model year 2010 (requires technology market penetration file from EPA/NHTSA)

 – Learning rates and cost reduction

 – Rates of market penetration
Light-duty vehicle modeling update

- Technology list includes:
 - Vehicle (Mass Reduction I to V; Aerodynamics I and II; Tires I and II; Low Drag Brakes; Secondary Axle Disconnect)
 - Transmission (6 speed Manual; 6 to 8 speed Automatic; 5 to 8 speed Dual Clutch Automated Manual; High Efficiency Gearboxes; Improved Automatic Controls/Externals I and II; Continuously Variable Transmission)
 - Accessories/Electrification (Electric Power Steering; Improved Accessories I and II; 12V Micro Hybrid; Integrated Starter Generator)
 - Engine (Conversion to SOHC and DOHC; Low Friction Lubricants; Engine Friction Reduction I and II; Cylinder Deactivation; Variable Valve Timing I to III; Variable Valve Lift I and II; Stoichiometric Gasoline Direct Injection; Turbocharging and Downsizing I to III with Cooled Exhaust Gas Recirculation for levels II and III)
 - Horsepower change from new technology
Light-duty vehicle modeling update

• Questions regarding technology list
 – Backing out learning from vehicle incremental cost in 2017
 – Incremental cost/effectiveness information on OHV, SOHC, DOHC configurations
 – Incremental cost/effectiveness information on Integrated Starter Generator
 – Ordering among the various technology trees
 – More information on Small, Medium, Large Displacement engine definition
Heavy-duty vehicle modeling update

• Natural gas vehicle incremental cost based on engine cost plus tank cost

• Natural gas vehicle engine costs
 – Class 3 engine cost: $1,417
 – Class 4 to 6 engine cost: $19,750
 – Class 7 to 8 engine cost: $33,875

• Natural gas vehicle tank costs

<table>
<thead>
<tr>
<th>Vehicle Class</th>
<th>$/dge tank capacity cost</th>
<th>Fuel type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 3</td>
<td>$340</td>
<td>CNG</td>
</tr>
<tr>
<td>Class 4-6</td>
<td>$450</td>
<td>LNG</td>
</tr>
<tr>
<td>Class 7-8</td>
<td>$475</td>
<td>LNG</td>
</tr>
</tbody>
</table>

Source: Cummins/Westport
Heavy-duty vehicle modeling update

- Natural gas vehicle tank sized according to vehicle miles travelled
- Natural gas vehicle incremental cost now consists of engine + tank cost:
 - Class 3: $9,750 to $37,555
 - Class 4 to 6: $34,150 to $69,250
 - Class 7 to 8: $49,075 to $86,125

<table>
<thead>
<tr>
<th>VMT Group</th>
<th>Annual miles</th>
<th>Class 3</th>
<th>Class 4-6</th>
<th>Class 7-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12,554</td>
<td>9,750</td>
<td>34,150</td>
<td>49,075</td>
</tr>
<tr>
<td>2</td>
<td>27,855</td>
<td>9,750</td>
<td>34,150</td>
<td>49,075</td>
</tr>
<tr>
<td>3</td>
<td>46,021</td>
<td>9,750</td>
<td>40,000</td>
<td>55,250</td>
</tr>
<tr>
<td>4</td>
<td>62,276</td>
<td>12,008</td>
<td>44,500</td>
<td>60,000</td>
</tr>
<tr>
<td>5</td>
<td>85,000</td>
<td>15,872</td>
<td>54,400</td>
<td>70,450</td>
</tr>
<tr>
<td>6</td>
<td>110,000</td>
<td>20,124</td>
<td>60,250</td>
<td>76,625</td>
</tr>
<tr>
<td>7</td>
<td>125,000</td>
<td>22,675</td>
<td>69,250</td>
<td>86,125</td>
</tr>
<tr>
<td>8</td>
<td>147,500</td>
<td>26,501</td>
<td>69,250</td>
<td>86,125</td>
</tr>
<tr>
<td>9</td>
<td>167,500</td>
<td>29,902</td>
<td>69,250</td>
<td>86,125</td>
</tr>
<tr>
<td>10</td>
<td>187,500</td>
<td>33,303</td>
<td>69,250</td>
<td>86,125</td>
</tr>
<tr>
<td>11</td>
<td>212,500</td>
<td>37,555</td>
<td>69,250</td>
<td>86,125</td>
</tr>
</tbody>
</table>
Heavy-duty vehicle modeling update

- Natural gas fuel price for in both liquefied and compressed form, by retail or fleet operation

(2010$/dge)

Source: AEO2012, HDV Reference case
Heavy-duty vehicle modeling updates

• AEO 2012 and AEO2013 includes the HD National Program fuel efficiency and greenhouse gas emissions standards:
 – Class 3 \(\rightarrow\) (2)
 • Class 3 Pickup and Van
 • Class 3 Vocational
 – Class 4-6 \(\rightarrow\) (1)
 • Class 4-6 Vocational
 – Class 7-8 \(\rightarrow\) (10)
 • Class 7-8 Vocational
 • Class 7 Day Cab (low, mid, high)
 • Class 8 Day Cab (low, mid, high)
 • Class 8 Sleeper Cab (low, mid, high)

• AEO2012 and AEO2013 included technologies described by EPA/NHTSA in Final Rule and Regulatory Impact Analysis
Future modeling updates

• Light-duty vehicle battery electric vehicles (HEVs, PHEVs, EVs)
 – BatPaC model developed by Argonne National Lab
 – Battery Ownership Model (BOM) developed by NREL
 – Develop battery and non-battery systems cost modeling depending on power/energy ratio specific to different vehicle configurations and range

• Further study and update to heavy-duty vehicle technology attributes and penetration, vehicle market representation, and modeling of HD National Program

• Inclusion of natural gas as a fuel option for rail and inclusion of stock model for locomotives
Questions/Feedback

John Maples
(202)-586-1757 john.maples@eia.gov

Patricia Hutchins
(202)-586-1029 patricia.hutchins@eia.gov

Nicholas Chase
(202)-586-8851 nicholas.chase@eia.gov