AEO2018: review and your feedback

For
First Industrial Working Group
May 22, 2018 | Washington, DC

By
OEA Industrial Team
Overview

• Recap of AEO2018
 – Overview of recently released AEO2018
 – Some larger industry results
 – A word about paper

• Your feedback on AEO2018 so we can improve AEO2019
Value of Shipments: Nonmetallic minerals (NMM) and metal-based durables (MBD) show fastest growth in the AEO2018

average annual growth rate 2017-2050 (bars)

2017 shipments billion 2009 USD (squares)

Source: AEO2018
Natural gas is the most consumed energy source in the Industrial sector, while industry consumption shares remain mostly steady.

Source: AEO2018 Reference case
Natural gas fuel consumption is crucial to many manufacturing industries, though 3 industries consume the majority of it.

Natural gas fuel use intensity by manufacturing industry
percent of industry fuel consumption

- Glass
- Bulk chemicals & heat and power
- Food
- Aluminum
- Metal based durables
- Steel
- Refining
- Paper
- Other non-energy intensive

Natural gas fuel consumption in manufacturing
quadrillion btu

- 2017
- 2050

Source: AEO2018 Reference case
CHP is increasingly natural gas fired, with bulk chemicals constituting an ever increasing share.

Source: AEO2018 Reference case
Bulk chemicals – what a difference a MECS makes

- Bulk chemicals will come to increasingly rely on natural gas for heat and power
- Substantial increase in LPG & other feedstocks in MECS – about 340 trillion Btu - increase of 18% between MECS 2010-2014
- Shares in LPG & other and petrochemical feedstocks don’t change much over time

Source: AEO2018 Reference case
Iron and steel and aluminum industries both increasing secondary processing more quickly than in past.

Steel electric arc furnace (EAF) proportion steady at ~67% throughout projection.

Energy intensity declines slightly 2017-2050.
Paper energy consumption increases 1%/year; renewables and natural gas fastest growing

- Renewables share increases from 56% in 2017 to 66% by 2050

- Total electricity consumption
 - Total electricity (purchased + generated) declines 5% 2017-2050
 - CHP generated increases 15%

- Intensity (energy/$) increases to 2035 – increased CHP doesn’t explain all of it
But this does: Bug discovered in ironstlx.xlsx input file, which will be fixed for AEO2019

<table>
<thead>
<tr>
<th>Recovery Furnaces</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.174</td>
<td>0.159</td>
<td>0.420</td>
<td>0.045</td>
<td>0.045</td>
<td>0.156</td>
<td></td>
</tr>
<tr>
<td>0.174</td>
<td>0.159</td>
<td>0.420</td>
<td>0.045</td>
<td>0.045</td>
<td>0.156</td>
<td></td>
</tr>
<tr>
<td>0.174</td>
<td>0.159</td>
<td>0.420</td>
<td>0.045</td>
<td>0.045</td>
<td>0.156</td>
<td></td>
</tr>
<tr>
<td>165490.717</td>
<td>154202.927</td>
<td>154202.927</td>
<td>154202.927</td>
<td>161913.073</td>
<td>164203.985</td>
<td></td>
</tr>
<tr>
<td>6619.629</td>
<td>6168.552</td>
<td>6168.552</td>
<td>6168.552</td>
<td>6476.693</td>
<td>6568.159</td>
<td></td>
</tr>
<tr>
<td>-780.4429</td>
<td>110.8776</td>
<td>110.8776</td>
<td>110.8776</td>
<td>110.8776</td>
<td>-1074.3891</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>-6950.0000</td>
<td>-5600.0000</td>
<td>-6500.0000</td>
<td>-6600.0000</td>
<td>-6950.0000</td>
<td>-6950.0000</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.04166</td>
<td>-1.23031</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>3.56827</td>
<td>4.35809</td>
<td>2.10603</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>(6,950)</td>
<td>(5,600)</td>
<td>(6,500)</td>
<td>(6,600)</td>
<td>(6,950)</td>
<td>(6,950)</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

• Shifted inputs for two recovery furnace technologies increased black liquor output

• Technology 6 – most efficient - chosen less often than it should have been

• Less CHP was used because Technology 6 is a CHP technology

Source: ironstlx.xlsx input file
After fix, paper energy consumption increases 0.6%/year; “Before” on the left, “After” on the right.

Sources: AEO2018 Reference case and AEO2018 run with corrected input file.
Your feedback on AEO2018 – how can we improve for AEO2019?

• What would you like to see more of?
 – Coverage?
 – Content?

• What can be improved?

• What insights from your industry can help us?

• Visuals
 – New?
 – Improve existing?
Industrial meeting materials will be posted in about a month

Link:
https://www.eia.gov/outlooks/aeo/workinggroup/industrial/

Next meeting – TBA – may be working group or smaller workshop
Thank you for your attention!

Industrial Team: EIA-OECEAIIndustrialTeam@eia.gov

Kelly Perl (202) 586-1743

AEO Analysts

Farah Naz (202) 287-6329

Paul Otis (202) 586-2306

IEO Analyst

Matthew Skelton (202) 287-5660
Preview of AEO2019 and beyond

• Review relationship between types of pulp & paper; paper composition changes over time pulp composition doesn’t

• Retire Coal CHP units to reflect recent history; bulk chemicals CHP coal retirements accelerating

• Physical output updates for the process flow industries

• Get ready for a recycling side case

• Expand data sources – EPA GHGRP

• One day data update
Changes in energy intensity between AEO2018 and AEO2017 occur as a result of MECS2014 and historical updates

- 2017 values result of different starting values
 - Quadrennial MECS update
 - Annual data updates
 - State Energy Data System for history and manufacturing allocation
 - Benchmarking
 - STEO short run
 - Individual industries
- New MECS changes non-manufacturing

Source: AEO2018 and AEO2017 Reference cases