

Emissions Policy Module of
the National Energy
Modeling System: Model
Documentation 2025

July 2025

www.eia.gov
U.S. Department of Energy

Washington, DC 20585

U.S. Energy Information Administration | Emissions Policy Module of the National Energy Modeling System i

The U.S. Energy Information Administration (EIA), the statistical and analytical agency within the

U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are

independent of approval by any other officer or employee of the U.S. Government. The views in this

report do not represent those of DOE or any other federal agencies.

 / Model Design and Concepts / EPM Documentation

EPM Documentation

EPM is the Emissions Policy, Module of the National Energy Modeling System (NEMS). EPM and
NEMS are developed by the U.S. Energy Information Adminstration. This site documents the
inputs, formulation, and source code of the EPM.

EPM is written in Python. Documentation for the source code of the CCATS module can be
found in the Model API Reference Section.

Introduction

Annual Model Updates

Model Assumptions

Overview
Fossil fuel combustion
Nonfuel use (Fuel-dependent processes)
Biomass combustion
Fuel-independent processes
Reporting

Inputs and Methods

Module inputs and outputs
Module algorithm
Emissions policy options

 / Model Design and Concepts / EPM Documentation / Introduction

Introduction

EPM is the Emissions Policy Module of the National Energy Modeling System (NEMS). The main
purpose of the EPM is to handle calculations of energy-related carbon dioxide (CO) emissions
at the U.S. economic sector and regional levels. These calculations are performed using energy
consumption estimates (which vary by sector, region, and year) and applying applying
appropriate sector-by-fuel emissions factors (which are established using the latest historical
data and are static over the projection). In addition to providing projections of CO emissions,
the EPM is also responsible for implementing various CO policy evaluation options. These
options can be used to simulate proposed market-based approaches to meet national CO
emission objectives.

The CO emissions estimates and policies modeled by the EPM focus specifically on energy-
related CO emissions. We define energy-related CO emissions as those resulting from fossil
fuel combustion, released during non-fuel use of energy products (such as industrial feedstocks),
and released during energy production (such as CO vented from geothermal wells). This
distinction between energy- and non-energy CO emissions categories in NEMS is discussed
further in the Model Assumptions section.

Annual Model Updates

This edition of the Emissions Policy Module (EPM)-Model Documentation 2025 reflects changes
made to the EPM since the publication of the 2023 Annual Energy Outlook. These changes
include:

Updates to carbon dioxide (CO) emissions factors
Additional CO emissions factors to represent new fuel usages for AEO2025
Added representation of vented CO emissions associated with natural gas processing
Changes to the code base from Fortran to Python

2

2

2

2

2

2 2

2

2

2

2

2

 / Model Design and Concepts / EPM Documentation / Model Assumptions

Model Assumptions

Overview

The Annual Energy Outlook 2025 (AEO2025) projects carbon dioxide (CO) emissions by fuel and
by sector for three energy-related activities:

Fossil fuel combustion
Nonfuel use of fossil fuels (for example, in industrial activities such as manufacturing plastics)
Naturally occurring CO vented during energy consumption or production (for example,
geothermal or natural gas processing)

For each activity, we estimate projected CO emissions by multiplying associated energy
consumption of each fuel by a CO emission factor. Emissions factors reflect the amount of CO
emitted per unit of energy consumed and are expressed as millions of metric tons (MMmt) of
CO per quadrillion British thermal units (quads) of energy use.

To calculate CO emissions factors, we start with CO coefficients at full combustion for each
fuel type. We adjust each coefficient by multiplying it with a combustion fraction between 0.0
and 1.0, arriving at an adjusted CO emission factor for each fossil fuel. We assume all fuels are
fully emissive when combusted (that is, a combustion fraction of 1.0). For nonfuel uses, the
combustion fraction reflects our estimates of how much carbon remains in the product instead
of being released into the atmosphere. We assume some nonfuel uses of fossil fuels capture all
carbon inputs but other nonfuel uses emit some CO during production. Emissions factors and
combustion fractions for all fossil fuel categories are listed below.

Fossil fuel combustion

CO emissions from fuel use vary based on the:

Carbon content of the fossil fuel
Fraction of the fuel combusted
Amount of the fuel consumed

The chemical composition of most fossil fuels is relatively consistent over time, resulting in little
to no change in their carbon factors over our AEO projections. However, some fuel categories
have greater variability. For example, coal is reported as a single fuel type, but if the underlying

2

2

2

2 2

2

2 2

2

2

2

coal ranks that make up the coal category change, the carbon factor can change over time.

For fuel uses of energy, we assume all of the carbon is oxidized, so the combustion fraction is
equal to 1.0 (in keeping with international convention). Some products, such as petroleum coke,
have both fuel and nonfuel uses, and we adjust the combustion fraction accordingly. Lubricants
are not used for their energy value, but we assume that half of the lubricants consumed are
combusted (therefore, emitted) and half are not.

Nonfuel use (Fuel-dependent processes)

CO emitted during nonfuel energy use varies widely across energy products. For some
products, such as asphalt and road oil, we assume that all CO is captured during nonfuel uses.
As a result, the adjusted CO emissions factor is zero. For other fossil fuel inputs, such as those
for petrochemical feedstocks, some CO is emitted during production, and some carbon is
stored in a final product (and not emitted into the atmosphere), reducing the fuel’s CO
emissions relative to full combustion.

Biomass combustion

By convention, we assume biomass combustion results in net-zero CO emissions. Specifically,
we consider any CO emitted by biogenic energy sources, such as biomass and alcohols, to be
balanced by the CO sequestration that occurred during biomass production.

For fuels or fuel categories containing only biogenic fuels (such as woody biomass or biogenic
municipal solid waste), CO emissions are reported as zero. For fuels that contain both biogenic
and non-biogenic components, such as ethanol blended with motor gasoline or biodiesel,
biogenic components are excluded from emissions calculations. To illustrate the potential for
these emissions in the absence of any offsetting sequestration-as might occur under related
land-use changes, with CO being sequestered in terrestrial carbon sinks-we calculate and
report the CO emissions from biogenic fuel use separately. However, these values are not
included in total or sectoral emissions estimates.

Fuel-independent processes

Some industrial processes release CO as a result of natural chemical processes, rather than
through the fuel or nonfuel use of energy products. One example is CO released from
limestone during cement production. Although these emissions contribute to an overall national
total, they are outside the scope of what we consider to be energy related. As such, we calculate
and report these CO emissions separately, but we do not include these values in our total or
sectoral energy-related emissions estimates.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Reporting

Figure 2 clarifies how we distinguish energy and non-energy CO emissions in our published
AEO tables.

Figure 2. Energy and non-energy emissions categories in NEMS

The CO emissions reported in AEO2025 Table 18 and Table 70 include all energy-related
emissions from fossil fuel combustion, fuel-dependent processes, and venting. Table 18 groups
these emissions by economic sector and fuel type, and Table 70 groups them by economic
sector and end use. Table 71 reports CO emissions by all categories shown in Figure 2, with
subtotals for energy and non-energy CO emissions.

2

2

2

2

U.S. Energy Information Administration | Emissions Policy Module of the National Energy Modeling System

Table 1. CO2 emissions factors

million metric tons of CO2 per quadrillion British thermal units

Fuel type
CO2 coefficient at full

combustion
Combustion

fractiona
Adjusted emission

factor

Petroleum

 Propane used as fuel 62.88 1.0 62.88

 Propane used as feedstock 62.88 0.2 12.58

 Ethane used as fuel 59.58 1.0 59.58

 Ethane used as feedstock 59.58 0.2 11.92

 Butane used as fuel 64.75 1.0 64.75

 Butane used as feedstock 64.75 0.2 12.95

 Isobutane used as fuel 64.94 1.0 64.94

 Isobutane used as feedstock 64.94 0.2 12.99

 Natural gasoline (pentanes plus) used as fuel 66.88 1.0 66.88

 Natural gasoline (pentanes plus) used as feedstock 66.88 0.2 13.38

 Motor gasoline (not including ethanol) 70.66 1.0 70.66

 Jet fuel 72.23 1.0 72.23

 Distillate fuel (not including biodiesel) 74.14 1.0 74.14

 Residual fuel 75.09 1.0 75.09

 Asphalt and road oil 75.35 0.0 0.0

 Lubricants 74.07 0.5 37.03

 Petrochemical feedstocks 69.26 0.308 21.31

 Kerosene 73.19 1.0 73.19

 Petroleum coke (industrial) 102.12 0.956 97.59

 Petroleum coke (electric power) 102.12 1.0 102.12

 Petroleum still gas 66.73 1.0 66.73

 Other industrialb 30.39 1.0 30.39

Coal

 Residential and commercial 95.99 1.0 95.99

 Metallurgical 93.90 1.0 93.90

 Coke 113.67 1.0 113.67

 Industrial otherc 95.70 1.0 95.70

 Electric powerd 95.81 1.0 95.81

Natural gas

 Used as fuel 52.91 1.0 52.91

 Used as hydrogen production feedstock 52.91 1.0 52.91

 Used as other industrial feedstock 52.91 0.366 19.37

Biogenic energy sourcese

 Woody biomass 93.81 1.0 93.81

 Biogenic waste 90.64 1.0 90.64

 Biofuels heat and coproducts 93.81 1.0 93.81

 Ethanol 68.42 1.0 68.42

 Biodiesel 72.73 1.0 72.73

 Renewable diesel and gasoline 73.15 1.0 73.15

 Renewable natural gas 52.91 1.0 52.91

 Biobutanol 70.58 1.0 70.58

 Other biomass liquids 73.15 1.0 73.15

Data source: U.S. Energy Information Administration, Annual Energy Outlook 2025, National Energy Modeling System run:

ref2025.d032025a, and Appendix tables A‐20, A‐32, and A‐226, U.S. Environmental Protection Agency (EPA), Inventory of U.S.

Greenhouse Gas Emissions and Sinks: 1990–2022

U.S. Energy Information Administration | Emissions Policy Module of the National Energy Modeling System

Note: Emissions coefficients from EPA are converted from units of carbon to CO2 by multiplying by a factor of (44/12).a For

feedstocks, the combustion fraction includes fuel‐dependent process emissions as well as inputs that might be combusted

onsite.
b Other industrial petroleum includes industrial lubricants, special naphtha (solvents), waxes, and miscellaneous products such

as sulfur.
c Industrial other coal is for process heat, and qualitatively differs from coal used for steel production (metallurgical coal).
d The National Energy Modeling System specifies emission factors for coal used for electric power generation by coal supply

region and types of coal, so the average CO2 content for coal varies throughout the projection period. The electric power

value of 95.81 shown here illustrates a typical coal‐fired emission factor.
e We include biogenic sources for informational purposes, but we do not count them in total energy‐related CO2 emissions.

 / Model Design and Concepts / EPM Documentation / Inputs and Methods

Inputs and Methods

The EPM is called at the end of each NEMS iteration, after all other modules have been called.
The module uses energy consumption projections from other NEMS modules as well as
exogenous carbon dioxide (CO) emissions factors to create projections of energy-related CO2
emissions. In addition to emissions calculations, if CO policy cases are enabled, some form of
energy price adjustment is calculated to account for the CO tax, or permit fee, for the next
iteration. The CO fee is either fixed (for a straight CO tax) or is varied in each NEMS iteration
until a CO goal is met (for the permit auction and permit market options).

The fee on CO emissions is modeled as an adjustment on the end-use price of the fuel. Two
sets of end-use price variables are maintained in NEMS: an unadjusted set of prices without any
CO fee added, and an adjusted set of prices that includes the CO fee. The unadjusted prices
are those determined by the NEMS supply and conversion modules. The adjusted prices, with
the CO fee included, are the price variables used by the demand and conversion modules
purchasing the fuel. In the Integrating Module, after each module is executed, the adjusted fuel
prices are recalculated based on the current unadjusted fuel price and CO fee.

Module inputs and outputs

The input data for the EPM comes primarily from other modules of NEMS. Exogenous data
include the policy options to be implemented and the CO emission factors. If a CO tax
scenario is to be implemented, the tax rate must also be specified. Alternatively, a CO goal may
be specified, and the CO tax to meet that goal will be set in the EPM once per iteration of the
NEMS solution algorithm. Output from the EPM consists of the volumes of CO emissions by
fuel and economic sector, adjustments to the end-use prices of fuels consumed by the demand
and conversion modules, and revenue accrued based on these adjustments. The adjustments are
additions to prices in 1987 dollars per million Btu. Revenue, in billions of 1987 dollars, from the
CO penalty is also calculated and can be used by the Macroeconomic Activity Module or for
offline analysis of macroeconomic feedbacks.

Total energy-related CO emissions from both combustion and non-combustion sources are
calculated in the EPM from information in several NEMS common blocks. In many cases, CO
emissions are calculated using QBLK, which contains the projected quantities of end-use fuels
consumed, and EMEBLK, which contains the CO emissions factors to convert energy
consumption into CO emissions. Some additional common blocks are called to address more
specific emissions estimates:

2

2

2

2 2

2

2

2 2

2

2

2 2

2

2

2

2

2

2

2

2

QMORE, INDOUT, and BIFURC - are called to calculate non-combustion or feedstock use of
some fossil fuels
PMMRPT - to remove biodiesel and ethanol from transportation petroleum emissions
UEFDOUT - for electric power sector natural gas consumption
COALEMM - for projected electric power sector coal consumption by sulfur dioxide
classification category and associated CO2 for each category
TRANREP - to account for transportation sector electric power consumption
HMMBLK - for heat and power, as well as feedstock, use of natural gas in hydrogen
production
QSBLK - for CO2 calculations specific to California
CCATSDAT - for CO2 capture and storage volumes
OGSMOUT - for vented CO2 emissions released during natural gas processing
COGEN - for vented CO2 emissions released during geothermal electricity generation
WRENEW - for consumption of biogenic and non-biogenic municipal solid waste for
electricity generation

The resulting CO emissions estimates are stored in the GHGREP common block. The inputs and
outputs associated with the EPM CO price policies are also stored in the NEMS global data
structure. As input, these common blocks contain the NEMS end-use fuel prices:

MPBLK
NGTDMOUT
COALPRC
PMORE
EUSPRC
PONROAD

These prices, established in the NEMS supply and conversion modules, are the EPM input
prices. As output, the EPM projects a dollar-per-Btu adjustment to each product-sector price to
reflect any CO tax or allowance fee. The adjustment is added to the NEMS end-use fuel prices,
and they are stored in a parallel set of price common blocks:

AMPBLK
ANGTDM
ACOALPRC
APMORE
AEUSPRC
APONROAD

When no CO policy options are in effect, the adjusted price common blocks match the
unadjusted price common blocks from the supply modules. The energy price adjustments, equal
to the difference between the two sets of prices, are stored in the EMABLK common block. If

2

2

2

2

nonzero, these price adjustments are used as starting values when either of the CO goal
options (auction or permit market) are in effect. Several policy options result in revenue from the
CO penalty flowing to the government. This revenue is furnished to the Macroeconomic
Activity Module through the EMISSION common block.

Module algorithm

The EPM is executed once per iteration to determine total CO emissions produced, the
revenue created by any tax or permit fees for CO emissions and, depending upon the scenario,
the level of offsets produced. For CO emission policy options, a heuristic algorithm (Regula
Falsi) sets a new CO fee to bring the CO emissions closer to the selected policy CO goal.

The general flow of EPM, including relevant function calls and variable names, is as follows: *
First year, first iteration processing

Integrating module nems_flow.py executes run_epm.py in “read” mode, which runs the
‘epm_read’ function from epm_read.py
‘epm_read’ reads the policy switches in the control file, epmcntl.toml, and parses
emissions-related data from several other EPM input files:

Emissions policy options are read in through four binary variables (‘tax_flag’,
‘permit_flag’, ‘market_flag’, ‘offset_flag).

For emissions tax policies, additional switches are available to apply the tax
to specific sectors (‘elec_flag’, ‘tran_flag’, ‘resd_flag’, ‘comm_flag’)
For emissions market policies, parameters can be set to specify program
elements (‘bank_flag’, ‘bank_startyr’, ‘bank_endyr’, ‘bank_end_balance’)

Historical CO emissions data are read in through epm_history.csv
Data for emissions policy cases is read in from epm_tax_or_cap.csv
A mapping of Coal Market Module regions are mapped to Census regions through
epm_coal_regions.toml
Yearly CO emissions factors for each fuel and sector are read in through
epm_carbon_factors.tsv
Mercury emission classes and caps (for use in the Electricity and Coal Market
Modules) are read from epm_mercury_classes.csv and epm_mercury_caps.csv.
Additional mercury parameters, including control technologies and mercury
emissions rates are read through epm_mercury_parameters.toml
Data and parameters pertaining to the California AB-32 cap and trade program are
read in through epm_ab32_data.csv and epm_ab32_parameters.toml
Exogenous emissions baselines for other (non-CO) gases and offset assumptions
(marginal abatement cost tables) are read from ghgoffx.xlsx
Emission allowance auction shares are read from epm_restart.py

2

2

2

2

2

2 2 2

2

2

2

Nems_flow.py executes run_epm.py in “main” mode, which calls the core ‘epm’ function from
epm_core.py
‘epm’ then calls on several functions from other supporting Python files to perform various
EPM operations

The ‘sum_emissions’ function (from epm_sum_emissions.py) adds up CO emissions
across all sectors of the economy, shares emissions by region and electrical power
usage, handle historical benchmarking/overwrites, and report the totals.

For the market permit system with offset policy option, the ‘sum_emissions’
function calls the ‘oghg’ function (from epm_other_ghg.py) to determine what
level of emission offsets is available to raise the CO cap, given the current
CO tax

The ‘accntrev’ function (from epm_revenue.py) calculates revenues from CO tax or
CO permit fees from emissions policy cases
For emissions policy options including a market permit system, the ‘initrev’ function
(from epm_revenue.py) allocates revenue to end-use sectors based on initial sector
shares of CO emissions
For emissions policy options including a permit auction or market, the ‘regfalsi’
function (epm_regula_falsi.py) calculates new CO taxes to reduce the absolute
difference between the CO emissions and an established CO goal
For emissions policy options including a CO2 tax, the ‘price_adjust’ function (from
epm_adjustments.py) adjusts energy prices for end-use fuels are adjusted by
multiplying the CO tax by the fuels’ emission factor

After each NEMS module is called, prices are recalculated to include a tax by adding the tax
price to the prices projected by the supply modules (though the ‘copy_adjusted’ function
from pyfiler1.py in the NEMS main module).

Emissions policy options

In addition to providing estimates of energy-related CO emissions, one of the EPM’s primary
functions is to model hypothetical emissions policies. The EPM can model five different policy
scenarios in NEMS. Each of these policy cases can be turned on or off by adjusting their
associated binary ‘flag’ variables in the EPM control parameters file (epmcntl.toml). Descriptions
of each policy scenario are provided below.

Carbon dioxide tax

A tax per kilogram of carbon for fossil fuels is converted to a dollar-per-Btu tax and applied to
the prices for each fuel consumed in each sector covered by the tax, based on the CO emission
factor for that fuel and sector. The tax can be input in either nominal or real dollars, and a
different tax may be set for each projection year. Fossil fuel prices are adjusted to include the
tax. Variables represent the unadjusted prices that are filled by the supply modules. The size of

2

2

2

2

2

2

2

2 2

2

2

2

the adjustment or tax that the EPM fills yields the adjusted prices. These adjusted prices are
used by the demand and conversion sector modules to simulate the effect that the tax has on
CO emissions levels. Projected revenue from the tax is passed to the Macroeconomic Activity
Module, where allocation of such revenue (for example, a deficit-neutral return to consumers)
depends on a user-specified option setting. Generally, large changes in government revenue
would require additional offline analysis to assess macroeconomic feedbacks.

Permit auctions

An auction to distribute emissions permits is simulated. The total number of permits sold
corresponds to the total CO emission goal that is set by the user. A different goal may be set for
each projection year. Essentially, this option determines the permit fee necessary to achieve the
CO goal by clearing the auction market. The permit fee is treated as a CO emissions tax and
used as an adjustment to the fossil fuel prices. A new auction price is set at the end of each
NEMS iteration (where one iteration in the solution algorithm refers to a single execution pass
through all NEMS modules for a single projection year) until the emissions reach the goal. The
permit auction is assumed to operate with no initial allocation of emission permits. Similar to the
CO tax option, revenue from the auction is passed to the Macroeconomic Activity Module
where its effect may require additional analysis.

Market for permits

A market for tradable carbon dioxide emission permits is simulated with the assumption that an
initial distribution of marketable permits to emission sources takes place. The permits are
transferable. Depending on a user-specified model option, the permits may be treated as
bankable across years. As with the CO tax and auction options, the full market price of the
permits is added to energy prices on a dollar-per-Btu basis. The system of marketable permits is
implemented in the same way as in the permit auction, except the calculation of revenues from
permit sales. Similar treatment is warranted because the marginal cost of a free permit is
equivalent to one purchased at auction, given the opportunity cost of holding the distributed
permit.

In an open, competitive permit market, the permit will tend to be priced at the marginal cost of
reducing CO emissions, regardless of the initial distribution of permits. If permits are purchased
by suppliers and passed through to the fuel price, the marginal cost of the CO emissions by a
particular sector in a region will be reflected in the individual end-use fuel cost for that sector.
The evaluation of the initial distribution of permits depends on the sector.

For those sectors in which the product prices are based on marginal cost, as in the Liquid Fuels
Market Module, the value of the initial distribution of permits may be ignored; it does not affect
the price of products. However, in the regulated electricity sector, where the average cost is
used to determine price, the revenue attributed to the free use or sales of the initially
distributed permits would possibly be passed through to the consumers. The value of the initial

2

2

2 2

2

2

2

2

distribution of permits is calculated, but it is not used for electricity pricing. Instead, the full cost
of the permits, as though there were no initial distribution, is reflected in the projected
electricity price.

As with the auction, a new permit fee is set at the end of each NEMS iteration (where one
iteration in the solution algorithm refers to a single execution pass through all NEMS modules
for a single projection year). The fee is adjusted up or down in response to the total CO
emissions obtained. The price of an allowance is adjusted until the total carbon dioxide
produced is within a tolerance of the goal for that year.

Market for permits with emission offsets

The offset option allows the goal on tradable emissions permits to increase through a user-
specified supply of offsets, expressed as marginal abatement cost tables for other (non-CO)
gases. This option can be used to analyze a greenhouse gas emission reduction policy that
credits reductions in emissions from non-covered sources, reforestation, or purchases of
emission reductions credits from abroad. Purchases of offsets, in millions of metric tons available
at the given allowance price, are added to the CO goal. Although some test values for offsets
are available, any formal use of this option would require additional research to arrive at
appropriate assumptions. The specification of offset supply curves, or marginal abatement cost
tables, along with exogenous projections of greenhouse gases other than energy-related CO ,
are made through the ghgoffx.xlsx input file.

Early-compliance emissions allowance banking with smooth carbon
fee growth

A cap and trade with banking is implemented by finding the starting carbon price, and then
escalating the price at a fixed rate that clears the bank over the compliance period. The bank is
determined as the sum of the emissions goal minus projected emissions over the relevant
period. The starting price is guessed based on results of prior NEMS cycles. If no data from prior
NEMS cycles are available to construct price estimates, then estimates are created from scratch
The projected prices are set in the start year based on the guess, then the case is run as a
carbon fee case.

The option to allow banking of emissions permits can also be combined with either the permit
auction or permit market by adjusting the ‘bank_flag’ variable in the EPM control file
(epmcntl.toml). The details of the banking policy are controlled by additional parameters
beginning with the “bank” prefix in the control file (e.g., ‘bank_startyr’ and ‘bank_endyr’).

2

2

2

2

 / Model API Reference / epm / epm_adjustments module

epm_adjustments module

Policy functions for applying price adjustments to the end-use fuels.

This file implements the etax_adjust and price_adjust functions, which calculate price
adjustments for energy taxes and carbon prices, respectively.

Calculate price adjustments (energy taxes) to apply to end-use fuels.

This function is called by the epm function if the energy tag flag is set in the EPMCNTL file.
The bulk of the function assigns energy taxes to the appropriate price adjustment variables
defined in the EMABLK common block. In each case, we are finding the price that the
demand sectors respond to and adjusting that price based on an energy tax. This is
implemented by comparing prices from the previous two NEMS cycles.

This is closely related to the price_adjust function, which carries out similar calculations for
the case of carbon prices.

Parameters: restart (Restart) – The currently loaded restart file data.

 See also

epm

Core EPM routine that calls this function to compute adjustments.

price_adjust

Similar function for the case of a carbon price.

Calculate price adjustments (carbon content) to apply to end-use fuels.

Called by the epm function if the tag flag, market flag, or permit flag is set in the EPMCNTL
file. The bulk of this function assigns carbon prices to the appropriate price adjustment
variables defined in the EMABLK common block. In each case, we are finding the price that

epm_adjustments.etax_adjust(restart: Restart)→ None [source]

epm_adjustments.price_adjust(restart: Restart, scedes: Scedes)→ None [source]

the demand sectors respond to and adjusting the price based on the carbon content of the
fuel and the tax. This is implemented by comparing prices from the previous two NEMS
cycles.

This is closely related to the etax_adjust function, which carries out similar calculations for
the case of an energy tax.

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.

 See also

epm

Core EPM routine that calls this function to compute adjustments.

etax_adjust

Similar function for the case of an energy tax.

 / Model API Reference / epm / epm_common module

epm_common module

Constant values and general utility functions for EPM.

Legacy base_yr constant for use in the sum_emissions, oghg, and accntrev functions.

It is the NEMS year index for the last year of history overwrites. When reading history in
EPMDATA, 2023 is currently the last data year.

 See also

EPM_READ_HIST

Same value for the epm_read function.

Legacy hist constant for use in the epm_read function.

It is the number of years of emissions factor data, and indicates that we should read the
historical CO2 data through NEMS year 34 (2023).

 See also

BASE_YR

Same value for several other functions in EPM.

Legacy epm_factor constant used by the regfalsi function.

This is a mutliplicative factor to branch outward by when trying to get the bracketing points.

 See also

REGFALSI_TOL

Tolerance for the regfalsi function.

epm_common.BASE_YR: Final[int] = 34

epm_common.EPM_READ_HIST: Final[int] = 34

epm_common.REGFALSI_EPM_FACTOR: Final[float] = 3.0

Legacy tol constant used by the regfalsi function.

This is our tolerance on reaching the pollution goal, so that the function knows when it has
found the root to the desired level of accuracy.

 See also

REGFALSI_EPM_FACTOR

Bracketing factor for the regfalsi function.

Legacy ctb constant used by the regfalsibank function.

In the rebracketing request logic, if the last two emissions totals were bigger than this value,
adjust the allowance price by slope rather than brackets.

 See also

REGFALSIBANK_EPM_FACTOR

Bracketing factor for the regfalsibank function.

REGFALSIBANK_TOL

Tolerance for the regfalsibank function.

Legacy epm_factor constant used by the regfalsibank function.

This is a mutliplicative factor to branch outward by when trying to get the bracketing points.

 See also

REGFALSIBANK_CTB

Adjustment threshold for the regfalsibank function.

REGFALSIBANK_TOL

Tolerance for the regfalsibank function.

epm_common.REGFALSI_TOL: Final[float] = 1.0

epm_common.REGFALSIBANK_CTB: Final[float] = 0.0

epm_common.REGFALSIBANK_EPM_FACTOR: Final[float] = 0.01

epm_common.REGFALSIBANK_TOL: Final[float] = 5.0

Legacy tol constant used by the regfalsibank function.

This is our tolerance on reaching the long-term banking goal, so that the function knows
when it has found the root to the desired level of accuracy.

 See also

REGFALSIBANK_CTB

Adjustment threshold for the regfalsibank function.

REGFALSIBANK_EPM_FACTOR

Bracketing factor for the regfalsibank function.

Set the path where EPM should save its EPMOUT log file.

An empty file will be created with the specified path, overwriting the file if it already exists.

Parameters: file_path (Path) – The log file path to use.

 See also

set_log_verbosity

Set the logging verbosity level.

log_it

Write a message to the log file.

Set the verbosity level EPM should use when logging to the EPMOUT file.

The verbosity level corresponds to the dbugepm parameter in the EPM control file. It
determines which messages (if any) get written to the EPMOUT log file.

Parameters: verbosity (int) – The desired verbosity level. There are three settings: 0
turns logging off, 1 turns logging on, and 2 enables additional verbose
logging.

 See also

set_log_file_path

epm_common.set_log_file_path(file_path: Path)→ None [source]

epm_common.set_log_verbosity(verbosity: int)→ None [source]

Set the path to the log file.

log_it

Write a message to the log file.

Write a timestamped log message to the EPMOUT log file.

The provided parts of the message are converted to strings and then joined together with a
separator before being written to the log file. Messages will only be written if logging is
switched on, and messages flagged as “verbose” will only be written if the verbosity level is
set to maximum.

Before ever calling this function, ensure that both the log file path and the logging verbosity
have been set using their associated functions.

Parameters: message_parts (Any) – Zero or more arguments that will be joined
together to form the log message. These objects should be convertable
to strings.
sep (str, optional) – The joining string to use between the message
parts. Newlines are used by default.
verbose (bool, optional) – If set to True, this message will be flagged as
“verbose” and not written unless the logging verbosity level is set to
maximum. Defaults to False.

Raises: RuntimeError – If this function is called before setting the log file path and
verbosity level.

 See also

set_log_file_path

Set the path to the log file.

set_log_verbosity

Set the logging verbosity level.

A standardized way to print an important message to stdout.

In integrated runs, this will be captured by the nohup.out file.

Parameters: cycle (int) – The current NEMS cycle number, also known as curirun.

epm_common.log_it(*message_parts: Any, sep: str = '\n', verbose: bool = False)→ None [source]

epm_common.print_it(cycle: int, message: str)→ None [source]

message (str) – The message to be printed.

Infer the location of the EPM code and whether it is running integrated.

This implementation uses the expected directory structures for integrated and standalone
EPM runs. It looks for a file named run_epm.py and returns the path to the directory
containing that file. Depending on where the file was found, we can determine whether EPM
is running integrated or standalone.

Returns:
Path – Full path to the directory containing the EPM code.
bool – Whether EPM is running integrated (True) or standalone (False).

Raises: RuntimeError – If the function is unable to definitively classify the EPM run
configuration.

Determine whether EPM is running integrated with the rest of NEMS.

This is equivalent to calling the discover_run_configuration function and discarding the path it
returns.

Returns: True if EPM is running integrated with NEMS and False if EPM is running
standalone.

Return type: bool

Get the path to the main EPM code directory for this run.

This is equivalent to calling the discover_run_configuration function and discarding the
boolean flag it returns.

Returns: Full path to the main EPM code directory.
Return type: Path

Get the path to the EPM input directory for this run.

Returns: Full path to the EPM input directory.
Return type: Path

epm_common.discover_run_configuration()→ tuple[pathlib.Path, bool] [source]

epm_common.running_integrated()→ bool [source]

epm_common.get_epm_path()→ Path [source]

epm_common.get_input_path()→ Path [source]

epm_common.get_output_path()→ Path [source]

Get the path to the directory where EPM should save its output files.

Returns: Full path to the EPM output directory.
Return type: Path

Change the given file path to include the current NEMS cycle number.

The cycle number is inserted with a ‘.’ immediately before the file extension, so a file path of
C:/folder/example.txt would be returned as C:/folder/example.3.txt for the third cycle.

Parameters: file_path (Path) – Original file path without cycle number incorporated.
cycle (int) – The current NEMS cycle number, also known as curirun.

Returns: The new path including the cycle number.
Return type: Path

epm_common.incorporate_cycle_number(file_path: Path, cycle: int)→ Path [source]

 / Model API Reference / epm / epm_core module

epm_core module

Core routines for the NEMS Emissions Policy Module (EPM).

The module is called from NEMS main as long as RUNEPM=1 is set in the scedes.

The primary role of this module is to add up carbon emissions from each sector of the U.S.
economy in proportion to fuel consumption. That task is handled by sum_emissions, which is
called from within the main epm function.

When required, EPM also implements carbon policy options – the first three policy options
listed below are mutually exclusive (one at a time), the fourth option is a variation on the market
policy, and the fifth option is a modifier that can be used with either the carbon cap or market
policy:

1. Carbon Tax:

A nominal or real $ tax per kilogram of carbon for fossil fuels. It is converted to a $/btu
tax for each fuel/sector based on its carbon content. Revenue from the tax is passed to
the macroeconomic module. There, treatment of such revenue (e.g., reducing the deficit
or reducing other taxes, etc.) depends on options in effect. Generally, large changes in
gov’t revenue would require additional offline analysis to asses macroeconomic
feedbacks.

This policy is triggered by setting tax_flag in EPMCNTL and uses values from the section
titled “EPM Carbon Tax or Carbon Cap Data” in EPMDATA. You may also want to set
INTLFDBK=1, MACTAX=4, INDBMOVR=1, and RFHISTN=$NEMS/…/rfhist_nref.txt in
the scedes.

2. Auction of Permits:

A carbon goal is specified by the user. The goal or cap is achieved by requiring an
allowance to emit carbon. An auction clearing price is determined, through the NEMS
iterative process, that will clear the auction market. Essentially, this option determines
the carbon tax (or allowance fee) necessary to achieve the total carbon cap. The auction
to price and allocate emissions allowances is assumed to operate with no initial allocation
of allowances. As in option 1, Carbon Tax, revenue from the auction is passed to the
macroeconomic module, where its effect may require additional analysis.

This policy is triggered by setting auction_flag in EPMCNTL and uses values from the
section titled “EPM Carbon Tax or Carbon Cap Data” in EPMDATA. You may also want to
set INTLFDBK=1, MACTAX=4, INDBMOVR=1, and RFHISTN=$NEMS/…/rfhist_nref.txt
in the scedes.

3. Market for Permits:

Same as option 2, Auction of Permits, but permits are transferable within the country
(though not bankable). An initial distribution of emissions permits, equal to base year
emissions, is assumed to take place. As a result, the revenue from the sale of allowances
is assumed to be redistributed back to the individual sectors. For regulated electric
utilities, the initial revenue from the allowance distribution would be considered
independent of the cost (or opportunity cost) of purchasing the permits. The amount of
this initial revenue or subsidy is calculated, but no treatment of it is performed for pricing
purposes. The full cost of the permits, however, does feed through to the electricity price.
Therefore, the effect on the electricity price is probably overstated (unless marginal cost
pricing is assumed).

This policy is triggered by setting market_flag in EPMCNTL and uses values from the
section titled “EPM Carbon Tax or Carbon Cap Data” in EPMDATA. You may also want to
set INTLFDBK=1, MACTAX=4, INDBMOVR=1, and RFHISTN=$NEMS/…/rfhist_nref.txt
in the scedes.

4. Market for Permits with Emissions Offsets:

Same as option 3, Market for Permits, but allows for the total cap on emission allowances
to increase through a supply of offsets. The amount of offsets for reforestation
(increasing carbon sequestration) and coal bed methane capture are specified at various
permit prices; the higher the price, the greater the assumed offsets (i.e., a supply curve of
exogenous emission allowance offsets). The offset (in tons) available at a given allowance
price is added to the carbon goal.

This policy is triggered in the same manner as option 3, but additionally requires setting
offset_flag in EPMCNTL.

5. Early-Compliance Banking w/ Cap-and-Trade and Smooth Carbon Fee Growth:

A cap and trade with banking is implemented by finding the starting carbon price,
escalated at a fixed rate, that clears the bank over the compliance period. The bank is
determined as the sum of cap minus emissions over the relevant period. The starting
price is guessed based on results of prior NEMS cycles. The projected prices are set in the
start year based on the guess, then the case is run as a carbon fee case.

The banking policy can be combined with either option 2 or option 3, and is triggered by
setting bank_flag in EPMCNTL. The details of the banking policy are controlled by
additional parameters beginning with the bank_ prefix in EPMCNTL (e.g., bank_startyr and
bank_endyr).

Top-level routine for running the Emissions Policy Module (EPM).

Calling this function runs the core EPM code, but does not handle the reading of EPM’s input
files. See the module-level documentation for details on the Emissions Policy Module as a
whole.

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.
variables (Variables) – The active intermediate variables for EPM.

 See also

epm_read

Read the EPM input files and open the EPM output file.

sum_emissions

Called by this function to add up U.S. carbon emissions.

epm_addoff

Called by this function to account for carbon offsets.

regfalsibank

Called by this function to compute a starting carbon price.

accntrev

Called by this function to calculate emissions policy revenue.

initrev

Called by this function to compute value of permit allocation.

epm_core.epm(restart: Restart, scedes: Scedes, variables: Variables)→ None [source]

regfalsi

Called by this function to solve for a policy carbon price.

etax_adjust

Called by this function to calculate energy tax adjustments.

price_adjust

Called by this function to compute carbon price adjustments.

 / Model API Reference / epm / epm_fortran module

epm_fortran module

Stand-ins replacing Fortran functionality for the new Python EPM.

Everything in this file should eventually be made obsolete and deleted. These utilities exist only
to simplify the process of translating Fortran code into Python. As the new Python code matures
and is refactored, uses of these utilities should be replaced with more Pythonic solutions.

Provide a substitute for subroutine ReadRngXLSX defined in nemswk1.f.

The Fortran subroutine of this name defined in $NEMS/source/nemswk1.f reads all “defined
ranges” from one worksheet of an Excel spreadsheet into memory for later retrieval with the
getrngr and getrngi subroutines.

For this Python version, just read the entire Excel worksheet into a pandas DataFrame and
return it. That DataFrame will then be passed into Python versions of getrngr and getrngi to
extract the numeric data.

Parameters: excel_file (BinaryIO) – A file object reading in binary mode from the
Excel file.
sheet_name (str) – The name of the worksheet to read.

Returns: Unprocessed contents of the Excel worksheet.
Return type: pd.DataFrame

 See also

getrngr

Used to extract float arrays from this function’s return value.

getrngi

Used to extract int arrays from this function’s return value.

epm_fortran.readrngxlsx(excel_file: BinaryIO, sheet_name: str)→ DataFrame [source]

epm_fortran.getrngr(df: DataFrame, name: str, n_rows: Literal[1], n_cols: Literal[1])→ float64 [source]

epm_fortran.getrngr(df: DataFrame, name: str, n_rows: int, n_cols: int)→ ndarray[Any, dtype[float64]]

Provide a substitute for subroutine getrngr defined in nemswk1.f.

The Fortran subroutine retrieves arrays of reals from an Excel worksheet after readrngxlsx has
already been called to read the file.

This Python version just searches through the DataFrame returned by readrngxlsx to find and
process the requested range of data. It is returned as an array of floats with the appropriate
number of dimensions.

Parameters: df (pd.DataFrame) – An Excel worksheet DataFrame returned by
readrngxlsx.
name (str) – The name of the desired range of data.
n_rows (int) – The number of rows the data spans in the spreadsheet.
n_cols (int) – The number of columns the data spans in the
spreadsheet.

Returns: The requested scalar, 1D array, or 2D array of data.
Return type: np.float64 | npt.NDArray[np.float64]

 See also

readrngxlsx

Call to get the DataFrame for this function.

getrngi

Same as this function, but returns ints.

Provide a substitute for subroutine getrngi defined in nemswk1.f.

The Fortran subroutine retrieves arrays of integers from an Excel worksheet after readrngxlsx
has already been called to read the file.

This Python version just searches through the DataFrame returned by readrngxlsx to find and
process the requested range of data. It is returned as an array of ints with the appropriate
number of dimensions.

Parameters: df (pd.DataFrame) – An Excel worksheet DataFrame returned by
readrngxlsx.
name (str) – The name of the desired range of data.
n_rows (int) – The number of rows the data spans in the spreadsheet.

epm_fortran.getrngi(df: DataFrame, name: str, n_rows: Literal[1], n_cols: Literal[1])→ int64 [source]

epm_fortran.getrngi(df: DataFrame, name: str, n_rows: int, n_cols: int)→ ndarray[Any, dtype[int64]]

n_cols (int) – The number of columns the data spans in the
spreadsheet.

Returns: The requested scalar, 1D array, or 2D array of data.
Return type: np.int64 | npt.NDArray[np.int64]

 See also

readrngxlsx

Call to get the DataFrame for this function.

getrngr

Same as this function, but returns floats.

Find the start of a data range in a DataFrame returned by readrngxlsx.

The row and column indices returned point to the top left cell of the requested data range.

Parameters: df (pd.DataFrame) – An Excel worksheet DataFrame returned by
readrngxlsx.
name (str) – The name of the data range to search for.
n_rows (int) – The number of rows the data spans in the spreadsheet.
n_cols (int) – The number of columns the data spans in the
spreadsheet.

Returns: The row index i_row and column index i_col in the DataFrame where the
specified data range begins.

Return type: tuple[int, int]
Raises: ValueError – If the specified data range name is not found or matches

more than one position in the DataFrame.

 See also

readrngxlsx

Call to get the DataFrame for this function.

getrngr , getrngi

epm_fortran.find_xlsx_position(df: DataFrame, name: str, n_rows: int, n_cols: int)→ tuple[int, int]
[source]

 / Model API Reference / epm / epm_other_ghg module

epm_other_ghg module

Code to account for “other” greenhouse gases and offsets.

Account for CO2 from cement and lime, read the offsets data from the GHGOFFX input file, and
determine the amount of other greenhouse gas abatement using the marginal abatement curves
(MACs).

Compute other greenhouse gas emissions as a function of carbon price.

Calculations include lime production and clinker process CO2 emissions from the industrial
module. We also handle accounting for offsets, including incentives, domestic and
international offsets, and bio sequestration (if allowed). The subroutine sums abatement
from covered sources at the current price, relying on the greenhouse gas marginal abatement
curves (GHG MACs) as necessary.

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.
variables (Variables) – The active intermediate variables for EPM.

 See also

sum_emissions

Calls this function after summing primary CO2 emissions.

ghg_macs

Used by this function to compute GHG MACs.

get_file_path

Used by this function to find the GHGOFFX file path.

readoffsets

Used by this function to load offsets data.

epm_other_ghg.oghg(restart: Restart, scedes: Scedes, variables: Variables)→ None [source]

epm_other_ghg.readoffsets(restart: Restart, file_path: Path)→ None [source]

Read the greenhouse gas offsets data from the input spreadsheet.

Called by oghg on the first iteration of the first year to read the greenhouse gas offsets data
from the “offsets” sheet of the GHGOFFX input file. The data gets stored in the appropriate
arrays that are defined in the ghg common block within the ghgrep include file. The input file
is an Excel spreadsheet, so this function reads it using the three functions readrngxlsx,
getrngr, and getrngi from epm_fortran. They mirror the functions of the same names that are
availabe in Fortran NEMS code.

Parameters: restart (Restart) – The currently loaded restart file data.
file_path (Path) – Path to the XLSX file that this function should open.

 See also

oghg

Calls this function on the first iteration of the first year.

Return the amount of other greenhouse gas abatement by using the MACs.

Use the other greenhouse gas marginal abatement curves (GHG MACs) to determine the
amount of abatement in a given category at a given price in a given year. This subroutine
assumes that prices are organized in ascending order, and it interpolates between adjacent
steps and adjacent intervals.

Parameters: restart (Restart) – The currently loaded restart file data.
variables (Variables) – The active intermediate variables for EPM.
icat (int) – Index of other greenhouse gas category.
p (float) – Price level for abatement.
year (int) – Four-digit calendar year.

Returns: q – The abatement quantity.
Return type: float

 See also

oghg

Calls this function for MAC calculations.

iyear5

Used by this function to get interval numbers.

epm_other_ghg.ghg_macs(restart: Restart, variables: Variables, icat: int, p: float, year: int)→ float
[source]

Return the interval numbers for the MACs based on the calendar year.

This lookup utility is called by subroutine ghg_macs to retrieve the five- year interval
numbers for the greenhouse gas marginal abatement curves (MACs). The interval numbers
are based on the year, with lower and higher indices for each interval, as well as an
interpolation fraction between them.

For example, consider the interval from 2010 to 2015; the lower index is 1, the higher index
is 2, and the interpolation fraction (which is weighted on the lower side) ranges from 1.0 in
2010 to 0.2 in 2014, stepping by 0.2 each year.

Parameters: restart (Restart) – The currently loaded restart file data.
year (int) – Calendar year for which to look up the interval numbers.

Returns:
iyl (int) – Receives the lower interval number.
iyh (int) – Receives the higher interval number.
fraciyl (float) – Receives the interpolation fraction (weighted on the
lower side) for interpolation within the five-year intervals.

 See also

ghg_macs

Uses this function to get interval numbers.

epm_other_ghg.iyear5(restart: Restart, year: int)→ tuple[int, int, float] [source]

 / Model API Reference / epm / epm_read module

epm_read module

Routines for reading the majority of the EPM input files.

Code in this file sets the EPM output file, reads the policy switches in the EPM control file, and
parses emissions-related data from a variety of other input files. This data includes carbon taxes
or caps, coal region mappings, carbon factors, mercury inputs, and California AB32 information.

Read the EPM input files and designate the EPM output file.

This function is called from NEMS main to read the contents of the EPM control file and
several other EPM input files, as well as to set the EPMOUT file path for Emissions Policy
Module output.

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.
variables (Variables) – The active intermediate variables for EPM.

 See also

find_control_file

Used to find the EPM control file.

read_control_file

Used to read the contents of the EPM control file.

get_file_path

Used to find all other EPM input and output files.

read_tax_or_cap

Used read the carbon tax/cap data file.

read_coal_regions

Used to read the coal regions mapping file.

read_carbon_factors

epm_read.epm_read(restart: Restart, scedes: Scedes, variables: Variables)→ None [source]

Used to read the carbon factors file.

read_mercury_files

Used to read the mercury input files.

read_ab32_files

Used to read the California AB32 files.

Find the path to the the EPM control file using the EPMCNTLN scedes key.

The scedes value should either refer to a file inside the EPM model’s input directory or be an
absolute path to a file located elsewhere.

Parameters: scedes (Scedes) – The current scedes file dict.
cycle (int) – The current NEMS cycle number, also known as curirun.

Returns: The full path to the EPM control file that the module should read.
Return type: Path
Raises: ValueError – If the scedes path refers to an invalid control file location as

described above.

 See also

epm_read

Calls this function.

get_file_path

Related function to find other EPM input and output files.

Find the path to an input or output file other than the control file.

This function uses the input_files and output_files lists from the EPM control data stored in
the intermediate variables object. Be sure to load the EPM control file before calling this
function.

Parameters: variables (Variables) – The active intermediate variables for EPM.
file_key (str) – The key for the specific input or output file whose path
should be returned. This is the TOML key used inside the EPM control
file.

epm_read.find_control_file(scedes: Scedes, cycle: int)→ Path [source]

epm_read.get_file_path(variables: Variables, file_key: str, output_file: bool = False)→ Path [source]

output_file (bool) – Set to True if the file path being sought is for an
output file. The default is False, which indicates an input file.

Returns: The full path to the specified input or output file.
Return type: Path
Raises: LookupError – If the function cannot find the necessary file list from the

EPM control file.

 See also

epm_read

Calls this function.

find_control_file

Similar function to find the EPM control file.

Read the EPM control file.

This function is called as part of epm_read to handle the reading of the EPM control input
file. The file contains the module debug switch, names of all other input and output files, and
flags and parameters that directly control the NEMS emissions policy functionality.

In addition to loading restart file variables, this function also saves the complete contents of
the control file to an attribute on the intermediate variables object.

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.
variables (Variables) – The active intermediate variables for EPM.
file_path (Path) – Path to the TOML file that this function should open.

 See also

epm_read

Calls this function.

Read the carbon tax or carbon cap input file.

Parameters: restart (Restart) – The currently loaded restart file data.

epm_read.read_control_file(restart: Restart, scedes: Scedes, variables: Variables, file_path: Path)→
None [source]

epm_read.read_tax_or_cap(restart: Restart, file_path: Path)→ None [source]

file_path (Path) – Path to the CSV file that this function should open.

 See also

epm_read

Calls this function.

Read the input file mapping coal regions into census divisions.

Parameters: restart (Restart) – The currently loaded restart file data.
file_path (Path) – Path to the TOML file that this function should open.

 See also

epm_read

Calls this function.

Read the carbon factors input file.

Parameters: restart (Restart) – The currently loaded restart file data.
file_path (Path) – Path to the TSV (tab-separated values) file that this
function should open.

 See also

epm_read

Calls this function.

Read the mercury input files that EPM maintains for EMM.

Several NEMS “restart variables” that are filled as part of this function are not actually part of
the restart file, so those are debug printed to the EPMOUT file to make them easier to track.

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.

epm_read.read_coal_regions(restart: Restart, file_path: Path)→ None [source]

epm_read.read_carbon_factors(restart: Restart, file_path: Path)→ None [source]

epm_read.read_mercury_files(restart: Restart, scedes: Scedes, parameters_file_path: Path,
classes_file_path: Path, caps_file_path: Path)→ None [source]

parameters_file_path (Path) – Path to the TOML file that this function
should open to find the mercury parameters.
classes_file_path (Path) – Path to the CSV file that this function should
open to find the mercury compliance classes.
caps_file_path (Path) – Path to the CSV file that this function should
open to find the mercury caps.

 See also

epm_read

Calls this function.

Read the input files pertaining to California AB32.

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.
parameters_file_path (Path) – Path to the TOML file that this function
should open to find the AB32 parameters.
data_file_path (Path) – Path to the CSV file that this function should
open to find the AB32 data.

 See also

epm_read

Calls this function.

epm_read.read_ab32_files(restart: Restart, scedes: Scedes, parameters_file_path: Path, data_file_path:
Path)→ None [source]

 / Model API Reference / epm / epm_regula_falsi module

epm_regula_falsi module

Regula falsi root-finding used to solve for carbon prices in policy cases.

This file implements the regfalsi and regfalsibank` functions, which are used to solve for carbon
prices, carbon taxes, and carbon permit prices as needed for emissions policy cases. These
routines iterate in order to find the lowest price that achieves the desired emissions reduction
goal.

Use regula falsi root-finding to determine the new tax or permit price.

The regula falsi algorithm finds the root of a function given two points, one with positive and
one with negative functional value. It has a linear convergence rate and is guaranteed to
converge if the function is continuous. This function also includes some bracketing logic that
heuristically attempts to rebracket the root if bracketing is lost due to anomalies in the
function.

Parameters: restart (Restart) – The currently loaded restart file data.
variables (Variables) – The active intermediate variables for EPM.
new_tax (float) – Latest carbon tax rate or permit price.
new_sum (float) – Latest sum of emitted pollutants.

Returns: New value for the carbon tax rate or permit price.
Return type: float

 See also

epm

Calls this function to determine the carbon tax or permit price.

regfalsibank

Similar function which is called to set the starting price.

epm_regula_falsi.regfalsi(restart: Restart, variables: Variables, new_tax: float, new_sum: float)→ float
[source]

epm_regula_falsi.regfalsibank(restart: Restart, scedes: Scedes, variables: Variables, new_tax: float,
new_sum: float)→ float [source]

Estimate the starting carbon price of a series using regula falsi.

Use a regula falsi root-finding algorithm to estimate the starting carbon price of an escalating
series that results in a carbon emissions cumulative bank balance of zero. This is similar to
the regfalsi function, but runs once per cycle prior to the first year of the program, using
results (brackets) from prior cycles. The regula falsi algorithm finds the root of a function
given two points, one with positive and one with negative functional value. It has a linear
convergence rate and is guaranteed to converge if the function is continuous. This function
includes rebracketing logic that is triggered by the REBRACKT key in the scedes, as well as
some additional bracketing logic that tries to rebracket the root if bracketing is lost due to
anomalies in the function.

NOTE: The epmbank common block stores the solution bracket data for this function in the
restart file. If bracket data is zero, start from scratch.

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.
variables (Variables) – The active intermediate variables for EPM.
new_tax (float) – Latest carbon allowance fee or tax.
new_sum (float) – Latest carbon balance (negative if emissions are
below target and positive if emissions are above target).

Returns: New value for the carbon allowance fee or tax.
Return type: float

 See also

epm

Calls this function when needed to estimate starting carbon prices.

regfalsibank_end

Handles the final reporting step for this function.

regfalsi

Similar function which is called more frequently.

Finish reporting for the regfalsibank function and return new_tax.

This function is called in return statements within the regfalsibank function as a replacement
for goto 999 statements in the original Fortran. These goto statements would skip almost to
the bottom of the subroutine, causing it to do its final reporting to EPMOUT and then return.

Parameters: restart (Restart) – The currently loaded restart file data.

epm_regula_falsi.regfalsibank_end(restart: Restart, new_tax: float)→ float [source]

new_tax (float) – The new_tax value from regfalsibank, which is to be
reported and returned.

Returns: The value of new_tax that was passed in.
Return type: float

 / Model API Reference / epm / epm_restart module

epm_restart module

Classes for storing restart file data in memory and doing restart file I/O.

This module contains the Restart class, which wraps around PyFiler for reading and writing EPM-
relevant parts of the NEMS restart file. In standalone runs, the restart object is used to read the
restart file before EPM runs, store copies of all relevant arrays in memory while EPM is running,
and then write the outputs to a new restart file once EPM finishes. In integrated runs, no actual
file I/O occurs; an existing PyFiler object is directly passed in by NEMS when the restart object
is created.

Import and return the PyFiler module as needed for standalone runs.

This function encapsulates a number of supporting operations that ensure PyFiler actually
imports and runs correctly. The first time it is called, this function assigns the imported
PyFiler object to an internal global variable. Subsequent calls just return that stored object.

Returns: The imported PyFiler module object.
Return type: ModuleType

Extract the single scalar value from inside a zero-dimensional array.

Parameters: array (npt.NDArray) – An array with shape equal to ().
Returns: The single element contained inside the array.
Return type: Any
Raises: TypeError – If the array’s shape is not equal to ().

Copy an array of values, optionally modifying the array’s data type.

Parameters: array (npt.NDArray) – An array of values, which must be at least one-
dimensional.

epm_restart.import_pyfiler()→ module [source]

epm_restart.get_scalar(array: ndarray[Any, dtype[_ScalarType_co]])→ Any [source] 

epm_restart.get_array(array: ndarray[Any, dtype[_ScalarType_co]], *, dtype: dtype[Any] | None |
type[Any] | _SupportsDType[dtype[Any]] | str | tuple[Any, int] | tuple[Any, Union[SupportsIndex,
collections.abc.Sequence[SupportsIndex]]] | list[Any] | _DTypeDict | tuple[Any, Any] = None)→ ndarray[Any,
dtype[_ScalarType_co]] [source]

dtype (npt.DTypeLike, optional) – The desired data type of the returned
array. If None, then NumPy will infer the data type from the contents
of the input array. This is the default behavior.

Returns: The copied array with the specified data type.
Return type: npt.NDArray
Raises: TypeError – If the input array is a zero-dimensional scalar array.

Cautiously extract an integer value from a PyFiler variable.

Parameters: pyfiler_variable (npt.NDArray) – A PyFiler variable containing a scalar
integer value.

Returns: The extracted integer value.
Return type: int
Raises: TypeError – If the PyFiler variable has an incompatible data type.

Cautiously extract a float value from a PyFiler variable.

Parameters: pyfiler_variable (npt.NDArray) – A PyFiler variable containing a scalar float
value.

Returns: The extracted float value.
Return type: float
Raises: TypeError – If the PyFiler variable has an incompatible data type.

Cautiously extract a string value from a PyFiler variable.

Parameters: pyfiler_variable (npt.NDArray) – A PyFiler variable containing a scalar string
value.

Returns: The extracted string value.
Return type: str
Raises: TypeError – If the PyFiler variable has an incompatible data type.

Cautiously copy an array of integers from a PyFiler variable.

Parameters: pyfiler_variable (npt.NDArray) – A PyFiler variable containing an array of
integer values.

Returns: The copied array of integer values.
Return type: npt.NDArray[np.int64]

epm_restart.unpack_int(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]])→ int [source]

epm_restart.unpack_float(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]])→ float [source]

epm_restart.unpack_str(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]])→ str [source]

epm_restart.unpack_int_array(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]])→ ndarray[Any,
dtype[int64]] [source]

Raises: TypeError – If the PyFiler variable has an incompatible data type.

Cautiously copy an array of floats from a PyFiler variable.

Parameters: pyfiler_variable (npt.NDArray) – A PyFiler variable containing an array of
float values.

Returns: The copied array of float values.
Return type: npt.NDArray[np.float64]
Raises: TypeError – If the PyFiler variable has an incompatible data type.

A function that returns its input.

Parameters: x (Any) – An input value.
Returns: The same input value.
Return type: Any

Bases: object

A reference to a specific variable in PyFiler with data converters.

Create a new reference to a PyFiler variable with given converters.

When the restart file data comes in via PyFiler, the input_converter is called to transform
the PyFiler variable to whatever format will be used while EPM is running. When the data
is put back into the PyFiler variable after EPM runs, the output_converter is called to
transform the data from its EPM format back to a format that can be safely assigned into
the original PyFiler variable.

Parameters: pyfiler_variable (npt.NDArray) – The PyFiler variable that will hold
the values of interest.
input_converter (Callable[[Any], Any]) – Called on the PyFiler variable
once the restart file data is available to convert the value into an
EPM format.
output_converter (Callable[[Any], Any] | None, optional) – Called on
the EPM variable to convert the format back before the value is
assigned into the PyFiler variable. If None (the default), then this

epm_restart.unpack_float_array(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]])→
ndarray[Any, dtype[float64]] [source]

epm_restart.identity(x: Any)→ Any [source]

class epm_restart.Reference(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]], input_converter:
Callable[[Any], Any], output_converter: Callable[[Any], Any] | None = None) [source]

__init__(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]], input_converter: Callable[[Any], Any],
output_converter: Callable[[Any], Any] | None = None)→ None [source]

PyFiler variable is not used for output.

Whether this variable will be used for output back to PyFiler.

Returns: True if this variable will be used for output and False otherwise.
Return type: bool

Make a new reference with the same PyFiler variable and converters.

Returns: A new, distinct reference object that points to the same PyFiler
variable and uses the same input and output converters.

Return type: Reference

Read values from the PyFiler variable and apply the input converter.

Returns: Values from PyFiler after applying the input converter.
Return type: Any

Apply the output converter and write values to the PyFiler variable.

Parameters: values (Any) – New values that should be passed through the output
converter and written to the PyFiler variable.

Raises: TypeError – If this reference is not allowed to be used for output.

Bases: object

Handles restart file I/O with PyFiler and stores values while EPM runs.

This class manages the full list of restart file variables that are relevant to EPM for both input
and output. It is capable of both restart file I/O with the file system (for standalone runs) and
reading directly from a pre-initialized PyFiler object (for integrated runs). While EPM is
running, the values for each restart file variable are stored in instance attributes whose
names are given by the include file and Fortran variable name with an underscore separator,
e.g., self.ghgrep_em_resd.

Create a new restart file object and set up its instance attributes.

use_for_output()→ bool [source]

clone_reference()→ Reference [source]

read_values()→ Any [source]

write_values(values: Any)→ None [source]

class epm_restart.Restart(pyfiler: module | None = None) [source]

__init__(pyfiler: module | None = None)→ None [source]

One instance attribute will be created for each EPM-relevant restart variable. These
attributes will initially contain reference objects, which will then be dynamically replaced
by values of the correct types when the restart data is read from PyFiler.

For integrated NEMS runs, a pre-initialized PyFiler object is passed in directly, but
standalone runs require this class to conduct the actual PyFiler file I/O.

Parameters: pyfiler (ModuleType | None, optional) – A pre-initialized PyFiler module
object to use instead of reading the restart file from disk. The default
value of None indicates that PyFiler should be internally initialized and
the restart file data should be read from disk.

List all instance attributes that are currently references.

Returns: List of strings corresponding to the names of every instance attribute
that is currently an instance of the Reference class.

Return type: list[str]

Read the restart file data from PyFiler and set instance attributes.

If a PyFiler object was not passed in when this restart object was constructed, then the
actual file read operation is carried out before any data is copied.

Write the instance attributes to PyFiler restart file variables.

If a PyFiler object was not passed in when this restart object was constructed, then the
actual restart file write operation is carried out after all data is copied.

Add a new Reference attribute that refers to a single integer.

Parameters: pyfiler_variable (npt.NDArray) – The PyFiler variable to use for
reading and writing the integer value.
output (bool, optional) – Whether this integer should be written
back to PyFiler as an EPM output. Defaults to False, which indicates
input only.

Returns: Reference that will be replaced with an integer when the restart file
data is read from PyFiler.

Return type: int

_find_all_references()→ list[str] [source]

read()→ None [source]

write()→ None [source]

_add_int(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]], output: bool = False)→ int [source]

Add a new reference attribute that refers to a single float.

Parameters: pyfiler_variable (npt.NDArray) – The PyFiler variable to use for
reading and writing the float value.
output (bool, optional) – Whether this float should be written back
to PyFiler as an EPM output. Defaults to False, which indicates
input only.

Returns: Reference that will be replaced with a float when the restart file data is
read from PyFiler.

Return type: int

Add a new reference attribute that refers to a single string.

Parameters: pyfiler_variable (npt.NDArray) – The PyFiler variable to use for
reading and writing the string value.
output (bool, optional) – Whether this string should be written back
to PyFiler as an EPM output. Defaults to False, which indicates
input only.

Returns: Reference that will be replaced with a string when the restart file data
is read from PyFiler.

Return type: str

Add a new reference attribute that refers to an array of integers.

Parameters: pyfiler_variable (npt.NDArray) – The PyFiler variable to use for
reading and writing the array of integer values.
output (bool, optional) – Whether this array should be written back
to PyFiler as an EPM output. Defaults to False, which indicates
input only.

Returns: Reference that will be replaced with an array of integers when the
restart file data is read from PyFiler.

Return type: npt.NDArray[np.int64]

Add a new reference attribute that refers to an array of floats.

_add_float(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]], output: bool = False)→ float
[source]

_add_str(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]], output: bool = False)→ str [source]

_add_int_array(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]], output: bool = False)→
ndarray[Any, dtype[int64]] [source]

_add_float_array(pyfiler_variable: ndarray[Any, dtype[_ScalarType_co]], output: bool = False)→
ndarray[Any, dtype[float64]] [source]

Parameters: pyfiler_variable (Any) – The PyFiler variable to use for reading and
writing the array of float values.
output (bool, optional) – Whether this array should be written back
to PyFiler as an EPM output. Defaults to False, which indicates
input only.

Returns: Reference that will be replaced with an array of floats when the restart
file data is read from PyFiler.

Return type: npt.NDArray[np.float64]

Create instance variables for the parametr include file.

This include file defines important global NEMS constants, or parameters, as Fortran calls
them.

Create instance variables for the ncntrl include file.

This include file contains important global NEMS control variables, which are generally
set by the Integrating Module.

Create instance variables for the ab32 include file.

This include file contains cap and trade variables for California AB32.

Create instance variables for the ampblk include file.

This include file contains adjustments for prices in mpblk.

Create instance variables for the bifurc include file.

This include file stores fossil energy use for entities covered (and not covered) by carbon
allowance requirements.

Create instance variables for the calshr include file.

This include file contains California shares of Pacific energy use for computing AB32
emissions.

_include_parametr()→ None [source]

_include_ncntrl()→ None [source]

_include_ab32()→ None [source]

_include_ampblk()→ None [source]

_include_bifurc()→ None [source]

_include_calshr()→ None [source]

Create instance variables for the ccatsdat include file.

This include file contains CO2 data for the Carbon Capture, Allocation, Transportation,
and Sequestration (CCATS) module.

Create instance variables for the coalemm include file.

This include file contains data that transfers between EMM and CMM, meaning that it
pertains to coal power plants.

Create instance variables for the cogen include file.

This include file contains variables related to cogeneration.

Create instance variables for the convfact include file.

This include file contains conversion factors.

Create instance variables for the ecpcntl include file.

This include file contains initial input data for the ECP linear programming optimization
model in EMM.

Note that the ecpcntl include file is not part of the restart file, but these variable are still
accessible via PyFiler. These are here because EPM fills these variables for EMM during
integrated runs.

Create instance variables for the emablk include file.

This include file contains price adjustments, which are used to add carbon fees for
policies in EPM.

Create instance variables for the emeblk include file.

This include file contains carbon emissions factors.

_include_ccatsdat()→ None [source]

_include_coalemm()→ None [source]

_include_cogen()→ None [source]

_include_convfact()→ None [source]

_include_ecpcntl()→ None [source]

_include_emablk()→ None [source]

_include_emeblk()→ None [source]

Note that the hgeblk common block at the bottom of this include file is not part of the
restart file, but its variables are still accessible via PyFiler. They are here because EPM fills
these variables for EMM during integrated runs.

Create instance variables for the emission include file.

This include file contains a variety of emissions-related variables.

Create instance variables for the emoblk include file.

This include file contains switches and policy variables for EPM.

Create instance variables for the epmbank include file.

This include file contains variables for carbon permit pricing.

Create instance variables for the ghgrep include file.

This include file contains the primary emissions arrays and variables for other greenhouse
gases.

Create instance variables for the hmmblk include file.

This include file contains variables pertaining to the Hydrogen Market Module (HMM).

Create instance variables for the indepm include file.

This include file contains CO2 process emissions that are passed from IDM to EPM.

Create instance variables for the indout include file.

This include file contains outputs from IDM.

_include_emission()→ None [source]

_include_emoblk()→ None [source]

_include_epmbank()→ None [source]

_include_ghgrep()→ None [source]

_include_hmmblk()→ None [source]

_include_indepm()→ None [source]

_include_indout()→ None [source]

_include_indrep()→ None [source]

Create instance variables for the indrep include file.

This include file contains reporting variables for IDM.

Create instance variables for the lfmmout include file.

This include file contains refinery outputs from LFMM.

Create instance variables for the macout include file.

This include file contains outputs from MAM.

Create instance variables for the mpblk include file.

This include file contains energy prices.

Create instance variables for the ngtdmrep include file.

This include file contains NG T & D (NGTDM) report writer variables.

Create instance variables for the ogsmout include file.

This include file contains output variables from the oil & gas supply module, now HSM.

Create instance variables for the pmmftab include file.

This include file contains Ftab variables from the refinery module.

Create instance variables for the pmmout include file.

This include file contains output variables from the refinery module.

Create instance variables for the pmmrpt include file.

_include_lfmmout()→ None [source]

_include_macout()→ None [source]

_include_mpblk()→ None [source]

_include_ngtdmrep()→ None [source]

_include_ogsmout()→ None [source]

_include_pmmftab()→ None [source]

_include_pmmout()→ None [source]

_include_pmmrpt()→ None [source]

This include file contains output variables from the refinery module.

Create instance variables for the qblk include file.

This include file contains total energy consumption quantities.

Create instance variables for the qsblk include file.

This include file contains energy consumption quantities from SEDS.

Create instance variables for the tranrep include file.

This include file contains reporting variables for TDM.

Create instance variables for the uefdout include file.

This include file contains outputs from EFD in EMM.

Create instance variables for the wrenew include file.

This include file contains renewables variables.

_include_qblk()→ None [source]

_include_qsblk()→ None [source]

_include_tranrep()→ None [source]

_include_uefdout()→ None [source]

_include_wrenew()→ None [source]

 / Model API Reference / epm / epm_revenue module

epm_revenue module

Functions for calculating the revenue effects of emissions policies.

This file implements the initrev, accntrev, and epm_addoff functions, which compute the revenue
effects from any active emissions policies. This includes the revenue produced by initial
allocation of permits. In a related process, we also add up the qualifying emissions offsets where
needed.

Calculate the revenue effects of the selected emissions policy.

For a tax, this amounts to the revenue returned to the government. For an auction, it
amounts to the same thing. For a market, we need to subtract out the value of the initial
allocation of permits, which is done by the initrev function. We sum the revenue by sector:

0. Residential
1. Commercial
2. Industrial
3. Transportation
4. Utility

The revenue from each sector is summed by fuel and is directly proportional to total
emissions. Emissions associated with ethanol and biodiesel are assumed to be exempt, but
emissions from geothermal and MSW are included. This function also handles the case of
carbon offsets (with or without bio sequestration) and the case of an allowance price
maximum (safety valve).

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.
variables (Variables) – The active intermediate variables for EPM.

 See also

epm

Core EPM routine that directly calls this function.

epm_addoff

epm_revenue.accntrev(restart: Restart, scedes: Scedes, variables: Variables)→ None [source]

Called by this function to account for carbon offsets.

initrev

Related function for computing the value of permit allocation.

Calculate revenue produced by holding the initial allocation of permits.

The total revenue is the number of permits multiplied by the value of each permit. We sum
this revenue by sector:

0. Residential
1. Commercial
2. Industrial
3. Transportation
4. Utility

Note that calling this subroutine only has an effect when the bank flag is set in EPMCNTL
and the GHG banking and compliance period has begun – it otherwise updates none of the
common block variables.

Parameters: restart (Restart) – The currently loaded restart file data.

 See also

epm

Core EPM routine that directly calls this function.

accntrev

Related function for computing all other revenue effects.

Add up qualifying emissions offsets.

Called by epm to sum up qualifying emissions offsets for one year in some policy scenarios.
The result depends on whether bio sequestration counts towards the goal and on the
exchange rate of allowance credits per international offset (after a specified calendar year).

Parameters: offset (npt.NDArray[np.float64]) – The emissions offsets array–usually
the array named offset that is defined in the epmbank includes file.
baseyr (int) – Base NEMS calendar year corresponding to curiyr = 1.

epm_revenue.initrev(restart: Restart)→ None [source]

epm_revenue.epm_addoff(offset: ndarray[Any, dtype[float64]], baseyr: int, iy: int, bioseqok: int,
allow_per_offset: float, offyear: int)→ float [source]

iy (int) – Zero-based year index for adding up offsets.
bioseqok (int) – Set to 1 if bio sequestration offsets count towards the
goal or to 0 if incentives are given but do not count towards the goal
(incentive only).
allow_per_offset (float) – Exchange rate in allowance credits per
international offset.
offyear (int) – Calendar year after which allow_per_offset starts being
applied.

Returns: Sum of qualifying emissions offsets.
Return type: float

 See also

epm

Calls this function in several places to add up emissions offsets.

accntrev

Calls this function to add up emissions offsets.

Bases: object

Handle standard etax logic and store the etax values for each sector.

Create an etax object with pre-computed etax values for each sector.

Parameters: restart (Restart) – The currently loaded restart file data.
j (int) – Zero-based index of the current NEMS year.
use_1987_dollars (bool, optional) – Whether the computed etax
values should be given in 1987$ or not. The default is False, which
yields nominal dollars.

class epm_revenue.EtaxLogic(restart: Restart, j: int, *, use_1987_dollars: bool = False) [source]

__init__(restart: Restart, j: int, *, use_1987_dollars: bool = False)→ None [source]

etax: float

tran: float

elec: float

endu: float

resd: float

comm: float

 / Model API Reference / epm / epm_scedes module

epm_scedes module

Interface for handling the scedes data and accessing its key-value pairs.

The class defined in this module is a thin wrapper around a dict. It mediates EPM’s access to the
scedes data and also handles loading the scedes data (which may include manually parsing the
scedes file from disk for standalone runs).

Bases: object

A wrapper class for a dict containing the scedes file information.

Create a new, empty scedes dict object.

After creating an empty object, call the read method to fill it with data. The initializer
argument controls the data source that will be used when read is called.

Parameters: initializer (dict | None, optional) – The scedes data source to be used
when read is called. If a dict is passed, then its key-value pairs will be
copied. Otherwise, the default behavior is to attempt to read the
scedes file from disk.

Try to locate the scedes file on disk for manual parsing.

Returns: Possible path to the scedes file.
Return type: Path

Read the scedes data to finish initializing a new object.

The data source is determined by the initializer argument passed to the __init__ method
when the object was first created.

Copy the scedes data from an existing dict object in memory.

class epm_scedes.Scedes(initializer: dict | None = None) [source]

__init__(initializer: dict | None = None)→ None [source]

static _find_path()→ Path [source]

read()→ None [source]

_load_dict(initializer_dict: dict)→ None [source]

Parameters: initializer_dict (dict) – Dict to copy keys and values from. This will
usually be the SCEDES attribute from the NEMS user object.

Manually parse the scedes data from a scedes file on disk.

Parameters: initializer_path (Path) – File path to open for reading.

Get the value for a scedes key, or return default if not present.

Parameters: key (str) – Case-insensitive scedes key.
default (str) – Value to return if the key is not present.

Returns: Associated value from the scedes file or default.
Return type: str

_load_file(initializer_path: Path)→ None [source]

get(key: str, default: str)→ str [source]

 / Model API Reference / epm / epm_sum_emissions module

epm_sum_emissions module

Routines for summing and reporting all United States emissions.

The contents of this file are the heart of EPM, implementing what was once the single Fortran
subroutine named sum_emissions. Here, we add up emissions across all sectors of the economy,
share emissions by region and electrical power usage, handle historical
benchmarking/overwrites, and report the totals. We also read in the historical emissions from
the EPMDATA input file.

Sum pollutants by fuel to give aggregate totals across the country.

Emissions are determined by summing quantities of fuel use from qblk weighted by fuel-
specific emissions factors from emeblk. For the current NEMS year, emissions are computed
for each fuel, region, and sector and then stored in emission and ghgrep. The relevant list of
fuels varies by sector, and biofuel emissions from the transportation sector are subtracted.
Emissions from the electric power sector are shared out to each end-use sector based on
sectors’ consumption of purchased electricity. California is included as an extra region so that
its emissions can be tracked for the NEMS implementation of AB32, but the California region
requires some special treatment. Note: for total U.S. emissions, we add up ONLY the first 9
regions to avoid double counting (index 9 = California and 10 = United States).

The emissions are summed up following these steps in order:

1. Read historical emissions data from input file
2. Compute residential sector emissions
3. Compute commercial sector emissions
4. Compute industrial sector emissions
5. Compute transportation sector emissions
6. Compute electricity sector emissions
7. Apportion regional emissions by fuel and sector
8. Adjust covered CO2 emissions from California biofuels
9. Benchmark national emissions to history in historical years

10. Share electricity emissions to sectors and adjust totals
11. Overwrite computed emissions with history in historical years
12. Compute total emissions for use with cap-and-trade policies

epm_sum_emissions.sum_emissions(restart: Restart, scedes: Scedes, variables: Variables)→ None
[source] 

13. Compute any other GHG emissions by calling subroutine oghg
14. Do reporting loop output with calls to subrotuine demand_co2

Parameters: restart (Restart) – The currently loaded restart file data.
scedes (Scedes) – The current scedes file dict.
variables (Variables) – The active intermediate variables for EPM.

 See also

epm

Core EPM routine that directly calls this function.

get_file_path

Used to find the path to the emissions history file.

read_history

Handles reading in the historical emissions data.

sum_emissions_residential

Handles the residential sector emissions.

sum_emissions_commercial

Handles the commercial sector emissions.

sum_emissions_industrial

Handles the industrial sector emissions.

sum_emissions_transportation

Handles the transportation sector emissions.

sum_emissions_electricity

Handles the electric power sector emissions.

sum_emissions_regional

Handles regional apportionment of emissions.

sum_emissions_california_biofuels

Adjusts California biofuel emissions.

sum_emissions_history_benchmark

Handles the historical benchmarking.

sum_emissions_share_electricity

Shares electricity emissions to regions.

sum_emissions_history_overwrite

Handles the historical overwrites.

sum_emissions_policy_totals

Compute totals for cap-and-trade policies.

oghg

Called by this function to handle other greenhouse gases.

sum_emissions_reporting_loop

Handles the reporting loop output.

Read in the historical emissions data for use by sum_emissions.

The historical emissions data is stored in its own EPM input file. Not sure why this historical
read happens as part of sum_emissions and not as part of epm_read… possibly because the
history is stored in a local EPM variable instead of a NEMS include file common block. In the
future, this should likely be moved to epm_read, possibly gated behind a RUNEPM != 0
conditional statement.

Parameters: variables (Variables) – The active intermediate variables for EPM.
file_path (Path) – Path to the CSV file that this function should open.

 See also

sum_emissions

Calls this function to read historical emissions data.

Compute the initial residential sector emissions for sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
j (int) – Compute emissions for this zero-based year index.
nm_resd (list[str]) – List to store the names of the residential sector fuel
indicies.

epm_sum_emissions.read_history(variables: Variables, file_path: Path)→ None [source]

epm_sum_emissions.sum_emissions_residential(restart: Restart, j: int, nm_resd: list[str])→
ndarray[Any, dtype[float64]] [source]

Returns: qelrs_ev – Residential electricity consumption used to charge electric
vehicles in year index j by region. This consumption is excluded from
residential emissions and should be moved over to the transportation
sector.

Return type: npt.NDArray[np.float64]

 See also

sum_emissions

Calls this function for residential sector emissions.

sum_emissions_transportation

Requires the returned qelrs_ev value.

sum_emissions_share_electricity

Requires the returned qelrs_ev value.

Compute the initial commercial sector emissions for sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
j (int) – Compute emissions for this zero-based year index.
nm_comm (list[str]) – List to store the names of the commercial sector
fuel indicies.

Returns: qelcm_ev – Commercial electricity consumption used to charge electric
vehicles in year index j by region. This consumption is excluded from
commercial emissions and should be moved over to the transportation
sector.

Return type: npt.NDArray[np.float64]

 See also

sum_emissions

Calls this function for commercial sector emissions.

sum_emissions_transportation

Requires the returned qelcm_ev value.

sum_emissions_share_electricity

epm_sum_emissions.sum_emissions_commercial(restart: Restart, j: int, nm_comm: list[str])→
ndarray[Any, dtype[float64]] [source]

Requires the returned qelcm_ev value.

Compute the initial industrial sector emissions for sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
j (int) – Compute emissions for this zero-based year index.
nm_indy (list[str]) – List to store the names of the industrial sector fuel
indicies.

 See also

sum_emissions

Calls this function for industrial sector emissions.

Split up captured cement kiln carbon from combustion and non-combustion.

Captured CO2 from cement kilns in IDM is a mixture of process emissions from the calcium
carbonate together with combustion emissions from all the different fossil fuels that are used
to heat kilns.

Parameters: restart (Restart) – The currently loaded restart file data.
Returns: A mapping from fuel names (plus the special fuel “cement process”) to

corresponding national cement kiln carbon capture totals for this year. The
values will sum to the total captured cement kiln carbon that IDM sent to
CCATS.

Return type: dict[str, float]

Compute the initial transportation sector emissions for sum_emissions.

Return e85_ethanol_share and e85_gasoline_share because they are needed for the California
biofuels calculations later on in sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
j (int) – Compute emissions for this zero-based year index.
nm_tran (list[str]) – List to store the names of the transportation sector
fuel indicies.

epm_sum_emissions.sum_emissions_industrial(restart: Restart, j: int, nm_indy: list[str])→ None
[source]

epm_sum_emissions.partition_cement_kiln_ccs(restart: Restart)→ dict[str, float] [source]

epm_sum_emissions.sum_emissions_transportation(restart: Restart, j: int, nm_tran: list[str], qelrs_ev:
ndarray[Any, dtype[float64]], qelcm_ev: ndarray[Any, dtype[float64]])→ tuple[float, float] [source]

qelrs_ev (npt.NDArray[np.float64]) – Electricity consumption by region
transferred from the residential sector because it was used to charge
electric vehicles.
qelcm_ev (npt.NDArray[np.float64]) – Electricity consumption by region
transferred from the commercial sector because it was used to charge
electric vehicles.

Returns:
e85_ethanol_share (float) – Fraction of all E85 consumed in year index j
that was ethanol.
e85_gasoline_share (float) – Fraction of all E85 consumed in year index
j that was gasoline.

 See also

sum_emissions

Calls this function for transportation sector emissions.

sum_emissions_residential

Provides the value for the qelrs_ev argument.

sum_emissions_commercial

Provides the value for the qelcm_ev argument.

sum_emissions_california_biofuels

Needs the returned e85 variables.

Compute the initial electric power sector emissions for sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
variables (Variables) – The active intermediate variables for EPM.
j (int) – Compute emissions for this zero-based year index.
jcalyr (int) – Four-digit calendar year corresponding to year index j.
nm_elec (list[str]) – List to store the names of the electric power sector
fuel indicies.

 See also

sum_emissions

epm_sum_emissions.sum_emissions_electricity(restart: Restart, variables: Variables, j: int, jcalyr: int,
nm_elec: list[str])→ None [source]

Calls this function for electric power sector emissions.

Do the regional apportionment of emissions for sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
j (int) – Apportion regional emissions for this zero-based year index.

 See also

sum_emissions

Calls this function for regional emissions apportionment.

Adjust the California biofuels emissions numbers for sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
j (int) – Adjust California biofuels emissions for this zero-based year
index.
e85_ethanol_share (float) – Fraction of all E85 consumed in year index j
that was ethanol. This value is computed and returned by the
sum_emissions_transportation function.
e85_gasoline_share (float) – Fraction of all E85 consumed in year index
j that was gasoline. This value is computed and returned by the
sum_emissions_transportation function.

 See also

sum_emissions

Uses this function to adjust California biofuels emissions.

sum_emissions_transportation

Returns e85 values used by this function.

Benchmark the computed emissions values to history for sum_emissions.

epm_sum_emissions.sum_emissions_regional(restart: Restart, j: int)→ None [source]

epm_sum_emissions.sum_emissions_california_biofuels(restart: Restart, j: int, e85_ethanol_share:
float, e85_gasoline_share: float)→ None [source]

epm_sum_emissions.sum_emissions_history_benchmark(restart: Restart, variables: Variables, j: int, iy:
int)→ None [source]

Parameters: restart (Restart) – The currently loaded restart file data.
variables (Variables) – The active intermediate variables for EPM.
j (int) – Benchmark the emissions for this zero-based year index.
iy (int) – Year index – should be set to the same value as j.

 See also

sum_emissions

Uses this function for benchmarking in historical years.

Share electric power sector emissions to sectors for sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
j (int) – Share out emissions for this zero-based year index.
qelrs_ev (npt.NDArray[np.float64]) – Electricity consumption by region
transferred from the residential sector to the transportation sector
because it was used to charge electric vehicles.
qelcm_ev (npt.NDArray[np.float64]) – Electricity consumption by region
transferred from the commercial sector to the transportation sector
because it was used to charge electric vehicles.

 See also

sum_emissions

Calls this function to share out electricity emissions.

sum_emissions_residential

Provides the value for the qelrs_ev argument.

sum_emissions_commercial

Provides the value for the qelcm_ev argument.

Overwrite computed emissions with history as needed by sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
variables (Variables) – The active intermediate variables for EPM.

epm_sum_emissions.sum_emissions_share_electricity(restart: Restart, j: int, qelrs_ev: ndarray[Any,
dtype[float64]], qelcm_ev: ndarray[Any, dtype[float64]])→ None [source]

epm_sum_emissions.sum_emissions_history_overwrite(restart: Restart, variables: Variables, j: int)→
None [source]

j (int) – Overwrite with history for this zero-based year index.

 See also

sum_emissions

Calls this function to overwrite emissions with history.

Add up the cap-and-trade policy CO2 totals for sum_emissions.

Parameters: restart (Restart) – The currently loaded restart file data.
j (int) – Compute emissions policy totals for this zero-based year index.

 See also

sum_emissions

Calls this function to get totals for emissions policies.

Handle the NEMS reporting loop output for sum_emissions.

This part of the sum_emissions process uses repeated calls to the demand_co2 function to
write the final emissions values to a file in CSV format.

Parameters: restart (Restart) – The currently loaded restart file data.
variables (Variables) – The active intermediate variables for EPM.
nm_resd (list[str]) – The names of the residential sector fuel indicies.
nm_comm (list[str]) – The names of the commercial sector fuel indicies.
nm_indy (list[str]) – The names of the industrial sector fuel indicies.
nm_tran (list[str]) – The names of the transportation sector fuel indicies.
nm_elec (list[str]) – The names of the electric power sector fuel indicies.
regnam (list[str]) – The names of the NEMS regions by region index.

 See also

sum_emissions

Calls this function for output during the reporting loop.

epm_sum_emissions.sum_emissions_policy_totals(restart: Restart, j: int)→ None [source]

epm_sum_emissions.sum_emissions_reporting_loop(restart: Restart, variables: Variables, nm_resd:
list[str], nm_comm: list[str], nm_indy: list[str], nm_tran: list[str], nm_elec: list[str], regnam: list[str])→ None

[source]

get_file_path

Used to find the path to the DEMAND_CO2 output file.

demand_co2

Used by this function to write out CO2 emissions values.

Report CO2 emissions and energy consumption for one sector and region.

Called by the sum_emissions_reporting_loop function to output CO2 emissions and the
corresponding energy use from which they were computed. One call to this function handles
the reporting for all fuels across one sector in one region. The CSV-formatted report is
written to the output file whose file handle is passed in.

NOTE: This function assumes that fuels are indexed in five clusters: first come all of the
petroleum products, then the coal, then the natural gas, then the others, and finally the
purchased electricity. Make sure that the input arrays adhere to this pattern or the reported
subtotals will be incorrect.

Parameters: restart (Restart) – The currently loaded restart file data.
iunit (TextIO) – File handle of the DEMAND_CO2 output file.
emis (npt.NDArray[np.float64]) – Sector CO2 emissions array.
fuel (npt.NDArray[np.float64]) – Sector fuel consumption array with
same dimensions as emis.
name (list[str]) – List of fuel index names with length matching the first
dimension of emis and fuel.
sector (str) – Name of the sector, e.g., ‘Residential’.
n_pet (int) – Number of fuel indices that are petroleum products.
n_coal (int) – Number of fuel indices that are coal.
n_gas (int) – Number of fuel indices that are natural gas.
n_other (int) – Number of fuel indices that are “other” fuels.
n_elec (int) – Number of fuel indices that are purchased electricity. This
will be 0 for the electric power sector and 1 for all other sectors.
i_reg (int) – Report results for the region at this index.

Raises: TypeError – If any of the input arrays do not have the expected
dimensions.

 See also

sum_emissions_reporting_loop

epm_sum_emissions.demand_co2(restart: Restart, iunit: TextIO, emis: ndarray[Any, dtype[float64]], fuel:
ndarray[Any, dtype[float64]], name: list[str], sector: str, n_pet: int, n_coal: int, n_gas: int, n_other: int, n_elec:
int, i_reg: int)→ None [source]

Calls this function.

 / Model API Reference / epm / epm_variables module

epm_variables module

Handling of static variables that EPM expects will be saved between calls.

The small amount of code in this module exists only to create the collection of variables and
initialize them to sensible values.

Bases: object

Stores intermediate variables that need to be saved between EPM runs.

All stored EPM variables are directly accessible as instance attributes.

Create a new collection of initialized variables.

The individual variables are initialized to zero, False, or some other “null” value of the
appropriate type.

Parameters: restart (Restart) – The currently loaded restart file data.

class epm_variables.Variables(restart: Restart) [source]

__init__(restart: Restart)→ None [source]

 / Model API Reference / epm / run_epm module

run_epm module

Primary interface for running EPM with its supporting Python framework.

The only required argument (mode) specifies whether to run the epm function only (“main”), the
epm_read function only (“read”), both the epm_read and epm functions in sequence (“both”), or
neither function (“none”). In every mode, the restart file object, scedes file object, and
intermediate variables object will all be initialized to start and cleaned up afterward.

Bases: StrEnum

Constants for each EPM mode that can be specified via command line.

When running the Emissions Policy Module, this string enum communicates which code
should be executed. The available options are to run only the core epm routine (“main”), only
the epm_read routine (“read”), both routines in sequence (“both”), or neither routine (“none”).

The surrounding framework code for the scedes file, restart file, and EPM intermediate
variables are always executed.

Get the command line arguments and parse them with an arg parser.

The only required command line argument is mode, which specifies whether we should run
epm only, epm_read only, both functions, or neither. The optional arguments cycles, years, and
iters allow for overriding the NEMS control variables numiruns, lastyr (as well as lastcalyr), and
maxitr instead of using the values from the input restart file.

class run_epm.Mode(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None) [source]

MAIN= 'main'

READ= 'read'

BOTH= 'both'

NONE= 'none'

run_epm.get_args()→ Namespace [source]

Returns: Namespace containing parsed command line arguments.
Return type: argparse.Namespace

Bases: object

A simple structure to store and validate the external arguments.

Create a new arguments object with the given argument values.

Parameters: mode (Mode) – String enum specifying which of the primary EPM
routines to run. See the Mode type for more details.
cycles (int | None, optional) – If not None, this overrides the restart
file value of numiruns.
years (int | None, optional) – If not None, this overrides the restart
file value of lastyr. The value of lastcalyr is also overridden
appropriately.
iters (int | None, optional) – If not None, this overrides the restart file
value of maxitr.

 See also

Mode

StrEnum subtype for the mode argument to this function.

Use the restart file data to validate the external arguments to EPM.

Parameters: restart (Restart) – The restart file object, which should already be
loaded with data from the input restart file.

Raises: ValueError – If the cycles argument is less than 1.
ValueError – If the years argument is less than 1 or greater than
mnumyr.
ValueError – If the iters argument is less than 1.

Print a run message including the mode and some restart variables.

class run_epm.Arguments(mode: Mode, *, cycles: int | None = None, years: int | None = None, iters: int |
None = None) [source]

__init__(mode: Mode, *, cycles: int | None = None, years: int | None = None, iters: int | None = None)→
None [source]

validate(restart: Restart)→ None [source]

run_epm.print_run_message(args: Arguments, restart: Restart, *, integrated: bool)→ None [source]

Parameters: args (Arguments) – Structure containing the external arguments sent to
the EPM code.
restart (Restart) – The loaded restart file data object.
integrated (bool) – Whether EPM is running in integrated (True) or
standalone (False) configuration.

Run the core EPM code once in integrated NEMS run configuration.

Parameters: args (Arguments) – Structure containing the external arguments sent to
the EPM code.
restart (Restart) – The restart file object, which should already be
loaded with data from the input restart file.
scedes (Scedes) – The scedes dict object, which should already be
loaded with key-value pairs from the keys.sed file.
variables (Variables) – The intermediate variables for EPM, which should
already be loaded from the pickle file if the file exists.

Run the core EPM code through all loops in standalone configuration.

Parameters: args (Arguments) – Structure containing the external arguments sent to
the EPM code.
restart (Restart) – The restart file object, which should already be
loaded with data from the input restart file.
scedes (Scedes) – The scedes dict object, which should already be
loaded with key-value pairs from the keys.sed file.
variables (Variables) – The intermediate variables for EPM, which should
already be loaded from the pickle file if the file exists.

Primary interface function for executing the NEMS EPM code as a whole.

When this file is executed as a command line script, it calls this function and runs EPM
standalone, relying on PyFiler internally for restart file IO. For integrated NEMS runs, this
function can be imported and directly passed a PyFiler module object as input. When
running integrated, the cycles, years, and iters arguments are ignored.

Parameters: mode (Mode) – String enum specifying which of the primary EPM
routines to run. See the Mode type for more details.

run_epm.run_epm_integrated(args: Arguments, restart: Restart, scedes: Scedes, variables: Variables)→
None [source]

run_epm.run_epm_standalone(args: Arguments, restart: Restart, scedes: Scedes, variables: Variables)→
None [source]

run_epm.run_epm(mode: Mode, pyfiler: module | None = None, user: SimpleNamespace | None = None, *,
cycles: int | None = None, years: int | None = None, iters: int | None = None)→ None [source]

pyfiler (ModuleType | None, optional) – A pre-initialized PyFiler module
object to use for restart file data. This is used for integrated NEMS runs
and should be set to the default value of None for standalone runs
when EPM will need to manage PyFiler on its own.
user (SimpleNamespace | None, optional) – The NEMS user object. For
integrated runs, this will be used to access the scedes dict and to store
internal EPM variables. Defaults to None, which is appropriate for
standalone runs.
cycles (int | None, optional) – If not None, this overrides the restart file
value of numiruns. The default is to use the restart file value.
years (int | None, optional) – If not None, this overrides the restart file
value of lastyr. The value of lastcalyr is also overridden appropriately.
The default is to use the restart file values.
iters (int | None, optional) – If not None, this overrides the restart file
value of maxitr. The default is to use the restart file value.

 See also

Mode

StrEnum subtype for the first argument to this function.

	000 front page
	0 EPM Documentation — National Energy Modeling System (NEMS) documentation
	01 Introduction — National Energy Modeling System (NEMS) documentation
	02 Model Assumptions — National Energy Modeling System (NEMS) documentation
	021 EPM_Assumptions_Final
	03 Inputs and Methods — National Energy Modeling System (NEMS) documentation
	04 epm_adjustments module — National Energy Modeling System (NEMS) documentation
	05 epm_common module — National Energy Modeling System (NEMS) documentation
	06 epm_core module — National Energy Modeling System (NEMS) documentation
	07 epm_fortran module — National Energy Modeling System (NEMS) documentation
	08 epm_other_ghg module — National Energy Modeling System (NEMS) documentation
	09 epm_read module — National Energy Modeling System (NEMS) documentation
	10 epm_regula_falsi module — National Energy Modeling System (NEMS) documentation
	11 epm_restart module — National Energy Modeling System (NEMS) documentation
	12 epm_revenue module — National Energy Modeling System (NEMS) documentation
	13 epm_scedes module — National Energy Modeling System (NEMS) documentation
	14 epm_sum_emissions module — National Energy Modeling System (NEMS) documentation
	15 epm_variables module — National Energy Modeling System (NEMS) documentation
	16 run_epm module — National Energy Modeling System (NEMS) documentation

