

Integrating Module of the
National Energy Modeling
System: Model
Documentation 2025
July 2025

www.eia.gov
U.S. Department of Energy

Washington, DC 20585

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System i

The U.S. Energy Information Administration (EIA), the statistical and analytical agency within the
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are
independent of approval by any other officer or employee of the U.S. Government. The views in this
report do not represent those of DOE or any other federal agencies.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System ii

Table of Contents
1. Introduction .. 1

Scope and organization ... 1

2. Overview of the Structure of NEMS .. 3

Background .. 3

The Integration Module ... 4

Key Tasks ... 4

3. Global Data Structure.. 6

Pyfiler .. 9

Energy market data representation .. 9

Restart file .. 10

4. Integrating Module Solution Methodology .. 11

The NEMS iteration .. 11

Introduction .. 11

The Iteration Solution algorithm ... 11

The NEMS cycle .. 13

Introduction .. 13

The cycle solution algorithm ... 14

Parallel NEMS .. 16

Foresight approach ... 16

Discontinuities and convergence problems in NEMS .. 17

Expected value foresight ... 20

5. Managing NEMS runs .. 24

System Design .. 24

Queue Structure .. 24

Cycle.py ... 26

Tasks.py ... 26

Worker_start.bat ... 26

run_task.py .. 26

Run Monitor ... 27

Operation ... 30

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System iii

The NEMS Report Writer .. 32

NEMS Report Writer Structure .. 32

Running the Report Writer .. 32

Preprocessor Program ... 33

Base Program and Table Programs .. 33

Postprocessor .. 34

RAN File Generator .. 34

The NEMS Validator .. 35

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System iv

Table of Figures
Figure 1. Basic National Energy Modeling System (NEMS) structure and information flow 4
Figure 2: Simplified representation of the iteration loop ... 11
Figure 3. The supply curve cuts across the horizontal portion of the demand curve 18
Figure 4. The supply curve cuts across the vertical portion of the demand curve 19
Figure 5. Queue Process Flow ... 25
Figure 6. Show Jobs Process Flow ... 28
Figure 7: Report Writer system diagram .. 32
Figure 8: RAN File Generator diagram .. 34
Figure 9: Sample Validator Tests... 35

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System v

Table of Tables
Table 1. Key Blocks in the NEMS global data structure .. 7
Table 2: Convergence variable weights by category .. 15
Table 3: Composite score to GPA .. 15
Table 4: Preprocessor input files .. 33

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 1

1. Introduction
The National Energy Modeling System (NEMS) is a long-term energy-economy modeling system of U.S.
energy markets. The model is used to project production, imports, exports, conversion, consumption,
and prices of many energy products, subject to user-defined assumptions. The assumptions encompass
macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral
and technological choice criteria, technology characteristics, and demographics.

NEMS produces a general equilibrium solution for energy supply and demand in the U.S. energy markets
on an annual basis.

EIA's Office of Energy Analysis develops and maintains NEMS to support the Annual Energy
Outlook (AEO). EIA analysts perform policy analyses requested by decisionmakers in the White House;
the U.S. Congress; offices within the U.S. Department of Energy, including program offices; and other
government agencies. Users outside of EIA use NEMS for a variety of purposes.

 NEMS was first used for projections presented in the Annual Energy Outlook 1994.

Scope and organization
Publication of this document is supported by Public Law 93-275, Federal Energy Administration Act of
1974, Section 57(B)(1) (as amended by Public Law 94-385, Energy Conservation and Production Act),
which states, in part:

...that adequate documentation for all statistical and forecast reports prepared...is made
available to the public at the time of publication of such reports.

In particular, this report meets EIA’s model documentation standard 2015-1, established under these
laws.1

The individual components of NEMS are documented individually. Although the NEMS Integrating
Module is a distinct component of NEMS, the Integrating Module is not by itself a model. Rather, it is a
framework that connects the subject matter modules, and a component of the overall NEMS model.
The Integrating module implements specific aspects of the overall modeling methodology that are not
documented elsewhere. The documentation is organized accordingly.

Readers interested in a more comprehensive summary of NEMS should see the latest The National
Energy Modeling System: An Overview.2

Chapter 3 describes the NEMS global data structure, which is used for inter-module communication,
solution initialization and storage, and certain database operations.

1 See https://www.eia.gov/about/eia_standards.php#standard2015_1.
2 See https://www.eia.gov/outlooks/aeo/nems/documentation/index.php.

https://www.eia.gov/outlooks/aeo/nems/documentation/index.php
https://www.eia.gov/about/eia_standards.php#standard2015_1
https://www.eia.gov/outlooks/aeo/nems/documentation/index.php

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 2

Chapter 4 provides the mathematical specification for the solution algorithm and describes the
convergence techniques we use. Chapter 4 also documents other modeling functions of the Integrating
Module, including generation of foresight assumptions and carbon dioxide emission policy routines.

Chapter 5 discusses the NEMS job queue and run management, which are used to manage NEMS runs in
a distributed environment.

Chapter 6 discusses the NEMS Report Writer, which produces diagnostic tools and the published output
from the model.

Chapter 7 discusses the NEMS validator.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 3

2. Overview of the Structure of NEMS
Background
NEMS is structured as a modular system. The modules include the Integrating Module and a series of
relatively independent modules that represent the domestic energy system, the international energy
market, and the economy. The domestic energy system is broken down further into fuel supply markets,
conversion activities, and end-use consumption sectors.

Model modularity implies a system of self-contained units, each performing a specific, well-defined
function. This concept is generally consistent with the economic structure of energy markets, which can
be represented by various supply, conversion, and demand components that are largely separable.
Because energy markets are heterogeneous, a single methodology cannot adequately represent all
aspects of supply, conversion, and end-use demand sectors. The modularity of the NEMS design
provides the flexibility for each component to use the methodology and regional coverage that is most
appropriate for the required analyses.

NEMS can execute the modules individually or in subsets. This flexibility fosters independent module
development, a distribution of model development work organized by energy market specialties, and
incremental development of the system. Several modules are further broken down into submodules for
development and documentation purposes.

To support modularity, the information flow between modules is centralized. The data linkages between
modules are implemented through the NEMS Global Data Structure (GDS). The Global Data Structure
(discussed in more detail in Chapter 3) is the set of data communicated between the NEMS modules or
used in the NEMS output reports. Individual NEMS modules access the GDS data they need for input and
update the GDS variables that store their module’s output.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 4

Figure 1. Basic National Energy Modeling System (NEMS) structure and information flow

Data source: U.S. Energy Information Administration

The primary data flow among the modules are the delivered prices of energy and how much energy is
consumed by product, region, and sector. The information flows among modules are not limited to
prices and quantities, and they include other information such as economic activity, capital
expenditures, and supply curves.

Many NEMS modules simulate the economic decision-making involved in the sector of the energy
system being modeled. To represent these decisions, NEMS is constructed with reasonably fine detail of
energy product categories and the regional locations of energy production and use. This detail is
necessary because the economics of allocating energy products is strongly influenced by the product
category at issue and regional differences in costs and other factors.

The Integration Module
Key Tasks
The integration code is the spine of NEMS. It calls most of the individual modules and manages the
model’s underlying functions and operations—setup, job queue, calculations, and output production.

The integration code manages operations during setup.

• It provides a graphical user interface and a command line interface to the system.
• It sets up the folders for a run.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 5

• It compiles, using the meson build system, the Fortran code that is used in the run.
• It preprocesses any data that is being loaded in from exterior systems.
• It manages and loads shared configuration files.

The integration code includes the job queue.

• It dispatches jobs from the user, to the run queue server, and then to the worker machines.
• It activates workers (which process NEMS jobs) and manages their operations.
• It manages the RabbitMQ and celery server that dispatches the jobs.
• It provides a monitor for the job queue, to review job status.

The integration code manages calculations during the main NEMS loop.

• It ingests data from disk, and loads it into memory.
• It manages the flow of program calls.
• It modifies data when the modifications are cross-cutting, or the calculations are performed in

the integration code for some legacy reason.
• It tests convergence, and determines when the mode should stop running. If directed, it applies

a relaxation algorithm.
• The integration code writes files and reports to disk where needed.

The integration code includes the NEMS post processes.

• The NEMS Report Writer produces all external NEMS reports.
• The NEMS validator, a simple set of checks, evaluates whether results have errors preventing

publication.
• The cleanup code manages the cleanup (deletion of temporary files, compression, etc) of NEMS

files after a NEMS run completes.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 6

3. Global Data Structure
The Global Data Structure defines the subset of NEMS variables used for communication between
modules and for external reporting such as the Annual Energy Outlook Tables. The variables consist of
variables shared among modules, such as prices, consumption, and macroeconomic information. The
variables also include reporting variables, as well as model control parameters and assumptions.

The variables in the Global Data Structure are defined and organized in blocks that designate groups of
variables.

The specific elements of the block structure are defined in the include files that contain declarations for
variables. In addition, a data dictionary for the Global Data Structure includes definitions for each
variable.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 7

Table 1. Key Blocks in the NEMS global data structure

Modules filling the

common block

Common block

names Description

Integrating, multiple

contributors, or exogenous

QBLK

QMORE

MPBLK

PMORE

MXQBLK

MXPBLK

QSBLK

NCNTRL

COGEN

CONVFACT

CONVERGE

COALEMM

HMMBLK

CYCLEINFO

CONTINEW

NCHAR

End-use sector quantities

Additional end-use sector quantities

End-use sector prices)

Additional end-use sector prices

Expected quantities for foresight

Expected prices for foresight

State Energy Data System historical data corresponding to QBLK

Control variables

Combined heat and power

Thermal conversion factors

Convergence variable data and reporting summary

Variables exchanged between the Coal Market Module and the

Electricity Market Module

Hydrogen module variables (future use)

Current cycle number and total cycles in overall run

Information related to continuation of cycling

Character variables such as scenario name or module names

Emissions EMABLK

EMEBLK

EPMBANK

REGCO2

GHGREP

EMISSION

AMPBLK, ANGTDM,

ACOALPRC,

APMORE, AEUSPRC,

APONROAD

AB32

RGGI

CSAPR

Price adjustments for carbon dioxide fees, if any

Carbon dioxide emissions factors by fuel/sector

Parameters for an emissions constraint banking option

Regional carbon dioxide emissions by fuel and sector

Greenhouse gas abatement costs and offsets

Emissions and related results

Copies of MPBLK, NGTDMOUT, COALPRC, PMORE, EUSPRC, and

PONROAD with prices adjusted by any energy tax or emission

allowance fees

California Assembly Bill 32 cap and trade variables

Regional Greenhouse Gas Initiative variables

Cross-State Air Pollution Rule variables

 EMOBLK Emissions

 CALSHR California shares for estimating AB32 covered emissions

 INDEPM Cement-related CO2 process emissions passed from IDM to EPM

Macroeconomic MACOUT

MCDETAIL

Output variables

Reporting variables

International Energy INTOUT All International Energy Module global variables

Residential Demand RESDREP

RSCON

RSEFF

Reporting variables

Energy consumption by end use

Energy efficiency by end use

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 8

Table 1. Common Blocks in the NEMS global data structure (continued)

Modules filling the

common block

Common block

names Description

Commercial Demand COMPARM

COMMREP

BLDGLRN

Control parameters, assumptions

Reporting variables

Cumulative shipments of distributed generation technologies for

learning curves

Industrial Demand INDOUT

INDREP

INDREP2

BIFURC

Industrial variables for use in other modules

Industry-level consumption reporting variables

Industry-level combined-heat-and-power reporting variables

Energy by fuel/region classified by covered and uncovered industry

groups for emission cap and trade analysis

Transportation Demand TRANREP All global transportation variables

Electricity Market UEFPOUT

EFPOUT

UEFDOUT

UDATOUT

UECPOUT

DSMTFEFP

UETTOUT

EUSPRC

CAPEXP

TCS45Q

ULDSMOUT

E111D

Electricity pricing outputs

Electricity pricing outputs

Fuel-dispatch outputs

Electricity central data outputs

Capacity planning outputs

Demand side management/electricity pricing

Electricity trade outputs

Electricity prices for end uses by sector

Capital expenditures

Variables for modeling U.S. tax code section 45Q credits

DSM variables

EMM/CMM interface

Carbon Capture CCATSDAT Carbon capture, transport and sequestration variables.

Renewable Fuels WRENEW All Renewable Fuel Module global variables

Hydrocarbon Supply OGSMOUT All Hydrocarbon Supply Module global variables

Natural Gas Market NGTDMOUT

NGTDMREP

NGRPT

Output variables

Reporting variables

Supplementary reporting variables

Liquid Fuels Market PMMOUT

PMMRPT

PMMFTAB

QONROAD

PONROAD

LFMMOUT

Output variables

Output variables

Reporting variables

On-road distillate quantity, conversion factor

On-road distillate price

Output variables

Coal Market COALOUT

COALREP

COALPRC

USO2GRP

Output variables

Reporting variables

Electric power sector coal prices at the coal demand region level

Coal output by emission categories for Electricity Capacity Planning

interface

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 9

Pyfiler
NEMS2023 introduced PyFiler, which allows GDS variables to be shared between Python and Fortran
programs in memory using NumPy’s F2py library. F2PY facilitates creating/building native Python C/API
extension modules that make it possible to call Fortran from Python. This interface enables the fast,
seamless transfer of data between the Python integration code and the legacy Fortran module code in
NEMS. We significantly expanded PyFiler in NEMS2025, so it now serves as an access point for the NEMS
GDS. In order to work with PyFiler, the NEMS Fortran code is now compiled as a library for Python rather
than as a standalone executable.

PyFiler is used to support most reads and writes out of NEMS.

Energy market data representation
The Energy Market Data define the energy quantity and price variables for NEMS. These variables are
the principal values subject to convergence testing in the integrating algorithm. The Energy Market Data
are part of the NEMS Global Data Structure and are stored in the following blocks:

• QBLK Energy consumption quantities by fuel and sector
• MPBLK Energy prices by fuel and sector, excluding any CO2 fees in effect
• AMPBLK Energy prices by fuel and sector, including any carbon dioxide fees in effect
• MXQBLK Expectations for energy consumption quantities
• MXPBLK Expectations for energy prices

The quantity and price structure does not attempt to represent all energy flows, but instead it focuses
on the primary variables needed to design the NEMS equilibrating methodology. In addition, the Energy
Market Data structure defines the fuel and sectoral energy classification for the NEMS energy balance .

In general, the energy prices match the corresponding consumption quantities . The exceptions include:

• Detailed refinery sector prices are omitted even though refinery fuel quantities are included
because the projections don’t require refinery sector prices to be separate from the rest of the
industrial sector. The industrial fuel prices are the delivered prices to industrial fuel consumers,
including refineries. As a result, the industrial sector prices match the coverage of the
corresponding industrial consumption quantities.

• Prices for some industrial petroleum categories are combined in the industrial Other petroleum
category to eliminate unnecessary detail. That is, the industrial Other petroleum price is defined
as the average price of three consumption categories: still gas, petroleum coke, and other
petroleum. The Other petroleum price is not needed by any NEMS module but is required for
reporting purposes to determine the average price of all petroleum products.

Delivered prices for renewable energy categories are left undefined because there are no meaningful
market prices for them. For example, no delivered prices are associated with hydroelectric, geothermal,
wind, solar thermal, and photovoltaic energy sources. In the case of biomass, supply curves for four
different feedstocks (forestry residues, urban wood waste and mill residues, agricultural residues, and
energy crops) are generated for the Liquid Fuels Market Module and the Electricity Market Module, and
a composite average price is calculated.

https://numpy.org/doc/stable/f2py/
https://docs.python.org/3/extending/extending.html#extending-python-with-c-or-c
https://docs.python.org/3/extending/extending.html#extending-python-with-c-or-c

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 10

NEMS uses variable names for consumption quantities and prices, along with a two-character product
code mnemonic for each product. Each array is a two-dimensional, floating-point array. The first
dimension represents the nine census divisions as well as a tenth position that is blank and an eleventh
position reserved for the national total. The second dimension represents 61 years from 1990 to 2050.
Quantities are stored in trillions of British thermal units (Btu). Prices are stored in 1987 dollars per
million Btu, as deflated by the chain-weighted price deflator for gross domestic product.

A related part of the Energy Market Data structure is made up of the variables that hold energy market
expectations. The Integrating Module maintains a separate set of arrays to store consumption and price
expectations. The expectations arrays are updated according to the foresight options under
consideration. The expectations arrays are defined like the standard energy market arrays, each with an
additional leading character, X. Not all fuel price and demand quantity detail is represented in the
expectation arrays.

Restart file
At the beginning of a run, the Integrating Module reads initial values for all data in the Global Data
Structure from a user-specifiable version of a special file, called the Restart file. The Restart file contains
a starting point for the case under consideration, consisting of results from a previous simulation. During
the run, much of these data are updated and changed. For example, alternative values for key module
parameters and input assumptions, read separately from the user interface file or other sources,
override the values stored in the Restart file. At the end of the run, a new Restart file is created with all
the data from the run. The file is available for future runs, as well as to link with reporting and database
management routines.

The restart file promotes modularity by supplying values for all shared variables, regardless of whether
the module that creates them is active in the run. Prices, quantities demanded or supplied, and other
variables normally generated by a module that is switched off for the current run are provided instead
by the Restart file.

NEMS2023 is in the midst of the transition between the legacy unformatted (.unf) data file and the npz
data file that will be used in future NEMS versions.

The global data are separated into groups of variables known as blocks. The NEMS modules may access
data from, and write results to, the block variables once the data are loaded into memory.

https://numpy.org/doc/stable/reference/generated/numpy.savez.html

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 11

4. Integrating Module Solution Methodology
The Integrating Module contains the converge submodule, which implements the NEMS solution
algorithm. The algorithm relies upon consecutive execution of the NEMS component modules
iteratively to achieve energy market equilibrium for each projection year. Using the NEMS Global Data
Structure as its inputs, the converge submodule tests whether convergence has occurred, and it
optionally adjusts the solution values to aid the convergence process.

Within the converge submodule, there are two convergence tests for a cycle, and for an iteration.

The NEMS iteration
Introduction
The iteration solution is the inner loop of NEMS, and where NEMS iterates each modul4 over each year
repeatedly before going to the next. Each module is checked for convergence before the next module
runs, and then relaxation is applied, if appropriate.

Figure 2: Simplified representation of the iteration loop

The modules in NEMS represent the demand, supply, and conversion segments of the energy market as
well as modules to provide economic, international market, and other feedbacks. In effect, these
modules represent energy supply and demand curves. That is, the supply and conversion modules
determine prices and sources of supply, given the quantity of fuel demanded. The demand and
conversion models determine the fuel demands, given the prices of those fuels. The solution algorithm
attempts to determine a vector of fuel prices and quantities so that supply and demand curves in all fuel
markets equilibrate. That is, a solution occurs when energy demands and prices, along with the
macroeconomic variables, reach stable, convergent values.

The Iteration Solution algorithm
To reach a solution for each iteration, the convergence submodule solves simultaneous equations
implied by the supply, demand, and conversion modules. The approach applies the Gauss-Seidel
algorithm, which solves a set of simultaneous equations. Gauss-Seidel is an iterative method of solving
simultaneous linear equations by replacing the independent variables with their previous solved-for
values. Although equations within NEMS can be non-linear, this method is expected to provide an

Module
1

Module 2 Module 2
Converged?

For year A

All models
converged?

If all converged, move to year A+1

Module 1
Converged?

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 12

equilibrium solution because the equations are either monotonically increasing (as are the supply
curves) or monotonically decreasing (as are the demand curves).

In effect, the approach groups the equations and variables into subsets. For NEMS, the subsets consist
of predefined fuel supply, energy conversion, and sectoral demand modules. Each subset of equations is
solved, keeping the other variables constant at their trial values and ignoring the effects of current
variables on equations in other subsets. The process is repeated for each subset, updating the trial
values for each variable from the previous solution.

More formally, for a stylized NEMS, the nonlinear system of equations could be represented by

xi = gi (x1, …, xi-1, xi+1, …, xn) for i = 1, ..., n, (1)

having the market clearing or equilibrium solution vector

x = (x1, ..., xn).

The solution process assumes a set of initial values, denoted x0, where

x0 = (x1
0, ..., xn

0).

A trial solution for iteration k for a certain year is denoted by xk, where

xk = (x1
k, ..., xn

k).

Each gi(x) uses one or more of the elements of the trial solution vector xk, excluding its own solution, xi
k.

A solution iteration k begins with the evaluation of g1 and continues solving each gi, ending with gn. The
solution of gi in iteration k updates the solution estimate to

x = (x1
k, x2

k, ..., xi-1
k, xi

k, xi+1
k-1, ..., xn

k-1) .

The updating process continues until an iteration-k trial solution is derived for all xi.

After evaluating gi
k, the values of the solution variables are compared with the values from iteration k-1.

A final solution, xk, has been achieved if, after all modules have been executed, the absolute values of
the proportional changes in the xi remain smaller than a specified tolerance,ε :

ε <
)/2x + x(

x - x
i

1 - k
i
k

i
1 - k

i
k

for i = 1, ..., n. Values of ε can be chosen on a variable-specific basis. The typical values used are in the
range of 1% for the census division variables, less for the national macroeconomic variables. In the
convergence tests, the denominators use an average to avoid convergence difficulties if either the
starting value or a trial solution value is equal to zero.

After the convergence criteria have been met, another iteration is performed to test whether the
solution is stable and to allow the modules to perform final processing for the projection year. As a

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 13

result, the final converged solution vector for the projection year is xk+1, where k is the first iteration for
which the solution meets the convergence criterion.

A procedure referred to as relaxation is used to control the equilibration process and aid in resolving
some convergence problems. If the relaxation option is selected, changes in values of convergence
variables between iterations are dampened by a user-specified factor. The selection of appropriate
relaxation parameters may speed convergence and lead to a more stable and robust solution process.
The relaxation assignment statement is of the form:

)x - x(r + x = x k
i

k
i

k
i

1-k
i

k
i

1−

where rk
i = relaxation factor for a convergence variable i for iteration k. Note that the specification of

relaxation factors is variable specific and iteration specific. The module can specify varying relaxation
fractions, depending on the iteration number, as an option. This feature is used to allow greater
dampening after the first few iterations. Convergence parameters, including the tolerances and
relaxation fractions for each variable, are specified through the input file mncnvrg.txt.

To handle cases where the procedure does not converge on a solution or does not achieve the specified
tolerance, a limit on the number of iterations terminates the algorithm for the current projection year.
In such cases, the model performs the additional iteration mentioned in the previous paragraph, reports
the convergence status with a list of the variables failing to converge, and then proceeds to the next
projection year. The final solution for the projection year is, therefore, the result one iteration beyond
the non-converged trial solution.

The NEMS cycle
Introduction
The cycle solution is the outer loop of NEMS, and allow NEMS to solve with perfect foresight structures.
Each cycle involves the iterative execution of all of the projection years.

 Cycle X

Iteration Loop - Year 1

For all years

Cycle Convergence
Check

If converged, stop
If not converge, run cycle X+1

Iteration Loop - Year 2

Iteration Loop - Year 3

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 14

Solution values for successive cycles are compared to determine if expected values (from the previous
cycle) and realized values (from the current cycle) converge. A program performs the intercycle
convergence checks and scores the degree of intercycle convergence using a qualitative metric
(discussed more below). It is typical, then, to run NEMS in sets of 4 or more cycles to achieve intercycle
convergence. In addition, a relaxation procedure, similar to the single-year relaxation procedure, can be
applied to speed up convergence between cycles. Parameters for testing convergence between cycles
are separate from those for testing convergence between iterations.

The cycle solution algorithm
A qualitative metric for convergence is presented in a NEMS output report (NEMS report writer output
Table 150) as an aid in evaluating the degree of convergence. The convergence metric, known as the
Grade Point Average (GPA), scores the convergence tests on a four-point, academic-style grading scale.
With this idea, a run's convergence status is revealed with a single number associated with a sense of
quality: a 4.0 GPA is a straight A average, for example. A run with a convergence GPA of 2.0 (a C) is
average, while a GPA of 1.0 (a D) is a poor grade. This heuristic grading scale is derived using a weighted
average of the absolute value of percentage differences in convergence variables, aggregated across
sectors and regions. The convergence GPA is calculated as follows:

1) Compute deviations for convergence variables for each fuel, region, and sector in year. Let:
• DEVf,r,s,y = Absolute value of deviation in a convergence variable: fuel f, region r, sector s, year y,

where a deviation is one of the following:

a. Quantity deviation: absolute value of (the current quantity minus the previous quantity)

b. Price deviation: absolute value of the current expenditure (that is, price times quantity)
minus the previous expenditure (the expenditures exclude any permit price adders)

c. Emission allowance price deviation: absolute value of the current allowance price minus
the previous allowance price.

PREVf,r,s,y = Previous value for a convergence variable: fuel f, region r, sector s, year y

2) Group the convergence variables into five categories, c:
a. End-use sector energy consumption quantities
b. Electric power sector energy consumption quantities
c. End-use sector energy prices
d. Electric power sector energy prices
e. Environmental permits/allowance prices: carbon dioxide, sulfur dioxide, and mercury

3) Aggregate the deviations (DEV) across regions, fuels, and sectors within each of the five
categories, c, and express the deviations as percentage of the corresponding previous values
(PREV). Let ACc,y = the aggregated change (or deviation) for category c and year y, expressed as a
percentage. That is,

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 15

,100*
,,,,

,,,,

, ∑∑∑

∑∑∑
=

s
ysrfc

rf

s
ysrfc

rf
yc PREV

DEV
AC

where the sums are over all fuels f, regions r, and sectors s that belong in category c.

4) Compute a composite score by averaging the aggregated changes (AC) of the five categories,
using the following weights (the basis for the values is described further below).

Table 2: Convergence variable weights by category

5) Scale or grade the composite score into a grade point average (GPA) by interpolating the score
from the following table:

Table 3: Composite score to GPA

Score (percentage basis) Grade on four-point scale Letter grade
0.5 or less 4.0 A

2.0 3.0 B

5.0 2.0 C

10.0 1.0 D

15.0 or more 0.0001 F

This process is also used to calculate the metric, based on national-level data.

The weights and the grading scale tend to magnify the importance of common convergence problems.
The carbon dioxide allowance price has been weighted as zero (so, not entering into the convergence
decision) because the sectoral prices include the carbon dioxide allowance price; so, any movement
from cycle to cycle will be reflected in the end-use prices. This allowance price also has a significant
effect on capacity expansion decisions made in the electric power sector and macroeconomic feedbacks,
so stability in this price is essential for inter-cycle convergence. Fuel demands and prices in the electric
power sector are also given a relatively strong weight in the scoring. Flexibility in electric power sector
fuel demands, the use of linear programs for plant dispatch and capacity build decisions, and complex

Category Weight

End-use sector energy consumption quantities 24.5

Electric power sector energy consumption quantities 24.5

End-use sector energy prices 24.5

Electric power sector energy price 24.5

Environmental allowance fees

 Carbon dioxide (if applicable) 0

 Sulfur dioxide 1

 Mercury (if applicable) 1

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 16

interactions with the coal supply module with respect to environmental constraints all tend to foster
convergence difficulties in this sector. The capacity build decisions are influenced by fuel price
expectations and any energy-related taxes or emission allowance fees. These capacity choices, along
with the decisions in the fuel dispatch submodule, help determine electric power sector fuel
consumption and can become a primary source of inter-cycle convergence problems.

The NEMS cycle runs continue for a user-specified number of cycles or until the inter-cycle convergence
objective has been met. The objective is based on the average of the three lowest yearly GPAs. If this
metric is lower than the user-specified minimum, the cycling continues. Otherwise, the cycling stops.
Additional user-specified options can be set to perform all of the requested cycles regardless of
convergence or to perform at least a certain number of cycles.

Parallel NEMS
Instead of running all the NEMS models sequentially, NEMS can be run in two parallel partitions.
Modules are grouped together, reducing the number of parallel processes, by using a combination of
the Jacobi and Gauss-Seidel methods. The relative lack of connectivity between the electric power
sector and the refining industry allows for the following grouping of related modules:
Partition 1:

• Liquid Fuels Market Module
• International Energy Module
• Hydrocarbon Supply Module
• Natural Gas Market Module
• Macroeconomic Activity Module
• Residential Demand Module
• Commercial Demand Module
• Transportation Demand Module
• Industrial Demand Module
• Carbon Capture, Transportation and Sequestration Module

Partition 2:
• Electricity Market Module
• Coal Market Module
• Renewable Energy Module
• Residential Demand Module
• Commercial Demand Module
• Hydrogen Market Module

After these two processes complete, the results are merged together, and another cycle is run.
Foresight approach
Several modules simulate planning decisions to acquire additional capacity that will be required in
future years. These include the Electricity Capacity Expansion submodule, the pipeline capacity decisions
for natural gas in the Natural Gas Market Module, and the refinery capacity decisions in the Liquid Fuels
Market Module.

To simulate such decisions, information on future demands and prices must be assumed. Although each
module solves one projection year at a time, their simulations of planning activities involve an

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 17

extrapolation of energy market conditions. Those modules simulating new capacity construction
decisions apply an assumption about foresight in their expectations of future energy prices and
quantities. In NEMS, a set of price and quantity variables is defined to store expectations. For ŷ > y,

XPf,s,r,ŷ = Expected prices of energy products beyond the current projection year

XQf,s,r,ŷ = Expected consumption of energy products beyond the current projection year

The foresight mode determines how the expectation variables are calculated. Under myopic foresight,
the expected values are simply held constant at their current trial values. For adaptive expectations, the
Integrating Module calculates minor extrapolations of present-year conditions. Foresight is, therefore,
always calculated by looking forward to the consequences of conditions in the present iteration year,
not by attempting to reach some end state determined a priori. The treatment of expectations is
discussed in greater detail under Expected Value Foresight.

In terms of the energy market interactions, the sectoral demand models estimate current-year energy
demands Qf,s,r,y and energy-related capital stock additions as functions of current and expected energy
prices. The supply modules estimate end-use prices Pf,s,r,y and capacity additions as functions of current
and expected energy demands. The conversion modules (electricity and refinery) are viewed primarily as
supply components, but they represent both consumers of primary energy and suppliers of energy
products.

For some model components, a rational expectations, or perfect foresight approach, is used implicitly or
explicitly. Where these approaches are used, expectations for future years are defined by the realized
solution values for these years in a previous run. This approach is used, for example, for the energy
demand expectations used for capacity planning of energy infrastructure (pipelines and refineries). The
other area is for market-based approaches to limit carbon dioxide emissions, where knowledge of future
emission taxes or permit prices is assumed to be known in advance.

Discontinuities and convergence problems in NEMS
The characterization of NEMS as a set of supply and demand curves provides a useful framework for
discussing convergence properties. Although supply and demand curves are generally treated as
continuous functions, various NEMS modules contain linear programs or their analogues that result in
discontinuities. Such discontinuities cause significant problems in the solution process.

Several modules incorporate algorithms that yield these discontinuous results. For example, the
International Energy module outputs a set of crude oil supply curves and petroleum product import
supply curves that the Liquid Fuels Market Module translates to step curves for input to a linear
program, representing refinery operations and solving for fuel prices and refinery fuel demands to
minimize costs. This type of approach yields discontinuous petroleum pricing and fuel demands. The
Electricity Fuel Dispatch submodule is also implemented as a linear program and contains discontinuities
as a result of the nature of the merit-order plant dispatch. The coal distribution submodule is also a
linear program. So, each of these modules introduces discontinuities into the NEMS solution process.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 18

You can see the effect that having discontinuities has on the solution process by using step-function
demand curves with continuous supply curves. The same conclusions may be drawn as long as either or
both of the supply and demand curves are step functions (Figure 3 and Figure 4).

Figure 3. The supply curve cuts across the horizontal portion of the demand curve

 Data source: U.S. Energy Information Administration

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 19

Figure 4. The supply curve cuts across the vertical portion of the demand curve

 Data source: U.S. Energy Information Administration

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 20

The supply curve determines the price used in the demand curves, and the demand curve then provides
a quantity (Figure 3 and Figure 4). The solution path resulting from applying the Gauss-Seidel algorithm
is delineated by arrows: a horizontal arrow shows the quantity response from the demand curve, and a
vertical arrow shows the price response from the supply curve.

When the supply curve intersects the horizontal portion of the demand curve, an oscillation in the
solution between quantities Q0 and Q1 and prices P0 and P1 occurs (Figure 3). When the intersection of
the supply and demand curves is on the vertical portion of the demand curve, you can achieve
equilibrium with the Gauss-Seidel algorithm using relaxation, even if the unrelaxed algorithm yields an
oscillation in the solution (Figure 4). Figure 3 has no relaxation fraction, r, for which convergence will
occur. However, a value for r can be found so that the oscillation occurs in no more than two steps.
Provided the steps are small enough to fall within the convergence tolerance, relaxation can prevent
oscillations between steps from being a convergence problem.

Expected value foresight
Energy projections involve assessing changes in energy-using capital stocks and choices among energy
supply alternatives. This analysis requires simulation of such decisions as the selection of durable
appliances, the planning of electricity generating capacity additions, and the planning of infrastructure
expansion, such as natural gas pipeline additions or E85 fueling stations. The economic evaluation of
these decisions requires energy demand and price expectations for lifecycle cost and capacity addition
calculations. An objective in this aspect of the modeling is to simulate such decision-making in the
aggregate for predictive and analytical purposes by representing how players in the energy marketplace
make long-term planning decisions, rather than by deriving the theoretically optimal long-term
expansion path. As a result, formulating foresight assumptions is open to alternative approaches based
on observed industry practices.

NEMS could, in principle, approach the issue of foresight by prescribing a desirable end state for the
energy marketplace and calculate backwards in time to prescribe how best to arrive there. However, as
a simulation, NEMS calculates foresight as an extrapolation of the present state of energy markets,
subject to announced policies. Rather than determining how to arrive at the planned future, NEMS can
evaluate whether present plans could result in the desired end state.

In reality, different methodologies for treating foresight are used in different sectors and supply areas,
and alternative approaches to representing expectations may yield significantly different planning
decisions. As a result, treatment of foresight becomes an important modeling decision.

There is no one best approach to treating foresight. The National Research Council recommended
developing several options for modeling foresight.3 As a result, an objective in building NEMS was to
include the flexibility to support different approaches to foresight to allow experimentation and future
modeling changes. In addition, the option to treat foresight consistently throughout the modeling
system is desirable.

3 National Research Council, The National Energy Modeling System, Washington DC: National Academy Press, 1992.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 21

The purpose of dealing with foresight and expectations in the Integrating Module is to be able to
represent different types of foresight consistently. At the same time, the Integrating Module allows
individual modules to handle foresight independently if industry practice requires different approaches.
To achieve this flexibility, we built each NEMS module to examine results of a centralized on-off switch
to determine whether the module should use centrally generated expectations. When this central-
control switch is turned on, the module uses these expectations; otherwise, the module uses self-
generated expectations.

The following three methods generate expectations:

• With the myopic expectations option, expected prices for any projection period are assumed to
be constant in real-dollar terms relative to the current period in which decisions are being made.
This case generally applies to expected prices and not expected quantities because an
assumption of constant energy quantity demanded is rarely assumed.

• The adaptive expectations (or extrapolative expectations) approach assumes planners
extrapolate recent trends when making long-term decisions. For the system-generated
expectations, this assumption about foresight is implemented by extrapolating the current
projection year prices and quantities using the average annual growth during the previous few
projection years. For example, the expectations generated representing 2021 for use in model
year 2020 would be determined from the growth during the past few model years (for example,
2018 to 2020), and the number of years are a model option. For expectations generated within
individual modules, we can use more elaborate behavioral models, or adaptive expectations.

• The perfect foresight approach is based on the theory of rational expectations. This approach
generates an internally consistent scenario where forming expectations is consistent with the
projections realized in the model. In practice, perfect foresight describes the configuration and
solution algorithm that achieves the convergence of expected values and realized solution
values. A variation in the integrating algorithm was required to implement perfect foresight.
This option involves iterative cycling of NEMS runs, in which each cycle is a complete pass during
the entire projection period. The objective is to have expected values and realized values
converge between cycles, a state referred to as inter-cycle convergence, in addition to having
convergence within the cycle for individual projection years, or intra-cycle convergence. As a
result, it has become necessary to evaluate NEMS runs with respect to both inter-cycle
convergence and intra-cycle convergence.

The Electricity Market Module depends heavily on expectations techniques and requires fuel price
expectations for natural gas, oil, and coal for its capacity planning submodule. The capacity planning
submodule also requires expectations for electricity demand. At present, some aspects of the oil and
natural gas price expectations for the Electricity Market Module are still implemented in the Integrating
Module:

• Oil product price expectations are calculated from an external projection of world oil prices,
assuming a constant markup between the regional product price and the world oil price. In each
projection year, the assumed markup is derived from the previous projection year:

Pc+y = (Pc - Wc) + Wc+y for y=1,...,30 years (planning horizon for power plants)

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 22

where Pc and Wc are the product price and the exogenous world oil price from the previous

projection year, and Pc+y and Wc+y are the prices in the expectation years.

• The wellhead price expectations through 2050 are generated by a perfect foresight method (by
default). The wellhead price expectations are taken as a weighted average of the previous
cycle’s realized prices and its expected prices. The weight is specified by the user. Delivered
natural gas prices are derived from expected wellhead prices assuming a constant markup
between the delivered prices and the wellhead price.

The wellhead price expectations for the post-2050 period are based on a nonlinear function that relates
the expected wellhead gas price to cumulative domestic natural gas production. Increases in cumulative
production would be associated with the depletion of domestic resources and, in turn, general
expectations of increases in price in the long run. The following equation tries to capture this general
idea:

Py = Ay * Qy
e + By,

where P is the wellhead price, Q is the cumulative production from 1991 to future year y in the planning
horizon, e is a user-specified parameter, and Ay and By are determined for each projection year, as
explained below.

The approach was developed to have the following properties:

• Prices should be upward sloping as a function of cumulative natural gas production because
prices could be expected to rise as existing resources are depleted.

• The rate of change in wellhead prices is a function of the economical resources that remain to
be discovered and produced. The value of the parameter e determines the shape of function.

The approach assumes that, at some point in the future, a given target price, PF, results when
cumulative natural gas production reaches a given level, QF. So, the target value PF is an assumed input
to the approach, while QF is assigned as the resource base in the Hydrocarbon Supply Module for a
specified year (2018 in AEO2022). In the Annual Energy Outlook 2022, the assumed value of PF was
$9.00 per thousand cubic feet (in real 1998 dollars), corresponding to a cumulative production (QF) of
2,418 trillion cubic feet. The annual production is assumed to grow at the rate observed during the
previous three years within the projection. The parameters of the price equation, Ay and By, are
determined for each projection year such that the price equation will intersect the future target point.
That is,

let Dy-1 = previous year’s natural gas production
let PS y-1 = previous year’s wellhead gas price
let QS y-1 = previous year’s cumulative natural gas production since 1991

𝐴𝐴𝑦𝑦 = (𝑃𝑃𝑃𝑃– 𝑃𝑃𝑃𝑃𝑦𝑦−1) / (𝑄𝑄𝑃𝑃𝑒𝑒 – 𝑄𝑄𝑃𝑃𝑦𝑦−1𝑒𝑒)

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 23

𝐵𝐵𝑦𝑦 = 𝑃𝑃𝑃𝑃 – 𝐴𝐴𝑦𝑦 ∗ 𝑄𝑄𝑃𝑃𝑒𝑒

The following assignment statement extrapolates cumulative production for future years, y = 1, ... , 30
years (with 30 years being the maximum planning horizon for power plants):

Qy = Qy-1 + D y-1

This generates the expected wellhead prices:

𝑃𝑃𝑦𝑦 = 𝐴𝐴𝑦𝑦 ∗ 𝑄𝑄𝑦𝑦𝑒𝑒 + 𝐵𝐵𝑦𝑦

= 𝑃𝑃𝑃𝑃 + �𝑄𝑄𝑦𝑦𝑒𝑒 − 𝑄𝑄𝑃𝑃𝑒𝑒� ∗ �
𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑦𝑦−1
𝑄𝑄𝑃𝑃𝑒𝑒 − 𝑄𝑄𝑃𝑃𝑦𝑦−1𝑒𝑒 �.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 24

5. Managing NEMS runs
System Design
RabbitMQ is an open-source message passing broker running the Advanced Message Queuing Protocol
(AMQP). Celery is a Python-based system for setting up and running task queues that can use RabbitMQ
as the message broker.

The NEMS job queue has the following features:

• A Celery client, called by the user, which handles the initial model setup for the NEMS run. After
setup, the Celery client sends a message through the broker to the worker via the Celery task
command.

• Celery workers on each of the three dedicated servers, to perform the actual execution of the
NEMS runs. Celery workers act as consumers of messages from the RabbitMQ Server.

• A run monitor accessible by users. This monitor shows the status of each run, including user,
scenario name, datekey, part (if applicable), host, cycle number, year, iteration number, status,
and output directory. The monitor maintains data for a configurable time – by default, it outputs
files with two-day and one-week retention periods – and is searchable and sortable.

We have stood up a RabbitMQ broker with queues for processing NEMS run job requests. The queue
structure is discussed in the following section. We have also developed Python worker and client scripts
to wrap around the current NEMS scripts and initiate a NEMS run, along with a run monitor script to
generate files which users can read to track run progress.

The key elements of the resulting system are thus:

• Run Monitor Front End: HTML files which can be opened in any web browser to display a
searchable, sortable list of ongoing and completed runs.

• Run Monitor Back End: A continuously-running Python script which regularly regenerates the
aforementioned HTML files to remain up-to-date with run status.

• RabbitMQ Server: A broker service running the AMQP protocol. The Celery clients submit
messages to this server to request execution of a NEMS run. Messages are made available to the
connected Celery workers on the dedicated NEMS machines to execute the run, distributed by
workload and availability.

• Celery Workers: Celery workers are to be deployed on the three dedicated servers, where
actual execution of NEMS runs will occur. Celery workers act as consumers of messages from
the RabbitMQ server.

Queue Structure
NEMs may be executed in either of two ways, either as a single executable or loosely coupled parallel
structure. In the former incarnation (jognems), each module is called in sequence until the run is
completed. In the latter, only a subset of modules is executed in each of two partitions (P1 and P2). The
output of P1 and P2 is then merged into a third partition (P3).

When designing the structure of queues through which tasks would flow, it was desired that each part
of a parallel NEMS (parnems) run should be executed as its own task. Accordingly, and with the aim of

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://www.rabbitmq.com/

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 25

maintaining similarity in execution between parnems and jognems runs, we devised the following
arrangement (using a parnems run as an example):

Each machine that executes NEMS runs operates two Celery workers to receive tasks. One worker
listens to a queue named “shared” and used by all workers, and worker listens to the queue named for
the COMPUTERNAME environment variable of its host machine. All runs will initially be sent to the
“shared” queue, from which they can be fetched by any worker based on availability.

Once a worker has received the overall task for a run, it is necessary for all tasks within that run to be
managed by that same worker, so that there is no need to repeatedly transfer run files among
machines. As such, in the case of a parnems run, the worker will send tasks for parts 1 and 2 of the run
(P1 and P2) to the COMPUTERNAME queue, on which only that worker is listening. This ensures that the
same worker will receive and execute the P1 and P2 tasks. Once these are completed, a part 3 (P3) task
will be sent in the same way. In the case of a jognems run, instead only a single task will be sent to the
COMPUTERNAME queue for the entire cycle. In either case, the process will then be repeated as many
times as required by the parameters of the run.

Workstation

Executes
runnems.bat
and initiates
parnems run

RABBITMQ
Server

Queue:
shared

Queue:
Worker

Shared
Worker

Worker
initiates
cycle.py

Send:
Start Run

Receive:
Start Run

Send:
Start P[#]

Receive:
Start P[#]

Figure 5. Queue Process Flow

Private
Worker

Worker
executes
P1/P2/P3

Send: P[#]
Complete

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 26

In addition to its utility for run-monitoring and similar purposes, this design can easily be adjusted to
allow subtasks to be shared across some or all of the relevant machines, in case a future system will
have runs executed on shared drives such that file transfer overhead will no longer be a concern. If a
worker’s setup is adjusted such that it is also listening to the COMPUTERNAME queue(s) of one or more
other machines, it will be permitted to execute any subtask sent by those computers. Alternatively, with
appropriate code changes, it would also be possible to bring all workers exclusively onto the shared
queue, allowing any one machine to receive tasks sent by any other. These possible changes will be
discussed in more detail in the following section.

Cycle.py
The script cycle.py executes with a celery message to run nems_flow on a workers . The Python script
run_task.py is used to send the message to the COMPUTERNAME queue.

Tasks.py
The Python program tasks.py first establishes a connection with the RabbitMQ server. It then defines
the Celery task exec_at_loc, which is used by the worker to execute cycle.sh and nems.exe. This task is a
function which takes three parameters: userid (User ID), loc (location), and comm (command). The user
ID is only passed to facilitate tracking by the run monitor and is not actually used by the task itself.

First, exec_at_loc checks if the location provided is in D:/workdir. If it is, then the script simply executes
the command provided at that location. The task then waits for this subprocess to complete and returns
a code reporting its completion status.

If the location provided is not in D:/workdir, this indicates the selected output directory for the NEMS
run is the one that was created in the initial setup by nems_setup.py. Accordingly, scenario and datekey
are determined using the final elements of this path and all files are copied from it into
D:/workdir/[scenario]/[datekey]. This folder is created if it did not exist or replaced if it did (though the
latter should never be necessary, as all scenario-datekey pairs should be unique). The command
provided is then executed at this new location, as above. Afterwards, cleanup is performed: the
scedes.all file, all input folders, all .dll files, and all .exe files are removed from the new location if
present, though if ftab.exe exists it is first copied to ftab.xxx. The contents of the cleaned-up folder are
then copied back to the originally-provided location, overwriting where necessary, and then deleted
from D:/workdir once the copying is complete. Finally, as before, the task returns the return code of the
subprocess responsible for command execution.

Worker_start.bat
The worker_start.bat batch script launches a Celery worker. It first ensures that the correct Python
environment is active, so that the necessary packages to run the worker will be available, and then
launches a worker using tasks.py. It is also set to use a pool of threads to execute a maximum number of
concurrent tasks; once that limit is reached, no new tasks will be accepted until a slot is freed up by a
task completing.

run_task.py
The Python program run_task.py provides a single function, run_task. This function takes three
arguments: loc (location), comm (command), and q (queue). It establishes a Celery connection to a

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 27

RabbitMQ server – currently configured to be on ASHTSTNEMVIR002 with username “user” and
password “test”. It then sends a message to the specified queue to run exec_at_loc, from tasks.py, using
the provided location and command. It also gets the value of the USERNAME environment variable and
passes this to exec_at_loc; again, this is for tracking purposes only, as exec_at_loc does not actually use
user ID for any direct purpose. The results of this task are then returned.

If run_task.py is launched as a Python script directly, then it will execute run_task using the command
line arguments provided to it as input. In this case, it will complete with a return code equal to the
results of this function. Since the run_task returns the results of the task, and the exec_at_loc returns
the return code of the subprocess used to execute its provided command, this will propagate any errors
in command execution back to the place where run_task.py was called.

Run Monitor
The run monitor is composed of a pair of HTML files – one for records up to two days old, one for those
up to one week old – which are generated and regularly updated by a Python script kept continuously
running to monitor for changes. This script takes its input from two primary sources. For tracking when
runs begin or end, it gets copies of all messages in all queues from the RabbitMQ server, using its
“firehose” feature. For tracking the status of these runs while they are in progress, it reads the
nems_run_status_log.txt file generated by nems.exe, each line of which specifies the module, cycle,
year, and iteration, with the final one being the most current.

This is achieved through the use of three scripts: eventmonitor_start.bat, nemseventmonitor.py, and
sj.py. The program eventmonitor_start.bat launches nemseventmonitor.py, which processes the
aforementioned input into a dataframe. The dataframe is passed to sj.py for conversion into HTML
output. Taken all together, the resulting process flow is shown in the figure below:

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 28

RABBITMQ
SERVER

Firehose
copies all
messages
from all
queues

Firehose

RUN MONITOR

Stores all run status
info in a dataframe

Pika reads incoming
messages, detects

run entering shared
queue, jognems run
starting or finishing
on worker, parnems

part starting or
finishing on worker,
run finishing overall

Run monitor reads
log files to get status
of all tracked runs,

updates periodically

Workstation

NEMS run
reports
current

status in its
log file(s)

Log

SJ.PY

Data is
saved
into

HTML
files in

common
location

Dataframe

USER

User
reads
HTML
files in

browser

HTM
L

Figure 6. Show Jobs Process Flow

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 29

Much like worker_start.bat, eventmonitor_start.bat is a simple script which activates the correct Python
environment and then runs nemseventmonitor.py. It provides a single argument to
nemseventmonitor.py: the desired location for the output HTML files.

The Python program nemseventmonitor.py was adapted from the World Energy Projection System
(WEPS) event monitor. It consists of two threads: one watches for incoming messages from the firehose,
while the other periodically checks for updates to the status log file of every currently-tracked run in
progress. Both threads update a shared dataframe and send it to sj.py for conversion to HTML output.
This output is written to a location specified by the first command line argument given when launching
the script.

To track incoming messages, a Pika connection is established to the RabbitMQ server. A queue “trace” is
established to receive messages from the exchange “amq.rabbitmq.trace”, which is where the firehose
publishes its message copies. A processing function is then set to execute whenever a message is
received in the queue. This function logs the received message to a file events_log.txt in the output
directory, then updates the dataframe based on its contents. Messages are sorted by their header info
into five groups: no update needed, task added to queue, task started, task succeeded, and task failed.

For tasks added to the queue, the message body is parsed to determine user ID, scenario, datekey, part
(if applicable), and run folder. Additionally, a check is performed to determine if this task is a subtask of
an existing run. If it is, then the user ID is updated to that of the parent task, as subtasks will initially
have the user ID of the user who launched the Celery worker instead of the user who launched the run.
If the task is a subtask, a flag will also be set to hide its parent task in the run monitor to avoid displaying
redundant rows. In either case, the dataframe is updated with a row containing the extracted values, a
host name of “Pending”, a status of “In queue”, and a timestamp of the current time. If a row already
exists with the same run folder, that row is overwritten; otherwise, a new row is added. The dataframe
is then sent to be exported in HTML form.

For tasks started, the process is very similar. The host machine name is also obtained from the message
body, as is the message ID. The latter is not displayed and is used only for internal tracking of which
messages are associated with the same task. The Status attribute is written as “Running” rather than “In
queue”. Otherwise, all steps are as described for tasks added to queue.

For successful and failed tasks, only the host name and message ID are obtained from the message
body. A check is performed to determine if this task is a parent to any subtasks – if so, the flag to hide it
in the run monitor is unset, and instead all of its subtasks are flagged to be hidden. Then the message ID
is used to find a matching row, which is updated with the extracted values and a timestamp of the
current time, along with the status of “Finished” (for successful tasks) or “Failed” (for failed tasks). A row
should always be found, since a task cannot succeed or fail without first being started; however, if none
is, a new one will be generated with “None” in all remaining columns. Finally, a manual call is made to
the function which checks for status log updates – only currently-running tasks are checked for updates,
so this ensures that all values are correct before they become locked in. The dataframe is then sent to
be exported in HTML form.

https://pika.readthedocs.io/en/stable/modules/connection.html

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 30

The thread responsible for tracking status log files runs a function to check for updates once per minute;
this time can be increased or decreased by adjusting the value passed to time.sleep. For each row in the
dataframe with status “Running”, the function uses the host name and run folder recorded for that row
to determine where the task in question is running, then looks for a status log file named
“nems_run_status_log.txt” in that directory. If this file is found, its last line is extracted and parsed for
cycle, year, and iteration, which are then used to update the relevant row of the dataframe. Once all
rows have been checked, the dataframe is sent to be exported in HTML form.

When the dataframe is sent for export, it is first cleared of all messages older than the past week. A
more recent copy is then made containing only data from the past two days, though this does not affect
the overall data stored. The former behavior can be adjusted by editing the function
remove_old_messages, while the latter can be adjusted by passing it a different argument when
creating the copy. Copies are then made of both dataframes without information which does not need
to be displayed – rows flagged for hiding, the flag which determines this, message ID, timestamp, and
parent task. These copies are sent to sj.py for conversion into HTML files in the output folder.

sj.py contains a function, generate_html_from_dataframe, which takes a dataframe and generates an
HTML file based on its contents. The file displays the same columns as are contained in the dataframe.
Clicking on the header of any of these columns sorts the display by that column, and there is a search
box for the first column, which will be user ID unless any changes are made. Reloading the page will
clear all sorting and filtering.

Operation
First, an appropriately-configured RabbitMQ server is required. In order to establish a new server, the
following steps are necessary:

1. Install Erlang (if not already present) and RabbitMQ on the server-to-be, following the
installation instructions from the RabbitMQ website. Note in particular that, if using a non-
administrative account, it will be necessary to copy the file .erlang.cookie from
system32/config/systemprofile to the user’s home path.

2. Ensure that the RabbitMQ Windows service is running. It should launch automatically upon
initial installation.

3. Ensure that access to port 5672 is permitted through the server’s firewall.
4. Using a command prompt, navigate to the sbin folder in RabbitMQ’s install location and set up a

new user using the following command (sans double quotes): “rabbitmqctl.bat add_user ‘test’
‘password’”. This will create a new user profile with username “test” and password “password”
on the server – if a different username or password is desired, simply replace the relevant field
in the command, while maintaining its surrounding quotation marks and escaping any necessary
characters.

5. To enable the event monitor to pick up events from the server, also activate RabbitMQ’s
“firehose” feature by running the following command (again, sans double quotes):
“rabbitmqctl.bat trace_on”. Note that this command in particular must be run again every time
the server is restarted.

To launch a Celery worker, ensure that tasks.py and worker_start.bat are located in the same directory,
then run worker_start.bat from a command prompt. The worker can then be stopped by the ctrl-c
keyboard shortcut or by closing its command prompt window. While running, unless this behavior has

https://www.erlang.org/

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 31

been modified, it will log all events to workerlog.txt including its startup messages, any tasks received or
completed, and any errors encountered. Unless making modifications such as the proposal above
regarding separating concurrency limits by queue, exactly one such worker should be launched on each
machine which will be hosting NEMS runs, from a user account with all necessary permissions to
complete those runs.

To launch a NEMS run through Celery, ensure that the program run_task.py is present in the
scripts/setup/src/cel folder, or if it is to be relocated ensure that nems_setup.py has its import and
shutil.copy statements modified accordingly. Additionally, ensure that the variable NEMSPYENV is set to
an environment with the Celery package and all dependencies installed – this should be done both for
the environment variable through a shell command and in the scedes file to be used. These
prerequisites being met, simply execute runnems.bat from a command line as usual and make all
appropriate selections. A command prompt window will be launched, per previous behavior. It is not
recommended to close this command prompt window until the run has been completed.

To operate the run monitor, it is necessary to leave a single instance of nemseventmonitor.py running
continuously, which will keep the output HTML file up to date as it receives new events from the
RabbitMQ server. This instance can be located on any computer and account with access and
permissions to modify files in the desired output directory, which is set to Z:/onl_tst2/sj currently. To
launch it, execute eventmonitor_start.bat in a command prompt window.

It is recommended that the run monitor be launched immediately after executing the “rabbitmqctl.bat
trace_on” command on the RabbitMQ server and before any runs are launched; any runs which started
before launching the monitor may not be properly tracked and may generate junk output. If the run
monitor is launched while previous HTML output files exist in the target directory, it will overwrite them,
so be sure to back up any previous monitor output which needs preservation before launching a new
instance. This behavior can also be used to clean up any junk output generated as a result of runs
executed prior to the run monitor’s launch; however, any runs which were started before launching the
run monitor, and which are still running, may generate new junk output upon completion of subtasks
and/or of the run itself.

The output of the run monitor will be two HTML files, one which discards old records after two days and
one which discards them after a week. These files can be read using any web browser, and refreshing
the page will update it for any changes have occurred since it was first opened. The run monitor checks
for log file updates at an interval of once per minute, as well as automatically updating whenever a
message is received from the RabbitMQ server indicating that a new task has started or has been
completed. Clicking on column headers permits sorting in ascending or descending order by the value of
that column, though any sorting will not be preserved through a page update.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 32

The NEMS Report Writer
The NEMS Report Writer, debuted in AEO2025, produces outputs from NEMS. It gathers data from the
restart file (the NEMS common database) to generate various outputs, including Excel files for
publication, Excel files for analysis, CSV files for data visualization, and other reports to support
debugging and analysis. It receives data from the restart file (a binary database containing tables stored
in npz format) and a set of standalone input files.
It is independently callable outside of a larger NEMS run, allowing for testing and modifications to tables
without the need to rerun the entire NEMS system.

NEMS Report Writer Structure
The NEMS Report Writer is structured modularly. It sequentially runs a preprocessor that prepares the
data, a base program that converts that data into tables, a final table program that formats those tables,
and then has a series of write routines to convert the formatted tables into publication tables.

Figure 7: Report Writer system diagram

Running the Report Writer
The Report Writer is designed to run independently or to be callable inside of a large NEMS run. It
requires essential information specific to the NEMS run, which is not available in the restart database or
input files (such as the restart file location, Study_ID, etc.) for generating NEMS tables. This information
must be provided to NEMS_RW at the time of initiation.

Two methods have been designed to convey the required information to the reporting platform:

1. Updating the User object by modifying the User object in RW_reporter_main.py (see the top
right).

2. Updating the user.csv File by modifying the user.csv file located in the package's main folder
(see the bottom right). This file should be used as an augment when running the program.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 33

Data in the user.csv file will overwrite the User object if the Report Writer is kicked off with an argument
like the following: Python RW_reporter_main.py user.csv.

Config.ini should be adjusted to set operational parameters, and tabreq.txt should be adjusted to
indicate tables to print.

Preprocessor Program
The preprocessor processor program processes the inputs; both configuration files that tell the report
writer what to do, as well as data files that are used to populate the final tables. These inputs include
the following:

Table 4: Preprocessor input files

Filename Brief description

user.csv Configuration information that is used when the report writer is used outside the

larger NEMS framework

tabreq.txt Indicates which tables are printed

table_var_def.toml Holds lists of required variables by table

table_mapping.xlsx Holds mapping from layin tables to AEO published tables

table_input.csv Specifies table ID, region name, and Table Program name

RW_coefficients.xls Holds conversion ratios and constants

regions.csv Holds regional information

layin.csv Specifies the key elements of each row for each table

citations.txt Citations and corresponding values used in publication

config.ini This file consists of two sections: Debugging and Settings

Base Program and Table Programs
There are 150 table programs, one corresponding to each data table modelers use to publish and/or
review specific data coming out from the model. For example, Table 1 titled “Total Energy Supply,
Disposition, and Price Summary” has rows from various NEMS modules giving information about
different fuels such as Natural Gas, Coal, Nuclear, Other Renewable Energy to give the reader an insight
as to the data for the selected range of dates. Other tables break down individual module sections into
smaller regional based data or fine details about all of the output from a module. To do this, NEMS
Report Writer uses the layin file, the table_var_def.toml file, and the RW
Tables/RW_fill_table_base_XXX.py (where XXX is the table number) to understand what rows the
program should print out to output files. The Layin.csv file gives the layout and formatting for output,
the table_var_def.toml file defines what variables will be used from the global data structure for the
output, and the RW_fill_table_base_xxx.py file holds the calculations to compute to fill out the data. By
using the make_base_tables in the base program, an unformatted table is generated first, holding in
memory all of the associated pieces that would generate a table for review by a user.

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 34

Postprocessor
Some tables require data from other tables that are calculated and cannot be retrieved from the restart,
resulting in difficulties completing calculations for certain data rows within the individual table
programs.

To address these issues, a special component called postprocessor_base.py was designed. This
component runs after the base table programs to “fill in” placeholders defined in those table program.
Additionally, some calculations can be performed in batches within this component and then utilized by
individual tables to improve performance.

RAN File Generator
RAN is a randomly accessible binary file used for visualizing NEMS projections in GrafNEM.
The RW_make_ran.py code was developed to generate the RAN file, which stores all NEMS tables) in
binary format, based on the provided documentation and FTAB references. RW_make_ran.py is a
component that can be run independently or integrated into the NEMS_RW platform (invoked by the
main function of RW_reporter_main.py). It reads table data from the "all row csv.csv" file generated by
the reporting platform and obtains table and row formatting information from layin.

Figure 8: RAN File Generator diagram

July 2025

U.S. Energy Information Administration | Integrating Module of the National Energy Modeling System 35

The NEMS Validator
The NEMS Validator, a python program written using the pytest framework, tests NEMS results to see if
they are appropriate for publication. After each NEMS run is completed, the validator runs checks that
answer questions such as:

1. Are there error codes in any NEMS logs?
2. Is NEMS properly calibrated to STEO and SEDS?
3. Do select subtotals add to the appropriate totals?
4. Do expected output files exist?
5. Are energy prices and quantities all positive?
6. Does total energy supply equal total demand?
7. Did the model converge?

If all tests are successful the validator writes out, in a root directory of the run, a file named
“Validator_pass.xlsx.” Conversely, if any test fails, the validator names the files “Validator_fail.xslx.”

Tests can be active, inactive, or off. Inactive tests run, but a failed results does not affect the file name
being “fail” or “pass.”

Figure 9: Sample Validator Tests

https://docs.pytest.org/en/stable/

	1. Introduction
	Scope and organization

	2. Overview of the Structure of NEMS
	Background
	The Integration Module
	Key Tasks

	3. Global Data Structure
	Pyfiler

	Energy market data representation
	Restart file

	4. Integrating Module Solution Methodology
	The NEMS iteration
	Introduction

	The Iteration Solution algorithm
	The NEMS cycle
	Introduction
	The cycle solution algorithm
	Parallel NEMS
	Foresight approach

	Discontinuities and convergence problems in NEMS
	Expected value foresight

	5. Managing NEMS runs
	System Design
	Queue Structure
	Cycle.py
	Tasks.py
	Worker_start.bat
	run_task.py

	Run Monitor
	Operation

	The NEMS Report Writer
	NEMS Report Writer Structure
	Running the Report Writer
	Preprocessor Program
	Base Program and Table Programs
	Postprocessor
	RAN File Generator

	The NEMS Validator

