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1. Introduction 
The National Energy Modeling System (NEMS) is a long-term energy-economy modeling system of U.S. 
energy markets. The model is used to project production, imports, exports, conversion, consumption, 
and prices of many energy products, subject to user-defined assumptions. The assumptions encompass 
macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral 
and technological choice criteria, technology characteristics, and demographics. 

NEMS produces a general equilibrium solution for energy supply and demand in the U.S. energy markets 
on an annual basis. 

EIA's Office of Energy Analysis develops and maintains NEMS to support the Annual Energy 
Outlook (AEO). EIA analysts perform policy analyses requested by decisionmakers in the White House; 
the U.S. Congress; offices within the U.S. Department of Energy, including program offices; and other 
government agencies. Users outside of EIA use NEMS for a variety of purposes. 

 NEMS was first used for projections presented in the Annual Energy Outlook 1994. 

Scope and organization 
Publication of this document is supported by Public Law 93-275, Federal Energy Administration Act of 
1974, Section 57(B)(1) (as amended by Public Law 94-385, Energy Conservation and Production Act), 
which states, in part: 

...that adequate documentation for all statistical and forecast reports prepared...is made 
available to the public at the time of publication of such reports. 

In particular, this report meets EIA’s model documentation standard 2015-1, established under these 
laws.1 

The individual components of NEMS are documented individually. Although the NEMS Integrating 
Module is a distinct component of NEMS, the Integrating Module is not by itself a model. Rather, it is a 
framework that connects the subject matter modules, and a component of the overall NEMS model.  
The Integrating module implements specific aspects of the overall modeling methodology that are not 
documented elsewhere. The documentation is organized accordingly. 

Readers interested in a more comprehensive summary of NEMS should see the latest The National 
Energy Modeling System: An Overview.2 

Chapter 3 describes the NEMS global data structure, which is used for inter-module communication, 
solution initialization and storage, and certain database operations. 

 
1 See https://www.eia.gov/about/eia_standards.php#standard2015_1. 
2 See https://www.eia.gov/outlooks/aeo/nems/documentation/index.php.  

https://www.eia.gov/outlooks/aeo/nems/documentation/index.php
https://www.eia.gov/about/eia_standards.php#standard2015_1
https://www.eia.gov/outlooks/aeo/nems/documentation/index.php
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Chapter 4 provides the mathematical specification for the solution algorithm and describes the 
convergence techniques we use. Chapter 4 also documents other modeling functions of the Integrating 
Module, including generation of foresight assumptions and carbon dioxide emission policy routines. 

Chapter 5 discusses the NEMS job queue and run management, which are used to manage NEMS runs in 
a distributed environment. 

Chapter 6 discusses the NEMS Report Writer, which produces diagnostic tools and the published output 
from the model. 

Chapter 7 discusses the NEMS validator. 
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2. Overview of the Structure of NEMS 
Background 
NEMS is structured as a modular system. The modules include the Integrating Module and a series of 
relatively independent modules that represent the domestic energy system, the international energy 
market, and the economy. The domestic energy system is broken down further into fuel supply markets, 
conversion activities, and end-use consumption sectors. 

Model modularity implies a system of self-contained units, each performing a specific, well-defined 
function. This concept is generally consistent with the economic structure of energy markets, which can 
be represented by various supply, conversion, and demand components that are largely separable. 
Because energy markets are heterogeneous, a single methodology cannot adequately represent all 
aspects of supply, conversion, and end-use demand sectors. The modularity of the NEMS design 
provides the flexibility for each component to use the methodology and regional coverage that is most 
appropriate for the required analyses. 

NEMS can execute the modules individually or in subsets. This flexibility fosters independent module 
development, a distribution of model development work organized by energy market specialties, and 
incremental development of the system. Several modules are further broken down into submodules for 
development and documentation purposes.  

To support modularity, the information flow between modules is centralized. The data linkages between 
modules are implemented through the NEMS Global Data Structure (GDS). The Global Data Structure 
(discussed in more detail in Chapter 3) is the set of data communicated between the NEMS modules or 
used in the NEMS output reports. Individual NEMS modules access the GDS data they need for input and 
update the GDS variables that store their module’s output. 
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Figure 1. Basic National Energy Modeling System (NEMS) structure and information flow 

 

 

Data source: U.S. Energy Information Administration 

The primary data flow among the modules are the delivered prices of energy and how much energy is 
consumed by product, region, and sector. The information flows among modules are not limited to 
prices and quantities, and they include other information such as economic activity, capital 
expenditures, and supply curves. 

Many NEMS modules simulate the economic decision-making involved in the sector of the energy 
system being modeled. To represent these decisions, NEMS is constructed with reasonably fine detail of 
energy product categories and the regional locations of energy production and use. This detail is 
necessary because the economics of allocating energy products is strongly influenced by the product 
category at issue and regional differences in costs and other factors.  

The Integration Module 
Key Tasks 
The integration code is the spine of NEMS. It calls most of the individual modules and manages the 
model’s underlying functions and operations—setup, job queue, calculations, and output production. 

The integration code manages operations during setup. 

• It provides a graphical user interface and a command line interface to the system. 
• It sets up the folders for a run.  
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• It compiles, using the meson build system, the Fortran code that is used in the run. 
• It preprocesses any data that is being loaded in from exterior systems. 
• It manages and loads shared configuration files. 

The integration code includes the job queue. 

• It dispatches jobs from the user, to the run queue server, and then to the worker machines. 
• It activates workers (which process NEMS jobs) and manages their operations. 
• It manages the RabbitMQ and celery server that dispatches the jobs. 
• It provides a monitor for the job queue, to review job status. 

The integration code manages calculations during the main NEMS loop. 

• It ingests data from disk, and loads it into memory. 
• It manages the flow of program calls. 
• It modifies data when the modifications are cross-cutting, or the calculations are performed in 

the integration code for some legacy reason. 
• It tests convergence, and determines when the mode should stop running. If directed, it applies 

a relaxation algorithm. 
• The integration code writes files and reports to disk where needed. 

The integration code includes the NEMS post processes. 

• The NEMS Report Writer produces all external NEMS reports. 
• The NEMS validator, a simple set of checks, evaluates whether results have errors preventing 

publication. 
• The cleanup code manages the cleanup (deletion of temporary files, compression, etc) of NEMS 

files after a NEMS run completes. 
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3. Global Data Structure 
The Global Data Structure defines the subset of NEMS variables used for communication between 
modules and for external reporting such as the Annual Energy Outlook Tables. The variables consist of 
variables shared among modules, such as prices, consumption, and macroeconomic information. The 
variables also include reporting variables, as well as model control parameters and assumptions. 

The variables in the Global Data Structure are defined and organized in blocks that designate groups of 
variables.  

The specific elements of the block structure are defined in the include files that contain declarations for 
variables. In addition, a data dictionary for the Global Data Structure includes definitions for each 
variable.  
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Table 1. Key Blocks in the NEMS global data structure 

Modules filling the 

common block 

Common block 

names Description 

Integrating, multiple 

contributors, or exogenous 

QBLK 

QMORE 

MPBLK 

PMORE 

MXQBLK 

MXPBLK 

QSBLK 

NCNTRL 

COGEN 

CONVFACT 

CONVERGE 

COALEMM 

 

HMMBLK 

CYCLEINFO 

CONTINEW 

NCHAR 

End-use sector quantities  

Additional end-use sector quantities 

End-use sector prices) 

Additional end-use sector prices 

Expected quantities for foresight 

Expected prices for foresight 

State Energy Data System historical data corresponding to QBLK 

Control variables 

Combined heat and power 

Thermal conversion factors 

Convergence variable data and reporting summary 

Variables exchanged between the Coal Market Module and the 

Electricity Market Module 

Hydrogen module variables (future use) 

Current cycle number and total cycles in overall run 

Information related to continuation of cycling 

Character variables such as scenario name or module names 

Emissions EMABLK 

EMEBLK 

EPMBANK 

REGCO2 

GHGREP 

EMISSION 

AMPBLK, ANGTDM, 

ACOALPRC, 

APMORE, AEUSPRC, 

APONROAD 

AB32 

RGGI 

CSAPR 

Price adjustments for carbon dioxide fees, if any 

Carbon dioxide emissions factors by fuel/sector 

Parameters for an emissions constraint banking option 

Regional carbon dioxide emissions by fuel and sector 

Greenhouse gas abatement costs and offsets 

Emissions and related results 

Copies of MPBLK, NGTDMOUT, COALPRC, PMORE, EUSPRC, and 

PONROAD with prices adjusted by any energy tax or emission 

allowance fees 

 

California Assembly Bill 32 cap and trade variables 

Regional Greenhouse Gas Initiative variables 

Cross-State Air Pollution Rule variables 

 EMOBLK Emissions 

 CALSHR California shares for estimating AB32 covered emissions 

 INDEPM Cement-related CO2 process emissions passed from IDM to EPM 

Macroeconomic MACOUT 

MCDETAIL 

Output variables 

Reporting variables 

International Energy INTOUT All International Energy Module global variables 

Residential Demand RESDREP 

RSCON 

RSEFF 

Reporting variables 

Energy consumption by end use 

Energy efficiency by end use 
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Table 1. Common Blocks in the NEMS global data structure (continued) 

Modules filling the 

common block 

Common block 

names Description 

Commercial Demand COMPARM 

COMMREP 

BLDGLRN 

Control parameters, assumptions 

Reporting variables 

Cumulative shipments of distributed generation technologies for 

learning curves 

Industrial Demand INDOUT 

INDREP 

INDREP2 

BIFURC 

Industrial variables for use in other modules 

Industry-level consumption reporting variables 

Industry-level combined-heat-and-power reporting variables 

Energy by fuel/region classified by covered and uncovered industry 

groups for emission cap and trade analysis 

Transportation Demand TRANREP All global transportation variables 

Electricity Market UEFPOUT 

EFPOUT 

UEFDOUT 

UDATOUT 

UECPOUT 

DSMTFEFP 

UETTOUT 

EUSPRC 

CAPEXP 

TCS45Q 

ULDSMOUT 

E111D 

Electricity pricing outputs 

Electricity pricing outputs 

Fuel-dispatch outputs 

Electricity central data outputs 

Capacity planning outputs 

Demand side management/electricity pricing 

Electricity trade outputs 

Electricity prices for end uses by sector 

Capital expenditures 

Variables for modeling U.S. tax code section 45Q credits 

DSM variables 

EMM/CMM interface 

Carbon Capture CCATSDAT Carbon capture, transport and sequestration variables. 

Renewable Fuels WRENEW All Renewable Fuel Module global variables 

Hydrocarbon Supply OGSMOUT All Hydrocarbon Supply Module global variables 

Natural Gas Market NGTDMOUT 

NGTDMREP 

NGRPT 

Output variables 

Reporting variables 

Supplementary reporting variables 

Liquid Fuels Market PMMOUT 

PMMRPT 

PMMFTAB 

QONROAD 

PONROAD 

LFMMOUT 

Output variables 

Output variables 

Reporting variables 

On-road distillate quantity, conversion factor 

On-road distillate price 

Output variables 

Coal Market COALOUT 

COALREP 

COALPRC 

USO2GRP 

Output variables 

Reporting variables 

Electric power sector coal prices at the coal demand region level 

Coal output by emission categories for Electricity Capacity Planning 

interface 
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Pyfiler 
NEMS2023 introduced PyFiler, which allows GDS variables to be shared between Python and Fortran 
programs in memory using NumPy’s F2py library. F2PY facilitates creating/building native Python C/API 
extension modules that make it possible to call Fortran from Python. This interface enables the fast, 
seamless transfer of data between the Python integration code and the legacy Fortran module code in 
NEMS. We significantly expanded PyFiler in NEMS2025, so it now serves as an access point for the NEMS 
GDS. In order to work with PyFiler, the NEMS Fortran code is now compiled as a library for Python rather 
than as a standalone executable.  

PyFiler is used to support most reads and writes out of NEMS. 
 

Energy market data representation 
The Energy Market Data define the energy quantity and price variables for NEMS. These variables are 
the principal values subject to convergence testing in the integrating algorithm. The Energy Market Data 
are part of the NEMS Global Data Structure and are stored in the following blocks: 

• QBLK Energy consumption quantities by fuel and sector 
• MPBLK Energy prices by fuel and sector, excluding any CO2 fees in effect 
• AMPBLK Energy prices by fuel and sector, including any carbon dioxide fees in effect 
• MXQBLK Expectations for energy consumption quantities 
• MXPBLK Expectations for energy prices 

 
The quantity and price structure does not attempt to represent all energy flows, but instead it focuses 
on the primary variables needed to design the NEMS equilibrating methodology. In addition, the Energy 
Market Data structure defines the fuel and sectoral energy classification for the NEMS energy balance . 

In general, the energy prices match the corresponding consumption quantities . The exceptions include: 

• Detailed refinery sector prices are omitted even though refinery fuel quantities are included 
because the projections don’t require refinery sector prices to be separate from the rest of the 
industrial sector. The industrial fuel prices are the delivered prices to industrial fuel consumers, 
including refineries. As a result, the industrial sector prices match the coverage of the 
corresponding industrial consumption quantities. 

• Prices for some industrial petroleum categories are combined in the industrial Other petroleum 
category to eliminate unnecessary detail. That is, the industrial Other petroleum price is defined 
as the average price of three consumption categories: still gas, petroleum coke, and other 
petroleum. The Other petroleum price is not needed by any NEMS module but is required for 
reporting purposes to determine the average price of all petroleum products. 

Delivered prices for renewable energy categories are left undefined because there are no meaningful 
market prices for them. For example, no delivered prices are associated with hydroelectric, geothermal, 
wind, solar thermal, and photovoltaic energy sources. In the case of biomass, supply curves for four 
different feedstocks (forestry residues, urban wood waste and mill residues, agricultural residues, and 
energy crops) are generated for the Liquid Fuels Market Module and the Electricity Market Module, and 
a composite average price is calculated. 

https://numpy.org/doc/stable/f2py/
https://docs.python.org/3/extending/extending.html#extending-python-with-c-or-c
https://docs.python.org/3/extending/extending.html#extending-python-with-c-or-c
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NEMS uses variable names for consumption quantities and prices, along with a two-character product 
code mnemonic for each product. Each array is a two-dimensional, floating-point array. The first 
dimension represents the nine census divisions as well as a tenth position that is blank and an eleventh 
position reserved for the national total. The second dimension represents 61 years from 1990 to 2050. 
Quantities are stored in trillions of British thermal units (Btu). Prices are stored in 1987 dollars per 
million Btu, as deflated by the chain-weighted price deflator for gross domestic product. 

A related part of the Energy Market Data structure is made up of the variables that hold energy market 
expectations. The Integrating Module maintains a separate set of arrays to store consumption and price 
expectations. The expectations arrays are updated according to the foresight options under 
consideration. The expectations arrays are defined like the standard energy market arrays, each with an 
additional leading character, X. Not all fuel price and demand quantity detail is represented in the 
expectation arrays. 

Restart file 
At the beginning of a run, the Integrating Module reads initial values for all data in the Global Data 
Structure from a user-specifiable version of a special file, called the Restart file. The Restart file contains 
a starting point for the case under consideration, consisting of results from a previous simulation. During 
the run, much of these data are updated and changed. For example, alternative values for key module 
parameters and input assumptions, read separately from the user interface file or other sources, 
override the values stored in the Restart file. At the end of the run, a new Restart file is created with all 
the data from the run. The file is available for future runs, as well as to link with reporting and database 
management routines. 

The restart file promotes modularity by supplying values for all shared variables, regardless of whether 
the module that creates them is active in the run. Prices, quantities demanded or supplied, and other 
variables normally generated by a module that is switched off for the current run are provided instead 
by the Restart file. 

NEMS2023 is in the midst of the transition between the legacy unformatted (.unf) data file and the npz 
data file that will be used in future NEMS versions.  

The global data are separated into groups of variables known as blocks. The NEMS modules may access 
data from, and write results to, the block variables once the data are loaded into memory.  

  

https://numpy.org/doc/stable/reference/generated/numpy.savez.html


July 2025 

U.S. Energy Information Administration   |   Integrating Module of the National Energy Modeling System 11 

4. Integrating Module Solution Methodology 
The Integrating Module contains the converge submodule, which implements the NEMS solution 
algorithm.  The algorithm relies upon consecutive execution of the NEMS component modules 
iteratively to achieve energy market equilibrium for each projection year. Using the NEMS Global Data 
Structure as its inputs, the converge submodule tests whether convergence has occurred, and it 
optionally adjusts the solution values to aid the convergence process.  

Within the converge submodule, there are two convergence tests for a cycle, and for an iteration. 

The NEMS iteration 
Introduction  
The iteration solution is the inner loop of NEMS, and where NEMS iterates each modul4 over each year 
repeatedly before going to the next.  Each module is checked for convergence before the next module 
runs, and then relaxation is applied, if appropriate. 

Figure 2: Simplified representation of the iteration loop 

 

The modules in NEMS represent the demand, supply, and conversion segments of the energy market as 
well as modules to provide economic, international market, and other feedbacks. In effect, these 
modules represent energy supply and demand curves. That is, the supply and conversion modules 
determine prices and sources of supply, given the quantity of fuel demanded. The demand and 
conversion models determine the fuel demands, given the prices of those fuels. The solution algorithm 
attempts to determine a vector of fuel prices and quantities so that supply and demand curves in all fuel 
markets equilibrate. That is, a solution occurs when energy demands and prices, along with the 
macroeconomic variables, reach stable, convergent values. 

The Iteration Solution algorithm 
To reach a solution for each iteration, the convergence submodule solves simultaneous equations 
implied by the supply, demand, and conversion modules. The approach applies the Gauss-Seidel 
algorithm, which solves a set of simultaneous equations. Gauss-Seidel is an iterative method of solving 
simultaneous linear equations by replacing the independent variables with their previous solved-for 
values. Although equations within NEMS can be non-linear, this method is expected to provide an 

Module 
1 

Module 2 Module 2 
Converged? 

For year A 

All models 
converged? 

If all converged, move to year A+1 

Module 1 
Converged? 
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equilibrium solution because the equations are either monotonically increasing (as are the supply 
curves) or monotonically decreasing (as are the demand curves). 

In effect, the approach groups the equations and variables into subsets. For NEMS, the subsets consist 
of predefined fuel supply, energy conversion, and sectoral demand modules. Each subset of equations is 
solved, keeping the other variables constant at their trial values and ignoring the effects of current 
variables on equations in other subsets. The process is repeated for each subset, updating the trial 
values for each variable from the previous solution. 

More formally, for a stylized NEMS, the nonlinear system of equations could be represented by 

xi = gi (x1, …, xi-1, xi+1, …, xn)   for   i = 1, ..., n,                                                 (1) 

having the market clearing or equilibrium solution vector 

x = (x1, ..., xn). 

The solution process assumes a set of initial values, denoted x0, where 

x0 = (x1
0, ..., xn

0). 

A trial solution for iteration k for a certain year is denoted by xk, where 

xk = (x1
k, ..., xn

k). 

Each gi(x) uses one or more of the elements of the trial solution vector xk, excluding its own solution, xi
k. 

A solution iteration k begins with the evaluation of g1 and continues solving each gi, ending with gn. The 
solution of gi in iteration k updates the solution estimate to 

x = (x1
k, x2

k, ..., xi-1
k, xi

k, xi+1
k-1, ..., xn

k-1)   . 

The updating process continues until an iteration-k trial solution is derived for all xi. 

After evaluating gi
k, the values of the solution variables are compared with the values from iteration k-1. 

A final solution, xk, has been achieved if, after all modules have been executed, the absolute values of 
the proportional changes in the xi remain smaller than a specified tolerance,ε : 

ε <   
)/2x + x(

x - x     
i

1 - k
i
k

i
1 - k

i
k

 

for i = 1, ..., n. Values of ε  can be chosen on a variable-specific basis. The typical values used are in the 
range of 1% for the census division variables, less for the national macroeconomic variables. In the 
convergence tests, the denominators use an average to avoid convergence difficulties if either the 
starting value or a trial solution value is equal to zero. 

After the convergence criteria have been met, another iteration is performed to test whether the 
solution is stable and to allow the modules to perform final processing for the projection year. As a 
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result, the final converged solution vector for the projection year is xk+1, where k is the first iteration for 
which the solution meets the convergence criterion. 

A procedure referred to as relaxation is used to control the equilibration process and aid in resolving 
some convergence problems. If the relaxation option is selected, changes in values of convergence 
variables between iterations are dampened by a user-specified factor. The selection of appropriate 
relaxation parameters may speed convergence and lead to a more stable and robust solution process. 
The relaxation assignment statement is of the form: 

)x - x( r + x = x  k
i

k
i

k
i

1-k
i

k
i

1−  

where rk
i = relaxation factor for a convergence variable i for iteration k. Note that the specification of 

relaxation factors is variable specific and iteration specific. The module can specify varying relaxation 
fractions, depending on the iteration number, as an option. This feature is used to allow greater 
dampening after the first few iterations. Convergence parameters, including the tolerances and 
relaxation fractions for each variable, are specified through the input file mncnvrg.txt. 

To handle cases where the procedure does not converge on a solution or does not achieve the specified 
tolerance, a limit on the number of iterations terminates the algorithm for the current projection year. 
In such cases, the model performs the additional iteration mentioned in the previous paragraph, reports 
the convergence status with a list of the variables failing to converge, and then proceeds to the next 
projection year. The final solution for the projection year is, therefore, the result one iteration beyond 
the non-converged trial solution. 

The NEMS cycle 
Introduction 
The cycle solution is the outer loop of NEMS, and allow NEMS to solve with perfect foresight structures. 
Each cycle involves the iterative execution of all of the projection years. 

 

  Cycle X 

Iteration Loop - Year 1 

For all years 

Cycle Convergence 
Check 

If converged, stop 
If not converge, run cycle X+1 

Iteration Loop - Year 2 

Iteration Loop - Year 3 
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Solution values for successive cycles are compared to determine if expected values (from the previous 
cycle) and realized values (from the current cycle) converge. A program performs the intercycle 
convergence checks and scores the degree of intercycle convergence using a qualitative metric 
(discussed more below). It is typical, then, to run NEMS in sets of 4 or more cycles to achieve intercycle 
convergence.  In addition, a relaxation procedure, similar to the single-year relaxation procedure, can be 
applied to speed up convergence between cycles. Parameters for testing convergence between cycles 
are separate from those for testing convergence between iterations. 

The cycle solution algorithm 
A qualitative metric for convergence is presented in a NEMS output report (NEMS report writer output 
Table 150) as an aid in evaluating the degree of convergence. The convergence metric, known as the 
Grade Point Average (GPA), scores the convergence tests on a four-point, academic-style grading scale. 
With this idea, a run's convergence status is revealed with a single number associated with a sense of 
quality: a 4.0 GPA is a straight A average, for example. A run with a convergence GPA of 2.0 (a C) is 
average, while a GPA of 1.0 (a D) is a poor grade. This heuristic grading scale is derived using a weighted 
average of the absolute value of percentage differences in convergence variables, aggregated across 
sectors and regions. The convergence GPA is calculated as follows: 

1) Compute deviations for convergence variables for each fuel, region, and sector in year. Let: 
• DEVf,r,s,y  =  Absolute value of deviation in a convergence variable: fuel f, region r, sector s, year y, 

where a deviation is one of the following: 

a. Quantity deviation: absolute value of (the current quantity minus the previous quantity) 

b. Price deviation: absolute value of the current expenditure (that is, price times quantity) 
minus the previous expenditure (the expenditures exclude any permit price adders) 

c. Emission allowance price deviation: absolute value of the current allowance price minus 
the previous allowance price. 

PREVf,r,s,y  =  Previous value for a convergence variable: fuel f, region r, sector s, year y 

2) Group the convergence variables into five categories, c: 
a. End-use sector energy consumption quantities 
b. Electric power sector energy consumption quantities 
c. End-use sector energy prices 
d. Electric power sector energy prices 
e. Environmental permits/allowance prices: carbon dioxide, sulfur dioxide, and mercury 

 

3) Aggregate the deviations (DEV) across regions, fuels, and sectors within each of the five 
categories, c, and express the deviations as percentage of the corresponding previous values 
(PREV). Let ACc,y = the aggregated change (or deviation) for category c and year y, expressed as a 
percentage. That is, 
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where the sums are over all fuels f, regions r, and sectors s that belong in category c. 

4) Compute a composite score by averaging the aggregated changes (AC) of the five categories, 
using the following weights (the basis for the values is described further below). 

Table 2: Convergence variable weights by category 

 

 

5) Scale or grade the composite score into a grade point average (GPA) by interpolating the score 
from the following table: 

Table 3: Composite score to GPA 

Score (percentage basis) Grade on four-point scale Letter grade 
0.5 or less 4.0 A 

2.0 3.0 B 

5.0 2.0 C 

10.0 1.0 D 

15.0 or more 0.0001 F 

 
This process is also used to calculate the metric, based on national-level data. 

The weights and the grading scale tend to magnify the importance of common convergence problems. 
The carbon dioxide allowance price has been weighted as zero (so, not entering into the convergence 
decision) because the sectoral prices include the carbon dioxide allowance price; so, any movement 
from cycle to cycle will be reflected in the end-use prices. This allowance price also has a significant 
effect on capacity expansion decisions made in the electric power sector and macroeconomic feedbacks, 
so stability in this price is essential for inter-cycle convergence. Fuel demands and prices in the electric 
power sector are also given a relatively strong weight in the scoring. Flexibility in electric power sector 
fuel demands, the use of linear programs for plant dispatch and capacity build decisions, and complex 

Category Weight 

End-use sector energy consumption quantities 24.5 

Electric power sector energy consumption quantities 24.5 

End-use sector energy prices 24.5 

Electric power sector energy price 24.5 

Environmental allowance fees  

     Carbon dioxide (if applicable) 0 

     Sulfur dioxide 1 

     Mercury (if applicable) 1 
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interactions with the coal supply module with respect to environmental constraints all tend to foster 
convergence difficulties in this sector. The capacity build decisions are influenced by fuel price 
expectations and any energy-related taxes or emission allowance fees. These capacity choices, along 
with the decisions in the fuel dispatch submodule, help determine electric power sector fuel 
consumption and can become a primary source of inter-cycle convergence problems. 

The NEMS cycle runs continue for a user-specified number of cycles or until the inter-cycle convergence 
objective has been met. The objective is based on the average of the three lowest yearly GPAs. If this 
metric is lower than the user-specified minimum, the cycling continues. Otherwise, the cycling stops. 
Additional user-specified options can be set to perform all of the requested cycles regardless of 
convergence or to perform at least a certain number of cycles. 

Parallel NEMS 
Instead of running all the NEMS models sequentially, NEMS can be run in two parallel partitions.  
Modules are grouped together, reducing the number of parallel processes, by using a combination of 
the Jacobi and Gauss-Seidel methods. The relative lack of connectivity between the electric power 
sector and the refining industry allows for the following grouping of related modules: 
Partition 1:  

• Liquid Fuels Market Module  
• International Energy Module  
• Hydrocarbon Supply Module  
• Natural Gas Market Module  
• Macroeconomic Activity Module  
• Residential Demand Module  
• Commercial Demand Module  
• Transportation Demand Module  
• Industrial Demand Module 
• Carbon Capture, Transportation and Sequestration Module 

Partition 2:  
• Electricity Market Module  
• Coal Market Module  
• Renewable Energy Module  
• Residential Demand Module 
• Commercial Demand Module 
• Hydrogen Market Module 

After these two processes complete, the results are merged together, and another cycle is run. 
Foresight approach 
Several modules simulate planning decisions to acquire additional capacity that will be required in 
future years. These include the Electricity Capacity Expansion submodule, the pipeline capacity decisions 
for natural gas in the Natural Gas Market Module, and the refinery capacity decisions in the Liquid Fuels 
Market Module. 

To simulate such decisions, information on future demands and prices must be assumed. Although each 
module solves one projection year at a time, their simulations of planning activities involve an 
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extrapolation of energy market conditions. Those modules simulating new capacity construction 
decisions apply an assumption about foresight in their expectations of future energy prices and 
quantities. In NEMS, a set of price and quantity variables is defined to store expectations. For ŷ > y, 

XPf,s,r,ŷ = Expected prices of energy products beyond the current projection year 

XQf,s,r,ŷ = Expected consumption of energy products beyond the current projection year 

The foresight mode determines how the expectation variables are calculated. Under myopic foresight, 
the expected values are simply held constant at their current trial values. For adaptive expectations, the 
Integrating Module calculates minor extrapolations of present-year conditions. Foresight is, therefore, 
always calculated by looking forward to the consequences of conditions in the present iteration year, 
not by attempting to reach some end state determined a priori. The treatment of expectations is 
discussed in greater detail under Expected Value Foresight. 

In terms of the energy market interactions, the sectoral demand models estimate current-year energy 
demands Qf,s,r,y and energy-related capital stock additions as functions of current and expected energy 
prices. The supply modules estimate end-use prices Pf,s,r,y and capacity additions as functions of current 
and expected energy demands. The conversion modules (electricity and refinery) are viewed primarily as 
supply components, but they represent both consumers of primary energy and suppliers of energy 
products. 

For some model components, a rational expectations, or perfect foresight approach, is used implicitly or 
explicitly. Where these approaches are used, expectations for future years are defined by the realized 
solution values for these years in a previous run. This approach is used, for example, for the energy 
demand expectations used for capacity planning of energy infrastructure (pipelines and refineries). The 
other area is for market-based approaches to limit carbon dioxide emissions, where knowledge of future 
emission taxes or permit prices is assumed to be known in advance. 

Discontinuities and convergence problems in NEMS 
The characterization of NEMS as a set of supply and demand curves provides a useful framework for 
discussing convergence properties. Although supply and demand curves are generally treated as 
continuous functions, various NEMS modules contain linear programs or their analogues that result in 
discontinuities. Such discontinuities cause significant problems in the solution process. 

Several modules incorporate algorithms that yield these discontinuous results. For example, the 
International Energy module outputs a set of crude oil supply curves and petroleum product import 
supply curves that the Liquid Fuels Market Module translates to step curves for input to a linear 
program, representing refinery operations and solving for fuel prices and refinery fuel demands to 
minimize costs. This type of approach yields discontinuous petroleum pricing and fuel demands. The 
Electricity Fuel Dispatch submodule is also implemented as a linear program and contains discontinuities 
as a result of the nature of the merit-order plant dispatch. The coal distribution submodule is also a 
linear program. So, each of these modules introduces discontinuities into the NEMS solution process. 
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You can see the effect that having discontinuities has on the solution process by using step-function 
demand curves with continuous supply curves. The same conclusions may be drawn as long as either or 
both of the supply and demand curves are step functions (Figure 3 and Figure 4).  

Figure 3. The supply curve cuts across the horizontal portion of the demand curve 

  
 Data source: U.S. Energy Information Administration 
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Figure 4. The supply curve cuts across the vertical portion of the demand curve 

 
 Data source: U.S. Energy Information Administration  
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The supply curve determines the price used in the demand curves, and the demand curve then provides 
a quantity (Figure 3 and Figure 4). The solution path resulting from applying the Gauss-Seidel algorithm 
is delineated by arrows: a horizontal arrow shows the quantity response from the demand curve, and a 
vertical arrow shows the price response from the supply curve. 

When the supply curve intersects the horizontal portion of the demand curve, an oscillation in the 
solution between quantities Q0 and Q1 and prices P0 and P1 occurs (Figure 3). When the intersection of 
the supply and demand curves is on the vertical portion of the demand curve, you can achieve 
equilibrium with the Gauss-Seidel algorithm using relaxation, even if the unrelaxed algorithm yields an 
oscillation in the solution (Figure 4). Figure 3 has no relaxation fraction, r, for which convergence will 
occur. However, a value for r can be found so that the oscillation occurs in no more than two steps. 
Provided the steps are small enough to fall within the convergence tolerance, relaxation can prevent 
oscillations between steps from being a convergence problem. 

Expected value foresight 
Energy projections involve assessing changes in energy-using capital stocks and choices among energy 
supply alternatives. This analysis requires simulation of such decisions as the selection of durable 
appliances, the planning of electricity generating capacity additions, and the planning of infrastructure 
expansion, such as natural gas pipeline additions or E85 fueling stations. The economic evaluation of 
these decisions requires energy demand and price expectations for lifecycle cost and capacity addition 
calculations. An objective in this aspect of the modeling is to simulate such decision-making in the 
aggregate for predictive and analytical purposes by representing how players in the energy marketplace 
make long-term planning decisions, rather than by deriving the theoretically optimal long-term 
expansion path. As a result, formulating foresight assumptions is open to alternative approaches based 
on observed industry practices. 

NEMS could, in principle, approach the issue of foresight by prescribing a desirable end state for the 
energy marketplace and calculate backwards in time to prescribe how best to arrive there. However, as 
a simulation, NEMS calculates foresight as an extrapolation of the present state of energy markets, 
subject to announced policies. Rather than determining how to arrive at the planned future, NEMS can 
evaluate whether present plans could result in the desired end state. 

In reality, different methodologies for treating foresight are used in different sectors and supply areas, 
and alternative approaches to representing expectations may yield significantly different planning 
decisions. As a result, treatment of foresight becomes an important modeling decision. 

There is no one best approach to treating foresight. The National Research Council recommended 
developing several options for modeling foresight.3 As a result, an objective in building NEMS was to 
include the flexibility to support different approaches to foresight to allow experimentation and future 
modeling changes. In addition, the option to treat foresight consistently throughout the modeling 
system is desirable. 

 
3 National Research Council, The National Energy Modeling System, Washington DC: National Academy Press, 1992. 
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The purpose of dealing with foresight and expectations in the Integrating Module is to be able to 
represent different types of foresight consistently. At the same time, the Integrating Module allows 
individual modules to handle foresight independently if industry practice requires different approaches. 
To achieve this flexibility, we built each NEMS module to examine results of a centralized on-off switch 
to determine whether the module should use centrally generated expectations. When this central-
control switch is turned on, the module uses these expectations; otherwise, the module uses self-
generated expectations. 

The following three methods generate expectations: 

• With the myopic expectations option, expected prices for any projection period are assumed to 
be constant in real-dollar terms relative to the current period in which decisions are being made. 
This case generally applies to expected prices and not expected quantities because an 
assumption of constant energy quantity demanded is rarely assumed. 

• The adaptive expectations (or extrapolative expectations) approach assumes planners 
extrapolate recent trends when making long-term decisions. For the system-generated 
expectations, this assumption about foresight is implemented by extrapolating the current 
projection year prices and quantities using the average annual growth during the previous few 
projection years. For example, the expectations generated representing 2021 for use in model 
year 2020 would be determined from the growth during the past few model years (for example, 
2018 to 2020), and the number of years are a model option. For expectations generated within 
individual modules, we can use more elaborate behavioral models, or adaptive expectations. 

• The perfect foresight approach is based on the theory of rational expectations. This approach 
generates an internally consistent scenario where forming expectations is consistent with the 
projections realized in the model. In practice, perfect foresight describes the configuration and 
solution algorithm that achieves the convergence of expected values and realized solution 
values. A variation in the integrating algorithm was required to implement perfect foresight. 
This option involves iterative cycling of NEMS runs, in which each cycle is a complete pass during 
the entire projection period. The objective is to have expected values and realized values 
converge between cycles, a state referred to as inter-cycle convergence, in addition to having 
convergence within the cycle for individual projection years, or intra-cycle convergence. As a 
result, it has become necessary to evaluate NEMS runs with respect to both inter-cycle 
convergence and intra-cycle convergence. 

 

The Electricity Market Module depends heavily on expectations techniques and requires fuel price 
expectations for natural gas, oil, and coal for its capacity planning submodule. The capacity planning 
submodule also requires expectations for electricity demand. At present, some aspects of the oil and 
natural gas price expectations for the Electricity Market Module are still implemented in the Integrating 
Module: 

• Oil product price expectations are calculated from an external projection of world oil prices, 
assuming a constant markup between the regional product price and the world oil price. In each 
projection year, the assumed markup is derived from the previous projection year: 

Pc+y = (Pc - Wc) + Wc+y   for y=1,...,30 years (planning horizon for power plants) 
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where Pc and Wc are the product price and the exogenous world oil price from the previous 

projection year, and Pc+y and Wc+y are the prices in the expectation years. 

• The wellhead price expectations through 2050 are generated by a perfect foresight method (by 
default). The wellhead price expectations are taken as a weighted average of the previous 
cycle’s realized prices and its expected prices. The weight is specified by the user. Delivered 
natural gas prices are derived from expected wellhead prices assuming a constant markup 
between the delivered prices and the wellhead price. 

The wellhead price expectations for the post-2050 period are based on a nonlinear function that relates 
the expected wellhead gas price to cumulative domestic natural gas production. Increases in cumulative 
production would be associated with the depletion of domestic resources and, in turn, general 
expectations of increases in price in the long run. The following equation tries to capture this general 
idea: 

Py = Ay * Qy
e + By, 

where P is the wellhead price, Q is the cumulative production from 1991 to future year y in the planning 
horizon, e is a user-specified parameter, and Ay and By are determined for each projection year, as 
explained below. 

The approach was developed to have the following properties: 

• Prices should be upward sloping as a function of cumulative natural gas production because 
prices could be expected to rise as existing resources are depleted. 

• The rate of change in wellhead prices is a function of the economical resources that remain to 
be discovered and produced. The value of the parameter e determines the shape of function. 

 

The approach assumes that, at some point in the future, a given target price, PF, results when 
cumulative natural gas production reaches a given level, QF. So, the target value PF is an assumed input 
to the approach, while QF is assigned as the resource base in the Hydrocarbon Supply Module for a 
specified year (2018 in AEO2022). In the Annual Energy Outlook 2022, the assumed value of PF was 
$9.00 per thousand cubic feet (in real 1998 dollars), corresponding to a cumulative production (QF) of 
2,418 trillion cubic feet. The annual production is assumed to grow at the rate observed during the 
previous three years within the projection. The parameters of the price equation, Ay and By, are 
determined for each projection year such that the price equation will intersect the future target point. 
That is, 

let Dy-1  = previous year’s natural gas production 
let PS y-1 = previous year’s wellhead gas price 
let QS y-1 = previous year’s cumulative natural gas production since 1991 

𝐴𝐴𝑦𝑦 = (𝑃𝑃𝑃𝑃– 𝑃𝑃𝑃𝑃𝑦𝑦−1) / (𝑄𝑄𝑃𝑃𝑒𝑒 – 𝑄𝑄𝑃𝑃𝑦𝑦−1𝑒𝑒 ) 
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𝐵𝐵𝑦𝑦 = 𝑃𝑃𝑃𝑃 – 𝐴𝐴𝑦𝑦 ∗ 𝑄𝑄𝑃𝑃𝑒𝑒 

The following assignment statement extrapolates cumulative production for future years, y = 1, ... , 30 
years (with 30 years being the maximum planning horizon for power plants): 

Qy = Qy-1 + D y-1 

This generates the expected wellhead prices: 

𝑃𝑃𝑦𝑦 = 𝐴𝐴𝑦𝑦 ∗ 𝑄𝑄𝑦𝑦𝑒𝑒 + 𝐵𝐵𝑦𝑦  

= 𝑃𝑃𝑃𝑃 + �𝑄𝑄𝑦𝑦𝑒𝑒 − 𝑄𝑄𝑃𝑃𝑒𝑒� ∗ �
𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑦𝑦−1
𝑄𝑄𝑃𝑃𝑒𝑒 − 𝑄𝑄𝑃𝑃𝑦𝑦−1𝑒𝑒 �. 
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5. Managing NEMS runs 
System Design 
RabbitMQ is an open-source message passing broker running the Advanced Message Queuing Protocol 
(AMQP). Celery is a Python-based system for setting up and running task queues that can use RabbitMQ 
as the message broker. 

The NEMS job queue has the following features: 

• A Celery client, called by the user, which handles the initial model setup for the NEMS run. After 
setup, the Celery client sends a message through the broker to the worker via the Celery task 
command. 

• Celery workers on each of the three dedicated servers, to perform the actual execution of the 
NEMS runs. Celery workers act as consumers of messages from the RabbitMQ Server. 

• A run monitor accessible by users.  This monitor shows the status of each run, including user, 
scenario name, datekey, part (if applicable), host, cycle number, year, iteration number, status, 
and output directory. The monitor maintains data for a configurable time – by default, it outputs 
files with two-day and one-week retention periods – and is searchable and sortable. 

We have stood up a RabbitMQ broker with queues for processing NEMS run job requests. The queue 
structure is discussed in the following section. We have also developed Python worker and client scripts 
to wrap around the current NEMS scripts and initiate a NEMS run, along with a run monitor script to 
generate files which users can read to track run progress. 

The key elements of the resulting system are thus: 

• Run Monitor Front End: HTML files which can be opened in any web browser to display a 
searchable, sortable list of ongoing and completed runs. 

• Run Monitor Back End: A continuously-running Python script which regularly regenerates the 
aforementioned HTML files to remain up-to-date with run status. 

• RabbitMQ Server:  A broker service running the AMQP protocol. The Celery clients submit 
messages to this server to request execution of a NEMS run. Messages are made available to the 
connected Celery workers on the dedicated NEMS machines to execute the run, distributed by 
workload and availability. 

• Celery Workers: Celery workers are to be deployed on the three dedicated servers, where 
actual execution of NEMS runs will occur. Celery workers act as consumers of messages from 
the RabbitMQ server. 

Queue Structure 
NEMs may be executed in either of two ways, either as a single executable or loosely coupled parallel 
structure. In the former incarnation (jognems), each module is called in sequence until the run is 
completed. In the latter, only a subset of modules is executed in each of two partitions (P1 and P2). The 
output of P1 and P2 is then merged into a third partition (P3). 
 
When designing the structure of queues through which tasks would flow, it was desired that each part 
of a parallel NEMS (parnems) run should be executed as its own task. Accordingly, and with the aim of 

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://www.rabbitmq.com/
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maintaining similarity in execution between parnems and jognems runs, we devised the following 
arrangement (using a parnems run as an example): 
 
 

 

Each machine that executes NEMS runs operates two Celery workers to receive tasks. One worker 
listens to a queue named “shared” and used by all workers, and worker listens to the queue named for 
the COMPUTERNAME environment variable of its host machine. All runs will initially be sent to the 
“shared” queue, from which they can be fetched by any worker based on availability. 

Once a worker has received the overall task for a run, it is necessary for all tasks within that run to be 
managed by that same worker, so that there is no need to repeatedly transfer run files among 
machines. As such, in the case of a parnems run, the worker will send tasks for parts 1 and 2 of the run 
(P1 and P2) to the COMPUTERNAME queue, on which only that worker is listening. This ensures that the 
same worker will receive and execute the P1 and P2 tasks. Once these are completed, a part 3 (P3) task 
will be sent in the same way. In the case of a jognems run, instead only a single task will be sent to the 
COMPUTERNAME queue for the entire cycle. In either case, the process will then be repeated as many 
times as required by the parameters of the run. 
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In addition to its utility for run-monitoring and similar purposes, this design can easily be adjusted to 
allow subtasks to be shared across some or all of the relevant machines, in case a future system will 
have runs executed on shared drives such that file transfer overhead will no longer be a concern. If a 
worker’s setup is adjusted such that it is also listening to the COMPUTERNAME queue(s) of one or more 
other machines, it will be permitted to execute any subtask sent by those computers. Alternatively, with 
appropriate code changes, it would also be possible to bring all workers exclusively onto the shared 
queue, allowing any one machine to receive tasks sent by any other. These possible changes will be 
discussed in more detail in the following section. 

Cycle.py 
The script cycle.py executes with a celery message to run nems_flow on a workers . The Python script 
run_task.py is used to send the message to the COMPUTERNAME queue.  

Tasks.py 
The Python program tasks.py first establishes a connection with the RabbitMQ server. It then defines 
the Celery task exec_at_loc, which is used by the worker to execute cycle.sh and nems.exe. This task is a 
function which takes three parameters: userid (User ID), loc (location), and comm (command). The user 
ID is only passed to facilitate tracking by the run monitor and is not actually used by the task itself. 

First, exec_at_loc checks if the location provided is in D:/workdir. If it is, then the script simply executes 
the command provided at that location. The task then waits for this subprocess to complete and returns 
a code reporting its completion status. 

If the location provided is not in D:/workdir, this indicates the selected output directory for the NEMS 
run is the one that was created in the initial setup by nems_setup.py. Accordingly, scenario and datekey 
are determined using the final elements of this path and all files are copied from it into 
D:/workdir/[scenario]/[datekey]. This folder is created if it did not exist or replaced if it did (though the 
latter should never be necessary, as all scenario-datekey pairs should be unique). The command 
provided is then executed at this new location, as above. Afterwards, cleanup is performed: the 
scedes.all file, all input folders, all .dll files, and all .exe files are removed from the new location if 
present, though if ftab.exe exists it is first copied to ftab.xxx. The contents of the cleaned-up folder are 
then copied back to the originally-provided location, overwriting where necessary, and then deleted 
from D:/workdir once the copying is complete. Finally, as before, the task returns the return code of the 
subprocess responsible for command execution. 

Worker_start.bat 
The worker_start.bat batch script launches a Celery worker. It first ensures that the correct Python 
environment is active, so that the necessary packages to run the worker will be available, and then 
launches a worker using tasks.py. It is also set to use a pool of threads to execute a maximum number of 
concurrent tasks; once that limit is reached, no new tasks will be accepted until a slot is freed up by a 
task completing. 

run_task.py 
The Python program run_task.py provides a single function, run_task. This function takes three 
arguments: loc (location), comm (command), and q (queue). It establishes a Celery connection to a 
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RabbitMQ server – currently configured to be on ASHTSTNEMVIR002 with username “user” and 
password “test”. It then sends a message to the specified queue to run exec_at_loc, from tasks.py, using 
the provided location and command. It also gets the value of the USERNAME environment variable and 
passes this to exec_at_loc; again, this is for tracking purposes only, as exec_at_loc does not actually use 
user ID for any direct purpose. The results of this task are then returned. 

If run_task.py is launched as a Python script directly, then it will execute run_task using the command 
line arguments provided to it as input. In this case, it will complete with a return code equal to the 
results of this function. Since the run_task returns the results of the task, and the exec_at_loc returns 
the return code of the subprocess used to execute its provided command, this will propagate any errors 
in command execution back to the place where run_task.py was called.  

Run Monitor 
The run monitor is composed of a pair of HTML files – one for records up to two days old, one for those 
up to one week old – which are generated and regularly updated by a Python script kept continuously 
running to monitor for changes. This script takes its input from two primary sources. For tracking when 
runs begin or end, it gets copies of all messages in all queues from the RabbitMQ server, using its 
“firehose” feature. For tracking the status of these runs while they are in progress, it reads the 
nems_run_status_log.txt file generated by nems.exe, each line of which specifies the module, cycle, 
year, and iteration, with the final one being the most current. 

This is achieved through the use of three scripts: eventmonitor_start.bat, nemseventmonitor.py, and 
sj.py. The program eventmonitor_start.bat launches nemseventmonitor.py, which processes the 
aforementioned input into a dataframe. The dataframe is passed to sj.py for conversion into HTML 
output. Taken all together, the resulting process flow is shown in the figure below: 
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Much like worker_start.bat, eventmonitor_start.bat is a simple script which activates the correct Python 
environment and then runs nemseventmonitor.py. It provides a single argument to 
nemseventmonitor.py: the desired location for the output HTML files.  

The Python program nemseventmonitor.py was adapted from the World Energy Projection System 
(WEPS) event monitor. It consists of two threads: one watches for incoming messages from the firehose, 
while the other periodically checks for updates to the status log file of every currently-tracked run in 
progress. Both threads update a shared dataframe and send it to sj.py for conversion to HTML output. 
This output is written to a location specified by the first command line argument given when launching 
the script. 

To track incoming messages, a Pika connection is established to the RabbitMQ server. A queue “trace” is 
established to receive messages from the exchange “amq.rabbitmq.trace”, which is where the firehose 
publishes its message copies. A processing function is then set to execute whenever a message is 
received in the queue. This function logs the received message to a file events_log.txt in the output 
directory, then updates the dataframe based on its contents. Messages are sorted by their header info 
into five groups: no update needed, task added to queue, task started, task succeeded, and task failed. 

For tasks added to the queue, the message body is parsed to determine user ID, scenario, datekey, part 
(if applicable), and run folder. Additionally, a check is performed to determine if this task is a subtask of 
an existing run. If it is, then the user ID is updated to that of the parent task, as subtasks will initially 
have the user ID of the user who launched the Celery worker instead of the user who launched the run. 
If the task is a subtask, a flag will also be set to hide its parent task in the run monitor to avoid displaying 
redundant rows. In either case, the dataframe is updated with a row containing the extracted values, a 
host name of “Pending”, a status of “In queue”, and a timestamp of the current time. If a row already 
exists with the same run folder, that row is overwritten; otherwise, a new row is added. The dataframe 
is then sent to be exported in HTML form. 

For tasks started, the process is very similar. The host machine name is also obtained from the message 
body, as is the message ID. The latter is not displayed and is used only for internal tracking of which 
messages are associated with the same task. The Status attribute is written as “Running” rather than “In 
queue”. Otherwise, all steps are as described for tasks added to queue. 

For successful and failed tasks, only the host name and message ID are obtained from the message 
body. A check is performed to determine if this task is a parent to any subtasks – if so, the flag to hide it 
in the run monitor is unset, and instead all of its subtasks are flagged to be hidden. Then the message ID 
is used to find a matching row, which is updated with the extracted values and a timestamp of the 
current time, along with the status of “Finished” (for successful tasks) or “Failed” (for failed tasks). A row 
should always be found, since a task cannot succeed or fail without first being started; however, if none 
is, a new one will be generated with “None” in all remaining columns. Finally, a manual call is made to 
the function which checks for status log updates – only currently-running tasks are checked for updates, 
so this ensures that all values are correct before they become locked in. The dataframe is then sent to 
be exported in HTML form. 

https://pika.readthedocs.io/en/stable/modules/connection.html
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The thread responsible for tracking status log files runs a function to check for updates once per minute; 
this time can be increased or decreased by adjusting the value passed to time.sleep. For each row in the 
dataframe with status “Running”, the function uses the host name and run folder recorded for that row 
to determine where the task in question is running, then looks for a status log file named 
“nems_run_status_log.txt” in that directory. If this file is found, its last line is extracted and parsed for 
cycle, year, and iteration, which are then used to update the relevant row of the dataframe. Once all 
rows have been checked, the dataframe is sent to be exported in HTML form. 

When the dataframe is sent for export, it is first cleared of all messages older than the past week. A 
more recent copy is then made containing only data from the past two days, though this does not affect 
the overall data stored. The former behavior can be adjusted by editing the function 
remove_old_messages, while the latter can be adjusted by passing it a different argument when 
creating the copy. Copies are then made of both dataframes without information which does not need 
to be displayed – rows flagged for hiding, the flag which determines this, message ID, timestamp, and 
parent task. These copies are sent to sj.py for conversion into HTML files in the output folder. 

sj.py contains a function, generate_html_from_dataframe, which takes a dataframe and generates an 
HTML file based on its contents. The file displays the same columns as are contained in the dataframe. 
Clicking on the header of any of these columns sorts the display by that column, and there is a search 
box for the first column, which will be user ID unless any changes are made. Reloading the page will 
clear all sorting and filtering.  

Operation 
First, an appropriately-configured RabbitMQ server is required. In order to establish a new server, the 
following steps are necessary: 

1. Install Erlang (if not already present) and RabbitMQ on the server-to-be, following the 
installation instructions from the RabbitMQ website. Note in particular that, if using a non-
administrative account, it will be necessary to copy the file .erlang.cookie from 
system32/config/systemprofile to the user’s home path. 

2. Ensure that the RabbitMQ Windows service is running. It should launch automatically upon 
initial installation. 

3. Ensure that access to port 5672 is permitted through the server’s firewall. 
4. Using a command prompt, navigate to the sbin folder in RabbitMQ’s install location and set up a 

new user using the following command (sans double quotes): “rabbitmqctl.bat add_user ‘test’ 
‘password’”. This will create a new user profile with username “test” and password “password” 
on the server – if a different username or password is desired, simply replace the relevant field 
in the command, while maintaining its surrounding quotation marks and escaping any necessary 
characters. 

5. To enable the event monitor to pick up events from the server, also activate RabbitMQ’s 
“firehose” feature by running the following command (again, sans double quotes): 
“rabbitmqctl.bat trace_on”. Note that this command in particular must be run again every time 
the server is restarted. 

To launch a Celery worker, ensure that tasks.py and worker_start.bat are located in the same directory, 
then run worker_start.bat from a command prompt. The worker can then be stopped by the ctrl-c 
keyboard shortcut or by closing its command prompt window. While running, unless this behavior has 

https://www.erlang.org/
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been modified, it will log all events to workerlog.txt including its startup messages, any tasks received or 
completed, and any errors encountered. Unless making modifications such as the proposal above 
regarding separating concurrency limits by queue, exactly one such worker should be launched on each 
machine which will be hosting NEMS runs, from a user account with all necessary permissions to 
complete those runs. 

To launch a NEMS run through Celery, ensure that the program run_task.py is present in the 
scripts/setup/src/cel folder, or if it is to be relocated ensure that nems_setup.py has its import and 
shutil.copy statements modified accordingly. Additionally, ensure that the variable NEMSPYENV is set to 
an environment with the Celery package and all dependencies installed – this should be done both for 
the environment variable through a shell command and in the scedes file to be used. These 
prerequisites being met, simply execute runnems.bat from a command line as usual and make all 
appropriate selections. A command prompt window will be launched, per previous behavior. It is not 
recommended to close this command prompt window until the run has been completed. 

To operate the run monitor, it is necessary to leave a single instance of nemseventmonitor.py running 
continuously, which will keep the output HTML file up to date as it receives new events from the 
RabbitMQ server. This instance can be located on any computer and account with access and 
permissions to modify files in the desired output directory, which is set to Z:/onl_tst2/sj currently. To 
launch it, execute eventmonitor_start.bat in a command prompt window. 

It is recommended that the run monitor be launched immediately after executing the “rabbitmqctl.bat 
trace_on” command on the RabbitMQ server and before any runs are launched; any runs which started 
before launching the monitor may not be properly tracked and may generate junk output. If the run 
monitor is launched while previous HTML output files exist in the target directory, it will overwrite them, 
so be sure to back up any previous monitor output which needs preservation before launching a new 
instance. This behavior can also be used to clean up any junk output generated as a result of runs 
executed prior to the run monitor’s launch; however, any runs which were started before launching the 
run monitor, and which are still running, may generate new junk output upon completion of subtasks 
and/or of the run itself. 

The output of the run monitor will be two HTML files, one which discards old records after two days and 
one which discards them after a week. These files can be read using any web browser, and refreshing 
the page will update it for any changes have occurred since it was first opened. The run monitor checks 
for log file updates at an interval of once per minute, as well as automatically updating whenever a 
message is received from the RabbitMQ server indicating that a new task has started or has been 
completed. Clicking on column headers permits sorting in ascending or descending order by the value of 
that column, though any sorting will not be preserved through a page update.  
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The NEMS Report Writer 
The NEMS Report Writer, debuted in AEO2025, produces outputs from NEMS.  It gathers data from the 
restart file (the NEMS common database) to generate various outputs, including Excel files for 
publication, Excel files for analysis, CSV files for data visualization, and other reports to support 
debugging and analysis.  It receives data from the restart file (a binary database containing tables stored 
in npz format) and a set of standalone input files.  
It is independently callable outside of a larger NEMS run, allowing for testing and modifications to tables 
without the need to rerun the entire NEMS system. 
 
NEMS Report Writer Structure 
The NEMS Report Writer is structured modularly. It sequentially runs a preprocessor that prepares the 
data, a base program that converts that data into tables, a final table program that formats those tables, 
and then has a series of write routines to convert the formatted tables into publication tables. 

Figure 7: Report Writer system diagram 

 
 
Running the Report Writer 
The Report Writer is designed to run independently or to be callable inside of a large NEMS run. It 
requires essential information specific to the NEMS run, which is not available in the restart database or 
input files (such as the restart file location, Study_ID, etc.) for generating NEMS tables. This information 
must be provided to NEMS_RW at the time of initiation.  

Two methods have been designed to convey the required information to the reporting platform:  

1. Updating the User object by modifying the User object in RW_reporter_main.py (see the top 
right). 

2. Updating the user.csv File by modifying the user.csv file located in the package's main folder 
(see the bottom right). This file should be used as an augment when running the program. 
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Data in the user.csv file will overwrite the User object if the Report Writer is kicked off with an argument 
like the following: Python RW_reporter_main.py user.csv. 

Config.ini should be adjusted to set operational parameters, and tabreq.txt should be adjusted to 
indicate tables to print. 

Preprocessor Program 
The preprocessor processor program processes the inputs; both configuration files that tell the report 
writer what to do, as well as data files that are used to populate the final tables.  These inputs include 
the following: 

Table 4: Preprocessor input files 

Filename Brief description 

user.csv Configuration information that is used when the report writer is used outside the 

larger NEMS framework 

tabreq.txt Indicates which tables are printed 

table_var_def.toml Holds lists of required variables by table 

table_mapping.xlsx Holds mapping from layin tables to AEO published tables 

table_input.csv   Specifies table ID, region name, and Table Program name 

RW_coefficients.xls Holds conversion ratios and constants 

regions.csv Holds regional information 

layin.csv Specifies the key elements of each row for each table 

citations.txt Citations and corresponding values used in publication 

config.ini This file consists of two sections: Debugging and Settings 

    
Base Program and Table Programs 
There are 150 table programs, one corresponding to each data table modelers use to publish and/or 
review specific data coming out from the model. For example, Table 1 titled “Total Energy Supply, 
Disposition, and Price Summary” has rows from various NEMS modules giving information about 
different fuels such as Natural Gas, Coal, Nuclear, Other Renewable Energy to give the reader an insight 
as to the data for the selected range of dates. Other tables break down individual module sections into 
smaller regional based data or fine details about all of the output from a module. To do this, NEMS 
Report Writer uses the layin file, the table_var_def.toml file, and the RW 
Tables/RW_fill_table_base_XXX.py (where XXX is the table number) to understand what rows the 
program should print out to output files. The Layin.csv file gives the layout and formatting for output, 
the table_var_def.toml file defines what variables will be used from the global data structure for the 
output, and the RW_fill_table_base_xxx.py file holds the calculations to compute to fill out the data. By 
using the make_base_tables in the base program, an unformatted table is generated first, holding in 
memory all of the associated pieces that would generate a table for review by a user.  
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Postprocessor 
Some tables require data from other tables that are calculated and cannot be retrieved from the restart, 
resulting in difficulties completing calculations for certain data rows within the individual table 
programs. 
 
To address these issues, a special component called postprocessor_base.py was designed. This 
component runs after the base table programs to “fill in” placeholders defined in those table program. 
Additionally, some calculations can be performed in batches within this component and then utilized by 
individual tables to improve performance. 
 
RAN File Generator 
RAN is a randomly accessible binary file used for visualizing NEMS projections in GrafNEM.  
The RW_make_ran.py code was developed to generate the RAN file, which stores all NEMS tables) in 
binary format, based on the provided documentation and FTAB references.  RW_make_ran.py is a 
component that can be run independently or integrated into the NEMS_RW platform (invoked by the 
main function of RW_reporter_main.py). It reads table data from the "all row csv.csv" file generated by 
the reporting platform and obtains table and row formatting information from layin. 
 

Figure 8: RAN File Generator diagram 
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The NEMS Validator 
The NEMS Validator, a python program written using the pytest framework,  tests NEMS results to see if 
they are appropriate for publication.  After each NEMS run is completed, the validator runs checks that 
answer questions such as: 

1. Are there error codes in any NEMS logs? 
2. Is NEMS properly calibrated to STEO and SEDS? 
3. Do select subtotals add to the appropriate totals? 
4. Do expected output files exist? 
5. Are energy prices and quantities all positive? 
6. Does total energy supply equal total demand? 
7. Did the model converge? 

 
If all tests are successful the validator writes out, in a root directory of the run, a file named 
“Validator_pass.xlsx.”  Conversely, if any test fails, the validator names the files “Validator_fail.xslx.” 
 
Tests can be active, inactive, or off.  Inactive tests run, but a failed results does not affect the file name 
being “fail” or “pass.” 

Figure 9: Sample Validator Tests 

  
 

https://docs.pytest.org/en/stable/
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