

Carbon Capture, Allocation,
Transportation, and
Sequestration (CCATS)
Module of the National
Energy Modeling System:
Model Documentation 2025

July 2025

www.eia.gov
U.S. Department of Energy

Washington, DC 20585

U.S. Energy Information Administration | CCATS Module of the National Energy Modeling System i

The U.S. Energy Information Administration (EIA), the statistical and analytical agency within the

U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are

independent of approval by any other officer or employee of the U.S. Government. The views in this

report do not represent those of DOE or any other federal agencies.

CCATS Documentation
The Carbon Capture, Allocation, Transportation and Sequestration (CCATS) module represents
the carbon capture industry in the National Energy Modeling System (NEMS). CCATS was devel-
oped by the U.S. Energy Information Adminstration (EIA) for the Annual Energy Outlook (AEO).

This section provides an overview of the model, and describes the assumptions, inputs, and model
formulation.

The CCATS module is written in Python and Pyomo. Documentation for the source code of the
CCATS module can be found in the Model API Reference Section.

Table of Contents

Introduction
Model Overview
Geographic Representation

Model Assumptions
Capture Facilities
Pipeline Network
Saline storage assumptions
CO₂ EOR assumptions
Price assumptions
Technology improvement rate assumptions
Capacity expansion and financing assumptions
Legislation and Regulations
Sources

Model Formulation
Objective Function
Constraints
Non-Linear MILP Model
Price of Carbon Dioxide
Relationship between CCATS and NEMS
Modeling in Pyomo
Glossary

How to Run CCATS
Running CCATS Standalone
Running CCATS in NEMS
CCATS Dependencies
Inputs and Methods

https://www.eia.gov/
https://www.eia.gov/outlooks/aeo/
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/introduction.html
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/introduction.html#model-overview
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/introduction.html#geographic-representation
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html#capture-facilities
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html#pipeline-network
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html#saline-storage-assumptions
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html#co2-eor-assumptions
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html#price-assumptions
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html#technology-improvement-rate-assumptions
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html#capacity-expansion-and-financing-assumptions
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html#legislation-and-regulations
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_assumptions.html#sources
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_formulation.html
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_formulation.html#objective-function
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_formulation.html#constraints
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_formulation.html#non-linear-milp-model
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_formulation.html#price-of-carbon-dioxide
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_formulation.html#relationship-between-ccats-and-nems
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_formulation.html#modeling-in-pyomo
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/model_formulation.html#glossary
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/how_to_run_CCATS.html
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/how_to_run_CCATS.html#running-ccats-standalone
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/how_to_run_CCATS.html#running-ccats-in-nems
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/how_to_run_CCATS.html#ccats-dependencies
file://nemsfs/l/mid/adc/git/NEMS/docs/build/html/written/CCATS/how_to_run_CCATS.html#inputs-and-methods

Introduction
The Carbon Capture, Allocation, Transportation, and Sequestration (CCATS) module models the
captured carbon dioxide (CO₂) system within the National Energy Modeling System (NEMS).
CCATS endogenously allocates and transports the projected supply of captured CO₂ from NEMS
modules to utilization and storage sites throughout the United States.

At its core, CCATS is an optimization model that minimizes various operation and investment costs
for capturing, transporting, and sequestering or utilizing CO₂. After applying policy incentives, the
module determines the most cost-effective network flow of CO₂ from supply sources to demand lo-
cations and projects the development of CO₂ infrastructure for both transportation and saline stor-
age until 2050.

CCATS was first introduced in NEMS for the Annual Energy Outlook 2025 (AEO2025) to better re-
flect the emerging market for captured carbon dioxide (CO₂). Prior to the Inflation Reduction Act
(IRA), policy incentives for carbon capture and storage were insufficient to support the develop-
ment of carbon storage at scale. The module was designed to be flexible to incorporate future poli-
cies and to more accurately project potential long-term trends in U.S. energy markets. CCATS re-
placed the Capture, Transport, Utilization, Storage (CTUS) from prior AEOs.

Model Overview

CCATS represents three distinct components of CO₂ flow as interconnected nodes in a network (il-
lustrated in Figure 1).

1. Capture facilities: Facilities where CO₂ is captured
2. Trans-shipment points: A pipeline network that connects capture sites to sequestration lo-

cations, including both existing infrastructure and potential expansion routes.
3. Sequestration sites: Destinations where CO₂ is stored

Figure 1. CCATS nodal network representation

https://www.eia.gov/outlooks/aeo/

Capture facility nodes represent sources of CO₂ supply from other modules in NEMS. Specifically,
CCATS receives quantities of captured CO₂ from electric power generation, ethanol production,
natural gas processing, hydrogen production, and cement production. CCATS currently does not
represent direct air capture (DAC).

CO₂ demand in CCATS comes from either CO₂ enhanced oil recovery (EOR) wells or storage in
saline formations. Today, the overwhelming majority of captured CO₂ is directed toward CO₂ EOR,
a process in which CO₂ is injected into oil and natural gas wells to extract additional hydrocarbon
resources. Demand from other sources of CO₂ utilization such as the food and beverage industry
and electrofuels, or e-fuels, are currently not modeled in CCATS.

CCATS accounts for both operating and investment costs for capacity expansion for trans-ship-
ment and sequestration node types. Note that capture costs are represented in other NEMS mod-
ules and have already been taken into account when CO₂ supply is received from other modules.

The model optimizes the flow of CO₂ from supply sources to sequestration sites using a linear pro-
gram that minimizes total system costs while incorporating applicable tax credits and other rev-
enues as negative costs. The model solution determines optimal transportation routes and seques-
tration locations. The model solution also provides CO₂ prices, which are passed off to NEMS mod-
ules and inform their carbon capture and investment decisions in equilibrium.

The interaction between CCATS and the other NEMS modules is shown in Figure 2.

Figure 2. Overview of CCATS interaction with other modules in NEMS

Geographic Representation

CCATS represents the three main geographical areas where current carbon capture and seques-
tration operations are active in the U.S.: the Gulf Coast, the Permian Basin, and the Rocky
Mountains/Great Plains. Each of these markets is local, and no existing pipelines move CO₂ be-
tween these regions. CCATS is designed to build on this local transportation infrastructure to sup-
port additional volumes.

file:///L:/mid/adc/git/NEMS/docs/build/html/_images/ccats-model-overview.png
file:///L:/mid/adc/git/NEMS/docs/build/html/_images/ccats-model-overview.png

Model Assumptions

Capture Facilities

CCATS makes various assumptions on the granularity, geographic location, and costs associated
with captured CO₂ supplies received from NEMS for the following industries and corresponding
NEMS modules:

Electric power generation - Electricity Market Module (EMM)
Ethanol production - Liquid Fuels Market Module (LFMM)
Natural Gas Processing - Hydrocarbon Supply Module (HSM)
Hydrogen Production - Hydrogen Market Module (HMM)
Cement production - Industrial Demand Module (IDM)

CCATS receives CO₂ supplies from NEMS at either at the census region or census division level.
However, the CCATS optimization model operates on a more granular level, specifically at the dis-
crete facility level, to provide more accurate projections geographically. Accordingly, CCATS disag-
gregates captured CO₂ supply to specific CO₂ supply facilities using the following methodology.

First, we assign CO₂ supply to facilities with existing infrastructure to represent observed CO₂ in the
data. Second, as the captured CO₂ industry grows with volumes beyond the capacity of existing fa-
cilities, CCATS ranks facilities based on estimated costs to install capture technology and costs to
connect supply facilities to the pipeline network. This determines which facilities will find it most
economical to invest in capturing CO₂ first.

Installation cost assumptions vary based on industry and the availability of expert studies and
analysis. For natural gas power plants, coal power plants, and bioenergy with carbon capture and
storage power plants in the electric power sector, we use modified versions of NETL power plant
studies. [1], [2] These data provide the locations, expected cost of capture and estimated CO₂ cap-
ture potential of existing power plants suitable for carbon capture retrofit.

For ethanol, natural gas processing, hydrogen (represented by ammonia), and cement facilities,
we use the NETL Industrial Carbon Capture Retrofit Database [3] to identify facilities suitable for
retrofit with carbon capture. We subsequently combine estimated capture cost and CO₂ capture po-
tential from this dataset with geographic location data from EPA’s Greenhouse Gas Reporting
Program. [4] We also use EPA Subpart PP [5] and an analysis by CATF [6] to determine whether a
facility has been capturing CO₂, and if so, for how long. Finally, we make modifications to assessed
CO₂ capture potential based on EIA-64A, EIA-757, and EIA-816 survey data.

In addition to investment in existing facilities, CCATS also has the option to install carbon capture
at new facilities as the industry further grows. Characteristics of these new facilities and their corre-
sponding capture costs are provided by the other NEMS modules to CCATS as input parameters.

To save on runtime, facilities with a capture cost greater than $70/MMmT ($2023) are excluded
from the optimization.

Table 1. CO₂ capture potential at represented existing facilities for the optimization

Census
Division Ammonia Cement

Coal
Power
Plant

Ethanol
Natural
Gas Power
Plant

Natural Gas
Processing

New
England

0.3 8.8 36.4

Mid
Atlantic 5.1 67.1 0.5 165.8

East North
Central 0.8 8.2 303.1 12 219.5 0.5

West North
Central

2.5 14.1 425.7 31.5 25.8 0

South
Atlantic 1.1 13.7 444.1 238.9

East South
Central

0.9 6.4 214.5 1 147.8

West
South
Central

9.7 12.7 326.9 1.4 332.4 9.7

Mountain 0.6 8 219.1 120.4 3.3

Pacific 0.1 10 121.1

Total 15.6 78.6 2,009.30 46.4 1,408.10 13.6

Source: National Energy Technology Laboratory: Schmitt et al.[1], Buchheit et al.[2], Hughes et al.[3]; U.S.
Environmental Protection Agency: [4], [5], Clean Air Task Force: [6].

Pipeline Network

Nodal Map

Captured CO₂ is transported from capture sites to either EOR or saline storage via pipelines. In
CCATS, CO₂ can be transported directly from a supply source to a sequestration site, or indirectly
via a series of trans-shipment points. This representation reflects current industry dynamics where
some smaller CO₂ supply sites send captured CO₂ to a single storage or EOR site, while other
groups of CO₂ capture infrastructure are connected via a regional pipeline network.

We build our transportation network by first representing the existing U.S. CO₂ pipeline network as
trans-shipment points on the U.S. map. We add to this set a uniform grid of nodes representing the
potential trans-shipment network that can be built for capacity expansion. Finally, we include all the
CO₂ capture sites, CO₂ EOR sites, and saline formation storage sites to the network.

We connect the all the various nodes then limit the set of connections used in the model based on
pipeline length and node type. For example, sequestration nodes cannot connect to other seques-
tration nodes.

Cost Assumptions

To calculate installation and operations costs, we first group the set of connected nodes by pipeline
length and region. All connections that are of similar distances and are in the same region use the
same cost assumptions.

Regionalized pipeline costs are based on the FECM/NETL CO₂ Transport Cost Model [7], modify-
ing a natural gas pipeline study from Brown et al.[8] to account for the higher costs of CO₂ pipe-
lines. This model is highly granular and includes information on operating and financing costs by
pipeline diameter, length, and pump count.

Table 2. Select cost curves by region from Brown et al

Pipeline Region Pipeline Length (miles) Cost Curve Slope
($/tonne CO₂)

New England 150 $51.42

Great Plains 150 $23.47

New England 400 $142.93

Great Plains 400 $68.67

Source: U.S. Energy Information Administration.

For each pipeline length, we apply cost factors from the FECM/NETL study to combinations of
pipeline diameters and pump counts. We assume a 20-year project lifespan. This yields various
cost possibilities for transporting a certain volume of CO₂ by a certain distance. We separate these
total costs into electricity costs, fixed operating and maintenance costs, and capital costs.

To obtain installation cost parameters, we choose the least costly option in terms of fixed and capi-
tal costs based on the previous calculation. Based on this cost curve, we run a linear regression to
produce the installation cost linear parameters provided to the model.

Variable costs include both maintenance costs and electricity costs. We calculate electricity operat-
ing costs based on the maximum flowrate for each diameter-pump-length combination, and some
assumptions on pump requirements. Specifically, we treat CO₂ that is within the pipelines as a su-
percritical fluid, modeling the fluid as incompressible. We assume pump stations are built along the
pipeline at a frequency of no more than two pumps per 100 miles. We then calculate pump power
requirements and total electricity costs using electricity prices received endogenously from NEMS.

Table 3. Select maximum flow rates (MMtonne/year)
Pipeline Length (Miles) Number of Pumps Diameter

12 in 24 in 36 in 48 in

Pipeline Length (Miles) Number of Pumps Diameter

12 in 24 in 36 in 48 in

150 0 2.5 15.15 43.39 91.45

150 1 3.54 21.48 61.48 129.53

150 2 4.35 26.33 75.36 158.75

400 0 1.52 9.23 26.47 55.81

400 1 2.16 13.11 37.54 79.13

400 2 2.65 16.08 46.04 97.02

Source: U.S. Energy Information Administration.

In addition to installation and operating costs, we add cost multipliers to any pipelines that cross
over water, or over land but is covered under the National Park Service [9] or National Register of
Historic Places. [10] These multipliers account for rerouting or additional permitting costs associ-
ated with these routes.

Saline storage assumptions

Saline formations are the only storage option for CO₂ in CCATS. To accurately model CO₂ storage,
we calculate the amount of CO₂ that can be stored in each formation, and the costs of setting up
an injection site, the process of injecting CO₂, and storing CO₂ in the formation.

To do this, we relied on the FE/NETL CO₂ Saline Storage Cost Model [11] for a comprehensive list
of geologic formations, as well as the base geologic/engineering calculations for injection rates,
and maximum CO₂ storage amounts in the formations. The model was also used to estimate the
costs for each individual injection project. A summary of the storage formations that are input into
the model are shown below. The full list of storage formations and their characteristics can also be
donwloaded here: table-storage-formations-full.csv.

Table 4. Summary of Storage Formations
South Midwest West Mideast Northeast

Area (sq miles) 675,703 262,009 375,353 17,128 8,201

Average maximim CO2 per
injection project
(Mmtonnes)

7,783,104 5,679,189 8,472,865 4,021,910 5,037,070

Maximum number of injec-
tion projects

9,145 3,172 4,357 90 30

Average injection rate per
project
(Mmtonnes/project/year)

2,334,931 1,135,838 1,694,573 104,064 167,902

file:///L:/mid/adc/git/NEMS/docs/build/html/_downloads/66997abe70b9f0d85ad03bc62c54986c/table-storage-formations-full.csv

Source: U.S. Energy Information Administration.

CO₂ EOR assumptions

Maximum demand for captured CO₂ from EOR sites is provided at the geological formation level by
HSM. CCATS is not required to meet all CO₂ demanded for EOR because CCATS currently does
not represent natural sources of CO₂. Note that natural sources of CO₂ fulfilled 62% of CO₂ sup-
plied to EOR in 2023. [12]

Source: U.S. Energy Information Administration.

Price assumptions

CO₂ prices are calculated after the CCATS linear program has solved. Specifically, we calculate a
regional volume-weighted average of the shadow prices produced by the model. This price is inclu-
sive of transportation and sequestration costs, net policy revenue and revenue from selling CO₂ to
EOR sites. This price does not include capture costs, as these costs are calculated by the NEMS
modules that interface with CCATS as part of their carbon capture decisions.

Technology improvement rate assumptions

CCATS includes a technology improvement rate that reduces the cost of a technology over time. A
report by Fahs et al.[13] at DOE estimates that major cost reductions are possible for carbon cap-
ture, but only moderate and small reductions for transport and storage, respectively. As such, we
include an annual improvement rate of 1% for pipeline transport and saline storage.

Capacity expansion and financing assumptions

Assumptions for transportation and storage infrastructure investments are listed in Table 5. The
fixed O&M fraction is the relative amount of fixed operation and maintenance costs within as com-
pared with the capital investment cost. The buffer assumption is the amount of extra capacity that
must be built.

Table 5. CCATS Financing Assumptions
Parameter Value

Debt ratio 40%

Return over capital cost 5%

Risk premia 2%

Financing years - Transportation 20

Financing years - Storage 26

Fixed O&M - Transportation 2.5%

Fixed O&M - Storage 8.7%

Capacity Expansion Buffer 15%

Source: U.S. Energy Information Administration.

Legislation and Regulations

In representing existing policy, CCATS focuses on the expansion and enhancement of 45Q tax
credits in the following three legislative acts.

Energy Improvement and Extension Act of 2008

The Energy Improvement and Extension Act of 2008 [14] included the establishment of the 45Q tax
credit for the capture and sequestration of CO₂ from industrial facilities. This law established that
CO₂ must be captured and disposed of within the United States.

Bipartisan Budget Act of 2018

The Bipartisan Budget Act of 2018 [15] included extending the availability of the 45Q tax credit to
facilities that began construction before 2024 and increased the tax credit. For EOR, the tax credit
began at $10/mT and increased to $35/mT in 2027. For saline storage, the tax credit began at
$20/mT and increased to $50/mT in 2027. After 2027, the tax credit is inflation adjusted. The tax
credit is available for 12 years.

[1](1,2)

[2](1,2)

[3](1,2)

[4](1,2)

[5](1,2)

[6](1,2)

Inflation Reduction Act of 2022

The Inflation Reduction Act (IRA) of 2022 [16] extended the 45Q tax credit to eligibly facilities that
begin construction before 2032 and meet minimum quantity thresholds. IRA increased the tax cred-
its from previous legislations to $60 per metric ton for captured CO₂ sent to EOR sites, and to $85
per metric ton for captured CO₂ permanently sent to geologic storage sites. The cax credits last for
12 years after the carbon capture equipment associated with the project is placed into service. Tax
credits are adjusted for inflation starting in 2027 and are indexed to 2025 as the base year.

Sources

Tommy Schmitt, Sarah Leptinsky, Marc Turner, Alexander Zoelle,
Charles W. White, Sydney Hughes, Sally Homsy, Mark Woods,
Hannah Travis Shultz, and Robert E. James III. Cost and performance
baseline for fossil energy plants volume 1: bituminous coal and natural
gas to electricity. Technical Report, National Energy Technology
Laboratory (NETL), 2022. URL:
https://www.osti.gov/servlets/purl/1893822/.

Kyle L. Buchheit, Alex Zoelle, Eric Lewis, Marc Turner, Tommy
Schmitt, Norma Kuehn, Sally Homsy, Shannon McNaul, Sarah
Leptinsky, Allison Guinan, Mark Woods, Travis Shultz, Timothy Fout,
and Gregory Hackett. Eliminating the derate of carbon capture retrofits
(rev. 2). Technical Report, National Energy Technology Laboratory
(NETL), 2023. URL: https://www.osti.gov/servlets/purl/1968037/.

Sydney Hughes, Alex Zoelle, Mark Woods, Samuel Henry, Sally
Homsy, Sandeep Pidaparti, Norma Kuehn, Hannah Hoffman, Katie
Forrest, Timothy Fout, William Summers, Steve Herron, and Eric Grol.
Industrial CO\textsubscript 2 capture retrofit database (IND CCRD).
Technical Report, National Energy Technology Laboratory (NETL),
2023. URL: https://netl.doe.gov/energy-analysis/details?id=42be56f6-
f37e-46f4-88ea-a77868da32f3.

U.S. Environmental Protection Agency. Greenhouse gas reporting
program (GHGRP) FLIGHT. URL: https://www.epa.gov/ghgreporting.

U.S. Environmental Protection Agency. Subpart pp – suppliers of
carbon dioxide. Accessed February 5, 2025. URL:
https://www.epa.gov/ghgreporting/subpart-pp-suppliers-carbon-dioxide.

Clean Air Task Force. Us carbon capture activity and project table.
Accessed February 5, 2025. URL: https://www.catf.us/ccstableus/ (vis-
ited on 2025-02-05).

https://www.osti.gov/servlets/purl/1893822/
https://www.osti.gov/servlets/purl/1968037/
https://netl.doe.gov/energy-analysis/details?id=42be56f6-f37e-46f4-88ea-a77868da32f3
https://netl.doe.gov/energy-analysis/details?id=42be56f6-f37e-46f4-88ea-a77868da32f3
https://www.epa.gov/ghgreporting
https://www.epa.gov/ghgreporting/subpart-pp-suppliers-carbon-dioxide
https://www.catf.us/ccstableus/

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

David Morgan, Allison Guinan, and Alana Sheriff. FECM/NETL
CO\textsubscript 2 transport cost model (2023): description and user’s
manual. Technical Report, National Energy Technology Laboratory
(NETL), U.S. Department of Energy, 2023. doi:10.2172/1992905.

Daryl Brown, Krishna Reddi, and Amgad Elgowainy. The development
of natural gas and hydrogen pipeline capital cost estimating equations.
International Journal of Hydrogen Energy, 47:33813–33826, 2022.

U.S. General Services Administration. National park boundaries.
Data.Gov, December 2020. Last modified December 2, 2020. Accessed
February 5, 2025. URL: https://catalog.data.gov/dataset/national-park-
boundaries (visited on 2025-02-05).

U.S. General Services Administration. National register of historic
places. Data.Gov, November 2014. Last modified November 2, 2014.
Accessed February 5, 2025. URL:
https://catalog.data.gov/dataset/national-register-of-historic-places-
7eebd (visited on 2025-02-05).

National Energy Technology Laboratory. FE/NETL CO\textsubscript 2
Saline Storage Cost Model: User’s Manual. U.S. Department of Energy,
Pittsburgh, PA, 2017.

U.S. Environmental Protection Agency (EPA). Supply, underground in-
jection, and geologic sequestration of carbon dioxide. January 2025.
Last modified January 14, 2025. Accessed February 5, 2025. URL:
https://www.epa.gov/ghgreporting/supply-underground-injection-and-ge-
ologic-sequestration-carbon-dioxide (visited on 2025-02-05).

Ramsey Fahs, Rory Jacobson, Andrew Gilbert, Dan Yawitz, Catherine
Clark, Jill Capotosto, Colin Cunliff, Brandon McMurtry, and Uisung Lee.
Pathways to commercial liftoff: carbon management. Technical Report,
U.S. Department of Energy, 2023. Accessed February 5, 2025. URL:
https://liftoff.energy.gov/wp-content/uploads/2024/02/20230424-Liftoff-
Carbon-Management-vPUB_update4.pdf (visited on 2025-02-05).

U.S. Congress. H.r.6049 - 110th congress (2007-2008): energy im-
provement and extension act of 2008. September 2008. URL:
https://www.congress.gov/bill/110th-congress/house-bill/6049 (visited
on 2025-06-10).

U.S. Congress. H.r.1892 - 115th congress (2017-2018): bipartisan bud-
get act of 2018. February 2018. URL:
https://www.congress.gov/bill/115th-congress/house-bill/1892 (visited
on 2025-06-10).

U.S. Congress. H.r.5376 - 117th congress (2021-2022): inflation reduc-
tion act of 2022. August 2022. URL:

https://doi.org/10.2172/1992905
https://catalog.data.gov/dataset/national-park-boundaries
https://catalog.data.gov/dataset/national-park-boundaries
https://catalog.data.gov/dataset/national-register-of-historic-places-7eebd
https://catalog.data.gov/dataset/national-register-of-historic-places-7eebd
https://www.epa.gov/ghgreporting/supply-underground-injection-and-geologic-sequestration-carbon-dioxide
https://www.epa.gov/ghgreporting/supply-underground-injection-and-geologic-sequestration-carbon-dioxide
https://www.epa.gov/ghgreporting/supply-underground-injection-and-geologic-sequestration-carbon-dioxide
https://liftoff.energy.gov/wp-content/uploads/2024/02/20230424-Liftoff-Carbon-Management-vPUB_update4.pdf
https://liftoff.energy.gov/wp-content/uploads/2024/02/20230424-Liftoff-Carbon-Management-vPUB_update4.pdf
https://www.congress.gov/bill/110th-congress/house-bill/6049
https://www.congress.gov/bill/115th-congress/house-bill/1892

https://www.congress.gov/bill/117th-congress/house-bill/5376 (visited
on 2025-06-10).

https://www.congress.gov/bill/117th-congress/house-bill/5376

(1)

(2)

(3)

(4)

(5)

(6)

Model Formulation
This section describes the CCATS optimization model. Please refer to the Glossary for additional details, and to
Inputs and Methods for parameter selection.

Objective Function

The core objective of the CCATS optimization model is to minimize the total cost associated with and transport-
ing and storing CO₂ from supply sources to sequestration sites. In the model, each of these locations are repre-
sented as nodes, , while transportation routes or connections between two nodes are represented as arcs, .

The model is also designed with multiple time periods to accommodate investment in network expansion. A time
period is denoted by .

The objective function (1), encompasses investment including CAPEX and fixed operating and maintenance
(O&M) costs (2), variable operating costs including variable O&M and electricity costs (3), and policy-related
costs and incentives (4).

The model solves for several decision variables, both continous and binary. Decision variables are denoted in
bold. First, the model determines the flow of CO₂ in arcs, split into three types for tractability: flow that uses exist-
ing capacity, , flow that uses newly constructed capacity, , and flow that receives different policy incen-
tives , . Policy incentives are denoted by .

Second, the model determines the amount of additional pipeline capacity installed, , indexed by diameter
size . Lastly, the model solution includes binary decision variables representing investment in saline storage,

. The superscripts and denote transportation and storage, respectively.

The parameters in the objective function represent the various costs by type of node. Parameters denoted by
represent discount factors which can vary by the type of cost and over time. Parameters denoted by represent
investment costs, while denotes variable costs. Transportation by pipeline requires electricity and is denoted by
electricity demand, . Policy incentives are denoted by .

Constraints

The model has four groups of constraints: constraints on the volume of flow in each arc, constraints on the bal-
ance of CO₂ flowing in and out of the nodes; constraints on transportation investment, and constraints on saline
storage investment.

Arc Flow Constraints

n a

t

min
X̄a,t, Xa,t, Xa,p,t, QT

a,d,t, IS
n,t

∑
t∈T

(C investment
t + C variable

t + C
policy
t)

C investment
t = ψT

t ∑
a∈A, d∈D

(θTa,d,tQ
T
a,d,t) + ψS

t ∑
n∈N S

(θSn,tI
S
n,t)

C variable
t = ψvariable

t (∑
a∈A

(κT
a,tλ

T
a,tXa,t) + ∑

n∈N S

(λS
n,t ∑

a∈A in
n

Xa,t))

C
policy
t = ψ

policy
t ∑

n∈N S, a∈A in
n , p∈P

ζn,pXa,p,t

X̄a,t Xa,t

p Xa,p,t p

QT
a,d,t

d

IS
n,t T S

ψ
θ

λ

κT
a,t ζn,p

X̄a,t ≤ ρa,t, ∀ a ∈ A, t ∈ T

Xa,t ≤ ∑
d∈D,t⋆<=t−1

QT
a,d,t⋆ , ∀ a ∈ A, t ∈ T

file:///L:/mid/adc/git/NEMS/docs/build/html/written/CCATS/how_to_run_CCATS.html#section-inputs-methods

(7)

(8)

(9)

(10)

(11)

(12)

(13)

In Equation (5), flow that uses existing pipeline capacity as of the first time period, , is limited by the existing
capacity parameter, . This parameter is taken from the data in the early projection years and is determined by
the model in later projection years as pipeline capacity is built in NEMS endogenously. Please refer to this sec-
tion for additional details.

In Equation (6), flow that uses newly constructed capacity, , is limited by the total capacity that has been in-
stalled in all previous time periods and is available for use in the current time period. This newly constructed ca-
pacity is a continuous decision variable that is in turn limited by the parameter in Equation (7). This param-
eter represents the maximum volume that can be installed based on characteristics of available pipelines in the
market, particularly diameter.

Constraints (6) and (7) are formulated using the big M method to limit the number of binary decision variables in
the model. Otherwise, the optimization problem where a binary investment decision is multiplied by build capacity
or flow, which are both decision variables themselves, is a non-linear problem. To avoid this, the investment deci-
sion variable, , is instead defined as a continuous variable. When this variable is zero, meaning no invest-
ment is undertaken by the model, the constraints force both capacity and flow to be zero as well.

Equation (8) defines the secondary decision variable, , as the sum of the two flow types for ease of notation.
Equation (9) constrains this total to be the sum of CO₂ flow across policies.

Node Flow Balance Constraints

The next set of constraints define the net supply or demand of CO₂ at nodes and ensure that the sum of flows
into a node and the sum of flows out of the node must balance out. The subsets of arcs with flow going into and
out of a node is denoted by and , respectively.

Equation (10) sets the CO₂ flow balance for capture nodes equal to . This parameter represents the sup-
ply of captured CO₂ and is determined by other NEMS modules. Note that this constraint is an equality, so that
CCATS must allocate and transport all captured CO₂ received from other NEMS modules.

Equation (11) sets the balance at transshipment points to zero, so that these nodes cannot be used as temporary
storage locations.

Equation (12) limits the flow balance in saline storage nodes by the injection parameter . It is defined as an
inequality because the storage capacity in geologic formations in the U.S. is an order of magnitude higher than
the CO₂ emissions being produced in the data. This parameter determined by the model in later projection years
as storage capacity is built in NEMS endogenously. It is further discussed in the section on
section_saline_storage.

Equation (13) limits the flow balance to the EOR parameter . This parameter is determined by HSM.
Similar to the constraint on saline storage, it is also defined as an inequality, so the model does not force cap-

QT
a,d,t ≤ σmax

a,d , ∀ a ∈ A, d ∈ D, t ∈ T

Xa,t = X̄a,t + Xa,t, ∀ a ∈ A, t ∈ T

Xa,t = ∑
p∈P

Xa,p,t, ∀ a ∈ A, t ∈ T

X̄a,t

ρa,t

Xa,t

σmax
a,d

QT
a,d,t

Xa,t

A in
n A out

n

∑
a∈A in

n

Xa,p,t − ∑
a∈A out

n

Xa,p,t = −ϕC
n,p,t, ∀ n ∈ N C, t ∈ T , p ∈ P

∑
a∈A in

n

Xa,p,t − ∑
a∈A out

n

Xa,p,t = 0, ∀ n ∈ N TS, t ∈ T , p ∈ P

∑
a∈A in

n

Xa,t − ∑
a∈A out

n

Xa,t ≤ Jn,t, ∀ n ∈ N S,saline, t ∈ T

∑
a∈A in

n

Xa,t − ∑
a∈A out

n

Xa,t ≤ ϕ
S,EOR
n,t , ∀ n ∈ N S,EOR, t ∈ T

−ϕC
n,p,t

Jn,t

ϕ
S,EOR
n,t

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

tured CO₂ to be directed to EOR unless it is economical. As such, there may be EOR demand that is unfulfilled in
the model.

Supply of CO₂ from NEMS modules will be specified by policy elgibility, thus the need to index by in Equations
(10). Consequently, the flow balance in the transshipment network also needs to be tracked by policy in Equation
(11). However, storage and EOR nodes can accept flow from any policy, thus Equations (12) and (13) are not in-
dexed by .

Saline Storage Investment Constraints

CCATS represents two aspects of storage: the speed at which CO₂ flow can be stored and the total volume of
CO₂ that can be stored.

Injectivity, or the rate at which CO₂ can be injected, is defined in Equation (14) and is based on the investment
decision in a saline storage node. The parameters and are based on external studies and data.

Cumulative injection, or the total amount of CO₂ that can be injected over all time periods, is defined in Equation
(15). The parameters and are also based on external studies and data.

Lastly, a storage node is broken down into multiple Areas of Review (AOR) to represent incremental develop-
ment of a storage location. Equation (16) limits the total number of AORs that can be built at a given node.

Non-Linear MILP Model

The default specification of CCATS is a linear program to save on runtime. However, the model can also be run
as a mixed-integer linear program (MILP). In the MILP specification, investment in pipeline capacity is a piece-
wise-linear function instead of a simple linear function. The following equations are different from the ones de-
scribed above.

In the objective function, Equation (1) becomes Equation (17) with an additional binary decision variable .

Equation (18) replaces the calculation for investment costs in Equation (2) and includes the piecewise linear
function. The coefficient is as an intercept parameter for each of the segments of the piecewise linear func-
tion, while is a slope parameter for each additional unit of capacity invested in within that segment.

Equation (19) ensures that each arc can only build once per time period, and must be in one of the piecewise lin-
ear segments. Equation (20) and Equation (21) enforce the lower and upper bounds per segment of the pipeline
piecewise linear function.

p

p

Jn,t = αn + βn ∑
0≤t⋆≤t−1

IS
n,t⋆ , ∀ n ∈ N S,saline, t ∈ T

∑
a∈A in

n ,0≤t⋆≤t

τ ⋆
t Xa,t⋆ ≤ γn + δn ∑

0≤t⋆≤t−1

IS
n,t⋆ , ∀ n ∈ N S,saline, t ∈ T

∑
t∈T

IS
n,t ≤ ϵn, ∀ n ∈ N S,saline

αn βn

γn δn

min
X̄a,t, Xa,t, Xa,p,t, QT

a,d,t, IT
a,d,t IS

n,t

∑
t∈T

(C investment
t + C variable

t + C
policy
t)

C investment
t = ψT

t ∑
a∈A, d∈D

(ηTa,d,tI
T
a,d,t + θTa,d,tQ

T
a,d,t) + ψS

t ∑
n∈N S

(θSn,tI
S
n,t)

∑
d∈D

IT
a,d,t ≤ 1, ∀ a ∈ A, t ∈ T

σmin
a,d IT

a,d,t ≤ QT
a,d,t, ∀ a ∈ A, d ∈ D, t ∈ T

QT
a,d,t ≤ σmax

a,d IT
a,d,t, ∀ a ∈ A, d ∈ D, t ∈ T

IT
a,d,t

ηTa,d,t

θTa,d,t

Price of Carbon Dioxide

One of the main results of the CCATS optimization model is the price CO₂. Price is an important driver used by
other NEMS modules to determine their decision to capture CO₂ and whether to install capture technology.

There are two types of flows in CCATS: flows that are 45Q eligible and flows that are not 45Q eligible. CCATS
distinguishes between the two types to enable the model to return two separate prices, one for each 45Q eligibil-
ity. This is important, because policy incentives can be a big driver of the decision to provide captured CO₂ to the
model.

The price CO₂ comes the duals from the constraints in Equation (10). These equations represent the point at
which CCATS receives CO₂ from other NEMS modules, and equates supply to demand. In the optimization, the
dual variables reflect the change in the objective function for each unit change in the constraint. Economically, it
reflects the present value of the marginal cost to transport, store, and receive policy incentives for an additional
unit of captured CO₂.

CCATS uses a highly detailed representation of CO₂ supply facilities, which is more granular than what can be
used by other NEMS modules. The constraints need to be aggregated to a census region or census division
level to be compatible with NEMS. As such, CCATS calculates the volume-weighted average of the duals from
the constraints in a post-processor to aggregate at both the census region and census division levels . In addi-
tion, CCATS returns the CO₂ price for the first year of the optimization which aligns with the year that the NEMS
model is being run for a particular cycle or iteration.

Relationship between CCATS and NEMS

Within a NEMS run, the CCATS model is executed each model year, iteration, and cycle. For instance, when
NEMS runs for the 2025 model year, CCATS optimizes with 2025 as the initial period.

To reduce runtime, CCATS simplifies the temporal resolution of the investment horizon and limits the number of
time periods to three. The first time period represents the current NEMS year, the second time period the follow-
ing year, and the third time represents a longer time horizon to inform long-term decisions. Capacity can be
added during any period, but will not available for use until the following time period. CCATS projects operation
and capacity expansion of carbon transport and storage over this time horizon.

Table 6. CCATS Time Periods and Capacity Expansion
Assumptions

Time Period Duration (years) Capacity Expansion

1 1 Yes

2 1 Yes

3 18 Yes

Source: U.S. Energy Information Administration.

Although the model produces solutions for three time periods, only the solution for the first time period is returned
to NEMS. For example, a NEMS run for the model year 2025 uses output from the first time period of a CCATS
model. Subsequently, when NEMS advances to the 2026 model year, CCATS re-optimizes, now with 2026 as the
initial period.

In addition, model parameters are derived from two sources: outputs from other NEMS modules, enabling feed-
back effects, and expert studies for calibrating remaining parameters. For example, the model also uses NEMS
results from 2025 as input parameters for 2026 to allow the model to build capacity over time.

Modeling in Pyomo

The formulation is implemented in Pyomo using the declare_objective() and declare_objective_across_blocks()
methods within the OptimizationModel class.

Constraints are set in the optimization program by declare_constraints() and declare_constraints_across_blocks().

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#opmodels.ccats_optimization.OptimizationModel.declare_objective
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#opmodels.ccats_optimization.OptimizationModel.declare_objective_across_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#opmodels.ccats_optimization.OptimizationModel.declare_constraints
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#opmodels.ccats_optimization.OptimizationModel.declare_constraints_across_blocks

Additional documentation for the source code of the CCATS module can be found found in the Model API
Reference Section.

Glossary

Superscripts

Superscripts identify the main concepts within CCATS, indicating the relevance of sets, parameters, and vari-
ables to those concepts. For clarity and tractability, the number of superscripts is limited. Superscripts are dis-
played in regular font and listed in Table 7.

Table 7. Superscripts.
Superscript Short Description

Capture

Allocation

Transport

Transshipment

Storage

Storage - Enhanced Oil Recovery

Storage - Saline aquifer

In

Out

Sets and subsets

Sets and subsets group model objects with shared characteristics, such as nodes and arcs, enabling efficient ap-
plication of consistent calculations. Parameters and variables are indexed by these sets and subsets and are dis-
played in calligraphic font.

Sets and subsets are listed in Table 8. Subsets, denoted by a superscript on the parent set, are listed below their
corresponding set. For example, represents a time period within the set .

In the code, sets for the optimization program are defined using the declare_sets() method within the
OptimizationModel class.

Table 8. Sets and subsets.

Set Subset Element CCATS Name Short Description Detailed
Description

s_arcs Arcs, connections between nodes Details

arcs_in Arcs transporting flow into a node Details

arcs_out
Arcs transporting flow away from a
node Details

s_transport_options Pipeline segment options Details

s_nodes Nodes Details

s_nodes_supply Capture nodes Details

s_nodes_transshipment Transport (transshipment) nodes Details

s_nodes_demand Saline storage or EOR nodes Details

s_nodes_demand_storage Saline storage nodes Details

s_nodes_demand_eor EOR nodes Details

s_policy_options CO₂ Policies (for example, 45Q) Details

C

A

T

TS

S

S,EOR

S, saline

in

out

t T

A a

A in a

A out a

D d

N n

N C n

N TS n

N S n

N S,saline n

N S,EOR n

P p

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#opmodels.ccats_optimization.OptimizationModel.declare_sets

Set Subset Element CCATS Name Short Description Detailed
Description

s_time Time Details

Data Source: U.S. Energy Information Administration

Arcs

 is the set of all arcs . Arcs represent connections between nodes. Arcs have directionality, therefore a single
arc allows flow in one direction. Supply nodes only have the option to build arcs that transport flow away from the
supply. Saline storage and EOR nodes only have the option to build arcs that transport flow to storage/EOR.
Transshipment nodes have the option to build flow in either direction between nodes. Arcs options are defined in
the offline preprocessor. In the optimization model, arcs are indexed by 1) the name (string) of the starting node,
and 2) the name (string) of the ending node.

Arcs in

 is a subset of . represents the arcs with flow coming into a node. This subset is used to support the
balance of flows coming into a node against the flows leaving a node. is determined in the online
preprocessor.

Arcs out

 is a subset of . represents the arcs with flow exiting a node. This subset is used to support the bal-
ance of flows coming into a node against the flows leaving a node. is determined in the online
preprocessor.

Pipeline options

 is the set of all pipeline options . When CCATS is run as a linear program, then each arc only has one pipe-
line option. When CCATS is run as a mixed integer linear program, it uses a piecewise linear function to select
between different pipeline options. The different pipeline options are designed to represent possible combina-
tions of pipeline diameters and number of pumps. Each segment of the piecewise linear is a pipeline option .
is determined in the offline preprocessor. Pipeline options are indexed by their name (string).

Nodes

 is the set of nodes . Nodes represent locations where pipelines (arcs) either start or end. Nodes include key
locations including suppliers of CO₂, EOR demand sites, and saline storage. Nodes are indexed by their name
(string).

Supply nodes

 is the subset of nodes where CO₂ capture occurs, thus supplying CO₂ to the network.

Transshipment nodes

 is the subset of nodes where two pipelines join, known as a transshipment node.

Storage nodes

 is the subset of nodes where CO₂ is stored either in EOR or saline storage.

Saline storage nodes

 is the subset of nodes where CO₂ is stored in saline storage.

T t

A a

A in A A in

A in

A out A A out

A out

D d

d D

N n

N C

N TS

N S

N S,saline N S

EOR nodes

 is the subset of nodes where CO₂ used for Enhanced Oil Recovery (EOR).

Policy options

 is the set of policy options . This includes flow that is not eligible for policy incentives and flow that is eligible
for 45Q. CCATS does not determine the 45Q eligibility of flow, rather that is provided as an input by NEMS mod-
ules supplying CO₂. Policy options are indexed by their name (string).

Time periods

 is the set of time periods . CCATS operates with three time periods, which are implemented in Pyomo using a
block structure. The first time period represents the current year being analyzed by NEMS. The second and third
time period are used to represent the future to support investment decisions. Time periods are indexed by their
number (integer).

Parameters

Parameters serve as inputs to the CCATS optimization program and are generally represented using lowercase
Greek letters. These parameters are sourced either endogenously from other NEMS modules or exogenously
from the offline CCATS preprocessor. We use the notation to denote the set of real numbers and to de-
note the set of non-negative real numbers. Parameters are defined for the optimization program using the
declare_parameters() method within the OptimizationModel class. A complete list of parameters is provided in
Table 9.

Table 9. Parameters.

Parameter CCATS Name Data
Type

Short
Description Source Units Detailed

Description

Storage

p_co2_demand_storage
Existing
injectivity

Exogenous Details

p_storage_inj_capacity_adder

Additional
injectivity
per AoR

Exogenous Details

p_storage_injection_net_remaining
Existing net
capacity

Exogenous Details

p_storage_injection_adder

Additional
capacity per
AoR

Exogenous Details

p_storage_aors_available

Number of
AoRs avail-
able to
open

Exogenous Details

Policy

p_policy_45Q

Policy cost
(+) or incen-
tive (-)

Exogenous Details

Costs

p_capex_transport_0

Transport
CAPEX -
Intercept

Exogenous Details

p_capex_transport_slope
Transport
CAPEX Exogenous Details

N S,EOR N S

P p

T t

R R
+
0

αn R
+
0 t CO2/year

βn R
+
0 t CO2/year

γn R
+
0 t CO2

δn R
+
0 t CO2

ϵn R
+
0 t CO2

ζn,p,t R $/t CO2

ηTa,d,t R
+
0 $

θTa,d,t R
+
0 $/t CO2

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#opmodels.ccats_optimization.OptimizationModel.declare_parameters

Parameter CCATS Name Data
Type

Short
Description Source Units Detailed

Description

p_capex_storage
Storage
CAPEX Exogenous Details

p_electricity_demand

Transport
electricity
consump-
tion

Exogenous Details

p_opex_transport

Transport
electricity
cost

Exogenous Details

p_opex_storage
Storage
OPEX

Exogenous Details

Transport

p_transport_capacity_existing
Exisiting
capacity Exogenous Details

p_transport_capacity_adder

Maximum
capacity per
new build

Exogenous Details

Net Supply

p_co2_supply

CO₂ cap-
tured at
source

Endogenous Details

p_co2_demand_eor

CO₂ de-
mand for
EOR

Endogenous Details

Financing/discounting
and time

p_duration
Duration of
time period Exogenous Details

p_discount_invest_storage

Discount
factor for
storage
investment

Endogenous Details

p_discount_invest_transport

Discount
factor for
transport
investment

Endogenous Details

p_discount_variable

Discount
factor for
variable
costs

Endogenous Details

p_discount_policy

Discount
factor for
policy costs

Endogenous Details

Existing injectivity

 is the injectivity (amount of CO₂ that can be injected per year) at node before the current model year.

Additional injectivity

 is the additional injectivity that is added to node per additional AoR opened.

θSn,t R
+
0 $/t CO2

κT
a,t R

+
0 MWh/t CO2

λT
a,t R

+
0 $/MWh

λS
n,t R

+
0 $/t CO2

ρa R
+
0 t CO2/year

σa,d R
+
0 t CO2/year

ϕC
n,p R

+
0 t CO2/year

ϕ
S,EOR
n R

+
0 t CO2/year

τt R
+
0 years

ψT
t R

+
0 −

ψS
t R

+
0 −

ψvariable
t R

+
0 −

ψ
policy
t

R
+
0 −

αn n

βn n

Existing net capacity

 is the injection capacity remaining at node before the current model year.

Additional capacity

 is the additional injection capaicty added to node per additional AoR opened.

Available AoRs

 is the number of AoRs available to open at node .

Policy cost

 is the cost of policy . Incentives such as 45Q are provided as a negative cost.

Transport investment - intercept

 is the intercept for transport investment costs. This is only used in the non-linear version of CCATS.

Transport investment - slope

 is the slope of transport investment costs.

Storage investment

 is the investment cost of storage.

Transport electricity consumption

 is the amount of electricity consumed to transport a tonne of CO₂.

Transport electricity cost

 is the cost per unit of electricity consumed for arc .

Storage variable cost

 is the variable cost of storage.

Existing transport capacity

 is the capacity of transport arcs before the current model year.

Transport capacity adder

 is the limit for adding capacity to an arc for the current pipeline option .

CO₂ supply

 is the amount of CO₂ supplied at node and of policy .

EOR demand

γn n

δn n

ϵn n

ζn,p,t p

ηTa,d,t

θTa,d,t

θSn,t

κT
a,t

λT
a,t a

λS
n,t

ρa

σa,d d

ϕC
n,p n p

 is the maximum CO₂ demand for EOR at node .

Duration

 is the duration of time period .

Transport discount factor

 is a multiplier to finance and discount payments for transportation investments made in time period . It is cal-
culated by calculate_discount_investment().

with the discount factor, , and inflation factor, , from year to defined as:

The discount and inflation factor is summed starting at because the first payment is assumed to occur
one year after the investment decision.

These equations rely on eight inputs:

time inputs:
 is the time period of the investment decision,

 is the NEMS year that time period 0 begins,
 is the NEMS year that time period begins,
 are the number of years that CAPEX is financed for transport and storage, respectively,

financing inputs:
 is the fraction of CAPEX paid each year as Fixed O&M for transport and storage, respectively,

 is the inflation rate of year y,
 is the discount rate of year y equal to the real rate + inflation rate,
 is the interest rate used for borrowing in time period , equal to the real rate + inflation rate +

risk premia.

Storage discount factor

 is a multiplier to finance and discount payments for storage investments made in time period . It is calcu-
lated by calculate_discount_investment().

Variable cost discount factor

 is a multiplier to discount variable costs occurring in time period . Variable costs are input for a single
year, so also accounts for repeated costs in multi year time periods. It is calculated by
calculate_discount_variable_policy().

where is the duration of the time period .

ϕ
S,EOR
n n

τt t

ψT
t t

ψT
t = (RINTt(1 + RINTt)

n

(1 + RINTt)n − 1
∗
yt+1+n

∑
y=yt+1

DISy0,y) + (FOM ∗
yt+1+n

∑
y=yt+1

INFyt,y ∗ DISy0,y)

DIS INF y0 y1

DISy0,y1 = {
1 ∀ y1 − y0 = 0

∏y1

y⋆=y0

1
(1+RDISy⋆) ∀ y1 − y0 > 0

INFy0,y1
= {1 ∀ y1 − y0 = 0

∏y1

y⋆=y0
(1 + RINFy⋆) ∀ y1 − y0 > 0

yt + 1

t
y0

yt t
n

FOM
RINFy

RDISy

RINTt t

ψS
t t

ψS
t = (RINTt(1 + RINTt)n

(1 + RINTt)n − 1
∗
yt+1+n

∑
y=yt+1

DISy0,y) + (FOM ∗
yt+1+n

∑
y=yt+1

INFyt,y ∗ DISy0,y)

ψvariable
t t

ψvariable
t

ψvariable
t =

yt+Δt

∑
y=yt

(DISy0,y)

Δt t

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats_financial.html#ccats_financial.CCATS_Finance.calculate_discount_investment
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats_financial.html#ccats_financial.CCATS_Finance.calculate_discount_investment
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats_financial.html#ccats_financial.CCATS_Finance.calculate_discount_variable_policy

Policy cost discount factor

 is a multiplier to discount policy costs occurring in time period . Policy costs are input for a single year, so
 also accounts for repeated costs in multi year time periods. It is calculated by

calculate_discount_variable_policy().

Variables

Unknowns (decisions) to be solved by the mathematical program. They are split into primary and secondary de-
cision variables. All variables use the uppercase Roman alphabet, with subscripts in lowercase. Primary decision
variables are shown in bold. Secondary decisions variables are dependent on primary decision variables.
Variables are shown in the order they are declared in the code. We use the symbol to denote the set of real
numbers, to denote non-negative real numbers, and to denote binary variables. Variables are set-up for
the optimization program by declare_variables(). Variables are listed in Table 10.

Table 10. Variables.

Variable CCATS Name Data
Type Short Description Units Detailed

Description

Costs

e_sum_costs_investment Investment costs $ Details

e_sum_costs_policy Policy costs $ Details

e_sum_costs_variable Variable costs $ Details

Investment

vb_transport_investment
Transport investment
decision 0 or 1 Details

v_storage_investment
Storage investment
decision

of AoRs Details

Storage - injectivity

v_storage_inj_capacity
Storage injection
capacity Details

Pipeline Capacity

v_transport_capacity_added

Transport capacity con-
structed in the current
time step

Details

Pipeline Flow

v_flow Flow of arc Details

v_flow_base

Flow using existing ca-
pacity (built before
CCATS run)

Details

v_flow_add

Flow using new capac-
ity (built during CCATS
run)

Details

v_flow_by_policy Flow by policy Details

Investment costs

 is the sum of investment costs committed in time period .

ψ
policy
t t

ψ
policy
t

ψ
policy
t =

yt+Δt

∑
y=yt

(DISy0,y)

R

R
+
0 B

C investment
t R

+
0

C
policy
t

R

C variable
t R

+
0

IT
a,d,t B

IS
n,t R

+
0

Jn,t R
+
0 t CO2/year

Qa,d,t R
+
0 t CO2/year

Xa,t R
+
0 t CO2/year

X̄a,t R
+
0 t CO2/year

Xa,t R
+
0 t CO2/year

Xa,p,t R
+
0 t CO2/year

C investment
t t

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats_financial.html#ccats_financial.CCATS_Finance.calculate_discount_variable_policy
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#opmodels.ccats_optimization.OptimizationModel.declare_variables

Policy costs

 is the sum of policy costs occurring during time period .

Variable costs

 is the sum of variable costs occurring during time period .

Transport investment

 is the transport investment decision at node in time period . This is only used in the non-linear (MILP)
version of CCATS. This variable is in bold to indicate that it is a primary decision variable.

Storage investment

 is the storage investment decision at node in time period . This variable is in bold to indicate that it is a
primary decision variable.

Injectivity

 is the available injectivity of node in time period .

Transport capacity added

 is the amount of capacity added to arc of type in time period . This variable is in bold to indicate that
it is a primary decision variable.

Total flow

 is the total flow moving through arc in time period .

Existing capacity flow

 is the flow using existing transport capacity through arc in time period . This variable is in bold to indicate
that it is a primary decision variable.

New capacity flow

 is the flow using new transport capacity through arc in time period . This variable is in bold to indicate
that it is a primary decision variable.

Flow by policy

 is the flow through arc in time period and indexed by policy . This variable is in bold to indicate that it
is a primary decision variable.

C
policy
t t

C variable
t t

IT
a,d,t

n t

IS
n,t n t

Jn,t n t

Qa,d,t a d t

Xa,t a t

X̄a,t a t

Xa,t a t

Xa,p,t a t p

How to Run CCATS
CCATS can be run either standalone in a python IDE, or within the NEMS integrated model framework. The
CCATS module is written in Python and Pyomo. Documentation for the source code of the CCATS module can
be found found in the Model API Reference Section.

Running CCATS Standalone

When CCATS is run standalone, CO₂ supply and demand volumes are exogenous.

To run CCATS standalone:

1. Open the CCATS model directory in a Python IDE (Pycharm, Microsoft Visual Studio, Spyder,
etc.)

2. Create and assign a python interpreter including all the Python libraries listed in CCATS
Dependencies.

3. Select CCATS run options from the setup files stored in the CCATS input directories (i.e. model
solver, debug outputs, etc.)

4. Run CCATS from ccats.py.
5. Review results in the CCATS debug directories.

Running CCATS in NEMS

1. Select CCATS run options from the setup files stored in the CCATS input directories (i.e. model
solver, debug outputs, etc.)

2. Select NEMS run options from the scedes files store in the NEMS scedes directory
3. Run the Run_NEMS.bat file and select a run repository and scedes file.
4. Review results in NEMS report writer and CCATS debug directories.

CCATS Dependencies

CCATS relies on the below list of Python libraries to run.

Libraries included with the default distribution or available via pip or conda:

sys
os
io
shutil
pathlib
logging
argparse
shutil
pylint
tabulate
pylab
itertools
warnings
pickle
numpy
pandas
pyomo
matplotlib
folium (for mapping)
xpress (if using the FICO Xpress solver)

NEMS specific libraries:
pyfiler1 - maintined by the NEMS Integration Team.

Inputs and Methods

Inputs to CCATS are contained in .CSV files. These inputs determine high level assumptions and how the pri-
mary CCATS modules and submodules operate. They also include switches for various outputs or features of the
model.

Module inputs

Table 11 includes the inputs that are used by Module.

Table 11. General inputs
parameter value type description

threads 4 int
number of threads to use
(Python code +
optimization)

hist_setup hist_setup.csv input_file Historical Data setup file

fin_setup fin_setup.csv input_file Financial Assumptions
setup file

preproc_setup preproc_setup.csv input_file Preprocessor setup file

opt_setup opt_setup.csv input_file Optimization setup file

postproc_setup postproc_setup.csv input_file Postprocessor setup file

restart_in restart_CCATSin.unf input_file Restart file input for local
standalone CCATS runs

restart_out restart_CCATSo.unf output_file
Restart file output by
CCATS

preproc_switch TRUE switch Run CCATS Preprocessor
if True

ccats_opt_switch TRUE switch
Run CCATS Optimization if
True

postproc_switch TRUE switch Run CCATS Postprocessor
if True

output_switch TRUE switch Run CCATS Output
Processor if True

update_45q_switch TRUE switch

Update the 45Q policy path
with input from setup.txt
“eor_45q” and “saline_45q”
variables if True

debug_switch FALSE switch
Output debug files if True
(will result in longer model
runtime)

debug_restart_itr_switch FALSE switch

Output the restart file de-
bug file every iteration if
True (will result in slightly
longer model runtime)

write_restart_before_run_switch FALSE switch
Output the restart file de-
bug received by CCATS
before running if True

output_restart_unf_switch FALSE switch
Output the restart file as a
.unf after running CCATS if
True

visualize_preproc_switch FALSE switch
Output folium visualizations
of optimization inputs if
True

visualize_postproc_switch FALSE switch
Output folium visualizations
of optimization outputs if
True

pytest_switch FALSE switch
Perform pytest internal vali-
dation tests if True

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module

parameter value type description

price_reset_switch FALSE switch

Reset CO2 prices to pro-
duce endogenous CO2
prices from models which
would otherwise have 0
CO2 capture if True

price_reset_value_45q -35 input_variable
CO2 price reset value
when “price_reset_switch”
== True

price_reset_value_ntc -9.52 input_variable
CO2 price reset value
when “price_reset_switch”
== True

price_average_switch TRUE switch
CO2 prices are set as a
weighted average of duals
by CD if True

price_marginal_switch FALSE switch
CO2 prices are set as the
marginal CO2 price by CD
if True

linear_model_switch TRUE switch
Model is run as a linear
model (vs. a MIP) if True

mapping mapping.csv input_file
Regionl NEMS mapping
(i.e. census divisions to
census regions)

co2_eor_mapping co2_eor_mapping.csv input_file
Mapping of CO2 EOR
plays to census
divisions/census regions

idm_mapping idm_mapping.csv input_file

Mapping of IDM CO2 cap-
ture volumes from cenesus
regions to census divisions
based on historical produc-
tion ratios

co2_supply_index co2_supply_index.csv input_file
Mapping of CO2 capture
facility types to NEMS
Restart variable index

co2_seq_index co2_seq_index.csv input_file
Mapping of CO2 seques-
tration types to NEMS
Restart variable index

year_start 2024 input_variable First model run year

year_aeo 2025 input_variable AEO year

year_final 2050 input_variable Final model run year

year_base_price 1987 input_variable Base $ year

eor_45q 60 input_variable Current 45Q tax credit
value for CO2 EOR

saline_45q 85 input_variable
Current 45Q tax credit
value for saline formation
storage

year_new_45q 2022 input_variable Year current 45Q tax credit
policy took effect

year_45q_duration 12
45Q tax credit
policy duration years

year_45q_last_new 2038

Final year for
which new 45Q-
eligible facilities
can be
retrofit/built

year

parameter value type description

legacy_eor_45q 35
Legacy 45Q tax
credit value for
CO2 EOR

legacy_saline_45q 50

Legacy 45Q tax
credit value for
saline formation
storage

year_leg_45q 2017
Year legacy tax
credit value took
effect

supply_select_ts_penalty 1 input_variable Penalty for ts node costs in
the model

Financial inputs

Table 12 shows the inputs that are used by CCATS_Finance.

Table 12. Financial assumptions
parameter value type description units

debt_ratio 0.4 input_variable Ratio of debt financing
frac-
tion

return_over_capital_cost 0.05 input_variable Assumed required return over capital cost
for investment

frac-
tion

fed_tax_rate 0.21 input_variable Assumed federal tax rate rate

duration_block0 1 input_variable Duration of optimization model block 0 years

duration_block1 1 input_variable Duration of optimization model block 1 years

duration_block2 18 input_variable Duration of optimization model block 2 years

duration_45q 12 input_variable Duration of 45Q tax credit policy for a sin-
gle facility

years

financing_risk_premia 0.02 input_variable
Assumed risk premia required by in-
vestors over risk-free market rate

frac-
tion

financing_years_transport 20 input_variable Assumed financing years for pipeline
transport investments

years

financing_years_storage 26 input_variable Assumed financing years for saline for-
mation storage investments years

fixed_om_fraction_transport 0.025 input_variable
Fixed O&M costs as a percentage of cap-
ital costs for pipeline transport

frac-
tion

fixed_om_fraction_storage 0.087 input_variable Fixed O&M costs as a percentage of cap-
ital costs for saline formation storage

frac-
tion

site_dev_years_storage 4 input_variable
Assumed number of years for storage site
development years

construction_years_storage 2 input_variable Assumed number of years for storage site
construction

years

Preprocessor inputs

Table 13 shows the inputs that are used by Preprocessor.

Table 13. Preprocessor inputs
parameter value type description units

storage_formations_lookup storage\storage_formations_lookup.csv input_file Lookup of saline formation
attributes

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats_financial.html#ccats_financial.CCATS_Finance
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor.Preprocessor

parameter value type description units

co2_supply_facilities co2_facilities\co2_facility_lookup.csv input_file input_file

Lookup
of CO2
cap-
ture fa-
cility
at-
tributes

pipeline_lookup_multi transport\master_pipeline_lookup_multi.csv input_file
Lookup of CO2 pipeline trans-
portation attributes

ts_multiplier transport\ts_multiplier.csv input_file Set of CO2 multipliers for TS
arcs by year

hsm_eor_centroid demand\hsm_eor_centroid.csv input_file CO2 demand from HSM cen-
troids during STEO years

small_sample_switch FALSE switch
Model solves for only a single
census division for testing if
TRUE

small_sample_division 7 input_variable Census division solved with
“small_sample_switch” == TRUE

split_45q_supply_switch TRUE switch
Split CO2 supply into 45Q and
NTC components if TRUE

block_45q_yr 6 input_variable

Decision variable for number of
45Q eligibility years remaining in
model (see method:
determine_facility_eligibility_45q)

years

new_pipes_to_exist_facilities 2026

First year that
new pipelines
can be built to
existing cap-
ture facilities
(first opera-
tional in the
following
year)

years

tech_learn_ammonia 0.007984 tech_rate Tech rate for capture at ammonia
facilities

fr/yr

tech_learn_ethanol 0.00 tech_rate Tech rate for capture at ethanol
facilities fr/yr

tech_learn_cement 0.01 tech_rate
Tech rate for capture at cement
facilities fr/yr

tech_learn_ng_processing 0.01 tech_rate Tech rate for capture at natural
gas processing

fr/yr

tech_learn_other 0.01 tech_rate
Tech rate for capture at all other
facilities fr/yr

tech_learn_power 0.00 tech_rate Tech rate for capture at power
plants (coal and natural gas)

fr/yr

tech_learn_transport 0.01 tech_rate Tech rate for carbon transport fr/yr

tech_learn_storage 0.01 tech_rate Tech rate for carbon storage fr/yr

transport_buffer 1.15

Buffer capac-
ity for new
pipeline
builds in the
optimization

input_variable

storage_buffer 1.15 Buffer capac-
ity for new
saline forma-
tion storage

input_variable

parameter value type description units
builds in the
optimization

Optimization model

Table 14 includes the inputs that are used by OptimizationModel.

Table 14. Optimization model inputs
parameter value type description

opt_check_solver_status FALSE switch
Check solver status and attempt
to troubleshoot cause for solve
fail if TRUE

troubleshoot_datatypes FALSE switch
Log datatypes to support trou-
bleshooting if TRUE

debug_opt_log FALSE switch Output solver output log if TRUE

use_solver_xpress_persistent TRUE bool
Use the xpress persistent solver
(NEMS default - note: the first
solver selected is used)

use_solver_xpress_direct FALSE bool
Use the xpress direct solver
(note: the first solver selected is
used)

use_solver_xpress FALSE bool
Use the default version of the
xpress solver (note: the first
solver selected is used)

use_solver_highs FALSE bool Use the HiGHS solver (note: the
first solver selected is used)

xpress_path C:/xpress8_12/bin/xpauth.xpr str
path to xpress’ xpauth.xpr license
file

soltimelimit 600 int solution time limit per iteration
(seconds)

maxmemorysoft 16000 int MB available for solve

Postprocessor inputs

Table 15 shows the inputs that are used by Postprocessor.

Table 15. Postprocessor inputs
parameter value type description units

price_limit 1000 input_variable Maximum price (+/-) returned by CCATS $1987

price_peg 0.3 input_variable
Maximum price (+/-) movement allowed
per cycle relative to the previous cycle $1987

slack_threshold 1 input_variable Threshold at which slack infeasibilities are
recorded in debug outputs

tonnes

log_b1_infeasibilities TRUE switch Log b1 infeasibilties if TRUE

log_b2_infeasibilities FALSE switch Log b2 infeasibilties if TRUE

infeasibility_threshold_pct 0.5 input_variable Log infeasibilities if greater than provided
percentage of total flow

%

.

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#opmodels.ccats_optimization.OptimizationModel
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/postprocessor.html#postprocessor.Postprocessor

ccats module
Main execution function for the Carbon Capture, Transportation, Allocation and Sequestration
(CCATS) Module.

CCATS Main: Summary

ccats.py is the main execution function for CCATS. It is called from NEMS main.py, performs ba-
sic model setup functions, and then calls Module: Summary to run the main CCATS processes.
The file operates as follows:

1. ccats.py is called from NEMS main.py or run directly from an IDE.

2. Logging setup:

a. The previous run’s log is deleted from the directory.
b. Logger is configured and written to “ccats_debug.log”.

3. File directory paths are instantiated.

4. get_args() is called, pulling run information from the NEMS command line for inte-
grated runs (i.e. iteration and model year).

5. run_ccats() is called, kicking off the main CCATS run operations:

a. Module in Module: Summary is declared, main directories are de-
clared, and main setup file is identified.

b. module.Module.setup() in Module: Summary is called to perform
year 1 model setup.

c. CCATS determines whether to run standalone vs. integrated
based on run location.

d. Main CCATS functions are run via Module: Summary.
e. After main CCATS model functions run, results are prepared and

reported to the restart file in restart.Restart.write_results().

CCATS Main: Input Files

None

CCATS Main: Functions and Class Methods

get_args() - Parses the arguments passed in via command line of NEMS
run_ccats() - Executes main CCATS processes from Module: Summary.

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/restart.html#restart.Restart.write_results
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module

[source]

[source]

CCATS Main: Output Debug Files

None

CCATS Main: Output Restart Variables

None

CCATS Main: Code

ccats.get_args(in_args=None)
Parses the arguments passed in via command line of NEMS. NOTE: NEMS calls Pyfiler with
trailing options for PyFiler to parse through for the input file, output file, and direction of restart
to hdf formatting.

Parameters: in_args (list) – in_args first set to none, then creates a list of system argu-
ments passed via the command line.

Returns: arguments – command line arguments saved into namespace variable.
Return type: Namespace

ccats.run_ccats(year, iteration, pyfiler1, cycle, scedes)
Executes main CCATS processes from Module: Summary.

Instantiates main directory,
Declares module.Module parent class for CCATS,
Runs module.Module.setup() processes from Module: Summary,
Runs module.Module.run() processes from Module: Summary, and
Runs restart.Restart.write_results() processes from Restart: Summary.

Parameters: year (str or int) – Current run year.
iteration (str or int) – Current NEMS iteration.
pyfiler1 (None or pyfiler) – Tool for reading and writing to the restart file.
cycle (str or int) – Current NEMS cycle.
scedes (None or scedes file inputs from main.py.) – NEMS Scenario
Description data.

Return type: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats.html#get_args
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats.html#get_args
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats.html#run_ccats
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats.html#run_ccats
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.run
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/restart.html#restart.Restart.write_results
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/restart.html#restart

[source]

ccats_common package

Submodules

ccats_common.common module

Utility file containing miscellaneous common functions used in CCATS.

Common: Summary

This is a utility file containing general functions that are either a) used frequently in a single submodule, or are
used by several submodules. Example functions include read_dataframe(), which is a universal function for read-
ing files into dataframes, and calculate_inflation() which applies the NEMS inflation multipliers to CCATS
DataFrames.

Convention for import alias is import common as com

Common: Input Files

Unique to each function.

Model Functions and Class Methods

read_dataframe() - Reads multiple filetypes into python as Pandas DataFrames, checking for nans.
calculate_inflation() - Inflation calculator using restart file inflation multiplier, applied to Pandas
DataFrames.
array_to_df() - Creates a Pandas DataFrame from a NumPy array.
df_to_array() - Creates a NumPy array from a Pandas DataFrame.
unpack_pyomo() - Unpacks Pyomo results and converts results to DataFrames.
check_results() - Checks optimization termination condition.
align_index() - Aligns the index types of two tables based on the restart variable type.
compare_lists() - Check if list A is equal or a subset of list B.
check_dicts_ruleset() - Check the list of dicts against defined ruleset.

Common: Output Debug Files

None

Common: Output Restart Variables

None

Common: Code

ccats_common.common.read_dataframe(filename, sheet_name=0, index_col=None, skiprows=None,

to_int=True)

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#read_dataframe
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#read_dataframe

[source]

[source]

[source]

[source]

[source]

Reads multiple filetypes into python as pandas DataFrames, checking for nans.

Parameters: filename (str) – Filename, including file type extension (e.g. .csv).
sheet_name (str) – Name of the sheet if using excel or hdf.
index_col (int, str, list, or False) – Column number to use as row labels.
skiprows (int) – Column number to use as row labels.
to_int (bool) – If True, values are converted to integers.

Return type: DataFrame

ccats_common.common.calculate_inflation(rest_mc_jpgdp, from_year, to_year=None)

Inflation calculator using restart file inflation multiplier, applied to pandas DataFrames.

Parameters: rest_mc_jpgdp (DataFrame) – DataFrame of NEMS restart file inflation multipliers in-
dexed by year.
from_year (int) – Starting year for inflation calculation.
to_year (None or int) – Target year for inflation calculation, if None defaults to 1987.

Return type: float

ccats_common.common.array_to_df(array)
Create DataFrame from NumPy array.

Creates a multi-index DataFrame from a multi-dimensional NumPy array
Each array dimension is stored as a binary index column in the DataFrame multi-index
Multi-index columns are currently numbered to reflect array dimension level

Parameters: array (NumPy array) – A multi-dimensional array containing restart file data
Return type: DataFrame

ccats_common.common.df_to_array(df)
Turns multi-index DataFrame into multi-dimensional NumPy array.

Creates a multi-dimensional array from a multi-index dataframe
Each DataFrame multi-index is stored as an array dimension

Parameters: df (DataFrame) – A multi-index DataFrame containing restart file data.
Return type: NumPy array

ccats_common.common.unpack_pyomo(variable, values, levels)
Tool for unpacking Pyomo variable outputs and converting them to DataFrames.

Parameters: variable (Pyomo Var) – Target variable to unpack.
values (Pyomo Datatype (for example, pyo.value)) – Pyomo value type.
levels (int) – Number of levels in array to unpack (i.e. CO2 supplied from i is one level, while

CO:sub:`2 piped from i to j is two levels).
Return type: df

ccats_common.common.check_results(results, SolutionStatus, TerminationCondition)

Check Pyomo termination condition

Parameters: results (pyomo.SolverResults) – Results from Pyomo.
SolutionStatus (enum.EnumType) – Solution Status from Pyomo.
TerminationCondition (enum.EnumType) – Termination Condition from Pyomo.

Returns: True = problem with solution, False = good solution.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#calculate_inflation
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#calculate_inflation
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#array_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#array_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#df_to_array
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#df_to_array
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#unpack_pyomo
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#unpack_pyomo
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#check_results
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#check_results

[source]

[source]

[source]

Return type: bool

ccats_common.common.align_index(df1, df2, restart_var=None)
Aligns the index types of two tables based on the restart variable type.

If restart_var is provided we use that to determine the index types
If restart_var is none, we assume that df1 has the correct index type

Parameters: df1 (DataFrame (2 dimensional)) – Restart variable table.
df2 (DataFrame (2 dimensional)) – Restart variable table.
restart_var (DataFrame (2 dimensional)) – Restart variable, used to decide the index
type.

Returns: df1 (DataFrame (2 dimensional)) – Updated version of df1 parameter.
df2 (DataFrame (2 dimensional)) – Updated version of df2 parameter.

ccats_common.common.compare_lists(lista, listb)
Check if lista is equal or a subset of listb

used to check that node ids(supply, hubs, storage)in lista
are part of the set in listb

Parameters: lista (list) – First list for comparison.
listb (list) – Second list for comparison.

Return type: None

ccats_common.common.check_dicts_ruleset(dict_list)
Check the list of dicts against defined ruleset

1. check for nans
2. make sure lengths of each dict are the same length

Parameters: dict_list (list) – list of dicts
Return type: None

ccats_common.common_debug module

Utilities for debugging CCATS.

Common Debug: Summary

This file contains functions to:

1. Perform code analysis with pylint.
2. Debug DataFrames.
3. Debug Pyomo models.

Common Debug: Input Files

Unique to each function.

Common Debug: Model Functions and Class Methods

run_pylint() - Runs pylint to analyze code.
check_nans() - Checks a DataFrame for NaNs.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#align_index
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#align_index
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#compare_lists
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#compare_lists
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#check_dicts_ruleset
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common.html#check_dicts_ruleset

[source]

[source]

[source]

[source]

[source]

check_infvalues() - Checks a DataFrame for infinity values.
check_index_type() - Checks two DataFrame to see if they are aligned for a .merge() or .update()
print_table() - Prints a table for easy debugging.
compute_infeasibility_explanation() - used to debug Pyomo models (from Pyomo development team).

Common Debug: Output Debug Files

None

Common Debug: Output Restart Variables

None

Common Debug: Code

ccats_common.common_debug.run_pylint(filelist=None, errors_only=False)
Runs pylint.

Parameters: filelist (list) – List of files to evalute, if None, then pylint will evalute the cwd
errors_only (bool) – Determines if we run pylint against all checks or errors only

Return type: bool

ccats_common.common_debug.check_nans(df, tablename='my_table')
Checks table (DataFrame) for nan values.

Parameters: df (DataFrame (2 dimensional)) – Restart variable table
tablename (string) – Name for the output file

Return type: bool

ccats_common.common_debug.check_infvalues(df, tablename='my_table')
Checks DataFrame for infinity values.

Parameters: df (DataFrame (2 dimensional)) – Restart variable table.
tablename (str) – Name for the output file.

Return type: bool

ccats_common.common_debug.check_index_type(df1, df2)
Checks two tables (DataFrames) index types to see if they are aligned for a .merge() or .update().

Checks if index type of df1 is equal to index type of df2
Logs the result

Parameters: df1 (DataFrame (2 dimensional)) – Restart variable table.
df2 (DataFrame (2 dimensional)) – Restart variable table.

Return type: bool

ccats_common.common_debug.print_table(df, outputfilename=None)
Prints a table for easy debugging.

Parameters: df (DataFrame (2 dimensional)) – Restart variable table
outputfilename (str) – Name of output file

Return type: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#run_pylint
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#run_pylint
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#check_nans
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#check_nans
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#check_infvalues
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#check_infvalues
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#check_index_type
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#check_index_type
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#print_table
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#print_table

[source]class ccats_common.common_debug._VariableBoundsAsConstraints
Bases: object

PYOMO DEBUG FUNCTION FROM PYOMO DEVELOPMENT TEAM

Replace all variables bounds and domain information with constraints. Leaves fixed Vars untouched (for
now)

pyo = <module 'pyomo.environ' from
'C:\\python_environments\\aeo2025_py311_doc\\Lib\\site-packages\\pyomo\\environ__init__.py'>

class AddSlackVariables(**kwds)
Bases: NonIsomorphicTransformation

This plugin adds slack variables to every constraint or to the constraints specified in targets.

CONFIG = <pyomo.common.config.ConfigDict object>

__init__(**kwds)

_apply_to(instance, **kwds)

_apply_to_impl(instance, **kwds)

class IsomorphicTransformation(**kwds)
Bases: Transformation

Base class for ‘lossless’ transformations for which a bijective mapping between optimal variable values
and the optimal cost exists.

__init__(**kwds)

unique_component_name(name)

class ComponentMap(*args, **kwds)
Bases: Mixin, MutableMapping

This class is a replacement for dict that allows Pyomo modeling components to be used as entry keys.
The underlying mapping is based on the Python id() of the object, which gets around the problem of
hashing subclasses of NumericValue. This class is meant for creating mappings from Pyomo compo-
nents to values. The use of non-Pyomo components as entry keys should be avoided.

A reference to the object is kept around as long as it has a corresponding entry in the container, so there
is no need to worry about id() clashes.

We also override __setstate__ so that we can rebuild the container based on possibly updated object ids
after a deepcopy or pickle.

* An instance of this class should never be deepcopied/pickled unless it is done so along with
the components for which it contains map entries (e.g., as part of a block). *

_dict

__init__(*args, **kwds)

_abc_impl = <_abc._abc_data object>

clear() → None. Remove all items from D.

get(k[, d]) → D[k] if k in D, else d. d defaults to None.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_VariableBoundsAsConstraints
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_VariableBoundsAsConstraints

[source]

[source]

setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

class ComponentSet(*args)
Bases: MutableSet

This class is a replacement for set that allows Pyomo modeling components to be used as entries. The
underlying hash is based on the Python id() of the object, which gets around the problem of hashing
subclasses of NumericValue. This class is meant for creating sets of Pyomo components. The use of
non-Pyomo components as entries should be avoided (as the behavior is undefined).

References to objects are kept around as long as they are entries in the container, so there is no need to
worry about id() clashes.

We also override __setstate__ so that we can rebuild the container based on possibly updated object ids
after a deepcopy or pickle.

* An instance of this class should never be deepcopied/pickled unless it is done so along with its
component entries (e.g., as part of a block). *

_data

__init__(*args)

_abc_impl = <_abc._abc_data object>

add(val)
Add an element.

clear()
Remove all elements from this set.

discard(val)
Remove an element. Do not raise an exception if absent.

remove(val)
Remove an element. If not a member, raise a KeyError.

update(args)
Update a set with the union of itself and others.

WriterFactory = <pyomo.common.factory.Factory object>

_default_nl_writer
alias of NLWriter

_apply_to(instance, **kwds)

ccats_common.common_debug.compute_infeasibility_explanation(model, solver=None,

tee=False, tolerance=1e-08)
PYOMO DEBUG FUNCTION FROM PYOMO DEVELOPMENT TEAM

This function attempts to determine why a given model is infeasible. It deploys two main algorithms:

1. Successfully relaxes the constraints of the problem, and reports to the user some sets of constraints
and variable bounds, which when relaxed, creates a feasible model.

2. Uses the information collected from (1) to attempt to compute a Minimal Infeasible System (MIS),
which is a set of constraints and variable bounds which appear to be in conflict with each other. It is

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_VariableBoundsAsConstraints._apply_to
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_VariableBoundsAsConstraints._apply_to
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#compute_infeasibility_explanation
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#compute_infeasibility_explanation

[source]
[source]

[source]

[source]

[source]

minimal in the sense that removing any single constraint or variable bound would result in a feasible
subsystem.

Parameters: model (A pyomo block)
(optional) (tolerance)
(optional)
(optional) – constraint feasible (1e-08)

ccats_common.common_debug._get_results_with_value(constr_value_generator, msg=None)

ccats_common.common_debug._get_results(constr_generator, msg=None)

ccats_common.common_debug._get_constraint(modified_model, v)

ccats_common.common_pytest module

Run Pytest for CCATS

Common Pytest: Summary

CCATS utility submodule for running Pytest.

Common Pytest: Input Files

None

Common Pytest: Model Functions and Class Methods

__init__() - Initialize variables for running Pytest.
run() - Run Pytest.

Common Pytest: Output Debug Files

ccats_common//tests_files//logs//pytestlog_<model_year>.log - log of Pytest results where <model_year>
is the year of the current run.

Common Pytest: Output Restart Variables

Common Pytest: Code

class ccats_common.common_pytest.TestCollection(parent)
Bases: object

Class for running Pytest for CCATS.

__init__(parent)
Initializes TestCollection object.

Parameters: parent (Class) – Parent class for Pytest model testing.
Return type: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_get_results_with_value
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_get_results_with_value
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_get_results
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_get_results
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_get_constraint
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_debug.html#_get_constraint
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_pytest.html#TestCollection
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_pytest.html#TestCollection
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_pytest.html#TestCollection.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_pytest.html#TestCollection.__init__

[source]

[source]

[source]

run()
Run Pytest for CCATS.

Parameters: None
Return type: None

ccats_common.common_visual module

Utility file containing common visualization functions used in CCATS.

Common Visual: Summary

This is a utility file containing visualization functions used in CCATS.

Common Visual: Input Files

None

Common Visual: Model Functions and Class Methods

create_folium_map() - Map a CCATS solution.
print_datatable_to_html() - Create an html data table

Common Visual: Output Debug Files

create_folium_map() outputs a map in a user specified path and filename.
print_datatable_to_html() outputs a table in a user specified path and filename.

Common Visual: Output Restart Variables

None

Common Visual: Code

ccats_common.common_visual.create_folium_map(df, outdir, map_name='pipeline_map.html')
Create a folium map.

Parameters: df (DataFrame) – Dataframe with node, pipeline data, and co2 volume.
outdir (str) – Path for saving the map.
map_name (str) – Filename for the map.

Return type: None

ccats_common.common_visual.print_datatable_to_html(df, outfile, headear=None)
Print map input datatable to html format.

Parameters: df (DataFrame) – Data to map.
outdir (str) – Path for saving the map.
map_name (str) – Filename for the map.

Return type: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_pytest.html#TestCollection.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_pytest.html#TestCollection.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_visual.html#create_folium_map
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_visual.html#create_folium_map
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_visual.html#print_datatable_to_html
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/common_visual.html#print_datatable_to_html

[source]

ccats_common.folium_objects module

Utility file containing folium objects used in CCATS for mapping.

Folium Objects: Summary

This is a utility file containing folium objects used in CCATS for mapping.

Folium Objects: Input Files

None

Folium Objects: Model Functions and Class Methods

create_marker() - creates folium markers (called by ccats_common.folium_pipeline_map.create_nodes()).
create_pipeline() - creates folium polylines to represent pipelines between two points (called by
ccats_common.folium_pipeline_map.create_pipelines()).
create_arrowline() - creates folium polyline to represent pipelines between two points (called by
ccats_common.folium_pipeline_map.create_pipelines()).
create_dashedline() - creates dashed folium polyline to represent pipelines between two points (called by
ccats_common.folium_pipeline_map.create_pipelines()).
create_legend() - creates legend for folium map (called by run()).
export_legend() - saves legend (called by create_legend()).

Folium Objects: Output Debug Files

None

Folium Objects: Output Restart Variables

None

Folium Objects: Code

ccats_common.folium_objects.create_marker(lat, long, node_types, color='red', radius=5.0,

popup_data='N/A', featureGroupName=None)
Creates Folium markers.

Parameters: lat (float) – Latitude
long (float) – Longitude
node_types (list) – List of folium featuregroups representing node groups
color (string) – Color for marker
radius (float) – Radius for marker
popup_data (str) – Data shown in popup when marker is clicked
featureGroupName (str) – Tells with node_types to add marker to

Returns: Node_types with marker representing each node
Return type: list

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_marker
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_marker

[source]

[source]

[source]

[source]

[source]

ccats_common.folium_objects.create_pipeline(id, volume, pointA, pointB, color, weight=1)

Creates Folium polylines to represent pipelines between two points.

Parameters: id (str) – Pipeline ID.
volume (float) – CO2 volume
pointA (list) – Lat and long for a point.
pointB (list) – Lat and long for a point.
color (str) – Color of the pipeline.
weight (int) – Weight of line.

Return type: Folium polyline

ccats_common.folium_objects.create_arrowline(color, path, weight=24)
Creates Folium polyline to represent pipelines between two points.

Parameters: color (str) – Color for the line.
path (Folium Polyline) – Folium Polyline to render.
weight (int) – Weight of line

Return type: Folium PolyLineTextPath

ccats_common.folium_objects.create_dashedline(color, path, weight=24)
Creates dashed folium polyline to represent pipelines between two points.

Parameters: color (str) – Color for the line.
path (Folium Polyline) – Folium Polyline to render.
weight (int) – Weight of line

Return type: Folium PolyLineTextPath

ccats_common.folium_objects.create_legend(color_map, fname)
Creates legend for folium map.

Parameters: color_map (dict) – Color assigned to each node type.
fname (str) – Name to save the legend output file.

Return type: None

ccats_common.folium_objects.export_legend(legend, filename='legend.png')
Saves legend.

Parameters: legend (Matplotlib legend) – Legend to be saved.
fname (str) – Name to save the legend output file.

Return type: None

ccats_common.folium_pipeline_map module

Utility file containing Folium functions used in CCATS for mapping.

Folium Pipeline Map: Summary

This is a utility file containing Folium functions used in CCATS for mapping.

Folium Pipeline Map: Model Functions and Class Methods

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_pipeline
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_pipeline
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_arrowline
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_arrowline
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_dashedline
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_dashedline
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_legend
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#create_legend
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#export_legend
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_objects.html#export_legend

[source]

[source]

[source]

scale_values() - Creates a width scale for Folium elements based on volume (called by
calculate_node_volumes() and calculate_pipeline_volumes()).
create_nodetypes() - Creates the types of groups to place nodes (called by run()).
calculate_node_volumes() - Calculates volume for each node and assign a weight(radius) for Folium object
(called by create_nodes()).
calculate_pipeline_volumes() - Calculates volume for each pipeline and assign a weight(radius) for Folium
object (called by * create_pipelines()).
create_nodes() - Iterate through the pipeline DataFrame and create each node (called by
create_nodes_pipelines()).
create_pipelines() - Iterate through the pipeline DataFrame and create each pipeline (called by
create_nodes_pipelines()).
create_nodes_pipelines() - Create nodes and pipelines (called by run()).
run() - Create a map of CCATS data (called by ccats_common.common_visual.create_folium_map()).

Folium Pipeline Map: Input Files

None

Folium Pipeline Map: Output Debug Files

None

Folium Pipeline Map: Output Restart Variables

None

Folium Pipeline Map: Code

ccats_common.folium_pipeline_map.scale_values(df, column_name, scale_start=1,

scale_end=5)
Creates a width scale for Folium elements based on volume.

Parameters: df (DataFrame) – DataFrame with node, pipeline data, and CO2 volume.
column_name (str) – Name of column to base the scale on, generally will be
co2_volume.
scale_start (int) – Min value of scale.
end (scale) – Max value of scale.

Return type: DataFrame with scale

ccats_common.folium_pipeline_map.create_nodetypes(types)
Creates the types of groups to place nodes.

create a Folium.FeatureGroup for each node type

Parameters: types (None or list) – Types of nodes to be plotted.
Returns: List of node groups
Return type: list

ccats_common.folium_pipeline_map.calculate_node_volumes(df)
Calculates volume for each node and assign a weight(radius) for Folium object.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#scale_values
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#scale_values
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#create_nodetypes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#create_nodetypes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#calculate_node_volumes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#calculate_node_volumes

[source]

[source]

[source]

[source]

Create a dataframe with id, volume and weight
Sum the volume of nodes with the same id
Assign a weight based on volume for each node id

Parameters: df (DataFrame) – DataFrame with node, pipeline data, and CO2 volume
Returns: DataFrame with id, volume and weight
Return type: DataFrame

ccats_common.folium_pipeline_map.calculate_pipeline_volumes(df)
Calculates volume for each pipeline and assign a weight(radius) for Folium object.

Create a dataframe with id, volume and weight,
Sum the volume of j nodes with the same id, and
Assign a weight based on volume for each node id.

Parameters: df (Dataframe) – DataFrame with node, pipeline data, and CO2 volume.
Returns: DataFrame id, volume and weight
Return type: DataFrame

ccats_common.folium_pipeline_map.create_nodes(df, node_types, color_map)
Iterate through the pipeline dataframe and create each node.

Calls calculate_node_volumes to get dataframe with weight for each node
if id is not in dataframe, min value is assigned

Call create marker to create a Folium marker for each node

Parameters: df (DataFrame) – DataFrame with node, pipeline data, and CO` 2 volume.
node_types (list) – List of folium.FeatureGroup node groups.
color_map (dict) – Color assigned to each node type.

Returns: node_types with Folium makers representing nodes
Return type: list

ccats_common.folium_pipeline_map.create_pipelines(df, color, line_type=None)
Iterate through the pipeline dataframe and create each pipeline.

Calls calculate_node_volumes to get dataframe with weight for each pipeline
If id is not in dataframe, min value is assigned

Calls create_pipeline to create a Folium line for each pipeline

Parameters: df (DataFrame) – DataFrame with node, pipeline data, and CO2 volume.
Returns: list of Folium polylines representing pipelines
Return type: list

ccats_common.folium_pipeline_map.create_nodes_pipelines(pipeline_data, node_groups,

color_map, pipeline_color='orange', line_type=None)
Create nodes and pipelines.

Parameters: pipeline_data (DataFrame) – Pipeline data for plotting.
node_groups (list) – List of node groups
color_map (dict) – Dictionary matching node types to their plot colors.
pipeline_color (str) – Color for plotting pipelines.
line_type (None or str) – Type of lines to be plotted.

Returns: node_groups (list) – List of Folium objects representing nodes.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#calculate_pipeline_volumes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#calculate_pipeline_volumes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#create_nodes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#create_nodes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#create_pipelines
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#create_pipelines
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#create_nodes_pipelines
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#create_nodes_pipelines

[source]

[source]

pipelines (list) – List of Folium objects representing pipelines.

ccats_common.folium_pipeline_map.run(m, df, outdir, outfile)
Create a map of CCATS results.

Parameters: m (Folium Map) – Map object for plotting data.
df (list) – List of DataFrames of data for plotting.
outdir (str) – Directory to sainge the map.
outfile (str) – Filename for saving the map.

Return type: Folium Map

ccats_common.folium_pipeline_map.run_preprocessor_map(m, df, outdir, outfile)

Module contents

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#run_preprocessor_map
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_common/folium_pipeline_map.html#run_preprocessor_map

ccats_financial module
Class for declaring CCATS Financial Assumptions.

CCATS Financial: Summary

ccats_financial is the preprocessor for model financial assumptions and a utility for Preprocessor:
Summary to calculate the present value of model costs by block.

The module operates as follows:

1. Reads in financial assummption inputs in setup().
2. Calculates the CCATS model discount rate in calculate_discount_rate().

calculate_discount_investment() and calculate_discount_variable_policy() are called from
Preprocessor: Summary.

CCATS Financial: Functions and Class Methods ¶

__init__() - Constructor to initialize Class (instantiated by module.Module.setup() in
Module: Summary).
setup() - CCATS_Financial Setup method (called by module.Module.setup()).
run() - Runs main CCATS_Financial Processes (called by module.Module.setup()).
calculate_discount_rate() - Calculate discount rate for Carbon Capture and
Storage Projects (called by run()).
calculate_discount_investment() - Compute the present value of an investment
(called by preprocessor.Preprocessor.instantiate_pyomo_series()).
calculate_discount_variable_policy() - Compute the present value of a variable or
policy cost (called by preprocessor.Preprocessor.instantiate_pyomo_series()).

CCATS Financial: Input Files

fin_setup.csv - setup file with model financial inputs (debt rate, block durations,
etc.).

CCATS Financial: Output Debug Files

None

CCATS Financial: Output Restart Variables

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor.Preprocessor.instantiate_pyomo_series
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor.Preprocessor.instantiate_pyomo_series

[source]

[source]

[source]

None

CCATS Financial: Code

class ccats_financial.CCATS_Finance(parent)
Bases: object

Class for declaring CCATS Financial Assumptions.

__init__(parent)
Initializes attributes for CCATS_Finance.

Parameters: parent (module.Module) – Pointer to head module
Return type: None

parent
module.Module head module

setup(setup_filename)
Setup function for CCATS financial assumptions.

Parameters: setup_filename (str) – ccats_financial setup file name.
Returns: self.fin_table (DataFrame) – DataFrame of CCATS financial inputs

(debt rate, block durations, etc.).
self.debt_ratio (float) – Ratio of debt financing.
self.return_over_capital_cost (float) – Assumed required return over
capital cost for investment.
self.fed_tax_rate (float) – Assumed federal tax rate.
self.duration_b0 (int) – Duration of optimization model block 0.
self.duration_b1 (int) – Duration of optimization model block 1.
self.duration_b2 (int) – Duration of optimization model block 2.
self.duration_45q (int) – Duration of 45Q tax credit policy for a single
facility.
self.financing_risk_premia (float) – Assumed risk premia required by
investors over risk-free market rate.
self.financing_years_transport (int) – Assumed financing years for
pipeline transport investments.
self.financing_years_storage (int) – Assumed financing years for
saline formation storage investments.
self.fixed_om_fraction_transport (float) – Fixed O&M costs as a per-
centage of capital costs for pipeline transport.
self.fixed_om_fraction_storage (float) – Fixed O&M costs as a per-
centage of capital costs for saline formation storage.
self.site_dev_years_storage (int) – Assumed number of years for stor-
age site development.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.setup

[source]

[source]

[source]

[source]

self.construction_years_storage (int) – Assumed number of years for
storage site construction.
self.rate_real (NumPy array) – Array of 10-year treasury rate by year
self.rate_inflation (NumPy array) – Array of inflation rate by year.

run()
Run CCATS financial assumptions.

Parameters: None
Return type: None

calculate_discount_rate()
Calculate discount rate for Carbon Capture and Storage Projects

Parameters: None
Returns: self.expected_inflation_rate (NumPy array of floats) – Inflation rates

by year (fraction). If length < n_years, then the last entry is used for
missing years.
self.rate_discount (NumPy array of floats) – Discount rates by year
(fraction). If length < n_years, then the last entry is used for missing
years.
self.rate_borrowing (NumPy array of floats) – Borrowing rates by year
(fraction). If length < n_years, then the last entry is used for missing
years.

calculate_discount_investment(year_invest, n_financing, fom)
Compute the present value of an investment.

Called from Preprocessor: Summary to discount storage and transport in-
vestment costs.

Parameters: year_invest (int) – Year that investment decision occurs.
n_financing (int) – Number of years that financing is paid over (and du-
ration that Fixed O&M is paid).
fom (float) – Fraction of CAPEX paid each year as Fixed O&M.

Returns: discount – Relates a lump sum capex investment to its present value
(n_years earlier).

Return type: float

calculate_discount_variable_policy(block_start_year, n_years,
include_inflation)

Compute the present value of a variable or policy cost.

Called from Preprocessor: Summary to discount policy, CO2 EOR net
cost offers and opex.

Parameters: year_start (int) – Start year as an index in discount_rates and
inflation_rates.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.calculate_discount_rate
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.calculate_discount_rate
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.calculate_discount_investment
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.calculate_discount_investment
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.calculate_discount_variable_policy
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_financial.html#CCATS_Finance.calculate_discount_variable_policy
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor

n_years (int) – Number of years in the block.
include_inflation (bool) – True to include inflation in calculations, False
to only include discount rate.

Returns: discount – Discounts an annual variable or policy cost payment to its
present value taking into account block duration.

Return type: float

ccats_history module
Class for declaring CCATS Historical Data.

CCATS History: Summary

ccats_history is the preprocessor for model historical data, overwriting history with up-to-date
inputs.

The module operates as follows:

1. Reads in historical data setup().
2. Sets history of relevant restart variables to zero in zero_out_history() then over-

writes history with input data in update_history().

CCATS History: Functions and Class Methods

__init__() - Constructor to initialize Class (instantiated by module.Module.setup() in
Module: Summary).
setup() - CCATS_History Setup method (called by module.Module.setup()).
run() - Runs main CCATS_History Processes (called by module.Module.setup()).
zero_out_history() - Set history year data of relevant restart variables to 0 (called
by run()).
update_history() - Overwrite history in relevant restart files with up-to-date inputs
(called by run()).

CCATS History: Input Files

hist_setup.csv - setup file with model financial inputs (debt rate, block durations,
etc.).
co2_supply_history_div.csv - CO2 supply history by census division.
co2_supply_history_reg.csv - CO2 supply history by census region.
co2_eor_history_div.csv - CO2 EOR demand history by census division.
co2_eor_history_reg.csv - CO2 EOR demand history by census region.
co2_seq_history_div.csv - CO2 saline formation storage history by census
division.
co2_seq_history_reg.csv - CO2 saline formation storage history by census region.

CCATS History: Output Debug Files

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup

[source]

[source]

[source]

None

CCATS History: Output Restart Variables

CCATSDAT_CO2_sup_out - CO2 supply output after optimization, by census
division.
CCATSDAT_CO2_sup_out_r - CO2 supply output after optimization, by census
region.
CCATSDAT_CO2_seq_out - CO2 sequestration output after optimization, by cen-
sus division.
CCATSDAT_CO2_seq_out_r - CO2 sequestration output after optimization, by
census region.

CCATS History: Code

class ccats_history.CCATS_History(parent)
Bases: object

Class for declaring CCATS Historical Data.

__init__(parent)
Initializes CCATS_History object.

Parameters: parent (module.Module) – Pointer to head module
Return type: None

parent
module.Module head module

setup(setup_filename)
Setup function for CCATS financial assumptions.

Parameters: setup_filename (str) – ccats_history setup file name.
Returns: self.co2_supply_hist_div (DataFrame) – DataFrame of CO2 supply

history by census division.
self.co2_supply_hist_reg (DataFrame) – DataFrame of CO2 supply
history by census region.
self.co2_eor_hist_div (DataFrame) – DataFrame of CO2 EOR demand
history by census division.
self.co2_eor_hist_reg (DataFrame) – DataFrame of CO2 EOR de-
mand history by census region.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.setup

[source]

[source]

[source]

self.co2_seq_hist_div (DataFrame) – DataFrame of CO2 saline forma-
tion storage history by census division.
self.co2_seq_hist_reg (DataFrame) – DataFrame of CO2 saline forma-
tion storage history by census region.

run()
Run CCATS history preprocessor.

Parameters: None
Returns: self.co2_supply_hist_div (DataFrame) – DataFrame of CO2 supply

history by census division.
self.co2_supply_hist_reg (DataFrame) – DataFrame of CO2 supply
history by census region.

zero_out_history()
Set data for history years equal to 0 in relevant restart variables.

This is done to ensure that historical dataset only contains volumes from
the most up-to-date input files.

Parameters: None
Returns: self.parent.rest_co2_sup_out (DataFrame) – Localized copy of restart

variable CCATSDAT_CO2_SUP_OUT.
self.parent.rest_co2_sup_out_r (DataFrame) – Localized copy of
restart variable CCATSDAT_CO2_SUP_OUT_R.
self.parent.rest_co2_seq_out (DataFrame) – Localized copy of restart
variable CCATSDAT_CO2_SEQ_OUT.
self.parent.rest_co2_seq_out_r (DataFrame) – Localized copy of
restart variable CCATSDAT_CO2_SEQ_OUT_R.

update_history()
Update relevant restart files with historical data from input files.

Parameters: None
Returns: self.parent.rest_co2_sup_out (DataFrame) – Localized copy of restart

variable CCATSDAT_CO2_SUP_OUT.
self.parent.rest_co2_sup_out_r (DataFrame) – Localized copy of
restart variable CCATSDAT_CO2_SUP_OUT_R.
self.parent.rest_co2_seq_out (DataFrame) – Localized copy of restart
variable CCATSDAT_CO2_SEQ_OUT.
self.parent.rest_co2_seq_out_r (DataFrame) – Localized copy of
restart variable CCATSDAT_CO2_SEQ_OUT_R.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.zero_out_history
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.zero_out_history
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.update_history
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_history.html#CCATS_History.update_history

ccats_pickle module
Class for handling intermediate variables in CCATS.

CCATS Pickle: Summary

In year 1 the .pkl files are created, and then in subsequent years they are written to and read.
The .pkl files are only written out when fcrl = 1 (final regular iteration) or ncrl = 1 (report itera-
tion) to avoid duplication during other NEMS iterations.
There are therefore two sets of .pkl files, one “fcrl” set for regular iterations, and one “ncrl” set
for reporting iterations.
All .pkl filenames and corresponding df names match the relevant corresponding submodule
variable names (i.e. preproc_i_storage_xxxx.pkl = self.i_storage_df in Preprocessor:
Summary).

The Pickle methods operate as follows:

1. The class is initialized in the __init__() method, with class being assigned as a
child to Module: Summary here.

2. read_pkl_vars() is called from Module: Summary in all model years excluding year
1. In this method all required .pkl local, iterative variable files are read into HSM
as class dataframes accessible by all other modules in HSM.

3. write_pkl_variables() is called from Module: Summary in all model years. In this
method all required local, iterative dataframes are written to .pkl files.

Pickle library documentation: https://docs.python.org/3/library/pickle.html

CCATS Pickle: Functions and Class Methods

__init__() - Constructor to initialize Class (instantiated by module.Module.setup() in
Module: Summary).
read_pkl_vars() - Read in Pickle local tables (called by module.Module.setup()).
write_pkl_variables() - Write out Pickle local tables (called by
output.Output.write_pkl()).

CCATS Pickle: Input Files

None

CCATS Pickle: Output Debug Files

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
https://docs.python.org/3/library/pickle.html
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/output.html#output.Output.write_pkl

[source]

[source]

[source]

None

CCATS Pickle: Output Restart Variables

None

CCATS Pickle: Code

class ccats_pickle.CCATS_Pickle(parent)
Bases: object

Class for handling intermediate variables in CCATS

__init__(parent)
Initializes CCATS_Pickle object.

Parameters: parent (module.Module) – Pointer to head module
Return type: None

parent
module.Module head module

read_pkl_vars(itr_type, year_current, temp_filepath)
Read in Pickle local tables.

Parameters: itr_type (str) – FCRL or NCRL iteration.
year_current (int) – Current year being modeled.
temp_filepath (str) – Location of .pkl files.

Returns: self.preproc_i_storage_df (DataFrame) – DataFrame of storage for-
mations - input data.
self.preproc_i_co2_supply_facility_df (DataFrame) – DataFrame of
Co2 cost curve from NETL - input data.
self.preproc_i_pipeline_lookup_df (DataFrame) – DataFrame of Co2
pipeline lookup table - input data.
self.preproc_i_eor_demand_df (DataFrame) – DataFrame of Co2
EOR site CO2 demanded - input data.
self.preproc_i_eor_cost_net_df (DataFrame) – DataFrame of Co2
EOR net cost for Co2 - input data.
self.preproc_i_ts_multiplier_df (DataFrame) – DataFrame of multipli-
ers for ts-ts node arcs - input data.
self.preproc_pipes_existing_df (DataFrame) – DataFrame of existing
Co2 pipeline infrastructure in a given model year.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_pickle.html#CCATS_Pickle
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_pickle.html#CCATS_Pickle
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_pickle.html#CCATS_Pickle.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_pickle.html#CCATS_Pickle.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_pickle.html#CCATS_Pickle.read_pkl_vars
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_pickle.html#CCATS_Pickle.read_pkl_vars

[source]

self.preproc_storage_existing_df (DataFrame) – DataFrame of exist-
ing Co2 storage infrastructure in a given model year.
self.preproc_co2_facility_eligibility_df (DataFrame) – DataFrame of
Co2 facility 45Q eligibility.
self.mod_new_built_pipes_df (DataFrame) – DataFrame of new pipe-
lines built in previous model year Block 1.
self.mod_new_aors_df (DataFrame) – DataFrame of new AORS, car-
ried over from the previous model year.
self.mod_store_prev_b0_df (DataFrame) – DataFrame of previous
model year Co2 stored in Block 0.

write_pkl_variables(itr_type, year_current, temp_filepath)
Write out Pickle local tables.

Parameters: itr_type (str) – FCRL or NCRL iteration.
year_current (int) – Current year being modeled.
temp_filepath (str) – Location of .pkl files.

Return type: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_pickle.html#CCATS_Pickle.write_pkl_variables
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/ccats_pickle.html#CCATS_Pickle.write_pkl_variables

localize_restart module
Submodule for localizing and concatenating restart variables.

Localize Restart: Summary

CCATS receives CO2 supply and demand from several NEMS modules. Each CO2 supply or de-
mand source has its own restart file variable. To rationalize and simplify this data, supply and de-
mand data restart variables are re-formatted and concatenated into larger files. The Localize sub-
module accomplishes this as follows:

1. EOR demand and net cost offers are received as DataFrames via the restart file
in a base-1 ordered index. In setup_eor() these DataFrames are remapped to the
HSM play numbers and census division numbers used to identify CO2 EOR plays.

2. CO2 supply volumes are aggregated and concatenated into DataFrames
industrial_co2_supply_45q and industrial_co2_supply_ntc in
concat_restart_variables_supply()

3. CO2 supply volumes are aggregated and concatenated into DataFrames
industrial_co2_cost_inv and industrial_co2_cost_om in
concat_restart_variables_cost().

Localize_restart: Input Files

Localize Restart: Model Functions and Class Methods

__init__() - Constructor to initialize class (instantiated by module.Module.setup() in Module:
Summary)
setup_eor() - Format EOR demand input files for CCATS preprocessor (called by
module.Module.setup()).
concat_restart_variables_supply() - Concatenate CO2 capture type supply restart variables into
45Q and NTC supply tables (called by module.Module.setup()).
concat_restart_variables_cost() - Concatenate CO2 capture type cost restart variables into
45Q and NTC capture cost tables (called by module.Module.setup()).

Localize Restart: Output Debug Files

None

Localize Restart: Output Restart Variables

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup

[source]

[source]

[source]

[source]

[source]

None

Localize Restart: Code

class localize_restart.Localize(parent)
Bases: object

Localize submodule for CCATS.

__init__(parent)
Initializes Localize object.

Parameters: parent (str) – Module.Module (Pointer to parent module)
Return type: None

parent
module.Module head module

setup_eor()
Map EOR demand input files to HSM play numbers and census divisions for CCATS
preprocessor.

Returns: self.rest_dem_eor (DataFrame) – DataFrame of CO2 demand (metric
tonnes) from CO2 EOR.
self.rest_cst_eor (DataFrame) – DataFrame of CO2 price offers
(1987$/tonne) from CO2 EOR.

concat_restart_variables_supply()
Concatenate CO2 capture type supply restart variables into 45Q and NTC supply tables.

Returns: self.industrial_co2_supply_45q (DataFrame) – DataFrame of industrial
CO2 supply (metric tonnes) eligible for 45Q tax credits.
self.industrial_co2_supply_ntc (DataFrame) – DataFrame of industrial
CO2 supply (metric tonnes) not eligible for 45Q tax credits.

concat_restart_variables_cost()
Concatenate CO2 capture type cost restart variables into 45Q and NTC capture cost
tables.

Returns: self.industrial_co2_cost_inv (DataFrame) – Carbon capture investment
costs (1987$) by NEMS module and region.
self.industrial_co2_cost_om (DataFrame) – Carbon capture O&M costs
(1987$) by NEMS module and region.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize.setup_eor
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize.setup_eor
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize.concat_restart_variables_supply
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize.concat_restart_variables_supply
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize.concat_restart_variables_cost
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/localize_restart.html#Localize.concat_restart_variables_cost

module module
Parent module of the Carbon Capture, Allocation, Transportation and Sequestration (CCATS)
Module.

Module: Summary

The “Module” class performs all key model setup functions and runs all sub-class processes (i.e.
Restart: Summary, Preprocessor: Summary etc.).

The module operates as follows:

1. Instantiates parent-level variables in __init__()

2. Declares parent-level utilities and variables, and runs submodule setup functions
in setup(), this function operations as follows:

a. Declare logger as class variable,
b. Declare filepaths,
c. Read in setup.csv and other global input files (i.e. mapping.csv),
d. Run Restart: Summary to get restart variables,
e. Localize restart variables at the parent class level in Localize,

and
f. Run setup functions for the CCATS Preprocessor: Summary,

CCATS Optimization: Summary, ref:Postprocessor and
ref:Output modules.

3. Runs CCATS modules

Module: Functions and Class Methods

__init__() - Constructor to initialize Class (called by ccats.run_ccats()).
setup() - CCATS Setup method.
load_local_parameters() - Loads in CCATS Parameters from the restart file
copy_restart_variables() - Copies Restart Variables for CCATS from the Restart
File into local variables.
aggregate_restart_variables() - Aggregate localized restart variables for
Preprocessor: Summary.
read_pkl() - Call CCATS Pickle: Summary to read in pickle files from the previous
model year fcrl and ncrl iterations.
run() - Runs main CCATS Model Processes.

Module: Input Files

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/restart.html#restart
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/restart.html#restart
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/localize_restart.html#localize_restart.Localize
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#ccats-optimization
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats.html#ccats.run_ccats
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats_pickle.html#ccats-pickle

[source]

[source]

[source]

setup.csv - setup file with key model inputs (model flags, model history year,
etc.).
mapping.csv - CCATS regional mapping (mapping states to CCATS regions,
etc.).
co2_eor_mapping.csv - Census division and census region mapping for CO2
EOR plays.
idm_mapping.csv - Proportional allocation of IDM CO2 capture volumes from
census regions to census divisions.
co2_supply_index.csv - Restart file index numbers for CO2 supply types.
co2_seq_index.csv - Restart file index numbers for CO2 sequestration types.

Module: Output Debug Files

None

Module: Output Restart Variables

None

Module: Code

class module.Module
Bases: object

Parent module for CCATS.

__init__()
Initializes Module object.

Parameters: None
Return type: None

setup(main_directory, setup_filename, year, pyfiler1, cycle, scedes)
CCATS Setup method.

Imports and declares pyfiler object,
Declares logger as parent object executable,
Assigns input paths and global variables,
Reads in setup tables,
Calls Restart: Summary to read in restart variables,
Calls load_local_parameters() to load in model parameters,
Reads in relevant scedes flags,
Calls :ref:ccats_pickle: to read in iterative model intermediate variables,

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/restart.html#restart

Calls :ref:ccats_history: to loads in history, and write history data to
restart file variables, and
Calls the Preprocessor: Summary, CCATS Optimization: Summary,
Postprocessor: Summary, and Output: Summary setup methods.

Parameters: main_directory (str) – Filepath for CCATS main run directory.
setup_filename (str) – setup.txt filename.
year (str or int) – Current model year.
pyfiler1 (None or pyfiler) – Tool for reading and writing to the restart file.
cycle (int) – Model run cycle from main.py.
scedes (None or scedes file inputs from main.py.) – NEMS Scenario
Description data.

Returns: self.pyfiler1 (object) – Object containing restart file data from main.py.
self.threads (int) – Number of threads available to run CCATS.
self.logger (Logger) – Logger utility.
directories (strings) – Assorted directory paths including
self.main_directory and self.input_path.
self.integrated_switch (int) – Switch indicating whether CCATS run is
standalone or integrated.
self.setup_table (DataFrame) – Input file containing CCATS model
user inputs.
self.debug_switch (bool) – Output debug files if True (will result in
longer model runtime).
self.update_45q_switch (bool) – Update the 45Q policy path with input
from setup.txt “eor_45q” and “saline_45q” variables if True.
self.visualize_preproc_switch (bool) – Output folium visualizations of
optimization inputs if True.
self.visualize_postproc_switch (bool) – Output folium visualizations of
optimization outputs if True.
self.pytest_switch (bool) – Perform pytest internal validation tests if
True.
self.price_reset_switch (bool) – Reset CO2 prices to produce endoge-
nous CO2 prices from models which would otherwise have 0 CO2 cap-
ture if True.
self.price_average_switch (bool) – CO2 prices are set as a weighted
average of duals by CD if True.
self.price_marginal_switch (bool) – CO2 prices are set as the mar-
ginal CO2 price by CD if True.
self.linear_model_switch (bool) – Model is run as a linear model (vs. a
MIP) if True.
self.write_restart_before_run_switch (bool) – Output the restart file
debug received by CCATS before running if True.
self.debug_restart_itr_switch (bool) – Output the restart file debug file
every iteration if True (will result in slightly longer model runtime).
self.output_restart_unf_switch (bool) – Output the restart file as a .unf
after running CCATS if True.

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#ccats-optimization
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/postprocessor.html#postprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/output.html#output

[source]

[source]

self.year_aeo (int) – AEO vintage year.
self.year_start (int) – Model start year.
self.year_final (int) – Model final year.
self.year_base_price (int) – Base dollar year.
self.years_steo (list) – Model STEO years.
self.eor_45q (float) – EOR 45Q tax credit value.
self.saline_45q (float) – Saline Formation storage 45Q tax credit value.
self.year_new_45q (float) – Year in which most recent 45Q policy up-
date occurred (2022 Inflation Reduction Act).
self.legacy_eor_45q (float) – Legacy 45Q policy EOR tax credit value.
self.legacy_saline_45q (float) – Legacy 45Q policy saline formation
storage tax credit value.
self.year_leg_45q (float) – Year in which legacy 45Q policy update oc-
curred (2018 Bipartisan Budget Act).
self.price_reset_value_45q (float) – Default starting price for 45Q eligi-
ble CO2 volumes when model is reset to restart convergence.
self.price_reset_value_ntc (float) – Default starting price for 45Q ineli-
gible CO2 volumes when model is reset to restart convergence.
self.supply_select_ts_penalty (float) – Penalty for ts node costs in the
model.
self.mapping (DataFrame) – DataFrame of NEMS mapping (i.e. HSM
regions to LFMM regions).
self.co2_eor_mapping (DataFrame) – DataFrame of NEMS mapping
to CO2 EOR projects.
self.idm_mapping (DataFrame) – DataFrame of Industrial demand
module mapping (Census regions to divisions with distrutions).
self.co2_supply_index (dict) – Dictionary of restart file index numbers
for CO2 supply types.
self.co2_seq_index (dict) – Dictionary of index numbers for CO2 se-
questration types.

load_local_parameters()
Loads in CCATS Parameters from the restart file.

Parameters: None
Returns: self.param_baseyr (int) – Base AEO model year for history (hardcoded

as 1990).
self.param_fcrl (boolean) – Flag to indicate last regular model iteration.
self.param_ncrl (boolean) – Flag to indicate reporting model iteration.

copy_restart_variables()
Copy Restart Variables for CCATS from the Restart File into local variables.

We instantiate local versions of the restart files to ensure data fidelity
Local variables are instantiated form the restart file exactly once, and
written to the restart file exactly once

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.load_local_parameters
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.load_local_parameters
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.copy_restart_variables
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.copy_restart_variables

Parameters: None
Returns: self.year_current (int) – Current model year.

self.iteration_current (int) – Current model iteration.
self.rest_mc_jpgdp (DataFrame) – DataFrame of inflation multipliers.
self.rest_mc_rmcorpbaa (DataFrame) – DataFrame of corporate bond
rate path.
self.rest_mc_rmtcm10y (DataFrame) – DataFrame of ten-year trea-
sury rate path.
self.rest_pelin (DataFrame) – DataFrame of industrial electricity prices
(1987$/MWh).
self.rest_ccs_eor_45q (DataFrame) – DataFrame of 45Q tax credit
values for carbon capture from saline formation storage (1987$).
self.rest_ccs_saline_45q (DataFrame) – DataFrame of 45Q tax credits
values for carbon capture from CO2 EOR (1987$).
self.leg_ccs_eor_45q (DataFrame) – DataFrame of legacy 45Q tax
credit values for carbon capture from saline formation storage (1987$).
self.rest_i_45q_duration (int) – Tax code section 45Q subsidy duration
self.rest_i_45q_syr (int) – Start year of tax code section 45Q subsidy
self.rest_i_45q_lyr_ret (int) – End year of tax code section 45Q sub-
sidy for retrofits
self.rest_i_45q_lyr_new (int) – End year of tax code section 45Q sub-
sidy for new builds
self.leg_ccs_eor_45q (df) – DataFrame of legacy 45Q tax credit values
for carbon capture from saline formation storage (1987$)
self.leg_ccs_saline_45q (DataFrame) – DataFrame of legacy 45Q tax
credits values for carbon capture from CO2 EOR (1987$).
self.eor_45q (int) – Base 45Q tax credit value for carbon capture from
CO2 EOR (1987$).
self.saline_45q (int) – Base 45Q tax credit value for carbon capture
from saline formation storage (1987$).
self.legacy_eor_45q (int) – Legacy base 45Q tax credit value for car-
bon capture from CO2 EOR (1987$).
self.legacy_saline_45q (int) – Legacy base 45Q tax credit value for
carbon capture from saline formation storage (1987$).
self.rest_i_45q_duration (int) – 45Q tax credit duration (years).
self.rest_i_45q_lyr_ret (int) – Final year for 45Q retrofits.
self.rest_i_45q_syr (int) – Start year of 45Q tax credit program.
self.rest_dem_eor (DataFrame) – DataFrame of CO2 demand (metric
tonnes) from CO2 EOR.
self.rest_cst_eor (DataFrame) – DataFrame of CO2 price offers
(1987$/tonne) from CO2 EOR.
self.rest_play_map (DataFrame) – DataFrame of CO2 EOR play num-
ber indices.

[source]

[source]

[source]

CO:sub:`2` Supply and Capture Cost Variables (DataFrames) –
DataFrames of CO2 supply (metric tonnes) and capture costs (1987$)
from other NEMS modules (HSM, HMM, LFMM, IDM, EMM).
CO:sub:`2` Price Variables (DataFrames) – CO2 prices (1987$) calcu-
lated in CCATS and sent to other NEMS by Census Region/Division.
CCATS Reporting Variables (DataFrames) – CO2 supply and demand
reporting variables.

aggregate_restart_variables()
Aggregate localized restart variables for Preprocessor: Summary.

Parameters: None
Returns: self.rest_dem_eor (DataFrame) – DataFrame of CO2 EOR CO2 de-

mand (metric tonnes) by play.
self.rest_cst_eor (DataFrame) – DataFrame of CO2 EOR price offers
for CO2 (1987$/tonne) by play.
self.rest_industrial_co2_supply_45q (DataFrame) – DataFrame of in-
dustrial CO2 supply (metric tonnes) eligible for 45Q tax credits.
self.rest_industrial_co2_supply_ntc (DataFrame) – DataFrame of in-
dustrial CO2 supply (metric tonnes) not eligible for 45Q tax credits.
self.rest_industrial_co2_cost_inv (DataFrame) – DataFrame of car-
bon capture investment costs (1987$) by NEMS module and region.
self.rest_industrial_co2_cost_om (DataFrame) – DataFrame of car-
bon capture O&M costs (1987$) by NEMS module and region.

read_pkl()
Call ccats_pickle.CCATS_Pickle.read_pkl_vars() to read in pickle files from the previous model
year fcrl and ncrl iterations.

Different pickle outputs are read in to CCATS depending on whether
ncrl=1 (if we are running a reporting loop)
All non-reporting iterations use the previous model year fcrl=1 iteration
variables
All reporting iterations use the previous model year ncrl=1 iteration
variables

Parameters: None
Return type: None

run(year=None, iteration=None)
Runs main CCATS Model Processes.

Preprocessor: Summary
CCATS Optimization: Summary
Postprocessor: Summary
Output: Summary

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.aggregate_restart_variables
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.aggregate_restart_variables
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.read_pkl
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.read_pkl
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats_pickle.html#ccats_pickle.CCATS_Pickle.read_pkl_vars
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/module.html#Module.run
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/preprocessor.html#preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/opmodels.html#ccats-optimization
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/postprocessor.html#postprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/output.html#output

Parameters: year (int) – Current model year.
iteration (int) – Current model iteration.

Returns: self.year_current (DataFrame) – Current model year.
self.iteration_current (DataFrame) – Current model iteration.

opmodels package

Submodules

opmodels.ccats_optimization module

Optimization Submodule.

CCATS Optimization: Summary

This submodule is the main optimization program for CCATS. CCATS treats the problem as either
a Linear Program (LP) or Mixed Integer Linear Program (MILP) using Pyomo. The optimization op-
erates as follows:

1. setup() is called from Module: Summary.Optimization specific options are set
based on inputs from opt_setup.csv.

2. run() is called from Module: Summary.
3. Data is organized by time period in preparation for creating a Pyomo model.
4. The Pyomo model is created using three blocks to represent three model time

periods.
5. Model is solved. If solved as a LP, duals are saved.
6. If model was originally solved as MILP, it is re-solved as a LP (by fixing integer

variables) to get duals.

CCATS Optimization: Input Files

opt_setup.csv - optimization setup file

CCATS Optimization: Model Functions and Class Methods

__init__() - Constructor to initialize Class (called by module.Module.setup())
setup() - Setup function using opt_setup.csv (called by module.Module.setup())
run() - runs main model functions in OptimizationModel (called by module.Module.run())
instantiate_pyomo() - creates the pyomo model (called by run())
prepare_data_for_blocks() - creates dictionaries of data indexed by block (called by run())
instantiate_blocks() - calls most declare_* functions to set-up the optimization problem, as-
signing data by block (called by run())
declare_sets() - creates sets (called by instantiate_pyomo())
declare_parameters() - creates parameters (variables held fixed) in Pyomo (called by
instantiate_pyomo())

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.run

[source]

[source]

[source]

[source]

declare_variables() - creates variables in Pyomo (called by instantiate_pyomo())
declare_constraints() - creates constraints in Pyomo (called by instantiate_pyomo())
declare_objective() - creates objective function for a single block (called by
instantiate_pyomo())
declare_constraints_across_blocks() - creates constraints across blocks (called by run())
declare_objective_across_blocks() - creates multi-block objective (called by run())
solve_optimization() - solve the optimization problem (called by run())
solve_linearized_optimization() - re-solve the optimization as a linear problem to get duals, if
originally solved non-linear (called by run())

CCATS Optimization: Output Debug Files

main_opt_log.log - Optimization log file
debugmodel_file**ccats_model_20XX.mps** - MPS of 20XX optimization problem
debugmodel_file**ccats_model_20XX.lp** - LP of 20XX optimization problem
debugoptimization_inputsdata**data_b#_20XX.pkl** - Pickled data inputs for block # for
20XX

CCATS Optimization: Code

class opmodels.ccats_optimization.OptimizationModel(parent)
Bases: Submodule

Main Optimization Submodule for CCATS.

__init__(parent)
Initializes OptimizationModel object.

Parameters: parent (str) – Module.Module (Pointer to parent module)
Return type: None

setup(setup_filename)
Setup Main Optimization Submodule for CCATS.

Parameters: setup_filename (str) – Path to transport setup file.
Returns: self.opt_check_solver_status (bool) – If True, check the solver status

self.troubleshoot_datatypes (bool) – If True, log datatypes to assist
with troubleshooting
self.debug_opt_log (Boolean) – If True, output solver status to nohup
(integrated runs only) and main_opt_log.log (standalone & integrated
runs)

run()
Run Main Optimization Submodule for CCATS.

Parameters: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/submodule_ccats.html#submodule_ccats.Submodule
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.run

[source]

[source]

Return type: None

instantiate_pyomo()
Run Main Optimization Submodule for CCATS.

Parameters: None
Returns: m – Instantiated Pyomo model
Return type: Pyomo ConcreteModel

prepare_data_for_blocks()
Produce block-level tables for optimization.

Parameters: None
Returns: self.m.s_time (list) – List of number of time periods as model blocks

self.m.duration (list) – List of duration of each block (years)
self.m.co2_supply (dict) – Dictionary of CO2 supply (metric tonnes) by
CO2 source by block
self.m.co2_demand (dict) – Dictionary of CO2 demand (metric tonnes)
by CO2 demand site by block
self.m.co2_demand_cost_net (dict) – Dictionary of CO2 demand net
cost ($1987/tonne tonne) by CO2 demand site by block
self.m.storage_injectivity_existing (dict) – Dictionary of existing CO2
storage site injectivity (tonnes/year) by block
self.m.storage_injectivity_new (dict) – Dictionary of potential new
CO2 storage site injectivity (tonnes/year) by block
self.m.storage_net_existing (dict) – Dictionary of existing CO2 storage
site net storage capacity (tonnes) by block
self.m.storage_net_adder (dict) – Dictionary of potential new CO2
storage site net storage capacity (tonnes) by block
self.m.storage_aors_available (dict) – Dictionary of remaining storage
AORs available by block
self.m.capex_transport_base (dict) – Dictionary of transportation
CAPEX intercept (base) by block
self.m.capex_transport_slope (dict) – Dictionary of transportation
CAPEX slope by block
self.m.opex_transport_elec (dict) – Dictionary of transportation elec-
tricity demand by block
self.m.storage_capex (dict) – Dictionary of storage capex
(1987$/tonne) by storage site by block
self.m.storage_opex (dict) – Dictionary of storage opex (1987$/tonne)
by storage site by block
self.m.discount_invest_storage (dict) – Dictionary of storage invest-
ment discount rates by block
self.m.discount_invest_transport (dict) – Dictionary of transportation
discount rates by block

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.instantiate_pyomo
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.instantiate_pyomo
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.prepare_data_for_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.prepare_data_for_blocks

[source]

[source]

[source]

self.m.discount_variable (dict) – Dictionary of variable discount rates
by block
self.m.discount_policy (dict) – Dictionary of policy discount rates by
block

instantiate_blocks(mb, t)
Instantiate a single pyomo block for m.

Parameters: mb (Pyomo Block) – Pyomo block to be populated
t (int) – Time period

Returns: self.b – Block populated with sets, parameters, variables, constraints, and
objective function.

Return type: Pyomo Block

declare_sets(data)
Declare sets.

Parameters: data (object) – Data for including within this block.
Returns: self.b.s_nodes_supply (Pyomo Set) – Pyomo set of supplu nodes

self.b.s_nodes_trans_ship (Pyomo Set) – Pyomo set of trans-ship-
ment nodes
self.b.s_nodes_demand (Pyomo Set) – Pyomo set of demand nodes
self.b.s_nodes_sequester (Pyomo Set) – Pyomo set of sequestration
nodes (i.e. storage and demand)
self.b.s_nodes_storage (Pyomo Set) – Pyomo set of storage nodes
self.b.s_nodes (Pyomo Set) – Pyomo set of all nodes
self.b.s_arcs (Pyomo Set) – Pyomo set of arcs.
self.b.s_arcs_out (Pyomo Set) – Pyomo set of arcs out
self.b.s_arcs_in (Pyomo Set) – Pyomo set of arcs in
self.b.s_transport_options (Pyomo Set) – Pyomo set of transportation
options
self.b.s_policy_options (Pyomo Set) – Pyomo set of policy options

declare_parameters(data)
Declare parameters.

Parameters: data (object) – Data for including within this block.
Returns: self.b.p_transport_cap_existing (Pyomo Param) – Parameter for

block existing transportation capacities.
self.b.p_transport_cap_add_min (Pyomo Param) – Parameter for
block transport capacity adder minimum values.
self.b.p_transport_cap_add_max (Pyomo Param) – Parameter for
block transport capacity adder maximum values.
self.b.p_capex_transport_base (Pyomo Param) – Parameter for block
transportation capex equation intercept.
self.b.p_capex_transport_slope (Pyomo Param) – Parameter for
block transportation capex equation slope.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.instantiate_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.instantiate_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_sets
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_sets
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_parameters
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_parameters

[source]

self.b.p_opex_transport (Pyomo Param) – Parameter for block trans-
portation variable opex.
self.b.p_electricity_demand (Pyomo Param) – Parameter for block
transportation electricity demand.
self.b.p_capex_storage (Pyomo Param) – Parameter for block storage
capex.
self.b.p_opex_storage (Pyomo Param) – Parameter for block storage
variable opex.
self.b.p_co2_demand_cost_net (Pyomo Param) – Parameter for block
CO2 demand net costs.
self.b.p_policy_cost (Pyomo Param) – Parameter for block policy
costs.
self.b.p_co2_supply (Pyomo Param) – Parameter for block CO2
supply.
self.b.p_co2_demand (Pyomo Param) – Parameter for block CO2
demand.
self.b.p_storage_injectivity_existing (Pyomo Param) – Parameter for
block existing CO2 injection/year.
self.b.p_storage_injectivity_new (Pyomo Param) – Parameter for
block potential new CO2 injection/year.
self.b.p_storage_net_existing (Pyomo Param) – Parameter for block
existing storage total capacity.
self.b.p_storage_net_adder (Pyomo Param) – Parameter for block po-
tential storage total capacity adder.
self.b.p_storage_aors_available (Pyomo Param) – Parameter for
block remaining storage injection sites available.
self.b.p_duration (Pyomo Param) – Parameter for block duration in
years.
self.b.p_discount_invest_storage (Pyomo Param) – Parameter for
storage investment discount rate.
self.b.p_discount_invest_transport (Pyomo Param) – Parameter for
transportation investment discount rate.
self.b.p_discount_variable (Pyomo Param) – Parameter for variable
cost discount rate.
self.b.p_discount_policy (Pyomo Param) – Parameter for policy cost
discount rate.
self.b.transport_buffer (Pyomo Param) – Parameter for transportation
build buffer.
self.b.storage_buffer (Pyomo Param) – Parameter for storage build
buffer.
self.b.p_M_supply (Pyomo Param) – Parameter for supply bounds.
self.b.p_M_storage (Pyomo Param) – Parameter for storage bounds.
self.b.p_M_excess (Pyomo Param) – Parameter for excess (infeasibil-
ity) cost.

declare_variables()

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_variables
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_variables

[source]

Declare variables.

Parameters: None
Returns: self.b.v_flow (Pyomo Var) – Pyomo decision variable of block flow

through arcs.
self.b.v_flow_base (Pyomo Var) – Pyomo decision variable of block
flow through existing arcs.
self.b.v_flow_add (Pyomo Var) – Pyomo decision variable of block flow
through arcs requiring investment.
self.b.v_flow_by_policy (Pyomo Var) – Pyomo decision variable of
block flow by policy type (i.e. 45Q or no tax credit).
self.b.vb_transport_investment (Pyomo Var) – Pyomo binary variable
for block new investment.
self.b.v_transport_cap_add (Pyomo Var) – Pyomo decision variable of
block transport capacity added.
self.b.v_storage_investment (Pyomo Var) – Pyomo decision variable
of block storage investment added.
self.b.v_storage_injectivity (Pyomo Var) – Pyomo decision variable of
block storage injectivity.
self.b.va_slack_storage (Pyomo Var) – Slack variable for storage
capacity.
self.b.va_slack_demand_eor (Pyomo Var) – Slack variable for de-
mand capacity.
self.b.va_excess_supply (Pyomo Var) – Slack variable for excess (in-
feasible) supply.
self.b.va_excess_ts_in (Pyomo Var) – Slack variable for excess (infea-
sible) supply flowing into ts nodes.
self.b.va_excess_ts_out (Pyomo Var) – Slack variable for excess (in-
feasible) supply flowing out of ts nodes.

declare_constraints()
Declare CCATS block-level constraints.

Parameters: None
Returns: c_flow_total_rule (Pyomo Constraint) – Pyomo constraint asserting

that total flow == flow from existing pipelines + flow from new pipelines.
c_flow_by_policy (Pyomo Constraint) – Pyomo constraint asserting
that flow by policy type == total flow.
c_flow_balance_supply (Pyomo Constraint) – Pyomo constraint as-
serting that CO2 out of CO2 supply nodes == CO2 supplied to the
model.
c_flow_balance_transshipment (Pyomo Constraint) – Pyomo con-
straint asserting that CO2 out of trans-shipment nodes == CO2 into
trans-shipment nodes.
c_flow_balance_demand_storage (Pyomo Constraint) – Pyomo con-
straint asserting that CO2 flow to CO2 storage doesn’t exceed storage

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_constraints
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_constraints

[source]

[source]

capacity.
c_flow_balance_demand_eor (Pyomo Constraint) – Pyomo constraint
asserting that CO2 flow to CO2 demand doesn’t exceed demand.
c_t0_flow_base (Pyomo Constraint) – Pyomo constraint asserting that
no CO2 transport capacity can be added in time period 1.
c_transport_capacity_added_min (Pyomo Constraint) – Pyomo con-
straint asserting minimum CO2 transportation capacity that can be
added/arc.
c_transport_capacity_added_max (Pyomo Constraint) – Pyomo con-
straint asserting maximum CO2 transportation capacity that can be
added/arc.
c_transport_selection (Pyomo Constraint) – Pyomo constraint assert-
ing only one transportation option allowed to be added/arc.
c_vb_transport_investment_dummy (Pyomo Constraint) – Pyomo
constraint to constrain vb_transport_investment when solved as a linear
model.

declare_objective()
Declare objective function.

Parameters: None
Returns: self.b.e_sum_flow_arcs_in (Pyomo Expression) – Sum of flows into

each node.
self.b.e_sum_policy (Pyomo Expression) – Sum of policy costs (in-
cluding tax credits).
self.b.e_sum_costs_investment (Pyomo Expression) – Sum of invest-
ment costs.
self.b.e_sum_costs_variable (Pyomo Expression) – Sum of variable
costs.
self.b.e_sum_excess (Pyomo Expression) – Costs of slack
(infeasibilities).
self.b.e_sum_costs (Pyomo Expression) – Costs exclusive of slack
(infeasibilities).
self.b.e_sum_all_costs (Pyomo Expression) – Costs inclusive of slack
(infeasibilities).
self.b.objective (Pyomo Objective) – Pyomo block-level objective func-
tion minimizing total costs.

declare_constraints_across_blocks()
Declare constraints across blocks.

Parameters: None
Returns: c_flow_added (Pyomo Constrtaint) – Pyomo constraint asserting that

block flow added * a transport buffer <= block-level transport capacity
added in previous time period

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_objective
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_objective
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_constraints_across_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_constraints_across_blocks

[source]

[source]

[source]

c_storage_injectivity (Pyomo Constraint) – Pyomo constraint asserting
that stored CO2 <= new storage capacity + existing storage capacity.
c_storage_cumulative_injection (Pyomo Constraint) – Pyomo con-
straint asserting that storage volumes <= exceed maximum formation
capacity.
c_storage_aors_available (Pyomo Constraint) – Pyomo constraint as-
serting that storage investment sites <= remaining storage sites avail-
able for investment.

declare_objective_across_blocks()
Declare objective across blocks.

Parameters: None
Returns: self.m.e_sum_blocks (Pyomo Expression) – Pyomo Expression sum-

ming all costs across blocks.
self.m.objective_multiblock (Pyomo Objective) – Pyomo objective
function minimizing total costs across blocks.

solve_optimization()
Solve optimization and commit self.m model to parent level variable for use by other
CCATS submodules.

Parameters: None
Returns: self.m.objective_value (Float) – Copy of multiblock objective result.

self.parent.pyomo_model (Pyomo model) – Copy of self.m.
self.parent.pyomo_block0 (Pyomo block) – Copy of self.m.blocks[0]
for easier access in postprocessor.
self.parent.pyomo_block1 (Pyomo block) – Copy of self.m.blocks[0]
for easier access in postprocessor.
self.parent.pyomo_block2 (Pyomo block) – Copy of self.m.blocks[0]
for easier access in postprocessor.
self.parent.model_name (String) – Name of optimization model
(‘ccats_opt’).

solve_linearized_optimization()
Re-solve the optimization problem after linearizing and fixing investment variables.

Parameters: None
Returns: self.parent.pyomo_model (Pyomo model) – Copy of self.m_linear

self.parent.pyomo_block0 (Pyomo block) – Copy of
self.m_linear.blocks[0] for easier access in postprocessor.
self.parent.pyomo_block1 (Pyomo block) – Copy of
self.m_linear.blocks[0] for easier access in postprocessor.
self.parent.pyomo_block2 (Pyomo block) – Copy of
self.m_linear.blocks[0] for easier access in postprocessor.
self.parent.model_name (String) – Name of optimization model
(‘ccats_opt’).

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_objective_across_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.declare_objective_across_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.solve_optimization
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.solve_optimization
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.solve_linearized_optimization
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/opmodels/ccats_optimization.html#OptimizationModel.solve_linearized_optimization

Module contents

output module
Submodule for outputting CCATS results.

Output: Summary

This submodule outputs CCATS results:

1. setup() and run() are called from Module: Summary.
2. Pickle results.
3. Reset prices if “self.parent.price_reset_switch” === True.
4. Prepare variables to be written to restart file.

Output: Input Files

None

Output: Model Functions and Class Methods

__init__() - Initializes variables to be populated by Output (called by module.Module.setup())
setup() - Set-up the submodule (called by module.Module.setup())
run() - Calls remaining Output functions (called by module.Module.run())
write_pkl() - Write results using pickle (called by run())
reset_prices() - Reset prices (called by run())
write_local_restart_vars() - Move local restart variables to global variables (called by run())

Output: Output Debug Files

None

Output: Output Restart Variables

tcs45q_ccs_eor_45q - CO2 sequestered in EOR.
tcs45q_ccs_saline_45q - CO2 sequestered in saline storage.
tcs45q_i_45q_duration - Tax code section 45Q subsidy duration
tcs45q_i_45q_syr - Start year of tax code section 45Q subsidy
tcs45q_i_45q_lyr_ret - End year of tax code section 45Q subsidy for retrofits
tcs45q_i_45q_lyr_new - End year of tax code section 45Q subsidy for new builds
ccatsdat_co2_elec - Electricity consumed by CO2 transport.

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.run
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/postprocessor.html#postprocessor.Postprocessor.run
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/postprocessor.html#postprocessor.Postprocessor.run
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/postprocessor.html#postprocessor.Postprocessor.run

[source]

[source]

[source]

[source]

[source]

ccatsdat_co2_prc_dis_45q - CO2 for 45Q eligible flow at census district level.
ccatsdat_co2_prc_dis_ntc - CO2 for 45Q ineligible flow at census district level.
ccatsdat_co2_prc_reg_45q - CO2 for 45Q eligible flow at census region level.
ccatsdat_co2_prc_reg_ntc - CO2 for 45Q ineligible flow at census region level.
ccatsdat_co2_sup_out - Total CO2 supplied to CCATS, by census division.
ccatsdat_co2_seq_out - Total CO2 sequestered by CCATS, by census division.
ccatsdat_co2_sup_out_r - Total CO2 supplied to CCATS, by census region.
ccatsdat_co2_seq_out_r - Total CO2 sequestered by CCATS, by census region.

class output.Output(parent)
Bases: Submodule

Output Submodule for CCATS.

__init__(parent)
Initializes Output object.

Parameters: parent (str) – Module.Module (Pointer to parent module)
Return type: None

parent
module.Module head module

setup()
Setup Output Submodule for CCATS.

Parameters: None
Return type: None

run()
Run Output Submodule for CCATS.

Parameters: None
Return type: None

write_pkl()
Write local variables to pickle

Because CCATS is in Python and Main is in Fortran, Python must read/write local
variables between model years
This is done using Pickle
Different pickle outputs are written depending on whether fcrl = 0, fcrl = 1, or ncrl=1
(is this a reporting loop)
If fcrl=0, do not write pickle outputs
If fcrl=1 and ncrl=0, write fcrl pickle outputs
If ncrl=1, write ncrl pickle outputs

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/submodule_ccats.html#submodule_ccats.Submodule
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.write_pkl
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.write_pkl

[source]

[source]

Parameters: None
Return type: None

reset_prices()
Resets prices

Parameters: None
Returns: self.parent.ccatsdat_co2_prc_dis_45q (DataFrame) – CO2 for 45Q

eligible flow at census district level.
self.parent.ccatsdat_co2_prc_reg_45q (DataFrame) – CO2 for 45Q
eligible flow at census region level.
self.parent.ccatsdat_co2_prc_dis_ntc (DataFrame) – CO2 for 45Q in-
eligible flow at census district level.
self.parent.ccatsdat_co2_prc_reg_ntc (DataFrame) – CO2 for 45Q
ineligible flow at census region level.

write_local_restart_vars()
Write local restart variables to global restart variables.

Parameters: None
Returns: self.parent.restart.tcs45q_ccs_eor_45q (DataFrame) – CO2 se-

questered in EOR from legacy common block.
self.parent.restart.tcs45q_ccs_saline_45q (DataFrame) – CO2 se-
questered in saline storage from legacy common block.
self.parent.restart.tcs45q_i_45q_duration (int) – Tax code section
45Q subsidy duration
self.parent.restart.tcs45q_i_45q_syr (int) – Start year of tax code sec-
tion 45Q subsidy
self.parent.restart.tcs45q_i_45q_lyr_ret (int) – End year of tax code
section 45Q subsidy for retrofits
self.parent.restart.tcs45q_i_45q_lyr_new (int) – End year of tax code
section 45Q subsidy for new builds
self.parent.restart.ccatsdat_co2_elec (DataFrame) – Electricity con-
sumed by CO2 transport.
self.parent.restart.ccatsdat_co2_prc_dis_45q (DataFrame) – CO2 for
45Q eligible flow at census district level.
self.parent.restart.ccatsdat_co2_prc_dis_ntc (DataFrame) – CO2 for
45Q ineligible flow at census district level.
self.parent.restart.ccatsdat_co2_prc_reg_45q (DataFrame) – CO2
for 45Q eligible flow at census region level.
self.parent.restart.ccatsdat_co2_prc_reg_ntc (DataFrame) – CO2 for
45Q ineligible flow at census region level.
self.parent.restart.ccatsdat_co2_sup_out (DataFrame) – Total CO2
supplied to CCATS, by census division.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.reset_prices
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.reset_prices
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.write_local_restart_vars
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/output.html#Output.write_local_restart_vars

self.parent.restart.ccatsdat_co2_seq_out (DataFrame) – Total CO2
sequestered by CCATS, by census division.
self.parent.restart.ccatsdat_co2_sup_out_r (DataFrame) – Total CO2
supplied to CCATS, by census region.
self.parent.restart.ccatsdat_co2_seq_out_r (DataFrame) – Total CO2
sequestered by CCATS, by census region.

postprocessor module
Submodule for Postprocessing CCATS results.

Postprocessor: Summary

This submodule postprocesses CCATS model results and prepares results to be sent to the restart
file:

1. setup() is called from Module: Summary, assigning postprocessor price smoothing
variables and infeasibility output switches.

2. run() is called from Module: Summary.
3. Extract results from Pyomo model, storing results as Pandas DataFrames.
4. Convert dual variables to weighted-average CO2 price variables used by other

NEMS modules in duals_to_df().
5. Test for infeasibilities.
6. Write data required for next model year calculations to local variables, and pickle.

6. Prepare results to write to the restart file.
7. Create result summaries.
8. Visualize results.

Postprocessor: Input Files

postproc_setup.csv - postprocessor setup file

Postprocessor: Model Functions and Class Methods

__init__() - Initializes variables to be populated by Postprocessor (called by
module.Module.setup())
setup() - Sets run settings using the setup file (called by module.Module.setup())
run() - Calls remaining Postprocessor functions (called by module.Module.run())
variables_to_df() - Process Pyomo results into Pandas DataFrames (called by run())
slacks_to_df() - Processes slack variables (called by run())
assign_flows_to_pipes() - Aggregates flows by pipeline segment (called by run())
binding_constraints_to_df() - Process binding constraints (called by run())
duals_to_df() - Process dual variables (called by run())
electricity_demand_to_df() - Process electricity consumed (called by run())
copy_variables_for_pytest() - Copy variables for Pytest (called by run())
test_flows() - Test slack variables (called by run())
update_existing_pipeline_network() - Process new pipeline capacity (called by run())
update_storage_volumes() - Process new storage capacity 2 stored (called by run())

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.run

write_restart_file() - Output variables for the restart file (called by run())
write_pkl() - Output variables for pickling (called by run())
results_to_csv() - Save results to CSV (called by run())
summarize_outputs() - Create high level run summary (called by run())
visualize_results() - Create interactive folium maps and datatable (called by run())

Postprocessor: Output Debug Files

Some debug files are output multiple times during a NEMS run, and use the following convention:

<model> is the name of the model (default is ccats_opt),
<block> is the number of the current block (0, 1, or 2),
<year> is the current model year, for example 2024,
<iteration> is the current NEMS iteration, and
<cycle> is the current NEMS cycle.

In debug// (output by summarize_outputs()):
<model>_data_stats_postproc.csv - High level summary of the run

In debug//optimization_results//binding_constraints// (output by run()):
max_cap_binding_trans_existing_<block>_<year>.csv - Existing transport ca-
pacity constraints that are binding (hit limit)
max_cap_binding_trans_add_<block>_<year>.csv - Added transport capacity
constraints that are binding
max_cap_binding_store_<block>_<year>.csv - Storage injectivity constraints
that are binding

In debug//optimization_tests// (output by test_flows()):
infeasible_supply_b<block>_<year>_<iteration>_<cycle>.csv - Supply node
infeasibilities
infeasible_ts_in_b<block>_<year>_<iteration>_<cycle>.csv - Infeasibilities into
trans-shipment nodes
infeasible_ts_out_b<block>_<year>_<iteration>_<cycle>.csv - Infeasibilities
out of trans-shipment nodes

In debug//optimization_results// (output by results_to_csv()):
flows//b<block>_flows_all_years.csv - All flows
investment_decisions//<model>_bins_b<block>_<year>.csv - Pipeline binary in-
vestment decisions (only meaningful for MILP)
transport_cap_added//<model>_cap_add_b<block>_<year>.csv - Transportation
capacity added
investment_decisions//<model>_store_aors_b<block>_<year>.csv - Storage ca-
pacity added
duals//<model>_duals_<year>.csv - Dual variables

In debug//visualization_results//<model>// (output by visualize_results()):

postproc_pipeline_map_<year>_<block>.html - Map of active CO2 flows
datatable_postproc_pipeline_map_<year>_<block>.html - Table summarizing
results.

In debug//electricity_demand// (output by write_restart_file()):
electricity_demand.csv - Overview of electricity consumed for transportation

Postprocessor: Output Restart Variables

rest_co2_sup_out - Supplied CO2 by census division and type

1 = PP Coal,
2 = PP Natgas,
3 = BECCS,
4 = Natural Gas Processing,
5 = Cement,
6 = Ethanol,
7 = Hydrogen,
8 = Other, and
9 = Total.

rest_co2_seq_out - Sequestered CO2 by census division and storage type where

1 = EOR, and
2 = Saline.

rest_co2_sup_out_r - Supplied CO2 by census region and type

1 = PP Coal,
2 = PP Natgas,
3 = BECCS,
4 = Natural Gas Processing,
5 = Cement,
6 = Ethanol,
7 = Hydrogen,
8 = Other, and
9 = Total.

rest_co2_seq_out_r - Sequestered CO2 by census region and storage type where

1 = EOR, and
2 = Saline.

rest_co2_prc_dis_45q - 45Q CO2 price by census division
rest_co2_prc_dis_ntc - NTC CO2 price by census division
rest_co2_prc_reg_45q - 45Q CO2 price by census region
rest_co2_prc_reg_ntc - NTC CO2 price by census region
rest_co2_elec - Electricity consumed by pipelines by census region

[source]

[source]

[source]

[source]

Postprocessor: Code

class postprocessor.Postprocessor(parent)
Bases: Submodule

Postprocessor Submodule for CCATS.

__init__(parent)
Initializes Postprocessor object.

Parameters: parent (str) – Module.Module (Pointer to parent module)
Return type: None

parent
module.Module head module

setup(setup_filename)
Setup postprocessor Submodule for CCATS.

Parameters: setup_filename (str) – Path to postprocessor setup file.
Returns: self.logger (Logger) – Logger utility, declared in parent.

self.setup_table (DataFrame) – Setup table for Preprocessor.py, with
input values and switches relating to the submodule
self.price_limit (float) – Maximum price (+/-) returned by CCATS in
$1987.
self.price_peg (float) – Maximum price (+/-) movement allowed per cy-
cle relative to the previous cycle in $1987.
self.slack_threshold (float) – Volume threshold at which infeasibilities
are recorded in debug outputs
self.log_b1_infeasibilities (bool) – Determines whether or not to log in-
feasibilities for block 1.
self.log_b2_infeasibilities (bool) – Determines whether or not to log in-
feasibilities for block 2.
self.infeasibility_threshold_pct (float) – Log infeasibilities if greater
than provided percentage of total flow.

run()
Run postprocessor Submodule for CCATS.

Parameters: None
Returns: self.m (Pyomo Model) – Pyomo model solved by

models.ccats_optimization.OptimizationModel.
self.b0 (Pyomo Block) – Block 0 extracted from self.m.
self.b1 (Pyomo Block) – Block 1 extracted from self.m.
self.b2 (Pyomo Block) – Block 2 extracted from self.m.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/submodule_ccats.html#submodule_ccats.Submodule
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.run

self.O_pipe_bins_b0_df (DataFrame) – Block 0 transportation binary
investment decisions.
self.O_pipe_bins_b1_df (DataFrame) – Block 1 transportation binary
investment decisions.
self.O_pipe_bins_b2_df (DataFrame) – Block 2 transportation binary
investment decisions.
self.O_store_new_aors_b0_df (DataFrame) – Block 0 aors opened.
self.O_store_new_aors_b1_df (DataFrame) – Block 1 aors opened.
self.O_store_new_aors_b2_df (DataFrame) – Block 2 aors opened.
self.O_transport_cap_add_b0_df (DataFrame) – Block 0 transporta-
tion capacity added.
self.O_transport_cap_add_b1_df (DataFrame) – Block 1 transporta-
tion capacity added.
self.O_transport_cap_add_b2_df (DataFrame) – Block 2 transporta-
tion capacity added.
self.O_infeasible_supply_b0_df (DataFrame) – Block 0 infeasible
supply.
self.O_infeasible_supply_b1_df (DataFrame) – Block 1 infeasible
supply.
self.O_infeasible_supply_b2_df (DataFrame) – Block 2 infeasible
supply.
self.O_infeasible_ts_in_b0_df (DataFrame) – Block 0 infeasible flow
into trans-shipment nodes.
self.O_infeasible_ts_in_b1_df (DataFrame) – Block 1 infeasible flow
into trans-shipment nodes.
self.O_infeasible_ts_in_b2_df (DataFrame) – Block 2 infeasible flow
into trans-shipment nodes.
self.O_infeasible_ts_out_b0_df (DataFrame) – Block 0 infeasible flow
out of trans-shipment nodes.
self.O_infeasible_ts_out_b1_df (DataFrame) – Block 1 infeasible flow
out of trans-shipment nodes.
self.O_infeasible_ts_out_b2_df (DataFrame) – Block 2 infeasible flow
out of trans-shipment nodes.
self.O_slack_demand_b0_df (DataFrame) – Block 0 slack demand for
EOR nodes.
self.O_slack_demand_b1_df (DataFrame) – Block 1 slack demand for
EOR nodes.
self.O_slack_demand_b2_df (DataFrame) – Block 2 slack demand for
EOR nodes.
self.O_slack_storage_b0_df (DataFrame) – Block 0 slack storage for
saline storage nodes.
self.O_slack_storage_b1_df (DataFrame) – Block 1 slack storage for
saline storage nodes.
self.O_slack_storage_b2_df (DataFrame) – Block 2 slack storage for
saline storage nodes.
self.O_flows_b0_df (DataFrame) – Block 0 flows assigned to pipelines.
self.O_flows_b1_df (DataFrame) – Block 1 flows assigned to pipelines.

[source]

[source]

self.O_flows_b2_df (DataFrame) – Block 2 flows assigned to pipelines.
self.C_bind_trans_existing_b0_df (DataFrame) – Block 0 binding ex-
isting transportation constraints.
self.C_bind_trans_existing_b1_df (DataFrame) – Block 1 binding ex-
isting transportation constraints.
self.C_bind_trans_existing_b2_df (DataFrame) – Block 2 binding ex-
isting transportation constraints.
self.C_bind_trans_add_b0_df (DataFrame) – Block 0 binding added
transportation constraints.
self.C_bind_trans_add_b1_df (DataFrame) – Block 1 binding added
transportation constraints.
self.C_bind_trans_add_b2_df (DataFrame) – Block 2 binding added
transportation constraints.
self.C_bind_store_b0_df (DataFrame) – Block 0 binding storage
constraints.
self.C_bind_store_b1_df (DataFrame) – Block 1 binding storage
constraints.
self.C_bind_store_b2_df (DataFrame) – Block 2 binding storage
constraints.

variables_to_df(block, O_flows_df, O_pipe_bins_df, O_store_new_aors_df)
Write pyomo results to DataFrames for use in postprocessors.

Parameters: block (Pyomo Block) – Current Pyomo Block to be analyzed.
O_flows_df (DataFrame) – Expected to be an empty DataFrame.
O_pipe_bins_df (DataFrame) – Expected to be an empty DataFrame.
O_store_new_aors_df (DataFrame) – Expected to be an empty
DataFrame.

Returns: O_flows_df (DataFrame) – Flows indexed by arc (node i, node j), 45Q
elgibility, and pipeline ID.
O_pipe_bins_df (DataFrame) – Transportation binary investment deci-
sions indexed by arc (node i, node j) and pipeline ID.
O_store_new_aors_df (DataFrame) – Saline storage added (AORS)
indexed by node.
O_transport_cap_add_df (DataFrame) – Transportation capacity
added indexed by arc (node i, node j) and segment.

slacks_to_df(block, O_infeasible_supply, O_infeasible_ts_in,
O_infeasible_ts_out, O_slack_demand, O_slack_storage)

Write pyomo slack variables to DataFrames for use in postprocessors.

Parameters: block (Pyomo Block) – Pyomo Block to be analyzed.
O_infeasible_supply (DataFrame) – Empty DataFrame.
O_infeasible_ts_in (DataFrame) – Empty DataFrame.
O_infeasible_ts_out (DataFrame) – Empty DataFrame.
O_slack_demand (DataFrame) – Empty DataFrame.
O_slack_storage (DataFrame) – Empty DataFrame.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.variables_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.variables_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.slacks_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.slacks_to_df

[source]

[source]

[source]

Returns: O_infeasible_supply (DataFrame) – Infeasible supply by node.
O_infeasible_ts_in (DataFrame) – Infeasible flow into a trans-shipment
node.
O_infeasible_ts_out (DataFrame) – Infeasible flow out of a trans-ship-
ment node.
O_slack_demand (DataFrame) – Slack EOR demand by node.
O_slack_storage (DataFrame) – Slack saline storage by node.

assign_flows_to_pipes(O_flows_df, O_pipe_bins_df, time_period)
Assign flows to the correct pipeline segments.

Parameters: O_flows_df (DataFrame) – Current block flows.
O_pipe_bins_df (DataFrame) – Transportation investments.
time_period (int) – Block number.

Returns: O_flows_df – Current block flows assigned to pipelines.
Return type: DataFrame

binding_constraints_to_df(block, O_flows_df, C_bind_trans_existing_df,
C_bind_trans_add_df, C_bind_store_df, new_aors_df)

Write Pyomo constraints to DataFrames for use in postprocessors.

Parameters: block (Pyomo Block) – Pyomo block to be analyzed.
O_flows_df (DataFrame) – Current block flows.
C_bind_trans_existing_df (DataFrame) – Empty DataFrame.
C_bind_trans_add_df (DataFrame) – Empty DataFrame.
C_bind_store_df (DataFrame) – Empty DataFrame.
new_aors_df (DataFrame) – Additional storage capacity (AORS) that
has been added.

Returns: C_bind_trans_existing_df (DataFrame) – Binding existing transporta-
tion constraints for the current block.
C_bind_trans_add_df (DataFrame) – Binding added transportation
constraints for the current block.
C_bind_store_df (DataFrame) – Binding storage constraints for the
current block.

duals_to_df()
Translate dual variables to df.

Parameters: None
Returns: self.duals_df (DataFrame) – DataFrame of dual variables generated

from models.ccats_optimization.OptimizationModel.
self.shadow_price_df (DataFrame) – DataFrame of all shadow prices
indexed by tax credit eligibility (policy_eligibility).
self.shadow_price_div_df (DataFrame) – DataFrame of shadow
prices at the census division level.
self.shadow_price_reg_df (DataFrame) – DataFrame of shadow
prices at the census region level.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.assign_flows_to_pipes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.assign_flows_to_pipes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.binding_constraints_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.binding_constraints_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.duals_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.duals_to_df

[source]

[source]

[source]

[source]

electricity_demand_to_df()
Calculate electricity demand and write to dedicated df by census division.

Parameters: None
Returns: self.electric_demand – Electricity consumed by census division.
Return type: DataFrame

test_flows()
Test if supply slack variables indicate that not all supply was allocated to demand or
storage.

If infeasibilities found:

postprocessor.Postprocessor.results_to_csv()

postprocessor.Postprocessor.summarize_outputs()

Parameters: None

If infeasibilities found:

postprocessor.Postprocessor.results_to_csv()

postprocessor.Postprocessor.summarize_outputs()

Parameters: None
Returns: O_infeasible_supply – DataFrame of supply slack variables from

optimization.
Return type: DataFrame

update_existing_pipeline_network()
Get capacity added for new pipelines and write to DataFrame to be passed between
model years.

Use block 0, because those are the investments selected in the curent model year
(first available to use in block 1)

Parameters: None
Returns: self.parent.new_built_pipes_df – DataFrame of pipeline capacity added.
Return type: DataFrame

update_storage_volumes()
Update realized storage volumes passed between model years.

Use block 0 since it is investment block.

Parameters: None
Returns: self.parent.new_aors_df (DataFrame) – Additional storage capacity

(AORs) added.
self.parent.store_prev_b0_df (DataFrame) – Track amount of CO2
stored.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.electricity_demand_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.electricity_demand_to_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.test_flows
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.test_flows
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.update_existing_pipeline_network
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.update_existing_pipeline_network
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.update_storage_volumes
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.update_storage_volumes

[source]

[source]

write_restart_file()
Write results to local restart variable.

Results are based on block 0

Results use the following indices:

Supply

1 = PP Coal
2 = PP Natgas
3 = BECCS
4 = Natural Gas Processing
5 = Cement
6 = Ethanol
7 = Hydrogen
8 = Other
9 = Total

Sequestration

1 = CO2 EOR
2 = Storage

Parameters: None
Returns: self.parent.rest_co2_sup_out (DataFrame) – Supplied CO2 by census

division
self.parent.rest_co2_seq_out (DataFrame) – Sequestered CO2 by
census division
self.parent.rest_co2_sup_out_r (DataFrame) – Supplied CO2 by cen-
sus region
self.parent.rest_co2_seq_out_r (DataFrame) – Sequestered CO2 by
census region
self.parent.rest_co2_prc_dis_45q (DataFrame) – Price of CO2 45Q
eligible by census district
self.parent.rest_co2_prc_dis_ntc (DataFrame) – Price of CO2 45Q in-
eligible by census district
self.parent.rest_co2_prc_reg_45q (DataFrame) – Price of CO2 45Q
eligible by census region
self.parent.rest_co2_prc_reg_ntc (DataFrame) – Price of CO2 45Q
ineligible by census region
self.parent.rest_co2_elec (DataFrame) – Electricity consumption by
census division

copy_variables_for_pytest()
Copy flow variables for Pytest.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.write_restart_file
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.write_restart_file
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.copy_variables_for_pytest
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.copy_variables_for_pytest

[source]

[source]

[source]

Pytest is used for results testing (i.e. confirming flows in the model don’t exceed
flows reported via the restart variable)

Parameters: None
Returns: self.parent.pytest.O_flows_b0_df (DataFrame) – Block 0 flows copied

for pytest.
self.parent.pytest.O_flows_b1_df (DataFrame) – Block 1 flows copied
for pytest.
self.parent.pytest.O_infeasible_supply_b0_df (DataFrame) – Copy
of block 0 infeasible supply df for pytest.
self.parent.pytest.O_infeasible_supply_b1_df (DataFrame) – Copy
of block 1 infeasible supply df for pytest.
self.parent.pytest.O_infeasible_supply_b2_df (DataFrame) – Copy
of block 2 infeasible supply df for pytest.
self.parent.pytest.transport_add (DataFrame) – Copy of transport ca-
pacity add df for pytest.
self.parent.pytest.transport_existing (DataFrame) – Copy of trans-
port capacity existing df for pytest.
self.parent.pytest.year_start (int) – Copy of start year for pytest.
self.parent.pytest.year_current (int) – Copy of current year for pytest.
self.parent.pytest.iteration_current (int) – Copy of current iteration for
pytest.
self.parent.pytest.rest_co2_sup_out (DataFrame) – Supplied CO2 by
census division
self.parent.pytest.rest_co2_sup_out_r (DataFrame) – Sequestered
CO2 by census division

write_pkl()
Write local variables that need to be passed between model iterations to pickle.

Parameters: None
Returns: self.parent.pkl.mod_new_aors_df (DataFrame) – AORS opened dur-

ing Block 0.
self.parent.pkl.mod_store_prev_b0_df (DataFrame) – Previous block
0 storage.
self.parent.pkl.mod_new_built_pipes_df (DataFrame) – New built
pipelines.

visualize_results(O_flows_input, block)
Visualize optimization results.

Parameters: O_flows_input (DataFrame) – Flows from the current block to be
visualized.
block (String) – Name of block.

Return type: None

results_to_csv()

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.write_pkl
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.write_pkl
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.visualize_results
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.visualize_results
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.results_to_csv
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.results_to_csv

[source]

Write Pyomo results to csv.

Parameters: None
Return type: None

summarize_outputs()
Create high level summary of run and output to <model>_data_stats_postproc.csv.

Parameters: None
Return type: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.summarize_outputs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/postprocessor.html#Postprocessor.summarize_outputs

preprocessor module
Submodule for Preprocessing CCATS data during runtime.

Preprocessor: Summary

This submodule preprocesses CCATS data from the restart file and input files and prepares it for
use in the main CCATS optimization model. The preprocessor runs as follows:

1. setup() is called from Module: Summary.

2. In setup(), input variables are read in from preproc_setupd.csv, then
load_inputs_restart(), load_inputs_csv() and load_inputs_pkl() are called to read in
input DataFrames.

3. Other model year 1 setup processes are performed, (i.e. input costs are inflation
adjusted in harmonize_costs_inflation() and 45Q tax credit values are assigned to
demand and storage input DataFrames in assign_tax_credits()).

4. Preprocessor: Summary setup ends.

5. run() is called from Module: Summary.

6. Instantiate model year process DataFrames:

a. Main model year CO2 supply facility pipeline lookup, storage,
and EOR demand DataFrames are instantiatied in
instantiate_model_year_dfs().

b. Block-level model year CO2 supply and EOR demand
DataFrames are instantiated in setup_co2_supply_blocks() and
setup_co2_eor_blocks(), respectively.

c. Model year pipeline infrastructure is declared based on general-
ized Department of Transportation (DOT) pipeline network and
previous model year results in
declare_existing_pipe_infrastructure().

7. Produce a point-source CO2 supply roster for the main CCATS optimization:

a. CO2 supply sources from the NETL CCRD database have their
prices adjusted based on technology improvement
(apply_tech_rate_capture_costs()) and transport costs
(add_transport_costs_to_netl_capture_costs()).

b. Assign NEMS capture costs to Facility Aggregated Nodes
(FANs) in assign_nems_capture_costs().

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module

c. Match CO2 supply from NEMS against the point-source facility
rosters in self.ccs_facility_year_df and self.cluster_facility_df,
based on facility capture cost, producing block-level CO2 supply
facility rosters for the main optimization.

d. Set 45Q eligibility status for each block-level CO2 supply facility
roster, and adjust capital costs down for the next model year.

8. Produce a transportation roster for the main CCATS optimization:

a. Make the dataset sparse in filter_available_pipelines() based on
selected CO2 supply faciliites and available CO2 EOR and saline
formation storage sites.

b. Assign pipeline electricity costs in assign_electricity_costs().

9. Produce a CO2 saline formation storage roster for the main CCATS optimization

a. Update saline formation storage capacity and injectivity based on
previous model year results

10. Setup inputs to CCATS optimization.

11. Run CCATS preprocessor utiliites (i.e. pickle variables, debug outputs)

Preprocessor: Input Files

preproc_setup.csv - preprocessor setup file
storage_formations_lookup.csv - Lookup of saline formation attributes
co2_facility_lookup.csv - Lookup of CO2 capture facility attributes
master_pipeline_lookup_multi.csv - Lookup of CO2 pipeline transportation
attributes
ts_multiplier.csv - Set of CO2 multipliers for TS arcs by year
hsm_eor_centroid.csv - CO2 demand from HSM centroids during STEO years

Preprocessor: Model Functions and Class Methods

Setup

__init__() - Constructor to initialize Preprocessor submodule (instantiated by
module.Module.setup() in Module: Summary)
setup() - Setup Preprocessor submodule for CCATS (called by
module.Module.setup()).
load_inputs_restart() - Load CCATS inputs from Restart File (called by setup()).

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup

load_inputs_csv() - Load CCATS inputs from .csv files (called by setup()).
load_inputs_pkl() - Load CCATS inputs from .pkl files (called by setup()).
harmonize_costs_inflation() - Harmonize model input costs using NEMS inflation
multipliers (called by setup()).
filter_pnw() - Assess Pacific Northwest (PNW) EMM region’s viability for CCS ac-
tivities (called by setup()).

Run

run() - Run Preprocessor Submodule for CCATS (called by module.Module.run()).

Model Year Instantiations

assign_tax_credits() - Assign 45Q tax credits values to storage and demand input
DataFrames (called by run()).
instantiate_model_year_dfs() - Instantiate model year DataFrames (i.e. model year
pipeline lookup, available saline formations, etc.) (called by run()).
account_for_facility_year_operations() - Account for the number of years a facility
has been operational (called by run()).
setup_co2_supply_blocks() - Instantiate model DataFrames for CO2 supply (called
by run()).
setup_co2_eor_blocks() - Setup model year DataFrames for CO2 EOR demand
(called by run()).
declare_existing_pipe_infrastructure() - Declare and update existing pipeline net-
work (called by run()).

Produce CO2 supply source roster

apply_tech_rate_capture_costs() - Apply tech learning rate to NETL capture costs
(called by run()).
assign_nems_capture_costs() - Assign CO2 capture cost ($/tonne) for net-new facili-
ties based on restart file variables (called by run()).
get_co2_facility_rosters() - Determine rosters of available CO2 capture facilities
(called by run()).
add_transport_costs_to_netl_capture_costs() - Prioritize CO2 capture facilities based
on transport connection costs (called by run()).
determine_point_source_supplies() - Match CO2 supplies against the NETL curve
and produce a DataFrame of model year supply sources (called by run()).
determine_facility_eligibility_45q() - Determine 45Q eligibility for CO2 capture fa-
cilities by model block (called by run()).

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.run

zero_inv_costs_for_retrofit_facilities() - Zeroes out investment costs for facilities
which have been retrofit (called by run()).

Update CO2 transportation roster

filter_available_pipelines() - Remove inactive CO2 supply, storage and CO2 EOR
nodes from the pipeline network to make more sparse (called by run()).
assign_electricity_costs() - Assign electricity costs ($/MWh) for pipelines (called
by run()).

Update CO2 saline formation storage roster

update_storage_infrastructure() - Declare and update existing storage infrastructure
based on last model year results (called by run()).

Setup CCATS Optimization

declare_supply_opt() - Declare supply DataFrames for the main CCATS optimiza-
tion (called by run()).
prepare_storage_opt() - Prepare storage DataFrames for the main CCATS opti-
mization (called by run()).
prepare_eor_opt() - Prepare EOR DataFrames for the main CCATS optimization
(called by run()).
setup_optimization() - Format and prepare data in optimization DataFrames for op-
timization (called by run()).
instantiate_pyomo_series() - Declare Pyomo optimization inputs as series (called by
run()).

CCATS Preprocessor Utilities

write_pkl() - Write CCATS variables that need to be passed between model itera-
tions via .pkl files (called by run()).
summarize_inputs() - Output debug file of preprocessor data summary (called by
run()).
visualize_inputs() - Visualize preprocessed data (called by run()).

Preprocessor: Output Debug Files

Some debug files are output multiple times during a NEMS run, and use the following convention:

<model> is the name of the model (default is ccats_opt),

<block> is the number of the current block (0, 1, or 2),
<year> is the current model year, for example 2024,
<iteration> is the current NEMS iteration, and
<cycle> is the current NEMS cycle.

In debug// (output by summarize_inputs()):
<model>_data_stats_preproc.csv - High level summary of model inputs

In debug//tech_learning (output by apply_tech_rate_capture_costs()):
tech_learning_capture.csv - Tech learning rate for carbon capture technologies
by year

In debug//tech_learning (output by instantiate_pyomo_series()):
tech_learning_transport_storage.csv - Tech learning rate for carbon capture
technologies by year

In debug//optimization_inputs//supply (output by determine_facility_eligibility_45q()):
before_45q_supply_sources_sparse_<block>_df_<year>.csv - Point-source
CO2 supply sources before being updated for 45Q eligibility
after_45q_supply_sources_sparse_<block>_df_<year>.csv - Point-source CO2
supply sources after being updated for 45Q eligibility

In debug//optimization_inputs//elec_costs (output by assign_electricity_costs()):
elec_prices_<year>_<iteration>_<cycle>.csv - Electricity prices used by CCATS
main optimization

In debug//optimization_inputs//elec_costs (output by instantiate_pyomo_series()):
opex_transport_elec_<year>.csv - Electricity opex ($/tonne) used by CCATS
main optimization
electricity_demand_<year>.csv - Electricity demand (MWh/tonne) used by ccats
main optimization

In debug//optimization_inputs//storage (output by instantiate_pyomo_series()):
storage_existing_opt.csv - Existing storage capacity in the CCATS main
optimization
storage_new_opt.csv - Potential for new storage capacity in the CCATS main
optimization
storage_opt_inputs.csv - Main storage inputs into the CCATS main optimization
storage (storage AORs available and operating, injectivity, etc.)

In debug//optimization_inputs//transport (output by instantiate_pyomo_series()):
pipeline_network_<year>.csv - Available arcs for pipeline network in the CCATS
main optimization

In debug//financing (output by instantiate_pyomo_series()):
discount_multipliers.csv - Block durations and discount multipliers by variable
used in the CCATS main optimization

[source]

[source]

[source]

Preprocessor: Output Restart Variables

None

Preprocessor: Code

class preprocessor.Preprocessor(parent)
Bases: Submodule

Preprocessor Submodule for CCATS.

__init__(parent)
Initializes Preprocessor object.

Parameters: parent (str) – Module.Module (Pointer to parent module).
Return type: None

setup(setup_filename)
Setup Preprocessor Submodule for CCATS.

Parameters: setup_filename (str) – Path to preprocessor setup file.
Returns: self.logger (Logger) – Logger utility, declared in parent.

self.input_path (str) – Model input path, declared in parent.
self.output_path (str) – Model output path, declared in parent.
self.preproc_input_path (str) – Preprocessor submodule input path.
self.setup_table (DataFrame) – Setup table for Preprocessor.py, with
input values and switches relating to the submodule.
self.small_sample_switch (DataFrame) – Model solves for only a sin-
gle census division for testing if TRUE.
self.split_45q_supply_switch (DataFrame) – Split CO2 supply into
45Q and NTC components if TRUE.
self.small_sample_division (int) – Census Division tested when run-
ning a “small sample” test.
self.block_45q_yr (int) – Decision variable for number of 45Q eligibility
years remaining in model (see method:
determine_facility_eligibility_45q).
self.new_pipes_to_exist_facilities (int) – First year that new pipelines
can be built to existing capture facilities (first operational in the following
year).
self.tech_learn_ammonia (float) – Tech rate for capture at ammonia
facilities.
self.tech_learn_ethanol (float) – Tech rate for capture at ethanol
facilities.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/submodule_ccats.html#submodule_ccats.Submodule
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.setup

[source]

[source]

self.tech_learn_cement (float) – Tech rate for capture at cement
facilities.
self.tech_learn_ng_processing (float) – Tech rate for capture at natu-
ral gas processing.
self.tech_learn_other (float) – Tech rate for capture at all other
facilities.
self.tech_learn_power (float) – Tech rate for capture at power plants
(coal and natural gas).
self.tech_learn_transport (float) – Tech rate for carbon transport.
self.tech_learn_storage (float) – Tech rate for carbon storage.
self.transport_buffer (float) – Buffer (fraction) added above CO2 flow
to transport network during optimization.
self.storage_buffer (float) – Buffer (fraction) added above CO2 flow to
storage network during optimization.

load_inputs_restart()
Load CCATS inputs from Restart File.

Read in relevant DataFrames from parent module, and
Assign instantiate “eligibility_45q” column in each supply DataFrame.

Returns: self.i_industrial_supply_45q_df (DataFrame) – DataFrame of 45Q eligi-
bile CO2 supply from NEMS.
self.i_industrial_supply_ntc_df (DataFrame) – DataFrame of CO2 supply
from NEMS that is not eligibile for a tax credit (NTC = no tax credit).
self.i_nems_facility_cost_df (DataFrame) – DataFrame of CO2 capture
costs from NEMS.

load_inputs_csv()
Load CCATS inputs from CSV.

Read in input data from .csvs, and
Concat EOR demand data from the restart file to EOR centroid data from
hsm_eor_centroid.csv input file, and filter out any EOR plays that have no
demand.

Returns: self.i_storage_df (DataFrame) – DataFrame of storage formations - input
data.
self.i_co2_supply_facility_df (DataFrame) – DataFrame of CO2 capture
facility attributes from NETL - input data.
self.i_pipeline_lookup_df (DataFrame) – DataFrame of CO2 pipeline
lookup - input data.
self.i_eor_demand_df (DataFrame) – DataFrame of CO2 EOR site CO2
demanded - input data.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.load_inputs_restart
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.load_inputs_restart
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.load_inputs_csv
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.load_inputs_csv

[source]

[source]

self.i_eor_cost_net_df (DataFrame) – DataFrame of CO2 EOR net cost
for CO2 - input data.

load_inputs_pkl()
Load CCATS inputs from Pickle.

CCATS Pickle variables are loaded from CCATS Pickle: Summary after
model year 1 using the pickle library
(https://docs.python.org/3/library/pickle.html),
This is done because the CCATS Python environment is not maintained
between model iterations, pickling allows us to store working memory be-
tween iterations, and
This code can be deprecated once user objects are implemented in
main.py.

Returns: self.i_storage_df (DataFrame) – DataFrame of storage formations - input
data.
self.i_co2_supply_facility_df (DataFrame) – DataFrame of CO2 capture
facility attributes from NETL - input data.
self.i_pipeline_lookup_df (DataFrame) – DataFrame of CO2 pipeline
lookup - input data.
self.i_eor_demand_df (DataFrame) – DataFrame of CO2 EOR site CO2
demanded - input data.
self.i_eor_cost_net_df (DataFrame) – DataFrame of CO2 EOR net cost
for CO2 - input data.
self.pipes_existing_df (DataFrame) – DataFrame of existing CO2 pipeline
infrastructure in a given model year.
self.storage_existing_df (DataFrame) – DataFrame of existing CO2 stor-
age infrastructure in a given model year.
self.co2_facility_eligibility_df (DataFrame) – DataFrame of CO2 facility
45Q eligibility.
self.parent.new_built_pipes_df (DataFrame) – DataFrame of new pipe-
lines built in previous model year b1.
self.parent.new_aors_df (DataFrame) – DataFrame of new AORS, carried
over from the previous model year.
self.parent.store_prev_b0_df (DataFrame) – DataFrame of previous
model year CO2 stored in b0.
self.parent.co2_supply_prev_b1_df (DataFrame) – DataFrame of previ-
ous model year CO2 supplied in b1.

harmonize_costs_inflation()
Harmonize model input costs using NEMS inflation multipliers.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.load_inputs_pkl
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.load_inputs_pkl
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats_pickle.html#ccats-pickle
https://docs.python.org/3/library/pickle.html
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.harmonize_costs_inflation
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.harmonize_costs_inflation

[source]

[source]

[source]

[source]

Inflation calculations are called using the common.calculate_inflation()

function.

Returns: self.i_nems_facility_cost_df (DataFrame) – DataFrame of industrial facil-
ity CO2 capture cost from NEMS - input data.
self.i_pipeline_lookup_df (DataFrame) – DataFrame of CO2 pipeline
lookup - input data.
self.i_co2_supply_facility_df (DataFrame) – DataFrame of CO2 capture
facility attributes from NETL - input data.
self.i_storage_df (DataFrame) – DataFrame of storage formations - input
data.

filter_pnw()
Assess Pacific Northwest (PNC) EMM region’s viability for CCS activities.

PNW has lots of electricity generation, but limited CCS options, so we pull FANs
(Faciliy Aggregated Nodes) out of the representation if no builds in the previous
cycle.

Parameters: None
Returns: self.i_co2_supply_facility_df (DataFrame) – DataFrame of CO2 cap-

ture facility attributes from NETL - input data.
self.i_pipeline_lookup_df (DataFrame) – DataFrame of CO2 pipeline
lookup - input data.

assign_tax_credits()
Assign 45Q tax credits values to storage and demand input DataFrames.

Returns: self.i_storage_df (DataFrame) – DataFrame of storage formations - input
data.
self.i_eor_demand_df (DataFrame) – DataFrame of EOR demand - input
data.

run()
Run Preprocessor Submodule for CCATS.

Parameters: None
Return type: None

instantiate_model_year_dfs()
Instantiate model year DataFrames (i.e. model year pipeline lookup, available saline for-
mations, etc.).

Pipeline CO2 supplies and pipeline network change every model year, so need to re-
fresh DataFrames every model year.

Parameters: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.filter_pnw
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.filter_pnw
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.assign_tax_credits
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.assign_tax_credits
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.instantiate_model_year_dfs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.instantiate_model_year_dfs

[source]

[source]

[source]

Returns: self.pipeline_lookup_df (DataFrame) – DataFrame of model year CO2
pipeline lookup.
self.storage_new_df (DataFrame) – DataFrame of model year poten-
tial new storage formations.
self.eor_demand_df (DataFrame) – DataFrame of model year CO2
EOR demand by play.
self.eor_cost_net_df (DataFrame) – DataFrame of model CO2 EOR
net cost by play.
self.co2_supply_facility_df (DataFrame) – DataFrame of available fa-
cilities for carbon capture.

account_for_facility_year_operations()
Account for the number of years a facility has been operational.

Update years_operating and 45Q_eligibility before facilities are selected for the
optimization.

Returns: self.co2_supply_facility_df – DataFrame of CO2 facility data and costs -
input data.

Return type: DataFrame

setup_co2_supply_blocks()
Instantiate block-level model DataFrames for CO2 supply.

Instantiate individual block-level DataFrames for CO2 supply by facility type, and

Instantiate a single DataFrame for model year capture costs, with

Block 0 CO2 supply == model year CO2 supply,
Block 1 CO2 supply == model year + 1 CO2 supply, and
Block 2 CO2 supply == mean(model year + 2 max(final AEO model
year, model year + 7)) CO2 demand.

Returns: self.year_industrial_supply_b0_df (DataFrame) – DataFrame of model
year CO2 supply for model time period 0.
self.year_industrial_supply_b1_df (DataFrame) – DataFrame of model
year CO2 supply for model time period 1.
self.year_industrial_supply_b2_df (DataFrame) – DataFrame of model
year CO2 supply for model time period 2.
self.year_nems_facility_cost_df (DataFrame) – DataFrame of model year
CO2 capture costs from NEMS modules.

setup_co2_eor_blocks()
Setup model year DataFrames for CO2 EOR demand.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.account_for_facility_year_operations
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.account_for_facility_year_operations
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.setup_co2_supply_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.setup_co2_supply_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.setup_co2_eor_blocks
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.setup_co2_eor_blocks

[source]

[source]

[source]

[source]

Block 0 CO2 demand == model year CO2 demand,
Block 1 CO2 demand == model year + 1 CO2 demand, and
Block 2 CO2 demand == mean(model year + 2 max(final AEO model year, model
year + 7) CO2 demand.

Returns: self.eor_demand_df (DataFrame) – DataFrame of model year CO2 EOR
demand by play.
self.eor_cost_net_df (DataFrame) – DataFrame of model CO2 EOR net
cost by play.

declare_existing_pipe_infrastructure()
Declare and update existing pipeline network.

If first model year, instantiate existing pipeline infrastructure based on
generalized DOT network, and
After first model year, update existing transport infrastructure with previ-
ous model year’s results (pipelines bult in b1).

Parameters: None
Returns: self.pipes_existing_df – DataFrame of model year existing CO2 pipeline

infrastructure.
Return type: DataFrame

apply_tech_rate_capture_costs()
Apply tech learning rate to NETL capture costs.

Parameters: None
Returns: self.co2_supply_facility_df – DataFrame of available CO2 facilities for

carbon capture.
Return type: DataFrame

assign_nems_capture_costs()
Assign CO2 capture cost ($/tonne) for net-new facilities based on restart file variables.

Parameters: None
Returns: self.co2_supply_facility_df – DataFrame of available CO2 facilities for

carbon capture.
Return type: DataFrame

get_co2_facility_rosters()
Produce model year rosters of available CO2 capture facilities.

Parameters: None
Returns: self.ccs_facility_year_df (DataFrame) – DataFrame of existing carbon

capture facilities eligible for carbon capture retrofit.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.declare_existing_pipe_infrastructure
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.declare_existing_pipe_infrastructure
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.apply_tech_rate_capture_costs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.apply_tech_rate_capture_costs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.assign_nems_capture_costs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.assign_nems_capture_costs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.get_co2_facility_rosters
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.get_co2_facility_rosters

[source]

[source]

[source]

self.cluster_facility_df (DataFrame) – DataFrame of representative
clustered carbon capture facilities.

add_transport_costs_to_netl_capture_costs()
Prioritize CO2 capture facilities based on transport connection costs.

Update NETL costs to represent capture cost by facility + transport to the
closest site, and
If the closest site isn’t source-to-sink, double cost.

Parameters: None
Returns: self.ccs_facility_year_df – DataFrame of existing carbon capture facili-

ties eligible for carbon capture retrofit.
Return type: DataFrame

determine_point_source_supplies()
Match CO` 2 supplies against the NETL supply curve and produce block-level DataFrames
of model year supply sources.

Parameters: None
Returns: self.supply_sources_sparse_b0_df (DataFrame) – DataFrame of

model year CO2 supply sources for time period 0.
self.supply_sources_sparse_b1_df (DataFrame) – DataFrame of
model year CO2 supply sources for time period 1.
self.supply_sources_sparse_b2_df (DataFrame) – DataFrame of
model year CO2 supply sources for time period 2.

determine_facility_eligibility_45q()
Determine 45Q eligibility for CO2 capture facilities by model block.

Calculate remaining years of 45Q eligibility by CO2 supply source by
block:

If self.split_45q_supply_switch == True, split each CO2 facility
supply into 45Q and NTC components by year, else determine
whether flow is 45Q or NTC based on yr_remain_45q and
self.block_45q_yr,
Concatenate new CO2 capture faciliites to
co2_facility_eligibility_df and update years operating.

Parameters: None
Returns: self.supply_sources_sparse_b0_df (DataFrame) – DataFrame of time

period 0 sparse CO2 supply sources for model year optimization.
self.supply_sources_sparse_b1_df (DataFrame) – DataFrame of time
period 1 sparse CO2 supply sources for model year optimization.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.add_transport_costs_to_netl_capture_costs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.add_transport_costs_to_netl_capture_costs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.determine_point_source_supplies
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.determine_point_source_supplies
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.determine_facility_eligibility_45q
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.determine_facility_eligibility_45q

[source]

[source]

[source]

[source]

self.supply_sources_sparse_b2_df (DataFrame) – DataFrame of time
period 2 sparse CO2 supply sources for model year optimization.
self.co2_facility_eligibility_df (DataFrame) – DataFrame of model
year CO2 capture facility 45Q eligibility.

zero_inv_costs_for_retrofit_facilities()
Zero out investment costs for facilities which have been retrofit, and establish facility rank-
ing to maintain facility selection

consistency between model years.

Set capital costs for CO2 facilities which have already been retrofit to
0.01% of initial costs to maintain sort order in facility roster.

Parameters: None
Returns: self.i_co2_supply_facility_df – DataFrame of CO2 capture facility at-

tributes from NETL - input data.
Return type: DataFrame

filter_available_pipelines()
Remove inactive CO2 supply, storage and CO2 EOR nodes from the pipeline network to
make more sparse.

Parameters: None
Returns: pipeline_lookup_df – DataFrame of model year CO2 pipeline lookup.
Return type: DataFrame

assign_electricity_costs()
Assign electricity costs ($/MWh) for pipelines.

Parameters: None
Returns: self.pipes_existing_df (DataFrame) – DataFrame of model year exist-

ing CO2 pipeline infrastructure.
self.pipeline_lookup_df (DataFrame) – DataFrame of model year CO2
pipeline lookup.

update_storage_infrastructure()
Declare and update existing storage infrastructure based on last model year results.

If first model year, instantiate existing storage sites, and
After first model year, merge prior year model results to existing storage
infrastructure and update relevant storage site attributes.

Parameters: None
Returns: self.storage_existing_df – DataFrame of existing CO2 storage infra-

structure in a given model year.
Return type: DataFrame

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.zero_inv_costs_for_retrofit_facilities
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.zero_inv_costs_for_retrofit_facilities
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.filter_available_pipelines
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.filter_available_pipelines
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.assign_electricity_costs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.assign_electricity_costs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.update_storage_infrastructure
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.update_storage_infrastructure

[source]

[source]

[source]

[source]

declare_supply_opt()
Declare supply DataFrames for the main CCATS optimization.

Parameters: None
Returns: self.supply_sources_sparse_b0_df (DataFrame) – DataFrame of time

period 0 sparse CO2 supply sources for model year optimization.
self.supply_sources_sparse_b1_df (DataFrame) – DataFrame of time
period 1 sparse CO2 supply sources for model year optimization.
self.supply_sources_sparse_b2_df (DataFrame) – DataFrame of time
period 2 sparse CO2 supply sources for model year optimization.
self.co2_supply_b0_df (DataFrame) – DataFrame of time period 0
CO2 supply sources and volumes for the main optimization.
self.co2_supply_b1_df (DataFrame) – DataFrame of time period 1
CO2 supply sources and volumes for the main optimization.
self.co2_supply_b2_df (DataFrame) – DataFrame of time period 2
CO2 supply sources and volumes for the main optimization.

prepare_storage_opt()
Prepare storage DataFrames for the main CCATS optimization.

Parameters: None
Returns: self.storage_existing_df (DataFrame) – DataFrame of existing CO2

storage infrastructure in a given model year.
self.storage_new_df (DataFrame) – DataFrame of potential new CO2
storage infrastructure.
self.storage_costs_df (DataFrame) – DataFrame of CO2 storage
costs.

prepare_eor_opt()
Prepare EOR dataframes for the main CCATS optimization.

Parameters: None
Returns: self.eor_demand_df (DataFrame) – DataFrame of model CO2 EOR

net cost by play.
self.eor_cost_net_df (DataFrame) – DataFrame of model year EOR
demand net costs.

setup_optimization()
Format and prepare data in optimization DataFrames for optimization.

Parameters: None
Returns: self.co2_supply_b0_opt (DataFrame) – Optimization DataFrame of

time period 0 CO2 supply sources and volumes for the main
optimization.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.declare_supply_opt
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.declare_supply_opt
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.prepare_storage_opt
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.prepare_storage_opt
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.prepare_eor_opt
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.prepare_eor_opt
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.setup_optimization
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.setup_optimization

[source]

self.co2_supply_b1_opt (DataFrame) – Optimization DataFrame of
time period 1 CO2 supply sources and volumes for the main
optimization.
self.co2_supply_b2_opt (DataFrame) – Optimization DataFrame of
time period 2 CO2 supply sources and volumes for the main
optimization.
self.storage_existing_opt (DataFrame) – Optimization DataFrame of
existing CO2 storage infrastructure in a given model year.
self.storage_new_opt (DataFrame) – Optimization DataFrame of po-
tential new CO2 storage infrastructure.
self.storage_costs_opt (DataFrame) – Optimization DataFrame of
CO2 storage costs.
self.eor_demand_opt (DataFrame) – Optimization DataFrame of
model year EOR demand.
self.eor_cost_net_opt (DataFrame) – Optimization DataFrame of
model year EOR demand net costs.
self.pipeline_lookup_opt (DataFrame) – Optimization DataFrame of
pipeline network options for optimization.
self.pipes_existing_opt (DataFrame) – Optimization DataFrame of ex-
isting pipeline infrastructure for optimization.

instantiate_pyomo_series()
Declare pyomo optimization inputs as Series.

Parameters: None
Returns: self.nodes_supply (Series) – Supply nodes.

self.nodes_trans_ship (Series) – Trans-shipment (TS) nodes.
self.nodes_sequester (Series) – Sequestration nodes.
self.nodes_demand (Series) – EOR Demand nodes.
self.nodes_storage (Series) – Storage nodes.
self.nodes (Series) – All optimization nodes.
self.arcs (Series) – All optimization arcs.
self.policy_cost (Series) – CO2 policy cost.
self.eligibility_45q (Series) – Arc eligibility for 45Q.
self.transport_existing (Series) – Transportation capacity that does
not require investment decision (metric tonnes).
self.transport_add_min (Series) – Transport capacity (lower bound)
that requires an investment decision (metric tonnes).
self.transport_add (Series) – Transport capacity (upper bound) that re-
quires an investment decision (metric tonnes).
self.pipeline_lookup_opt_b0 (Series) – Transport pipeline lookup for
net-new pipeline builds, block 0.
self.pipeline_lookup_opt_b1 (Series) – Transport pipeline lookup for
net-new pipeline builds, block 1.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.instantiate_pyomo_series
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.instantiate_pyomo_series

self.pipeline_lookup_opt_b2 (Series) – Transport pipeline lookup for
net-new pipeline builds, block 2.
self.ts_multiplier_b0 (Series) – Multiplier for TS arcs to represent
added complexity of a regional/national pipeline network, block 0.
self.ts_multiplier_b1 (Series) – Multiplier for TS arcs to represent
added complexity of a regional/national pipeline network, block 1.
self.ts_multiplier_b2 (Series) – Multiplier for TS arcs to represent
added complexity of a regional/national pipeline network, block 2.
self.cost_reduce_fr_transport_b0 (Series) – Technology improvement
rate for transport costs, block 0.
self.cost_reduce_fr_transport_b1 (Series) – Technology improvement
rate for transport costs, block 1.
self.cost_reduce_fr_transport_b2 (Series) – Technology improvement
rate for transport costs, block 2.
self.capex_transport_base_b0 (Series) – Base capital cost of trans-
portation investment decision used in capex piecewise (1987$), block 0.
self.capex_transport_base_b1 (Series) – Base capital cost of trans-
portation investment decision used in capex piecewise (1987$), block 1.
self.capex_transport_base_b2 (Series) – Base capital cost of trans-
portation investment decision used in capex piecewise (1987$), block 2.
self.capex_transport_slope_b0 (Series) – Capital cost slope of trans-
portation investment decision used in capex piecewise (1987$), block 0.
self.capex_transport_slope_b1 (Series) – Capital cost slope of trans-
portation investment decision used in capex piecewise (1987$), block 1.
self.capex_transport_slope_b2 (Series) – Capital cost slope of trans-
portation investment decision used in capex piecewise (1987$), block 2.
self.electricity_demand (Series) – Electricity demand from pumps
(MWh).
self.opex_transport_elec_b0 (Series) – Operating cost for electricity
($/MWh), block 0.
self.opex_transport_elec_b1 (Series) – Operating cost for electricity
($/MWh), block 1.
self.opex_transport_elec_b2 (Series) – Operating cost for electricity
($/MWh), block 2.
self.cost_reduce_fr_storage_b0 (Series) – Technology improvement
rate for storage costs, block 0.
self.cost_reduce_fr_storage_b1 (Series) – Technology improvement
rate for storage costs, block 1.
self.cost_reduce_fr_storage_b2 (Series) – Technology improvement
rate for storage costs, block 2.
self.storage_capex_b0 (Series) – Capital and Fixed O&M costs
($/tonne) for saline formation storage, block 0.
self.storage_capex_b1 (Series) – Capital and Fixed O&M costs
($/tonne) for saline formation storage, block 1.
self.storage_capex_b2 (Series) – Capital and Fixed O&M costs
($/tonne) for saline formation storage, block 2.

self.storage_varom_b0 (Series) – Variable O&M costs ($/tonne) for
saline formation storage, block 0.
self.storage_varom_b1 (Series) – Variable O&M costs ($/tonne) for
saline formation storage, block 1.
self.storage_varom_b2 (Series) – Variable O&M costs ($/tonne) for
saline formation storage, block 2.
self.co2_supply_b0 (Series) – CO2 supply sources and volumes for
the main optimization (metric tonnes), block 0.
self.co2_supply_b1 (Series) – CO2 supply sources and volumes for
the main optimization (metric tonnes), block 1.
self.co2_supply_b2 (Series) – CO2 supply sources and volumes for
the main optimization (metric tonnes), block 2.
self.co2_demand_b0 (Series) – CO2 demand for the main optimization
(metric tonnes), block 0.
self.co2_demand_b1 (Series) – CO2 demand for the main optimization
(metric tonnes), block 1.
self.co2_demand_b2 (Series) – CO2 demand for the main optimization
(metric tonnes), block 2.
self.co2_demand_cost_b0 (Series) – CO2 demand net cost for the
main optimization (1987$/tonne), block 0.
self.co2_demand_cost_b1 (Series) – CO2 demand net cost for the
main optimization (1987$/tonne), block 1.
self.co2_demand_cost_b2 (Series) – CO2 demand net cost for the
main optimization (1987$/tonne), block 2.
self.co2_injectivity_existing_b0 (Series) – Existing injectivity for the
main optimization (metric tonnes), block 0.
self.co2_injectivity_existing_b1 (Series) – Existing injectivity for the
main optimization (metric tonnes), block 1.
self.co2_injectivity_existing_b2 (Series) – Existing injectivity for the
main optimization (metric tonnes), block 2.
self.co2_injectivity_new_b0 (Series) – Potential new injectivity for the
main optimization (metric tonnes), block 0.
self.co2_injectivity_new_b1 (Series) – Potential new injectivity for the
main optimization (metric tonnes), block 1.
self.co2_injectivity_new_b2 (Series) – Potential new injectivity for the
main optimization (metric tonnes), block 2.
self.co2_max_injectivity_b0 (Series) – Max injectivity for the main op-
timization (metric tonnes), block 0.
self.co2_max_injectivity_b1 (Series) – Max injectivity for the main op-
timization (metric tonnes), block 1.
self.co2_max_injectivity_b2 (Series) – Max injectivity for the main op-
timization (metric tonnes), block 2.
self.co2_store_net_existing_b0 (Series) – Existing CO2 storage ca-
pacity (metric tonnes), block 0.

[source]

self.co2_store_net_existing_b1 (Series) – Existing CO2 storage ca-
pacity (metric tonnes), block 1.
self.co2_store_net_existing_b2 (Series) – Existing CO2 storage ca-
pacity (metric tonnes), block 2.
self.co2_store_net_adder_b0 (Series) – Potential new CO2 storage
capacity (metric tonnes), block 0.
self.co2_store_net_adder_b1 (Series) – Potential new CO2 storage
capacity (metric tonnes), block 1.
self.co2_store_net_adder_b2 (Series) – Potential new CO2 storage
capacity (metric tonnes), block 2.
self.storage_aors_available_b0 (Series) – Remaining storage areas of
review available, block 0.
self.storage_aors_available_b1 (Series) – Remaining storage areas of
review available, block 1.
self.storage_aors_available_b2 (Series) – Remaining storage areas of
review available, block 2.
self.duration_b0 (int) – Time period 0 duration (years).
self.duration_b1 (int) – Time period 1 duration (years).
self.duration_b2 (int) – Time period 2 duration (years).
self.duration_45q (int) – Duration of 45Q tax credit eligibility (years).
self.discount_invest_storage_b0 (Series) – Discount rate for invest-
ment in storage, block 0.
self.discount_invest_storage_b1 (Series) – Discount rate for invest-
ment in storage, block 1.
self.discount_invest_storage_b2 (Series) – Discount rate for invest-
ment in storage, block 2.
self.discount_invest_transport_b0 (Series) – Discount rate for invest-
ment in transportation, block 0.
self.discount_invest_transport_b1 (Series) – Discount rate for invest-
ment in transportation, block 1.
self.discount_invest_transport_b2 (Series) – Discount rate for invest-
ment in transportation, block 2.
self.discount_variable_b0 (Series) – Discount rate for variables, block
0.
self.discount_variable_b1 (Series) – Discount rate for variables, block
1.
self.discount_variable_b2 (Series) – Discount rate for variables, block
2.
self.discount_policy_b0 (Series) – Discount rate for policy, block 0.
self.discount_policy_b1 (Series) – Discount rate for policy, block 1.
self.discount_policy_b2 (Series) – Discount rate for policy, block 2.

write_pkl()
Write CCATS variables that need to be passed between model iterations to .pkl files.

Parameters: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.write_pkl
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.write_pkl

[source]

[source]

Returns: self.parent.pkl.preproc_i_storage_df (DataFrame) – DataFrame of
storage formations - input data.
self.parent.pkl.preproc_i_co2_supply_facility_df (DataFrame) –
DataFrame of CO2 cost curve from NETL - input data.
self.parent.pkl.preproc_i_pipeline_lookup_df (DataFrame) –
DataFrame of CO2 pipeline lookup table - input data.
self.parent.pkl.preproc_i_eor_demand_df (DataFrame) – DataFrame
of CO2 EOR site CO2 demanded - input data.
self.parent.pkl.preproc_i_eor_cost_net_df (DataFrame) – DataFrame
of CO2 EOR net cost for CO2 - input data.
self.parent.pkl.preproc_i_ts_multiplier_df (DataFrame) – DataFrame
of multipliers for ts-ts node arcs - input data.
self.parent.pkl.preproc_pipes_existing_df (DataFrame) – DataFrame
of existing CO2 pipeline infrastructure in a given model year.
self.parent.pkl.preproc_storage_existing_df (DataFrame) –
DataFrame of existing CO2 storage infrastructure in a given model year.
self.parent.pkl.preproc_co2_facility_eligibility_df (DataFrame) –
DataFrame of CO2 facility 45Q eligibility.

summarize_inputs()
Output debug file of preprocessor data summary.

Parameters: None
Return type: None

visualize_inputs()
Visualize preprocessed data.

Parameters: None
Return type: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.summarize_inputs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.summarize_inputs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.visualize_inputs
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/preprocessor.html#Preprocessor.visualize_inputs

[source]

[source]

[source]

[source]

pyscedes module
PyScedesAll Created on April 4 2023 @author: jmw

PyScedesAll is a Python function for parsing the scedes.all file into a user class that can be passed
between Python programs for use in NEMS. This code sets a dictionary of scedes keys in the user
class.

class pyscedes.User(scedes_dict)
Bases: object

__init__(scedes_dict)

pyscedes.find_keys_sed()

pyscedes.parse_scedes_file(filename)
Parameters: NEMS (filename- currently hardcoded to the scedes.all file inside of the local

folder of)
Return type: scedes_dict- dictionary of scedes keys

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/pyscedes.html#User
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/pyscedes.html#User
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/pyscedes.html#User.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/pyscedes.html#User.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/pyscedes.html#find_keys_sed
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/pyscedes.html#find_keys_sed
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/pyscedes.html#parse_scedes_file
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/pyscedes.html#parse_scedes_file

restart module
Class for handling the Restart File in CCATS.

Restart: Summary

The Restart: Summary module reads in restart variables from the restart file, stores these variables
in a class dictionary, and writes these CCATS output variables back to the restart file after CCATS
processes have been run. The restart file is read from, and written to, using
self.parent.pyfiler1.pyd, which is maintained by the Integration team. The module operates as
follows:

1. run() is called from the Module: Summary parent class to read in the restart file.
2. run() calls the read_filer method from pyfiler1. This method loads all the NEMS

restart variables into a class dictionary. Using the “output” argument of read_filer a
second “output” dictionary is also instantiated, indicating which variables need to
be output back to the restart file at the end of each CCATS iteration.

3. CCATS restart variables are instantiated, read into appropriately indexed
dataframes, and offset by calendar years in the relevant indices. Once this is
done, CCATS operations move back to Module: Summary.

5. Restart variables are updated in the various CCATS modules.
6. In the ccats.run_ccats() function of ccats the write_results() function in Restart:

Summary is called.
7. Each instantiated output variable is called from the Restart: Summary class dictio-

nary, re-sized to match restart file formatting, and then written to the appropriate
restart variable in the restart file using the write_filer method of pyfiler1.

Restart: Model Functions and Class Methods

__init__() - Constructor to initialize Restart submodule (instantiated by module.Module.setup()
in Module: Summary).
run() - Calls the read_filer method from self.parent.pyfiler1 and loads the restart file into
CCATS (called by module.Module.setup()).
add_int() - Function for adding an integer from the restart file into CCATS as an integer
(called by __init__()).
add_df() - Function for adding a dataframe from the restart file into NEMS (called by
__init__()).
write_results() - Repacks local restart file variables into multi-dimensional arrays, and writes
to restart file (called by ccats.run_ccats()).
dump_restart() - Dumps restart file to .xlsx debug file (called by write_results()).

file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats.html#ccats.run_ccats
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/modules.html#ccats
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/ccats.html#ccats.run_ccats

[source]

[source]

[source]

Restart: Output Debug Files

rest_all_<cycle>.xlsx - Debug of CCATS output restart variables, where <cycle> is the current
NEMS cycle.

Restart: Code

class restart.Restart(parent)
Bases: object

Class for handling the Restart File in CCATS

__init__(parent)
Initializes Restart object.

Parameters: parent (str) – Module.Module (Pointer to parent module)
Return type: None

parent
module.Module head module

output_path
output path

df_dict_in

df_dict_out

int_dict_in

int_dict_out

run(temp_filename, temp_rest)
Calls the read_filer method from pyfiler1 and loads the restart file into CCATS.

Determines if CCATS is running integrated in NEMS or standalone.
If integrated, pass, since pyfiler1 is imported from main.py con-
taining the complete restart file.
If standalone, read in the restart file.

Then instantiate all the restart variables and fill the Restart: Summary
class dictionary with the CCATS restart variable keys.

Parameters: temp_filename (str) – Restart filename.
Returns: self.__dict__ – Class dictionary of CCATS restart variables read in from

the restart file.

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.run

[source]

[source]

[source]

[source]

Return type: dictionary

add_int(dict_name, restart_ref, output)
Function for reading an integer from the restart file into CCATS as an integer.

Parameters: dict_name (str) – Name of restart variable or parameter in pyfiler1.
restart_ref (int) – Integer data value from pyfiler1.
output (bool) – Boolean of whether the restart variable is an output
value of CCATS.

Returns: restart_ref – Integer value from the restart file.
Return type: int

add_df(dict_name, restart_ref, output, offset=None)
Function for reading an array from the restart file into CCATS as a DataFrame.

Parameters: dict_name (str) – Name of restart variable or parameter in pyfiler1.
restart_ref (int) – Integer data value from pyfiler1.
output (bool) – Boolean of whether the restart variable is an output
value of CCATS.
offset (list) – List indicating output DataFrame index value offset.

Returns: df – Restart variable DataFrame.
Return type: DataFrame

write_results(temp_filename)
Repacks local restart file variables into multi-dimensional arrays, and writes these to the
restart file.

Loop through the class dictionary based on keys in int_dict_out and
df_dict_out,
Split out each of the dictionary keys into different variables,
Use “getattr” to produce the output array index,
Set the output array index with “setattr”, and
These arrays are returned to main.py via pyfiler1.

Parameters: temp_filename (str) – Restart File name.
Return type: None

dump_restart()
Dumps restart file to .xlsx debug file.

Return type: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.add_int
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.add_int
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.add_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.add_df
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.write_results
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.write_results
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.dump_restart
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/restart.html#Restart.dump_restart

[source]

[source]

[source]

[source]

submodule_ccats module
Generic submodule class of CCATS.

Used to declare variables at the child-level that are universally used across
CCATS submodules.
i.e. self.input_path = self.parent.input_path

Example

import submodule as sub

Submodule: Code

class submodule_ccats.Submodule(parent, submodule_name)
Bases: object

Generic submodule for CCATS.

Parameters: parent (module.Module) – Pointer to head module
submodule_name (str) – Name of submodule (e.g. ‘Offshore’)

__init__(parent, submodule_name)

setup(setup_filename)
Setup General Submodule for CCATS

Parameters: setup_filename (str) – Path to submodule setup file.

Examples

def setup(self):
super().setup(setup_filename)

Return type: None

run()
Run General Submodule for CCATS.

Examples

def run(self):
logger.info(‘Running Preprocessor’) super().run()

Return type: None

file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/submodule_ccats.html#Submodule
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/submodule_ccats.html#Submodule
file:///L:/mid/adc/git/NEMS/docs/build/html/generated/ccats/module.html#module.Module
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/submodule_ccats.html#Submodule.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/submodule_ccats.html#Submodule.__init__
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/submodule_ccats.html#Submodule.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/submodule_ccats.html#Submodule.setup
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/submodule_ccats.html#Submodule.run
file:///L:/mid/adc/git/NEMS/docs/build/html/_modules/submodule_ccats.html#Submodule.run

	000 front page
	00 CCATS Documentation — National Energy Modeling System (NEMS) documentation
	01 Introduction — National Energy Modeling System (NEMS) documentation
	02 Model Assumptions — National Energy Modeling System (NEMS) documentation
	03 Model Formulation — National Energy Modeling System (NEMS) documentation
	04 How to Run CCATS — National Energy Modeling System (NEMS) documentation
	05 ccats module — National Energy Modeling System (NEMS) documentation
	06 ccats_common package — National Energy Modeling System (NEMS) documentation
	07 ccats_financial module — National Energy Modeling System (NEMS) documentation
	08 ccats_history module — National Energy Modeling System (NEMS) documentation
	09 ccats_pickle module — National Energy Modeling System (NEMS) documentation
	10 localize_restart module — National Energy Modeling System (NEMS) documentation
	11 module module — National Energy Modeling System (NEMS) documentation
	12 opmodels package — National Energy Modeling System (NEMS) documentation
	13 output module — National Energy Modeling System (NEMS) documentation
	14 postprocessor module — National Energy Modeling System (NEMS) documentation
	15 preprocessor module — National Energy Modeling System (NEMS) documentation
	16 pyscedes module — National Energy Modeling System (NEMS) documentation
	17 restart module — National Energy Modeling System (NEMS) documentation
	18 submodule_ccats module — National Energy Modeling System (NEMS) documentation

