This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies.
Update Information

This 23rd edition of the Transportation Sector Demand Module of the National Energy Modeling System: Model Documentation 2020 reflects changes made to various sections and submodules of the Transportation Sector Demand Module (TDM) during the past two years for the Annual Energy Outlook 2020 (AEO2020). These changes include the following:

- Light-Duty Vehicle (LDV) Submodule updates
- Modified the modeling of state-level Zero Emission Vehicle (ZEV) sales mandates to reflect the One National Program Rule. ZEV sales requirements are set to zero beginning in 2020.
- Added more regional specification to the vehicle sales and stock submodules.
- Added highly automated vehicle (HAV) adoption in the newly defined light-duty taxi fleet. HAV use is currently restricted to automated taxi fleet applications.
- Freight Transportation Submodule updates
- Added automated technologies to the heavy-duty vehicle model.
Contents

Update Information .. ii

Introduction .. 1
 Model summary... 1
 Scope and organization ... 3
 Model archival citation .. 3
 Model contact:... 3

Model Overview .. 4
 Brief description of submodules .. 6
 Inputs and outputs of the module ... 8

Transportation Sector Demand Module Structure ... 9

LDV Submodule.. 9
 Manufacturers Technology Choice Component (MTCC) .. 12
 Regional Sales Component.. 44
 Consumer Vehicle Choice Component (CVCC) .. 48
 LDV Fleet Component ... 57
 Class 2b Vehicle Component ... 74
 LDV Stock Component ... 74
 VMT Component ... 80

Air Travel Submodule .. 82
 Air Travel Demand Component ... 82
 Aircraft Fleet Efficiency Component ... 88

Freight Transportation Submodule .. 97
 Freight Truck Stock Adjustment Component (FTSAC) ... 97
 Rail Freight Component .. 115
 Waterborne Freight Component ... 118

Miscellaneous Energy Demand Submodule .. 124
 Military Demand Component ... 124
 Mass Transit Demand Component ... 127
 Recreational Boating Demand Component .. 130
 Lubricant Demand Component ... 133

Appendix A. Model Abstract ... 136
Appendix B. Acronyms .. 139
Appendix C. Details of Subroutines Used in the Model... 141
Appendix D. Input and Output Variables in Transportation Model.. 164
Appendix E. Bibliography .. 175
Tables

Table 1. Maximum light-duty vehicle market penetration parameters (percentage).......................... 24
Table 2. Engine technology fuel type to highway fuel type... 52
Table 3. Transfer vintage of fleet vehicles .. 68
Table 4. World regions in the National Energy Modeling System ... 83
Table 5. Freight truck vehicle fuel-efficiency market subclass category ... 101
Figures

Figure 1. Structure of the NEMS Transportation Sector Demand Module ... 7
Figure 2. Structure of the LDV Submodule ... 11
Figure 3. Manufacturers Technology Choice Component .. 14
Figure 4. Economic market share calculation ... 19
Figure 5. Engineering notes ... 25
Figure 6. Weight and horsepower calculation ... 36
Figure 7. LDV Fleet Component .. 61
Figure 8. Light-Duty Vehicle (LDV) New Fleet Acquisitions Component ... 63
Figure 9. Determine characteristics of existing light-duty vehicle (LDV) fleets .. 67
Figure 10. Determine fuel economy and consumption for light-duty vehicle (LDV) fleets 72
Figure 11. Light-Duty Vehicle (LDV) Stock Component .. 76
Figure 12. Air Travel Submodule ... 86
Figure 13. Freight Transportation Submodule ... 99
Figure 14. Highway Freight Component .. 102
Figure 15. Rail Freight Component ... 117
Figure 16. Waterborne Freight Component .. 120
Figure 17. Miscellaneous Energy Demand Submodule .. 125
Figure 18. Military Demand Component .. 126
Figure 19. Mass Transit Demand Component .. 128
Figure 20. Recreational Boating Demand Component .. 132
Figure 21. Lubricant Demand Component ... 134
Figure 22. Flowchart of calls made by TRAN subroutine ... 161
Introduction

The Transportation Sector Demand Module of the National Energy Modeling System (NEMS) is a computer-based energy demand model of the U.S. transportation sector. This report documents the objectives, analytical approach, and development of the NEMS Transportation Sector Demand Module, and it catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and module source code.

This reference document provides a basic description of the NEMS Transportation Sector Demand Module for analysts, users, and the public. It also facilitates continuity in model development that enables customers to undertake and analyze their own model enhancements, data updates, and parameter refinements.

Model summary

The NEMS Transportation Sector Demand Module encompasses a series of semi-independent submodules and components that address different aspects of the transportation sector. The primary purpose of the comprehensive module is to provide projections of transportation energy demand by fuel type, including motor gasoline, distillate, jet fuel, and alternative fuels such as electricity, compressed natural gas (CNG), and liquefied natural gas (LNG). The current NEMS projection horizon extends to the year 2050 and uses 1995 as the start year. Projections are generated through separate consideration of energy consumption within the various modes of transport: private and fleet light-duty vehicles (LDVs), aircraft, marine, rail, and truck freight. Other transportation demands such as mass transit, military, and recreational boating are also considered. This modular approach is useful in assessing the impacts of policy initiatives, legislative mandates affecting individual modes of travel, and technological developments.

The module also projects selected intermediate values necessary to determine energy consumption. These elements include the following:

- Estimates of passenger travel demand by light-duty vehicles, air, and mass transit
- Estimates of the energy requirements to meet this demand
- Projections of vehicle stock and the penetration of new technologies
- Estimates of the demand for truck, rail, marine, and air freight transport that are linked to projections of industrial output, international trade, and energy supply

The NEMS Transportation Sector Demand Module consists of four submodules that represent a variety of travel modes that are different in design and use but share the same ultimate purpose: to convey passengers and freight. The four submodules are LDV, Air Travel, Freight Transport (heavy truck, rail, and marine), and Miscellaneous Energy Demand. Each submodule is composed of one or more components, consistent with the methodological requirements of the sector and in proportion with the relative impact that sector has on overall transportation demand and energy use. A fifth (inactive) submodule exists in the Transportation Sector Demand Module that is designed to estimate certain air emissions from highway vehicles. Figure 1 illustrates the five submodules and their interactions, and subsequent chapters provide detailed descriptions of each.
Scope and organization
Publication of this document is supported by Public Law 93-275, Federal Energy Administration Act of 1974, Section 57(B) (1) (as amended by Public Law 94-385, Energy Conservation and Production Act), which states in part:

...that adequate documentation for all statistical and forecast reports prepared...is made available to the public at the time of publication of such reports.

In particular, this report is designed to meet EIA’s model documentation standards established in accordance with these laws.

Model archival citation
This documentation refers to the NEMS Transportation Sector Demand Module as archived for the Annual Energy Outlook 2020 (AEO2020).

Model contact:
John Maples
U.S. Energy Information Administration
EI-32/Forrestal Building
United States Department of Energy
1000 Independence Avenue, SW
Washington, DC 20585
Telephone: (202) 586-1757
Email: John.Maples@eia.gov
Model Overview

The Transportation Sector Demand Module is designed to achieve the following objectives:

1. Generate projections of transportation energy demand at the national and the census division level.
2. Endogenously incorporate the effects of technological innovation, macroeconomic feedback, infrastructure constraints, and demand behavior in making the projections.

The Transportation Sector Demand Module is composed of a group of submodules that are sequentially executed in a series of program calls. Figure 1 depicts the flow of information between these submodules. The Transportation Sector Demand Module receives inputs from NEMS, principally in the form of fuel prices, aggregate vehicle sales, economic and demographic indicators, and estimates of defense spending. Sections following describe these inputs in greater detail.

The Transportation Sector Demand Module can evaluate a range of policy issues, including fuel taxes and subsidies; fuel economy performance by market class; fuel economy standards for light, medium, and heavy-duty vehicles;1 vehicle pricing by market class; demand for vehicle performance within market classes; fleet vehicle sales by technology type; alternative fuel vehicle sales share; the California Low-Emission Vehicle Program; changes in vehicle miles traveled (VMT); and various other policies and developments related to transportation energy use and greenhouse gas emissions.

The modeling techniques in the Transportation Sector Demand Module vary by submodule. The LDV Submodule uses econometric models to forecast passenger travel demand and new vehicle market share and uses engineering and optimization models for estimating fuel economy. The Air Travel Submodule also uses econometrics to forecast passenger travel demand and aircraft efficiency, as well as using other inputs such as jet fuel prices, world regional population, world regional gross domestic product (GDP), U.S. disposable personal income, and merchandise export. The Freight Transportation Submodule uses output from selected industries to estimate travel demand and energy consumption in each of three primary freight modes: truck, rail, and marine. The Miscellaneous Energy Demand Submodule forecasts passenger travel and energy and oil demand from military, mass transit (including bus and rail), recreational boating, and lubricants.

LDVs are classified according to eight size classes for cars and eight size classes by body type and gross vehicle weight rating (GVWR) for light trucks and are divided by fleet and private use. Freight trucks are categorized by 19 fuel efficiency classifications and are aggregated into medium-light, medium-heavy, and heavy-duty market classes and by fleet and non-fleet vehicles. Buses are subdivided into commuter, intercity, and school buses. The Air Travel Submodule contains wide- and narrow-body aircraft and regional jets. Rail transportation is composed of freight rail and three modes of personal rail travel: commuter, intercity, and transit. Shipping is divided into domestic and international. Outputs from the

1 Additional information on fuel economy standards is available at the National Highway Traffic Safety Administration see www.nhtsa.gov/fuel-economy.
submodules are provided to an integrating module, which then sends the various transportation demands to the supply modules.
Brief description of submodules

The following is a brief description of each of the submodules shown in Figure 1. Details of each submodule and associated components are provided in subsequent sections, which include descriptions, mathematical representations, and graphical illustrations of the structure of each submodule.

Light-Duty Vehicle Submodule

The first submodule executed is the LDV Submodule, which projects attributes and sales distributions of new cars and light trucks. The LDV Submodule provides estimates of new LDV fuel economy, market shares of alternative fuel vehicles (AFVs), and sales of vehicles to fleets. This information is passed to the LDV Fleet Component, a stock-vintaging model that generates estimates of travel demand, fuel efficiency, and energy consumption by business, government, utility, and taxi\(^2\) fleets. The LDV Fleet Component subsequently passes estimates of vehicles transferred from the non-taxi fleets to private service to the LDV Stock Component, which also receives estimates of new LDV sales and fuel efficiency from the LDV Submodule. The LDV Stock Component generates travel, fuel economy, and fuel consumption estimates of the entire stock of household LDVs. Information from the LDV Stock Component is subsequently passed to the Miscellaneous Energy Demand Submodule.

Air Travel Submodule

The Air Travel Submodule receives macroeconomic and demographic input from NEMS, including jet fuel prices, world regional population, world regional GDP, U.S. disposable income, and merchandise exports. The Air Travel Submodule uses an econometric estimation method to project travel demand and a stock-vintaging component to estimate the size and other characteristics of the aircraft fleet required to meet that demand. The output of this submodule also includes estimates of the demand for jet fuel and aviation gasoline, which are passed to the Miscellaneous Energy Demand Submodule.

Freight Transportation Submodule

The Freight Transportation Submodule uses NEMS projections of fuel prices, trade indexes, and output related to selected industries to estimate travel demand and energy consumption in each of three primary freight modes: truck, rail, and marine. Travel and fuel demand estimates are subsequently passed to the Miscellaneous Energy Demand Submodule.

Miscellaneous Energy Demand Submodule

The Miscellaneous Energy Demand Submodule receives estimates of military expenditures from NEMS to generate projections for military fuel demand. Travel demand estimates from the LDV Stock Component and fuel efficiency estimates from the Freight Transportation Submodule are used to calculate regional fuel consumption by buses. Estimates of disposable personal income from NEMS are used to calculate the demand for fuel in recreational boating. Demand for lubricants used in transportation is estimated from aggregate demand for highway travel obtained from the preceding modules. Passenger travel and energy demand are estimated for transit, commuter, and intercity rail.

\(^2\) The taxi fleet includes all ride-hailing service fleets including traditional taxicab fleets and mobility-as-a-service/transportation network companies (for example, Lyft and Uber). Taxi fleets can include both highly automated vehicles (HAVs) and non-HAVs.
Figure 1. Structure of the NEMS Transportation Sector Demand Module

Supply Module Inputs:
- fuel prices

Macro Module Inputs:
- new vehicle sales, economic and demographic indicators, and defense spending

Transportation Sector Demand Module Outputs:
- regional fuel consumption, vehicle miles traveled, fuel economies, and emissions by mode and vehicle type

National Energy Modeling System (NEMS)

LDV Submodule
- New light-duty vehicle (LDV) sales and miles per gallon (mpg)
- Size classes
- Vehicle type
- Technology
- Fuel economy
- Fleet vehicle alternative fuel vehicle (AFV) technology and highly automated vehicle (HAV) market shares
- Transfer of LDVs from fleets to private stocks

Air Travel Submodule
- Aircraft type
- Technology
- Travel: cargo or passenger
- Aircraft seat miles traveled
- Fuel consumption

Freight Transport Submodule
- Freight truck VMT
- Size classes
- Fleet or non-fleet
- Rail and ship ton-miles traveled
- Fuel consumption

Miscellaneous Energy Demand Submodule
- Total fuel consumption
- Lubrication demand
- Mass transit
- Recreational boating

Vehicle emissions for highway vehicles

Emissions Submodule

Note: Shaded boxes represent the module’s main submodules. The Emissions Submodule is currently inactive.
Emissions Submodule

This submodule was developed to estimate certain air emissions resulting from the consumption of fuels by highway vehicles. It is currently inactive.

Inputs and outputs of the module

The Transportation Sector Demand Module sends information on regional fuel consumption to NEMS, where it is integrated with the results of the other demand, macroeconomic, and supply modules. To generate projections, the Transportation Sector Demand Module receives a variety of exogenous inputs from other NEMS modules. The primary source of these inputs is the Macroeconomic Activity Module, which provides projections of economic variables, such as new vehicle sales and demographic indicators. Other inputs exogenous to the Transportation Sector Demand Module, but endogenous to NEMS, include the fuel price projections from the various supply modules.

The Transportation Sector Demand Module produces projections of travel demand and associated energy demand, disaggregated by census division, vehicle and fuel type, conventional and alternative vehicle technology, vehicle stock and efficiency. Within NEMS, the Transportation Sector Demand Module interacts with the Macroeconomic Activity Module and the various supply modules that provide the prices of transportation-related fuels at a given level of demand. For each projection year, NEMS performs several iterations in order to derive a set of fuel prices under which supply and demand converge. The reliance on economic and price inputs to each of the submodules in the Transportation Sector Demand Module is detailed in the following sections.
Transportation Sector Demand Module Structure

As described above, the NEMS Transportation Sector Demand Module is made up of an array of separate submodules, each addressing different aspects of the transportation sector. These submodules and key components are discussed in detail below.

The general theoretical approach taken, assumptions considered, and methodology employed are discussed for each submodule and component. The key computations and equations are presented to provide a comprehensive overview of the Transportation Sector Demand Module. The equations follow the logic of the FORTRAN source code to facilitate an understanding of the code and its structure. In several statements, a variable name will appear on both sides of an equal sign. These statements are not to be interpreted as mathematical equations. They are computer assignment statements that allow a previously calculated variable to be updated (for example, multiplied by a factor) and re-stored under the same variable name.

Flowcharts are provided within the text or at the end of each section to illustrate the logic used in the submodules where necessary. These flowcharts are detailed, self-contained representations of the submodule or component. For clarity, origins and destinations of external information flows are not specified. A large number of data inputs exogenous to NEMS are supplied to the submodules within the Transportation Sector Demand Module. These datasets remain unchanged throughout the projection and constitute a set of assumptions about current and future conditions.

The Transportation Sector Demand Module is structured so that the model representation captured in the variables and output of each submodule is appropriately dimensioned for use in subsequent steps. Because of the differing methodological approaches and data requirements, each section is presented individually. Several subroutine calls are made within each submodule and component. Appendix C maps the various subroutines and the order in which they are called.

LDV Submodule

The LDV Submodule tracks the purchase and retirement of cars and light trucks, projects fuel efficiency, and estimates the consumption of transportation fuels based on projections of travel demand. The LDV Submodule shown in Figure 2 requires the largest number of exogenous inputs and primarily consists of seven components:

- Manufacturer Technology Choice Component (MTCC)
- Regional Sales Component
- Consumer Vehicle Choice Component (CVCC)
- LDV Fleet Component
- Class 2b Vehicle Component
- LDV Stock Accounting Component
- Vehicle Miles Traveled Component (VMTC)

Each component performs calculations at a level of disaggregation that matches the nature of the mode of transport, the quality of the input data, and the level of detail required in the output. The projections are calculated for 11 vehicle manufacturers, including 5 car and 6 light truck groups. Cars and light trucks
are each separated into size classes. Each size class represents an aggregation of vehicle models that are similar in size and price and that consumers believe offer similar attributes. The car classes are similar to the U.S. Environmental Protection Agency (EPA) size classes and are based on passenger car interior volume. Truck classification is based on vehicle inertia weight class\(^3\) by truck type (pickup, sport utility vehicle, and van). This method leads to a total of 16 size classes, which are individually projected to 2050 for 11 manufacturer groups.

Changes in the following four factors affect the fuel economy of new vehicles:

- Technology penetration
- Level of acceleration performance achieved
- Mix of vehicle size classes and vehicle powertrain types (for example, hybrid and diesel) sold
- Vehicle fuel economy, safety, and emission standards

Technological improvements to each of these size classes are then projected based on the availability of new technologies to improve fuel economy as well as their cost-effectiveness under two user-specified alternative scenarios. The central assumptions involved in this technological projection are as follows:

- All manufacturers can obtain the same benefits from a given technology, provided they have adequate lead time (that is, no technology is proprietary to a given manufacturer in the long term).
- Manufacturers will generally adopt technological improvements that are perceived as cost-effective to the consumer, even without any regulatory pressure. However, the term cost-effective needs to be interpreted from the manufacturer's perspective.

These projections also account for manufacturer lead time and tooling constraints that limit the rate of increase in the market penetration of new technologies. Based on the technological improvements adopted, a fuel economy projection is developed for each of the manufacturers, size classes, and powertrain types.

\(^3\) **Vehicle inertia weight class** with respect to a motor vehicle is statutorily determined under 40 CFR § 86.129-94. According to 40 CFR § 86.082-2, the inertia weight class is the class (a group of test weights) into which a vehicle is grouped based on its loaded vehicle weight in accordance with the provisions of 40 CFR part 86.
Figure 2. Structure of the Light-Duty Vehicle (LDV) Submodule

- **Inputs**
 - **NEMS Inputs:** personal income, fuel prices, and total vehicle sales
 - **User Inputs:** discount rate and payback period
 - **Technology Inputs:** cost, weight, performance increment, and fuel economy increment
 - **Base Year Vehicle Attributes:** price, miles per gallon, horsepower, and weight

- **Total fleet fuel consumption**
 - Average fleet fuel economy
 - Total fleet vehicle miles traveled (VMT)

- **Manufacturers Technology Choice Component (MTCC)**
 - Fuel economies and prices for eight classes each of new cars and light trucks
 - New car and light truck fuel economies

- **Regional Sales Component (RSC)**
 - Technology market shares to assess penetration of conventional and alternative fuel vehicles

- **Consumer Vehicle Choice Component (CVCC)**
 - Total fleet fuel consumption
 - Average fleet fuel economy
 - Ride hailing and highly automated vehicles
 - Total fleet VMT
 - Fleet retirements—transfers to private sector

- **LDV Fleet Component**
 - Total fuel consumption—average fuel miles per gallon
 - Population of each vintage
 - Total LDV Stock

- **Class 2b Vehicle Component**
 - VMT per driver

- **LDV Stock Accounting Component**

- **Vehicle Miles Traveled Component**
The fuel economy projection must be adjusted to account for changes in technology and changes in consumer preference for performance. The demand for increased acceleration performance for each size class is estimated based on an econometric equation that relates fuel prices and personal disposable income to demand for performance or horsepower, by size class. These relationships are used to project the change in horsepower, which is then used to project the change in fuel economy through an engineering relationship that links performance and fuel economy.

The change in the mix of size classes sold is projected as a function of fuel price, vehicle price, and personal disposable income. The sales mix by size class is used to calculate new fuel economy. For example, the MTCC uses econometric equations for the sales mix choice. The submodule projects sales mix for the eight car and eight light truck classes, while import market shares are held at fixed values by size class based on historical estimates.

The LDV Submodule also allows specification of fuel economy standards by year and the application of those standards to each of 11 manufacturer groups, as well as the penalty (in dollars) per car per mile per gallon below the standard. The standards are accounted for in the projection by incorporating the penalty into the technology cost-effectiveness calculation in the submodules. Finally, the submodule also accounts for select state-level regulations, such as California’s Zero Emission Vehicle (ZEV) mandate, followed by 10 additional Section 177 states: (Connecticut, Colorado, Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island, and Vermont).

Manufacturers Technology Choice Component (MTCC)

The MTCC in the LDV Submodule produces estimates of new light-duty vehicle fuel economy. Fuel economy is a significant aspect of the Transportation Sector Demand Module because automotive fuel demand is directly affected by the efficiency with which that fuel is used. Because of the disparate characteristics of the various classes of LDVs, this component addresses the commercial viability of up to 92 separate technologies within each of 16 vehicle size classes, 11 manufacturer groups, and 16 powertrain types. The MTCC projects fuel economy by size class as shown in the flow chart in Figure 3. The model begins with 2018 data. Baseline vehicle attributes that describe the fuel economy, weight, horsepower, and price for each size class for 2018 are read in and calibrated to the National Highway Traffic Safety Administration (NHTSA) data. For each projection year, the component identifies technologies that are available.

Each available technology is subjected to a cost-effectiveness test that balances its cost against the potential fuel savings and value of any performance increase. The cost-effectiveness test is used to generate an economic market share for the technology. In certain cases, adjustments must be made to the calculated market shares to reflect the effects of engineering limitations or external forces that require certain types of technologies, including both safety and emissions technologies. All of these adjustments are referred to collectively as engineering notes. There are four types of engineering notes: mandatory, supersedes, requires, and synergistic. These engineering notes are described in a subsequent section.

Users of the component are able to specify one of three cases under which these projections are made. The first case, the Standard Technology Scenario, permits the consideration of 92 automotive technologies whose availability and cost-effectiveness are well documented. The second case, the High Technology Scenario, modifies selected characteristics of the original matrix to render a more optimistic assessment of the cost and availability of technological improvements. The third case, the Low Technology Scenario, modifies selected characteristics of the original matrix to render a less-optimistic assessment of the cost and availability of technological improvements.

After all of the technology market shares have been determined, the baseline fuel economy, weight, and price values for each vehicle size class are updated to reflect the impact of the various technology choices. Next, based on the new vehicle weight, a no-performance-change adjustment is made to horsepower. Then, a technology-change adjustment and a performance-change adjustment (based on income, fuel economy, fuel cost, and vehicle class) are made to horsepower. Finally, the fuel economy is adjusted to reflect the new horsepower.

Once these steps have been taken for all vehicle size classes, corporate average fuel economy (CAFE) is calculated for each of the 11 manufacturer groups. Each group is classified as either passing or failing the CAFE standard. When a group fails to meet the standard, penalties are assessed to all of the vehicle size classes in that group, which are then reprocessed through the market share calculations. In the second pass, the technology cost-effectiveness calculation is modified to include the benefit of not having to pay the fine for failing to meet CAFE. After this second pass, the CAFE values are recalculated. The market share determination is bypassed on the third CAFE pass. The third CAFE pass simply alters the manufacturer response to consumer performance demand, so the technology penetrations determined to be cost-effective during the second MTCC pass are equally applicable during the third pass and, therefore, are not recalculated. If CAFE is still not met after the second pass, then the horsepower increases will be deactivated and converted to an equivalent fuel economy improvement. This process assumes manufacturers will minimize their costs by reducing performance to comply with CAFE standards. If after the third pass fuel economy requirements are not met, then the model employs an algorithm that overrides consumer-derived AFV sales until the fuel economy standard requirement is met. Determination of AFV purchase for CAFE compliance is based on cost-effectiveness to consumers, which in turn is based on incremental vehicle cost relative to fuel savings. Incremental increases in sales of a specific AFV type by manufacturer is limited to not exceed 1.25% of the total sales volume for that manufacturer in that year.
Figure 3. Manufacturers Technology Choice Component

Begin Fuel Economy Component

Calculate economic market share of each technology

Adjust market share to reflect application of engineering notes

Calculate net impact of technology change on vehicle price and fuel economy

Determine compliance with corporate average fuel economy standards

User Inputs: Corporate average fuel economy (CAFE) standards

Engineering Notes: mandatory, requires, supersedes, and synergistic

First iteration? Yes No

Is CAFE met? Yes No

Calculate corporate average fuel economy for each manufacturer group

Calculate market share of each vehicle type within size class within the eleven manufacturer groups

Assess penalties to all vehicle classes in group and recalculate market shares of each technology within vehicle class

Second iteration? Yes No

Yes

Change manufacturer response to consumer performance demand

No

Yes

Reduce vehicle performance to comply with CAFE Standards

Force sales of high miles per gallon vehicles (hybrid electric vehicles, electric vehicles, etc.) until CAFE compliance is achieved

Is CAFE met? Yes No

Combine fuel economies and prices for domestic and imported cars and light trucks based on constant domestic versus import market shares

To Report Writer: new car and light truck fuel economies

To Regional Sales Component: fuel economies and prices for eight classes of new cars and light trucks
This component follows these steps.

1. Establish alternative fuel vehicle (AFV) characteristics relative to conventional gasoline

The AFVADJ subroutine in MTCC establishes AFV characteristics relative to conventional gasoline. This subroutine is an initialization subroutine and calculates the price, weight, fuel economy, and horsepower for AFVs for all historic years through the base year in the MTCC. Most of these factors are initialized relative to the gasoline vehicle values, as shown in the following equations. All of the incremental adjustments used for AFVs have been exogenously determined and are included in the data input file, trnldv.xlsx. The equations that follow, index ivtyp represents car and light truck vehicle types, and the index iatv represents the 15 AFV types:

- Turbo direct-injection diesel
- Flex-fuel ethanol
- Plug-in hybrid electric 10- and 40-mile range gasoline vehicles (PHEV10, PHEV40)
- Electric 100-, 200-, and 300-mile range vehicles (EV100, EV200, EV300)
- Diesel/electric hybrid
- Bi-fuel CNG/LNG and bi-fuel LPG (liquefied propane gas)
- Dedicated CNG/LNG and LPG
- Methanol fuel cell and hydrogen fuel cell
- Gasoline/electric hybrid

For each manufacturer and nameplate, prices are estimated for low production levels (beginning at 2,500 units) and high production levels (beginning at 25,000 units). Because the Transportation Sector Demand Module does not specifically model individual nameplates, low- and high-production price levels are increased to 5,000 units and 50,000 units, respectively.

1) Calculate base and historical yearly values for car prices at different production levels by applying an additive adjustment to the price of a gasoline-fueled vehicle.

a) Car and Light Truck at 5,000 units per year

\[
\text{PRICE}_{\text{icl}, \text{igp}, \text{year}, \text{iatv}} = \text{PRICE}_{\text{icl}, \text{igp}, \text{year}, \text{iatv}} + \text{AFVADJPR}_{\text{iatv}, \text{ivtyp}, \text{year}},
\]

where

\[
\text{PRICE}_{\text{icl}, \text{igp}, \text{year}, \text{iatv}} = \text{low-production vehicle price by market class and group};
\]

\[
\text{AFVADJPR}_{\text{iatv}, \text{ivtyp}, \text{year}} = \text{incremental price adjustment for a low-production vehicle}.
\]

b) Car and Light Truck prices at 50,000 units per year

\[
\text{PRICEHI}_{\text{icl}, \text{igp}, \text{year}, \text{iatv}} = \text{PRICEHI}_{\text{icl}, \text{igp}, \text{year}, \text{iatv}} + \text{AFVADJPRH}_{\text{iatv}, \text{ivtyp}, \text{year}},
\]

where

\[
\text{PRICEHI}_{\text{icl}, \text{igp}, \text{year}, \text{iatv}} = \text{high-production vehicle price by market class and group};
\]
AFVADJPH_{iatv,vttyp,year} = incremental price adjustment for a high-production vehicle.

2) Calculate historic year values for fuel economy, weight, and horsepower.

a) Fuel Economy

\[
FE_{icl,igp,year,iatv} = FE_{icl,igp,year,\text{gasoline}} \times (1 + \text{AFVADJFE}_{iatv,year}),
\]

where

\[
\text{AFVADJFE}_{iatv,year} = \text{percent difference in fuel economy relative to gasoline vehicles.}
\]

b) Weight

\[
WEIGHT_{icl,igp,year,iatv} = WEIGHT_{icl,igp,year,\text{gasoline}} \times (1 + \text{AFVADJWT}_{iatv,year}),
\]

where

\[
\text{AFVADJWT}_{iatv,year} = \text{percent difference in weight relative to gasoline vehicles.}
\]

c) Horsepower

\[
HP_{icl,igp,year,iatv} = HP_{icl,igp,year,\text{gasoline}} \times (1 + \text{AFVADJHP}_{iatv,year}),
\]

where

\[
\text{AFVADJHP}_{iatv,year} = \text{percent difference in horsepower relative to gasoline vehicles.}
\]

The characteristics of electric drivetrain vehicles—price, weight, fuel economy, and horsepower—are calculated with a different methodology discussed in Section 5.

2. Calculate technology market shares

The MTCC first determines the cost-effective market shares of technologies for each vehicle class and then calculates the resulting fuel economy, weight, horsepower, and price through the subroutine FEMCALC. For each projection period, this function is called up to three times. During the first pass, technology market shares are calculated for all vehicle size classes. In the second pass, the technology market shares are recalculated for manufacturer groups that fail to meet the CAFE standard. During this pass, the cost-effectiveness calculation is adjusted to include the regulatory cost of failing to meet CAFE.6 If a manufacturer group fails to meet CAFE after the second pass, no further adjustments to technology market shares are made. In the third pass, the manufacturer groups focus solely on CAFE compliance at the expense of increased performance.

For each vehicle class, FEMCALC follows these steps:

A. Calculate the economic market share for each technology.

6 See the variable REGCOST in Equation 12.
B. Apply the engineering notes to control market penetration.

C. Adjust the economic market shares though application of the following three types of engineering notes: mandatory notes, supersedes notes, and requires notes.

D. Adjust the fuel economy impact by applying the synergy engineering notes.

E. Calculate the net impact of the change in technology market share on fuel economy, weight, and price.

F. Estimate electric vehicle (EV), plug-in hybrid electric vehicle (PHEV), hybrid electric vehicle (HEV), and fuel cell (FC) characteristics.

G. Adjust horsepower based on the new fuel economy and weight.

H. Readjust fuel economy based on the new horsepower and price based on the change in horsepower.

Each step is described in more detail below. Note that all of the calculations in this section take place within loops by manufacturer group, size class, and powertrain type. In the interest of legibility, these dimensions are not shown in the subscripts, except to clarify the relationship.

The cost-effective market share calculation for each technology is based on the cost of the technology, the present value of the expected fuel savings, and the perceived value of performance (see Figure 4).

a) Fuel savings value

For each technology, the expected fuel savings associated with incremental fuel economy impacts is calculated. The time decision to introduce a particular technology is made at least three years before actual introduction in the marketplace and is based on the expected fuel prices at the time of introduction rather than actual fuel prices.

Nominally, three-year lagged fuel costs and the annual rates of fuel price change are used to estimate expected dollar savings. However, because prices can spike, and because manufacturing decisions will not be based on one-year spikes, the three-year lagged costs and rates of price change used for this calculation are actually five-year moving average prices and are the difference between the three-year lagged five-year moving average price and the four-year lagged five-year moving average price. The expected present value of fuel savings is dependent on the expected price of fuel, payback period (the amount of time the purchaser is willing to wait to recover the initial investment), discount rate (the time value of money), and the distance driven over the period. This estimation involves the following three steps:

1. Calculate the linear fuel cost slope \(PSLOPE \), which is used to extrapolate the expected fuel cost over the desired payback period and constrain the value to be equal to or greater than zero

\[
FIVEYR_FUEL_COST_1 = \frac{1}{5} \sum_{i=Year-4}^{Year-8} FUEL_COST_i,
\]
\[FIVEYR_FUEL_COST_2 = \frac{1}{5} \times \sum_{i=\text{Year}-7}^{\text{Year}-3} FUEL_COST_i, \]

\[PSLOPE = \text{MAX} (0, FIVEYR_FUEL_COST_1 - FIVEYR_FUEL_COST_2), \]

where

\[\text{FUEL_COST}_i = \text{the price of fuel in year } i. \]

2. Calculate the expected fuel price \((PRICE_EX)\) in year \(i\) (where \(i\) goes from 1 to PAYBACK)

\[PRICE_EX_{year=i} = PSLOPE \times (i + 2) + FIVEYR_FUEL_COST_1, \]
Figure 4. Economic market share calculation

Begin Fuel Economy Component

- **Inputs:**
 - Factor measuring regulatory pressure to increase fuel economy

 - Calculate present value of fuel savings because of technology over payback period

- **Inputs:**
 - Fixed cost of technology, payback, change in vehicle weight because of technology, and vehicle weight

 - Calculate cost of technology

- **Inputs:**
 - Value associated with change in performance, personal income, change in fuel economy, fuel costs, and change in horsepower

 - Calculate perceived value of performance, in dollars, associated with technology

 - Calculate overall cost effectiveness of technology

 - Calculate economic market share before engineering or regulatory constraints of technology

- **Is calculated market share less than previous year?**

 - Override calculation and set market equal to that of previous year

 - Pass to engineering section
3. For each technology, calculate the expected present value of fuel savings \(FUELSAVE\) over the payback period

\[
FUELSAVE_{itc} = \sum_{i=1}^{PAYBACK} VMT_i \left(\frac{1}{FE_{\text{year-1}}} - \frac{1}{(1 + DEL_{FE_{itc}} \times FE_{\text{year-1}})} \right) \times PRICE _ EX_i \times (1 + DISCOUNT)^{-i},
\]

where

\[
VMT_i = \text{annual vehicle miles traveled;}
\]

\(itc\) = the index representing the technology choice under consideration;

\(i = \text{index: } 1, 2, \ldots, \text{PAYBACK}; \text{ defined locally;}
\]

\(FE_{\text{year-1}} = \text{fuel economy of previous year;}
\]

\(DEL_{FE_{itc}} = \text{fractional change in fuel economy associated with technology } itc;\)

\(PAYBACK = \text{user-specified payback period; and}
\]

\(DISCOUNT = \text{user-specified discount rate.}\)

b) Technology cost

Technology costs may have absolute and weight-dependent components. An absolute component is a fixed dollar cost for installing a particular technology on a vehicle. Most technologies have only an absolute component. A weight-dependent component is associated with the material substitution technologies, where a lightweight material replaces heavier material. This component is split between an absolute and relative weight-based cost. In this case, the technology cost is a function of the amount of material, which is in turn a function of the weight of the vehicle. The technology cost equation is a sum of all these components

\[
TECHCOST_{itc, \text{year, ildv}} = DEL_COSTABS_{itc} + DEL_COSTWGT_{itc} \times \left(\frac{\text{ABS}(DEL_WGTABS_{itc})}{\text{ABS}(DEL_WGTWGT_{itc})} \times \text{WEIGHT}_{\text{year-1, ifuel}} \right),
\]

where

\(TECHCOST_{itc, \text{year, ildv}} = \text{cost per vehicle of technology } itc;\)

\(DEL_COSTABS_{itc} = \text{absolute cost of technology } itc;\)

\(DEL_COSTWGT_{itc} = \text{weight-based change in cost ();}\)

\(DEL_WGTABS_{itc} = \text{fractional change in absolute weight associated with technology } itc;\)

\(DEL_WGTWGT_{itc} = \text{fractional change in relative weight associated with technology } itc; \text{ and}
\]

\(WEIGHT_{\text{year-1, ifuel}} = \text{original vehicle weight for different fuel type vehicles.}\)
c) Learning cost adjustment

The technology cost is adjusted to include the multiplicative total of two individual cost multiplier adjustments (\textit{LEARN_COST_MULTIPLIER}). The two cost multipliers represent two separate portions of the same learning cost curve. The first cost multiplier represents the flattened portion of the learning curve, where most of the effects of learning for that technology have already been gained. The second cost multiplier represents the steeper portion of the learning curve, where the effects of learning are greatest for those technologies. The first cost multiplier applies to most of the technologies, except for those that can gain no more learning. The second cost multiplier applies to technologies that can still gain significant cost reductions as a result of learning, including micro hybrid and mild hybrid technologies, and level 2 rolling resistance tires.

$$TECH_COST_{itc} = TECH_COST_{itc} \times \prod_{i=1}^{t} LEARN_COST_MULTIPLIER_{i},$$

\(10\)

d) Performance value

Although a number of technological factors affect the perceived performance of a vehicle, in the interests of clarity and simplicity, the model uses a vehicle's horsepower-to-weight ratio as a proxy for the general category of performance. The perceived value of performance is a factor in the cost-effectiveness calculation. The value of performance for a given technology is positively correlated with both income and vehicle fuel economy and negatively correlated with fuel prices.

$$VAL_PERF_{itc,year} = VALUE_PERF \times PERF_COEFF \times \frac{INCOME_{year}}{INCOME_{year-1}} \times (1 + DEL_FE_{itc}) \times$$

$$\frac{FUEL_COEFF_{year-1}}{FUEL_COEFF_{year}} \times DEL_HP_{itc},$$

\(11\)

where

\(VAL_PERF_{itc,year} = \) dollar value of performance of technology \(itc;\)

\(VALUE_PERF = \) value associated with an incremental change in performance;

\(PERF_COEFF = \) parameter used to constrain vehicle performance;

\(DEL_HP_{itc} = \) fractional change in horsepower of technology \(itc;\)

\(FUEL_COEFF_{year} = \) actual price of fuel for the given year; and

\(INCOME_{year} = \) income per capita in 1990 dollars.

e) Economic market share

The market share of the considered technology, based on fuel savings or on performance, is determined by first evaluating the cost-effectiveness of technology \(itc\) as a function of the values described above

$$COST_E_FUEL_{itc} = \frac{FUEL_SAVE_{itc} - TECH_COST_{itc} + (REG_COST + FE_{year-1} * DEL_FE_{itc})}{TECH_COST_{itc}},$$

\(12\)
\[\text{COSTEF_PERF}_{\text{itc}} = \frac{\text{VAL_PERF}_{\text{itc}} - \text{TECHCOST}_{\text{itc}}}{\text{TECHCOST}_{\text{itc}}}, \]
\[\text{MKT_FUEL}_{\text{itc}} = \frac{1}{1 + e^{\text{MKT_1COEFF} \times \text{COSTEF_FUEL}_{\text{itc}}}}, \]
\[\text{MKT_PERF}_{\text{itc}} = \frac{1}{1 + e^{\text{MKT_2COEFF} \times \text{COSTEF_PERF}_{\text{itc}}}}, \]

where

\(\text{COSTEF_FUEL}_{\text{itc}} \) = a unitless measure of cost effectiveness based on fuel savings of technology;

\(\text{COSTEF_PERF}_{\text{itc}} \) = a unitless measure of cost effectiveness based on performance of technology;

\(\text{REGCOST}_{\text{itc}} \) = factor representing regulatory pressure to increase fuel economy, in dollars per miles per gallon;

\(\text{MKT_FUEL}_{\text{itc}} \) = market share based on fuel savings;

\(\text{MKT_PERF}_{\text{itc}} \) = market share based on performance;

\(\text{MKT_1COEFF} \) = -4 if \(\text{COSTEF_FUEL} < 0 \), and -2 otherwise; and

\(\text{MKT_2COEFF} \) = -4 if \(\text{COSTEF_PERF} < 0 \), and -2 otherwise.

The two separate market shares are combined to determine the actual market share for the technology

\[\text{ACTUAL_MKT}_{\text{itc,year}} = \text{PMAX}_{\text{itc,year}} \times \text{MAX} (\text{MKT_FUEL}_{\text{itc}}, \text{MKT_PERF}_{\text{itc}}), \]

where

\(\text{ACTUAL_MKT}_{\text{itc,year}} \) = economic share consideration of engineering or regulatory constraints; and

\(\text{PMAX}_{\text{itc,year}} \) = institutional maximum market share, modeling tooling constraints on the part of the manufacturers; set in a separate subroutine, \(\text{FUNCMAX} \) (see Table 1).

We use the variable name \(\text{ACTUAL_MKT}_{\text{itc,year}} \) for several different variables that may have different values. The model adjusts the initial value to arrive at a final value.

Note: If the manufacturer does not satisfy CAFE, production can be accelerated to reach 100% penetration in half the time and continue at that pace every year thereafter.

f) Market share overrides

Existing technologies are assumed to maintain their market shares unless forced out by later technologies. If the cost-effectiveness calculation yields an economic market share lower than that of the previous period then the calculated value is overridden.

7 During pass 1, \(\text{REGCOST} \) has a value of 0. During passes 2 and 3, it is set to \(\text{REG_COST} \), which is a user input. This penalty is discussed in the earlier section entitled Calculate Technology Market Shares.
\[ACTUAL_MKT_{itc,year} = \text{MAX}(MKT_PEN_{itc,year-1}, \text{ACTUAL}_MKT_{itc,year}), \]

(17)

where

\[\text{MKT_PEN}_{itc,year} = \text{market share for technology } itc. \]

Finally, the economic market share is bounded by the maximum market share, \(\text{MKT_MAX} \) or 1.0, whichever is smaller

\[ACTUAL_MKT_{itc,year} = \text{MIN}(1, \text{MKT_MAX}_{itc}, \text{ACTUAL}_MKT_{itc,year}), \]

(18)

where

\[\text{MKT_MAX}_{itc} = \text{maximum market share for technology } itc. \]

3. **Apply the engineering notes**

The engineering notes consist of a number of overrides to the economic cost-effectiveness calculations done in the previous step. Three types of notes (mandatory, supersedes, and requires) directly affect the technology market share results obtained above. The synergy note does not affect the market share and is applied after all other engineering notes have been applied (see Figure 5).
Table 1. Maximum light-duty vehicle market penetration parameters (percent)

<table>
<thead>
<tr>
<th>Years in market</th>
<th>New PMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>9.6</td>
</tr>
<tr>
<td>4</td>
<td>14.5</td>
</tr>
<tr>
<td>5</td>
<td>19.3</td>
</tr>
<tr>
<td>6</td>
<td>24.1</td>
</tr>
<tr>
<td>7</td>
<td>28.9</td>
</tr>
<tr>
<td>8</td>
<td>33.7</td>
</tr>
<tr>
<td>9</td>
<td>38.5</td>
</tr>
<tr>
<td>10</td>
<td>43.4</td>
</tr>
<tr>
<td>11</td>
<td>48.2</td>
</tr>
<tr>
<td>12</td>
<td>53.0</td>
</tr>
<tr>
<td>13</td>
<td>57.8</td>
</tr>
<tr>
<td>14</td>
<td>62.6</td>
</tr>
<tr>
<td>15</td>
<td>67.4</td>
</tr>
<tr>
<td>16</td>
<td>72.2</td>
</tr>
<tr>
<td>17</td>
<td>77.1</td>
</tr>
<tr>
<td>18</td>
<td>81.9</td>
</tr>
<tr>
<td>19</td>
<td>86.9</td>
</tr>
<tr>
<td>20</td>
<td>90.7</td>
</tr>
<tr>
<td>21</td>
<td>93.6</td>
</tr>
<tr>
<td>22</td>
<td>95.7</td>
</tr>
<tr>
<td>23</td>
<td>97.3</td>
</tr>
<tr>
<td>24</td>
<td>98.4</td>
</tr>
<tr>
<td>25</td>
<td>99.2</td>
</tr>
<tr>
<td>26</td>
<td>99.7</td>
</tr>
<tr>
<td>27</td>
<td>100.0</td>
</tr>
<tr>
<td>28</td>
<td>100.0</td>
</tr>
<tr>
<td>29</td>
<td>100.0</td>
</tr>
<tr>
<td>30</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Figure 5. Engineering notes

1. Economic market share of each technology
 - Are mandated technology market shares met?
 - Yes: Set market share to legislative mandate
 - No: Pass to Net Impact Section
 - Does the technology supersede older technology?
 - Yes: Subtract market share older technologies until market shares equal 1
 - No: Pass to Net Impact Section
 - Does the technology require complementary technology?
 - Yes: Does technology market share exceed complementary?
 - Yes: Set market share to legislative mandate
 - No: Calculate net impact of technology change on vehicle
 - No: Pass to Net Impact Section
 - Is there synergic effect between this technology and another?
 - Yes: Set market share to legislative mandate
 - No: Pass to Net Impact Section
a) Mandatory notes

Mandatory notes are usually associated with safety or emissions technologies that must be in place by a certain year, legislative or regulatory action. If the number of phase-in years is one or less, the full mandated market share, $MANDMKSH$, is adopted immediately.

$$ACTUAL_MKT_{itc,year} = \text{MAX} \left(ACTUAL_MKT_{itc,year}, MANDMKSH_{itc,year} \right).$$ (19)

If the number of phase-in years is greater than one, the model adds a proportional share of the total mandatory share, $MANDMKSH$, each year. Both the base and maximum market penetrations can vary by vehicle class, the actual market share logic must adopt annual shares in proportion to the allowable market share spread for each vehicle class, and the technology base year, $BaseYear$, penetration, MKT_PEN, defined by the base share for the class

$$ACTUAL_MKT_{itc,year} = \text{MAX}(ACTUAL_MKT_{itc,year}, CLASSSHR_{year}),$$ (20)

where

$$CLASSSHR_{year} = \frac{MKT_PEN_{itc,BaseYear}}{PHASESHR_{year}} + PHASESHR_{year} \ast \left(\frac{MKT_MAX_{itc}}{MKT_PEN_{itc,BaseYear}} \right); \text{ and}$$

$$PHASESHR_{year} = \text{fraction of the total mandatory share in year.}$$

The economic market share is bounded above by the maximum market share, MKT_MAX

$$ACTUAL_MKT_{itc,year} = \text{MIN} \left(ACTUAL_MKT_{itc,year}, MKT_MAX_{itc} \right).$$ (21)

b) Supersedes notes (subroutine $NOTE_SUPER$)

Superseding technology notes define technologies that functionally overlap and therefore will not be present on the same vehicle. For example, if technology X is a more sophisticated version of technology Y, either, but not both, can appear on a particular vehicle and the market share of technology X plus the market share of technology Y must not exceed the maximum allowable market share for the basic technology. Since technology cost effectiveness is determined on an individual technology basis, such situations are handled by so-called superseding technology code that adjusts cost-effective market shares for individual technologies in accordance with functional overlaps. To correctly handle the relationship among more than two technologies, the superseding technology engineering notes that define the relationship and the adjustment of the cost-effective market shares in accordance with that relationship must be designed to treat all affected technologies concurrently.

Market shares are further adjusted so the sum does not exceed the maximum market penetration of the group. The model first calculates the aggregate market share, TOT_MKT, of all superseding technologies related to a single technology

$$TOT_MKT_{itc,year} = \sum_{ino=1}^{num_sup} ACTUAL_MKT_{ino,year},$$ (22)
where

\[\text{ino} = \text{index identifying the technologies in the superseding group related to technology } itc; \text{ and} \]

\[\text{num}_\text{sup} = \text{number of technologies in the superseding group related to technology } itc. \]

The model identifies the largest maximum market share for the group of technologies related to the technology of interest, \(\text{MAX}_\text{SHARE} \)

\[
\text{MAX}_\text{SHARE} = \text{MAX}(\text{MKT}_{\text{MAX}}_1, \ldots, \text{MKT}_{\text{MAX}}_{\text{num}_\text{sup}}).
\]

(23)

If the aggregate market share, \(\text{TOT}_\text{MKT} \), is greater than the maximum share, \(\text{MAX}_\$\text{SHARE} \), the model reduces the excess penetration of those technologies that are in the group of related technologies, as follows

1) The model calculates the reduction in market share of a superseded technology, \(\text{DEL}_\text{MKT} \), ensuring that the decrement does not exceed that technology's total share

\[
\text{DEL}_\text{MKT}_{\text{itc}} = \text{TOT}_\text{MKT}_{\text{itc}, \text{year}} - \text{MAX}_\text{SHARE}_{\text{itc}, \text{year}},
\]

(24)

2) The model adjusts the market share of the superseded technology to reflect the decrement

\[
\text{ACTUAL}_\text{MKT}_{\text{itc}, \text{year}} = \text{ACTUAL}_\text{MKT}_{\text{itc}, \text{year}} - \text{DEL}_\text{MKT}_{\text{itc}},
\]

(25)

3) The model adjusts total market share to reflect this decrement

\[
\text{TOT}_\text{MKT}_{\text{itc}, \text{year}} = \text{MAX}_\text{SHARE}_{\text{itc}, \text{year}},
\]

(26)

c) Requires notes

These notes control the adoption of technologies that require additional technologies in the vehicle. This note is implemented as follows:

1) For a given technology, \(itc \), define a group of potential matching technologies, \(req \), one of which must be present for \(itc \) to be present. Sum the market shares of the matching technologies (\(req \)), ensuring total market share is no more than 1.0. This value, \(\text{REQ}_\text{MKT} \), indicates the maximum market share of technology \(itc \).

\[
\text{REQ}_\text{MKT}_{\text{year}} = \text{MIN}(\sum_{\text{req}} \text{MKT}_\text{PEN}_{\text{req}, \text{year}}, 1.0),
\]

(27)

3) Compare \(\text{REQ}_\text{MKT} \) to the market share of technology, \(itc \).

\[
\text{ACTUAL}_\text{MKT}_{\text{itc}, \text{year}} = \text{MIN}(\text{ACTUAL}_\text{MKT}_{\text{itc}, \text{year}}, \text{REQ}_\text{MKT}_{\text{year}}),
\]

(28)

The adjusted economic market share, \(\text{ACTUAL}_\text{MKT} \), is assigned to the variable \(\text{MKT}_\text{PEN} \), by market class and group, for use in the remainder of the calculations.
\[MKT_PEN_{itc,year} = ACTUAL_MKT_{itc,year}, \] (29)

d) Synergistic notes

Synergistic technologies are those that, when installed simultaneously, interact to affect fuel economy. A vehicle with synergistic technologies will not experience the change in fuel economy predicted by adding the impact of each technology separately. Conceptually, such interactions could yield either greater or lower fuel economy; however, in all cases observed in the MTCC, the actual fuel economy is lower than expected. For example, Variable Valve Lift I is synergistic with 8-speed automatic transmissions. If both are present on a vehicle, then the actual fuel economy improvement is 0.7% lower than what would be expected if the improvements from the two technologies were simply added together with no regard for their interaction.

Synergy adjustments are made once all other engineering notes have been applied. Market share affected by synergy effects between two technologies is estimated as the probabilistic overlap between the market shares of the two technologies. Mathematically, this market share is expressed as the product of the market shares of the two technologies. The incremental market share overlap for a single year is equal to the cumulative estimated overlap (based on cumulative estimated market penetrations) for the current year minus the cumulative estimated overlap for the previous year. Note also that the input value of \(SYNR_DEL \), the synergistic effect of related technologies on fuel economy, is negative, so that the estimated synergy loss will also be negative and should be treated as an additive parameter.

\[
SYNERGY_LOSS_{itc} = \sum_{syn}(MKT_PEN_{itc,Year} \times MKT_PEN_{syn,Year}) \times SYNR_DEL_{itc,syn} - \sum_{syn}(MKT_PEN_{itc,Year-1} \times MKT_PEN_{syn,Year-1}) \times SYNR_DEL_{itc,syn},
\] (30)

where

\[
SYNERGY_LOSS_{itc} = \text{estimated synergy loss for all technologies synergistic with technology, } itc; \text{ and }
\]

\[
syn = \text{set of technologies synergistic with technology, } itc.
\]

4. Calculate net impact of technology change

The net impact of changes in technology market shares is first calculated for fuel economy, weight, and price. Horsepower is dependent on these results and must be subsequently calculated. For a given technology \(itc \), the change in market share since the last period, \(DELTA_MKT \), is calculated as follows

\[
DELTA_MKT_{itc} = MKT_PEN_{itc,Year} - MKT_PEN_{itc,Year-1}, \] (31)

\(DELTA_MKT \) is used to calculate the incremental changes in fuel economy, vehicle weight, and price as a result of implementing the considered technology.

a) Fuel economy
Current fuel economy for a vehicle class is calculated as the previously adjusted fuel economy plus the sum of incremental changes because of newly adopted technologies, NUMTECH

$$\text{FE}_{\text{Year}} = \text{FE}_{\text{Year}} + \text{FE}_{\text{Year}-1} \times (\sum_{\text{itc}=1}^{\text{NUMTECH}} \Delta \text{MARKET}_{\text{itc}} \times (\Delta \text{FE}_{\text{itc}} + \text{SYNERGY LOSS}_{\text{itc}})),$$

where the equal sign is an assignment operator.

b) Vehicle Weight

Current weight for a vehicle class is modified by the incremental changes because of newly adopted technologies. As with the technology cost equation, the weight equation has both absolute and variable components. Most technologies add a fixed number of pounds to the weight of a vehicle. With material substitution technologies, the weight change depends on how much new material is used, which is a function of the original weight of the vehicle. The weight equation includes both absolute and weight-dependent terms in the summation expression. For any given technology, one term or the other will be zero.

$$\text{WEIGHT}_{\text{Year,\,idv}} = \text{WEIGHT}_{\text{Year,\,idv}} + \sum_{\text{itc}=1}^{\text{NUMTECH}} \Delta \text{MARKET}_{\text{itc}} \times (\Delta \text{WGTABS}_{\text{itc}} + \text{WEIGHT}_{\text{Year,\,idv}} \times \Delta \text{WGTWGT}_{\text{itc}}),$$

where

- $\text{WEIGHT}_{\text{year, idv}}$: vehicle weight, by size class, group, and fuel type, initialized to the previous year value and modified with each iteration of the component.

c) Vehicle Price

Current price for a vehicle class is calculated as the previous price plus the sum of incremental changes in the technology cost because of newly adopted technologies. This calculation is used to equally scale up both low-volume prices, at 5,000 units per year, and high-volume prices, at 50,000 units per year, as described in Equations 1 and 2

$$\text{PRICE}_{\text{Year}} = \text{PRICE}_{\text{Year}} + \sum_{\text{itc}=1}^{\text{NUMTECH}} \Delta \text{MARKET}_{\text{itc}} \times \text{TECHCOST}_{\text{itc}},$$

where

- $\text{PRICE}_{\text{year}}$: vehicle price, by market class, group and technology type, initialized to the previous year value and subsequently modified with each iteration of the component.

d) Estimate EV, HEV, PHEV, and FC characteristics (subroutines EVCALC, HEVCALC, PHEV10CALC, PHEV40CALC, and FCCALC)

Vehicle attributes, including price, weight, fuel economy, and horsepower, are adjusted for the specific characteristics of electric, hybrid electric, plug-in hybrid electric, and fuel cell vehicles.
First, the price of the vehicle is adjusted according to the following assignment statements

\[
PRICE_{ict,igp,year,ildv} = PRICE_{ict,igp,year,ildv} + Elec_Stor$_{ict,igp,year,ildv},
\]

\[
PRICEHI_{ict,igp,year,ildv} = PRICEHI_{ict,igp,year,ildv} + Elec_Stor$_{ict,igp,year,ildv},
\]

where

\[
Elec_Stor$_{ict,igp,year,ildv} = \text{price of storage device for EV, HEV, PHEV10, PHEV40, and FC vehicles.}
\]

The price of the storage devices for EV, HEV, PHEV10, PHEV40, and FC vehicles include battery, non-battery systems, and, in the case of FC vehicles, storage tank and fuel cell stack costs. Battery costs are discussed first below. Non-battery systems and FC specific costs are included under each of the subsequent individual vehicle type sections.

5. Battery costs (subroutine \textit{LIONCOSTCALC})

EV, HEV, PHEV10, PHEV40, and FC vehicles use battery technology as energy storage devices. The Transportation Sector Demand Module considers nickel metal hydride and lithium-ion batteries for use in HEV and initial EV applications and lithium ion batteries for use in PHEV10, PHEV40, FC, and later EV vehicles. Nickel metal hydride (NiMH) battery cost measured in dollars per kilowatthour ($/kWh) is read in from trnldv.xlsx and decline is estimated exogenously across the projection period. Lithium-ion battery cost ($/kWh) is calculated endogenously based on production learning and economies of scale for cost reduction across five phases: Research and Development (R&D), Revolutionary, Evolutionary, Mature, and High Volume

\[
Li_ion_cost_{year} = a \ast (lion_prod_{year})^{-b},
\]

where

\[
Li_ion_cost_{year} = \text{cost of lithium ion battery ($/kWh)};
\]

\[
a = \text{initial battery cost at start of phase period ($/kWh) / initial production at start of phase period } ^{-b}, \text{ modified by an R&D based lithium ion cost adjustment;}
\]

\[
lion_prod_{year} = \text{annual lithium ion battery production (kWh)}; \text{ and}
\]

\[
b = \text{learning rate based function.}
\]

The R&D, Revolutionary, Evolutionary, Mature, and High Volume phase periods are differentiated by different learning rates. Greater learning takes place during the Revolutionary and Evolutionary periods, and the least amount of learning occurs in the Mature and High Volume phases. The Evolutionary, Mature, and High Volume phases are reached at an internally specified level of annual battery production.

a) EV – Electric vehicle
\begin{align}
\text{Elec_Stor}_\text{icl,igp,year,EV} = PHEV_kWh_{\text{icl,igp,year,EV}} \times EV\text{Bat}\$_kWh\text{year} \times \frac{EV_sys\$_{\text{icl,year}}}{(37)}
\end{align}

where

\begin{align*}
PHEV_kWh_{\text{icl,igp,year,EV}} &= \text{required battery size (kWh)}; \\
PHEV_kWh_{\text{icl,igp,year,EV100}} &= \text{weight}_{\text{icl,igp,year,EV100}} \times 0.00823 \text{ kWh per vehicle pound / EV_DOD_year}; \\
PHEV_kWh_{\text{icl,igp,year,EV200}} &= \text{weight}_{\text{icl,igp,year,EV200}} \times 0.01618 \text{ kWh per vehicle pound / EV_DOD_year}; \\
PHEV_kWh_{\text{icl,igp,year,EV300}} &= \text{weight}_{\text{icl,igp,year,EV300}} \times 0.025 \text{ kWh per vehicle pound / EV_DOD_year}; \\
EV\text{Bat}\$_kWh\text{year} &= \text{battery cost ($/kWh)} \\
\text{NiMH_cost_year} &= \text{cost of nickel metal hydride battery ($/kWh)}; \\
\text{Lion_MktSh_year} &= \text{market share of lithium-ion battery}; \\
EV_DOD_year &= \text{batteries maximum depth of discharge (percentage); and} \\
EV_sys\$_{\text{icl,year}} &= \text{EV non-battery system cost.}
\end{align*}

b) HEV – Hybrid Electric Vehicle

\begin{align}
\text{Elec_Stor}_\text{icl,igp,year,HEV} = HEV\text{BatPack}\$_{\text{icl,igp,HEV}} + HEV_sys\$_{\text{year}}, \tag{38}
\end{align}

where

\begin{align*}
\text{HEV\text{BatPack}\$_{\text{icl,igp,HEV}}} &= \text{lesser of the cost of nickel metal hydride battery ($/kWh) or lithium-ion battery ($/kWh)}; \text{ and} \\
\text{HEV_sys\$_{\text{year}}} &= \text{HEV system cost ($).}
\end{align*}

c) PHEV10 and PHEV40 – Plug-in Hybrid Electric Vehicle, 10- and 40-mile all-electric range

\begin{align}
\text{Elec_Stor}_\text{icl,igp,year,illdv} = PHEV_kWh_{\text{icl,igp,PHEVXX}} \times PHEVXX\text{Bat}\$_kWh\text{year} + PHEV_sys\$_{\text{year}}, \tag{39}
\end{align}

where

\begin{align*}
PHEV_kWh_{\text{icl,igp,PHEV10}} &= \text{weight}_{\text{icl,igp,year, gasoline}} \times 0.001115 \text{ kWh per vehicle pound / PHEV_DOD_year}; \\
PHEV_kWh_{\text{icl,igp,PHEV40}} &= \text{weight}_{\text{icl,igp,year, gasoline}} \times 0.003617 \text{ kWh per vehicle pound / PHEV_DOD_year}; \\
PHEV_DOD_year &= \text{batteries maximum depth of discharge (percent)}; \\
PHEV_sys\$_{\text{year}} &= \text{PHEV40 system cost adjusted for learning}; \text{ and} \\
PHEVXX\text{Bat}\$_kWh\text{year} &= \text{Li_Ion_Cost_year, adjusted for production-based learning for PHEV10 and PHEV40.}
\end{align*}
d) FC – Fuel cell vehicle

\[
Elec_Stor_{incl,igp,year,FC} = FUELCELL_{incl,igp,year,FC} + BATTERY_{incl,igp,year,FC} + TANKCOST_{FC},
\]

(40)

where

\[
FUELCELL_{incl,igp,year,FC} = \text{fuel cell cost ($)} = \text{weight}_{incl,igp,year,\text{gasoline}} \times 0.028 * \text{FuelCell$kW_{year,FC}};
\]

\[
\text{FuelCell$kW} = \text{input fuel cell cost ($/kW)};
\]

\[
BATTERY_{incl,igp,year,FC} = \text{battery cost ($)}; \text{ and}
\]

\[
TANKCOST_{FC} = \text{storage cost of hydrogen, methanol, or ethanol.}
\]

Second, consider the vehicle weight. The vehicle weight is modified by the battery weight, depending on the AFV used

\[
WEIGHT_{incl,igp,year,ildv} = WEIGHT_{incl,igp,year,\text{gasoline}} + Battery_Wt_{incl,igp,year,ildv},
\]

(41)

where

\[
Battery_Wt_{incl,igp,year,ildv} = \text{weight of storage device for EV, HEV, PHEV10, and PHEV40.}
\]

The weight of the storage device for each AFV is now determined.

a) EV – Electric vehicle

\[
Battery_Wt_{incl,igp,year,EV} = -500 + EV_Batt_Wt_{year} \times PHEV_kWhr_{incl,igp,year,EV},
\]

(42)

where

\[
EV_Batt_Wt_{year} = \text{average EV battery weight lbs/kWh})
\]

\[
= 18.33 * \text{Lion}_\text{MktSh}_{year} + 53.42 * (1-\text{Lion}_\text{MktSh}_{year}).
\]

b) HEV – Hybrid electric vehicle

\[
Battery_Wt_{incl,igp,year,HEV} = HEV_Batt_Wt_{year} \times HEV_kWhr_{incl,igp,year,HEV},
\]

(43)

where

\[
HEV_Batt_Wt_{year} = \text{average HEV battery weight (lbs/kWh)} = 53.42; \text{ and}
\]

\[
HEV_kWhr_{incl,igp,year,HEV} = \text{weight}_{year,HEV} \times 0.0005, \text{ kWh per vehicle pound.}
\]

c) PHEV10 and PHEV40—Plug-in hybrid electric 10- and 40-mile range gasoline vehicles

\[
Battery_Wt_{incl,igp,year,PHEVXX} = PHEVXX_Batt_Wt_{year} \times PHEVXX_kWhr_{incl,igp,year,PHEVXX}
\]
Third, the vehicle horsepower for EV, HEV, PHEV10, PHEV40, and FC is calculated assuming that all powertrains have the same performance requirement (horsepower per pound) as a gasoline vehicle.

\[HP_{cligp,year,ildv} = \text{WEIGHT}_{cligp,year,ildv} \times \frac{HP_{cligp,year,\text{gasoline}}}{\text{WEIGHT}_{cligp,year,\text{gasoline}}} \] (45)

Finally, consider vehicle fuel economy.

d) EV – Electric vehicle

\[FE_{cligp,year,ildv} = \frac{\text{EVXXX_range}}{\text{PHEV}_{kWh}_{cligp,ildv}} \] (46)

where

\[\text{EVXXX_range} = \text{EV range, in miles, where XXX is in \{100, 200, 300\}.} \]

e) FC – Fuel cell

\[FE_{cligp,year,FC} = \frac{1}{\text{GALPERMILE}_{FC} \times \frac{\text{WEIGHT}_{cligp,year,\text{Gasoline}}}{1000}} \] (47)

where

\[\text{GALPERMILE} = 0.00625 \text{ for Methanol FC, 0.00570 for Hydrogen FC, and 0.00667 for Gasoline FC.} \]

6. Impact of technology on horsepower

Calculating the net impact of changes in technology share on vehicle horsepower is a three-step process (see Figure 6).

a) Unadjusted horsepower

First, horsepower is calculated based on weight, assuming no change in performance. This initial estimate simply maintains the horsepower-to-weight ratio observed in the base year. Assuming a constant horsepower/weight ratio for cars and light trucks.

\[HP_{cligp,year,ildv} = \text{WEIGHT}_{year,ildv} \times \frac{HP_{year-1,ildv}}{\text{WEIGHT}_{year-1,ildv}} \] (48)

where

\[HP_{cligp,year,ildv} = \text{vehicle horsepower; and} \]
The horsepower adjustments for hybrid, electric, and fuel cell vehicles are described above.

b) Adjust horsepower

The second step adjusts the total horsepower, TTL_ADJHP, which has two components. The first component is an adjustment associated with the various technologies adopted, $TECH_ADJHP$, and the second component adjusts for any changes as a result of additional consumer performance demand, $PERF_ADJHP$. Adjustments to horsepower are done for cars and light trucks at the market class and AFV technology level, with the exceptions noted above.

c) Technology adjustment

Calculate the annual horsepower adjustment because of technology introductions, DEL_HP, which is equal to the sum of incremental changes because of newly adopted technologies

$$TECH_ADJHP_{year} = \sum_{itc=1}^{NUMTECH} (DELTAMKT_{itc} * DEL_HP_{itc}).$$

(49)

d) Consumer preference adjustment

The next step is to calculate the annual horsepower adjustment and consumer preference for performance, $PERF_ADJHP$. The initial calculation is based on household income, vehicle price, fuel economy, and fuel cost

$$PERF_ADJHP_{year} = (\frac{INCOME_{year}}{INCOME_{year-1}})^{0.9} \times (\frac{PRICE_{year}}{PRICE_{year-1}})^{0.9} \times (\frac{FE_{year}}{FE_{year-1}})^{0.2} \times (\frac{FUEL_COST_year}{FUEL_COST_year-1})^{0.2} - 1.$$

(50)

The calculated consumer demand for horsepower is initially unconstrained as the projection begins, but is multiplicatively adjusted downward to decrease consumer performance demand as the projected horsepower-to-weight ratio approaches its constrained limit, $PERFCAP$. The model calculates the value of $PERF_COEFF$, the parameter used to constrain the incremental value of additional vehicle performance. This parameter decreases as performance increases so that the incremental value of additional performance declines. The demand that has accrued between 1990 and 2018, $DEMAND_USED$, must be accounted for through the use of input parameter $USED_CAP$

$$DEMAND_USED = (PERFCAP - HP_WGT_{BaseYear}) \times \left(\frac{USED_CAP}{1 - USED_CAP}\right),$$

(51)

and

$$PERF_COEFF_{year} = 1 - \left(\frac{HP_WGT_{year} - HP_WGT_{BaseYear} + DEMAND_USED}{PERFCAP - HP_WGT_{BaseYear} + DEMAND_USED}\right),$$

(52)

and

$$PERF_ADJHP_{year} = PERF_ADJHP_{year} \times PERF_FACT \times PERF_COEFF_{year},$$

(53)
where

\[
\begin{align*}
\text{HP_WGT}_{\text{BaseYear}} &= \text{horsepower-to-weight ratio in the given year, in this case BaseYear;} \\
\text{PERF_COEFF}_{\text{year}} &= \text{performance coefficient, between 0 and 1; and} \\
\text{PERFFACT} &= \text{performance factor, exogenous input from trnldv.xlsx.}
\end{align*}
\]
Figure 6. Weight and horsepower calculation

- Adjusted market share and fuel economy for each technology

Inputs:
- Incremental fuel economy changes associated with newly adopted technologies

Calculate current fuel economy for vehicle class

Inputs:
- Incremental weight changes associated with newly adopted technologies

Calculate current weight for vehicle class

Inputs:
- Incremental price changes associated with newly adopted technologies

Calculate current price for vehicle class

Inputs:
- Base year horsepower to weight ratio

Adjust vehicle class horsepower based on new weight

Inputs:
- Performance factors associated with newly adopted technologies

Adjust vehicle class horsepower based on new performance specifications

Readjust fuel economy and price based on new horsepower

Pass to CAFE Section
Also, if CAFE standards are not achieved after the second CAFE compliance pass through FEMCALC, the additional consumer demand for performance is set to zero (or the minimum value required to maintain a sufficient horsepower-to-weight ratio) to allow manufacturers to focus on CAFE compliance rather than satisfy increased performance demands.

The total horsepower adjustment is now calculated

\[
TTL_{\text{ADJHP}}_{\text{year}} = TECH_{\text{ADJHP}}_{\text{year}} + PERF_{\text{ADJHP}}_{\text{year}},
\]

e) Maximum Limit on Total Horsepower Adjustment

The total horsepower adjustment for a given projection year is constrained in several ways. First, the total adjustment in any one year is limited to 10%. If an adjustment greater than 10% is calculated by the econometric algorithms described above, the additional consumer demand portion is adjusted downward first since the impacts of this demand are not yet included in the fuel economy projections. If it is not possible to obtain the full level of downward adjustment—to less than a 10% increase from the previous year—from the additional consumer demand portion of the horsepower adjustment, the remainder is taken from the technology-based adjustment. The magnitude of any technology-based horsepower giveback, \(HP_{\text{GIVEBACK}} \), is tracked and converted into equivalent fuel economy because the basic fuel economy projection already incorporates the full impact of technology-based horsepower adjustments. Hence, if total horsepower adjustment, \(TTL_{\text{ADJHP}} \), is greater than 10%

\[
\begin{align*}
HP_{\text{GIVEBACK}}_{\text{year}} & = TTL_{\text{ADJHP}}_{\text{year}} - 0.1, \\
PERF_{\text{ADJHP}}_{\text{year}} & = PERF_{\text{ADJHP}}_{\text{year}} - HP_{\text{GIVEBACK}}_{\text{year}}.
\end{align*}
\]

If the required horsepower giveback, \(HP_{\text{GIVEBACK}} \), is smaller than the consumer demand for performance, \(PERF_{\text{ADJHP}} \), the technology adjustment, \(TECH_{\text{ADJHP}} \), is left unchanged. Otherwise, the technology adjustment is decreased by this performance adjustment

\[
TECH_{\text{ADJHP}}_{\text{year}} = TECH_{\text{ADJHP}}_{\text{year}} - HP_{\text{GIVEBACK}}_{\text{year}}.
\]

Now, calculate the modified total horsepower adjustment

\[
TTL_{\text{ADJHP}}_{\text{year}} = TECH_{\text{ADJHP}}_{\text{year}} + PERF_{\text{ADJHP}}_{\text{year}}.
\]

f) Maximum Limit on Horsepower-to-Weight Ratio

This adjustment imposes a maximum limit on the horsepower-to-weight ratio so that performance characteristics do not become unreasonable. If the horsepower-to-weight ratio is too high, first subtract any consumer preference for performance, \(PERF_{\text{ADJHP}} \), since the fuel economy effect is not considered until later. If the horsepower-to-weight ratio needs to be lowered further, decrease any additional required horsepower demand from the technology-based part of the adjustment, \(TECH_{\text{ADJHP}} \), and track this giveback because \(HP_{\text{GIVEBACK}} \) must be converted back into fuel economy equivalent.

\[
TECH_{\text{ADJHP}}_{\text{year}} = TECH_{\text{ADJHP}}_{\text{year}} - HP_{\text{GIVEBACK}}_{\text{year}}.
\]

\[
TTL_{\text{ADJHP}}_{\text{year}} = TECH_{\text{ADJHP}}_{\text{year}} + PERF_{\text{ADJHP}}_{\text{year}}.
\]

g) Horsepower-to-weight ratio must ensure drivability
Finally, make sure the horsepower-to-weight ratio stays higher than that required for drivability, \(HP_WGT_MIN \), (either 90% of the base year value or 4% for two-seaters and 3.3% otherwise, whichever is lower). If an upward adjustment is required to satisfy this constraint, it is added to the additional consumer demand portion of the planned horsepower adjustment because the fuel economy impacts of this demand are not yet considered in the fuel economy projections. Additional demand does not need to be specially tracked since it is reflected in \(PERF_ADJHP \), which is automatically converted to fuel economy equivalent in the algorithms that follow.

The next series of statements calculate the desired and resulting horsepower demand. The desired demand is the difference between the minimum horsepower adjustment, \(MIN_ADJHP \), and the total horsepower adjustment. Adding the desired demand to the current horsepower adjustment produces the total horsepower adjustment

\[
MIN_ADJHP_{year} = \left(\frac{HP_WGT_MIN_{Year} \cdot WEIGHT_{Year}}{HP_{Year}} - 1 \right),
\]

\[
PERF_ADJHP_{year} = PERF_ADJHP_{year} + MIN_ADJHP_{year} - TTL_ADJHP_{year},
\]

\[
TTL_ADJHP_{year} = TECH_ADJHP_{year} + PERF_ADJHP_{year}. \tag{58}
\]

h) Final horsepower adjustment for CAFE compliance

If CAFE standards are not achieved after the second CAFE compliance pass through FEMCALC, the technology-based horsepower adjustment is constrained to the maximum of either zero or the level of adjustment required to maintain the minimum allowable horsepower-to-weight ratio. In other words, the third pass takes back the technology-driven horsepower demand except is required to maintain the minimum horsepower-to-weight ratio. The magnitude of any technology-based horsepower giveback is tracked and converted into equivalent fuel economy. Thus, a third pass through FEMCALC allows manufacturers to focus solely on CAFE compliance at the expense of increased performance.

\[
EXCESS_ADJHP_{year} = MIN(TECH_ADJHP_{year}, TTL_ADJHP_{year} - MIN_ADJHP_{year}).
\]

\[
TECH_ADJHP_{year} = TECH_ADJHP_{year} - EXCESS_ADJHP_{year}, \tag{59}
\]

\[
TTL_ADJHP_{year} = TECH_ADJHP_{year} + PERF_ADJHP_{year}.
\]

The model first computes the horsepower give back

\[
HP_GIVEBACK_{year} = HP_GIVEBACK_{year} + EXCESS_ADJHP_{year}. \tag{60}
\]

The current year horsepower is then calculated as initial horsepower times the final horsepower adjustment

\[
HP_{year,\text{FuelType}} = HP_{year,\text{ifuel}} \times (1 + TTL_ADJHP_{year}). \tag{61}
\]

7. Readjust fuel economy and price
Once the horsepower adjustment has been determined, the final fuel economy, vehicle price, and vehicle range are calculated.

a) Fuel economy

Fuel economy is adjusted up or down in accordance with the sum of consumer-driven horsepower adjustment and any horsepower giveback. Horsepower giveback is horsepower demand already considered in fuel economy estimates but not actually taken. Therefore, fuel economy estimates need to be adjusted upward for any giveback. Technology-driven effects are already accounted for in the technology incremental fuel economy values. Note that the consumer and giveback estimates are aggregated into the consumer preference parameter to facilitate the series of ensuing fuel economy and price algorithms, recognizing that giveback is negative demand

\[
PERF_{ADJHP_{year}} = PERF_{ADJHP_{year}} - HP_{GIVEBACK_{year}},
\]

\[
ADJFE_{year} = -0.22 * PERF_{ADJHP_{year}} - (0.56 * SIGN * PERF_{ADJHP_{year}}^2),
\]

where

\[
SIGN = -1, \text{ if } PERF_{ADJHP} < 0, \text{ and } 1 \text{ otherwise.}
\]

The final vehicle fuel economy is then determined as follows

\[
FE_{year} = FE_{Year} \times (1 + ADJFE_{year}).
\]

b) Vehicle price

Vehicle price is finally estimated

\[
PRICE_{year} = PRICE_{year} + PERF_{ADJHP_{year}} \times VALUE_{PERF_{year}}.
\]

Note that as these calculations are final adjustments and the results do not feed back into the horsepower adjustment equation.

The above equations result in an estimate of the market shares of the considered technologies within each class of vehicle. The effective range for each vehicle class is then calculated. The implication is that market penetration is affected and changes over time.

c) Vehicle range (subroutine FEMRANGE)

For most vehicles, range is a function of tank size and fuel economy as shown in below

\[
RANGE_{year,itdv} = TANKSIZE \times FE_{year, gasoline} \times (1 + AFVADJRN_{itdv}) \times 0.7,
\]

where

\[
RANGE_{year,itdv} = \text{ vehicle range (fuel economy x tank size)};
\]

\[
TANKSIZE = \text{ tank size (gallons) for a gasoline vehicle of the same market class}; \text{ and}
\]
AFVADJRNadv = range adjustment, relative to gasoline vehicle (exogenous, from Block Data).

The range adjustment factor (AFVADJRN) is derived through engineering judgment and is based on current gasoline vehicle tank sizes, likely relative fuel capacity for, and the actual base year relative fuel economies of gasoline and AFVs.

The range for electric battery vehicles is set at a fixed range. For an EV100 vehicle the range is set to 90 miles, for an EV200 the range is set to 200 miles, and for an EV300 the range is set to 300 miles. The range is an engineering judgment of the best performance likely to be obtained from a production electric-powered vehicle in the near future. The next step is to calculate the market shares of each vehicle class within each CAFE group.

8. Calculate size class market shares (subroutine CGSHARE)

This routine calculates vehicle size class market shares within each corporate average fuel economy group. Car market shares for each class are derived by calculating an increment from the previous year’s value. The market share increment (or decrement) is determined by the following equation

\[
DIFFLN_{year} = A \cdot \ln(\text{year} - 2018) + B \cdot \ln\left(\frac{\text{FUEL_COST}_{year}}{\text{FUEL_COST}_{year-1}}\right) + C \cdot \ln\left(\frac{\text{INCOME}_{year} - \$13,000}{\text{INCOME}_{year-1} - \$13,000}\right) + D \cdot \ln\left(\frac{\text{PRICE}_{year, gasoline}}{\text{PRICE}_{year-1, gasoline}}\right),
\]

where

\[
DIFFLN_{year} = \text{log market share increment compared with the previous year}; \text{ and}
\]

\[
A, B, C, D = \text{coefficients, elasticities, exogenously introduced from trnldv.xlsx.}
\]

The model then solves for the log-share ratio for each size class, \(RATIO_LN \)

\[
RATIO_LN = DIFFLN_{year} + \ln\left(\frac{\text{CLASS_SHARE}_{\text{iregn,iclp,ntsalyr}}}{1 - \text{CLASS_SHARE}_{\text{iregn,iclp,ntsalyr}}}\right),
\]

where

\[
\text{CLASS_SHARE}_{\text{iregn,iclp,ntsalyr}} = \text{size class market share in year nhtsalyr}; \text{ and}
\]

\[
nhtsalyr = \text{last year of National Highway Traffic Safety Administration historical data.}
\]

The model solves for the class market share

\[
\text{CLASS_SHARE}_{\text{iregn,iclp,year}} = \frac{e^{RATIO_LN}}{1 + e^{RATIO_LN}},
\]

The model normalizes so that shares total 100% within each CAFE group

\[
\text{CLASS_SHARE}_{\text{iregn,iclp,year}} = \frac{\text{CLASS_SHARE}_{\text{iregn,iclp,year}}}{\sum_{i=1}^{n} \text{CLASS_SHARE}_{\text{iregn,iclp,year}}},
\]

9. Calculate CAFE (subroutine CAFECALC)
This routine calculates the corporate average fuel economy (CAFE) for each of the 11 CAFE groups:

- a. Domestic Car
- b. Asian Car
- c. European Car
- d. Luxury Sport Car
- e. HAV Car
- f. Truck—Manufacturer Group 1—Domestic
- g. Truck—Manufacturer Group 2—Domestic
- h. Truck—Manufacturer Group 3—Domestic
- i. Truck—Manufacturer Group 4—Import
- j. Truck—Manufacturer Group 5—Import
- k. Truck—Manufacturer Group 6—HAV

For each vehicle group the CAFE compliance calculation proceeds as follows:

\[
CafeMpgWgt_{i\text{typ}_i\text{cl}_i\text{grp}_i\text{year}} = \frac{\sum_{i=1}^{q} CLASS_SHARE_{i\text{reg}_i\text{cl}_i\text{grp}_i\text{year}} \cdot apshrSS_{i\text{typ}_i\text{cl}_i\text{reg}_i\text{ldv}_i}}{\sum_{i=1}^{n} LDV_MPG_CL_{i\text{typ}_i\text{ldv}_i\text{cl}_i\text{year}}}.
\]

(71)

Flex-fuel and dedicated AFVs earn fuel economy credits that last until 2019 for flex-fuel vehicles and do not expire for dedicated AFVs. Fuel economy for each manufacturer is then harmonically weighted based on vehicle sales by size class and fuel type (NewMPG).

This CAFE estimate is then compared with the legislative standard for the 11 manufacturer groups for each year. The two standards are the traditional standard, represented by the exogenous variable, \(CAFE_STAND_{Group, Year}\), and the alternative standard, \(FPMpgGrp_{Group, Year}\). \(FPMpg_Class, Group, Year\) is computed for each class in each group based on the footprint. Passenger cars use the traditional standard before 2011 and the alternative standard for subsequent years.

Light trucks use the traditional standard before 2008. If the year is between 2008 and 2011, the light truck standard is the lesser of the alternative footprint mpg standard and the traditional standard. If the alternative standard is chosen, then light trucks must continue to use it in later years.

The alternative CAFE standard is calculated for 2011 as follows:

\[
FPMpg_{\text{class, group, year}} = \left(\frac{1}{CFCoeffA_{\text{year}}} + \frac{1}{CFCoeffB_{\text{year}}} - \frac{1}{CFCoeffC_{\text{year}}}\right) \cdot \frac{FPrint_{\text{cl}_i\text{grp}_i\text{year}} - CFCoeffC_{\text{year}}}{\frac{CFCoeffC_{\text{year}}}{1+e}}^{-1},
\]

(72)

where

- \(CFCoeffA_{\text{year}}\) = the maximum fuel economy target for cars or trucks by year;
- \(CFCoeffB_{\text{year}}\) = minimum fuel economy target for cars or trucks by year;
- \(CFCoeffC_{\text{year}}\) = footprint midway between by year;
CFCoef\textsubscript{D,year} = rate of change parameter by year; and

\[FPrint_{icl,igp,year} = \text{footprint for each class and group of cars or trucks by year}. \]

The alternative CAFE standard for 2012 and subsequent years is calculated as the greenhouse gas emissions equivalent fuel economy value

\[\text{AFVMP}_{\text{P,F,B,year}} = \frac{1}{\text{MIN} \left(\text{MAX} \left(\left((\text{CFCoefC2} \cdot FPrint) + \text{CFCoefD2} \right) \cdot \frac{1}{\text{CFCoefA2}}, \frac{1}{\text{CFCoefB2}} \right) \right)}. \]

(73)

where

\begin{align*}
\text{CFCoefA2} & = \text{the function’s upper fuel economy limit for cars or trucks by year;} \\
\text{CFCoefB2} & = \text{the function’s lower fuel economy limit for cars or trucks by year;} \\
\text{CFCoefC2} & = \text{the slope of the function; and} \\
\text{CFCoefD2} & = \text{the intercept of the sloped portion of the function.}
\end{align*}

Finally, the individual manufacturer group’s CAFE is compared with the CAFE standard and passes if greater or equal to the standard used.

The banking of miles per gallon (mpg) credits occurs in the first pass of the fuel economy calculation. On the first pass, if the manufacturing group passes CAFE, then it banks its excess mpg credits. Otherwise, it pulls the credit values out of the bank and withdraws the older credits first. There is no credit trading in the model.

10. CAFE standard compliance (subroutine \textit{CAFETEST})

This algorithm, which is called after the third pass of the MTCC, adjusts sales of electric drive train and diesel light-duty vehicles so that CAFE standards are met, followed by a corresponding decrease in the sale of gasoline vehicles. New vehicle sales are re-computed for the alternative fuel types, \textit{CAFETYP}, in the most cost-effective order determined by incremental vehicle cost and fuel savings over a specified period. For passenger cars, the EPA size classes are used and for light-duty trucks, classes are defined for SUVs, pickups, and vans by gross vehicle weight rating. For each vehicle group, the CAFE calculation proceeds as follows.

For any of the 11 vehicle manufacturing groups described above that fail to meet the CAFE standard, a new set of sales values is computed through the following steps. First, the model calculates the incremental increase in AFV share of total national sales, \textit{DELTA}.

\[\text{DELTA}_{icl,igp,year} = 0.0125 * \text{CLASS_SHARE}_{icl,igp,year} * \text{SALESHR}_{igp,year}, \]

(74)

where

\[\text{SALESHR}_{igp,year} = \text{car and light truck sales share by manufacturer group}. \]

New sales are computed up to 20 times at increments of 1.25%. A new set of CAFE calculations is made.
for each increment and compared with the CAFE standard. Further sales stop after successfully passing the standard. New vehicle sales are computed as follows

\[
AVSALES_{NEW_igp,icl,ildv,year} = AVSALES_{igp,icl,ildv,year} + \Delta T_{i_cl,igp},
\]

(75)

\[
AVSALES_{igp,icl,_gasoline,year} = AVSALES_{igp,icl,_gasoline,year} - \Delta T_{i_cl,igp}.
\]

(76)

The new shares, APSHR55, are then recalculated. Total sales, AVSALEST, remain unchanged.

If at any time sales of conventional gasoline or flex-fuel vehicles become negative, sales of these vehicles are increased until sales reach a non-negative number, and vehicle sales of electric drive train or diesel vehicles are correspondingly decreased. There are constraints on new vehicle sales. For each CAFETYP, sales adjustments are limited to 20 cycles to meet the standard.

11. Combine manufacturer group vehicle attributes

In subsequent submodules of the Transportation Sector Demand Module, vehicle sales by manufacturer groups are not treated separately. Each vehicle characteristic for each size class of car and light truck needs to have an aggregate estimate. Aggregate vehicle characteristics are computed as weighted sums of vehicle size class totals, where each vehicle size class is weighted by its relative share of the market (PERGRP). These numbers are assumed to be constant across classes and time and have been obtained from NHTSA data.

\[
LDV_MPG_CL_{ivtyp,ildv,icl,year} = \frac{1}{\sum_{gp} PERGRP_{igp,icl,year,ildv'} \cdot CE_{icl,igp,year,ildv'}}
\]

(77)

\[
LDVHPW_{ivtyp,ildv,icl,year} = \sum_{gp} PERGRP_{igp,icl,year,ildv} \cdot HP_{i_cl,igp,year,ildv'}
\]

(78)

\[
LDV_PRI_{ivtyp,ildv,icl,year} = \sum_{gp} PERGRP_{igp,icl,year,ildv} \cdot PRICE_{i_cl,igp,year,ildv'}
\]

(79)

\[
LDV_RNG_{ivtyp,ildv,icl,year} = \sum_{gp} PERGRP_{igp,icl,year,ildv} \cdot RANGE_{i_cl,igp,year,ildv'}
\]

(80)

\[
WGT_{ivtyp,ildv,icl,year} = \sum_{gp} PERGRP_{igp,icl,year,ildv} \cdot WEIGHT_{i_cl,igp,year,ildv'}
\]

(81)

where

\[
LDV_MPG_CL_{ivtyp,ildv,icl,year} = \text{vehicle fuel economy;}
\]

\[
LDVHPW_{ivtyp,ildv,icl,year} = \text{vehicle horsepower;}
\]

\[
LDV_PRI_{ivtyp,ildv,icl,year} = \text{vehicle price;}
\]

\[
LDV_RNG_{ivtyp,ildv,icl,year} = \text{vehicle range;}
\]

\[
WGT_{ivtyp,ildv,icl,year} = \text{vehicle weight (lbs); and}
\]

\[
PERGRP_{igp,icl,year} = \text{size class market share by manufacturer, for car and light truck.}
\]
These numbers are then passed to the Consumer Vehicle Choice Component (CVCC) and the overall fleet stock component to produce estimates of fleet efficiencies.

Regional Sales Component

The Regional Sales Component is a simple accounting mechanism using exogenous estimates of new car and light truck sales and the results of the MTCC to produce estimates of regional sales and the characteristics of light-duty vehicles that are then passed to the Light-Duty Vehicle Stock Component.

Nationwide estimates of total new vehicle sales come from the NEMS Macroeconomic Activity Module. To comply with the NEMS requirement for regional fuel consumption estimates, the Regional Sales Component allocates new car and light truck sales among the nine census divisions and permits regional variations in vehicle attributes. Because of geographic representation in this component, the Transportation Sector Demand Module can analyze regional differences in AFV legislation. For example, California’s Zero Emission Vehicles Program requires a minimum percentage of vehicles sold to be zero emission vehicles, transitional zero emission vehicles, and partial zero emission vehicles that is met through credits obtained from their sale. The program has been adopted by Connecticut, Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island, and Vermont, and is included in the Transportation Sector Demand Module.

The Regional Sales Component is not a separate component in itself, but rather a series of intermediate calculations used to generate several regional variables which are used in subsequent steps in the Transportation Sector Demand Module. It comprises two subroutines: CGSHARE and TREG. The first calculates light vehicle market class shares and average horsepower and weight for cars and light trucks, and the second generates regional shares of fuel consumption, driving demand, and sales of vehicles by market class.

1. Redistribute MTCC sale shares among eight size classes

The first stage in this component involves the estimation of non-fleet sales of cars and light trucks for each of the 8 size classes and 11 manufacturer groups described in the MTCC. The fraction of car and truck sales attributed to fleets is assumed to vary over time across size classes and the estimation period. Although the fuel economies of the 11 manufacturer groups have already been combined, the separate market shares are recorded and the calculations are performed separately for each manufacturer group.

First, car and light truck sales are determined after getting total sales from the Macroeconomic Activity Module. Total sales of trucks are shared into the following gross vehicle weight rating (GVWR) categories: trucks less than 8,500 pounds, included in the LDV Submodule; trucks from 8,500 to 10,000 pounds, modeled separately in the Class 2b Vehicle Component; and trucks 10,000 pounds, included in the Highway Freight Submodule. In addition, the LDV Submodule estimates the allocation of LDV sales between cars and light trucks to capture the changing purchase patterns of consumers in recent years.

First, estimate the percentage of total light vehicles less than 8,500 pounds GVW that are cars, CARSHRT
\[
CARSHRT_{\text{Year}} = e^{\left(\beta_0 (1 - \rho) + (\rho \log(\text{CARSHARE}_{\text{Year-1}}) + \beta_1 [\log(\text{INC00$16$}_{\text{Year}}) - \rho \log(\text{INC00$16$}_{\text{Year-1}})] + \beta_2 [\log(\text{PMGTR00C}_{\text{Year}}) - \rho \log(\text{PMGTR00C}_{\text{Year-1}})] + \beta_3 [\log(\text{AHPCAR}_{\text{Year-1}}) - \rho \log(\text{AHPCAR}_{\text{Year-2}})] + \beta_4 [\log(\text{AWTCAR}_{\text{Year-1}}) - \rho \log(\text{AWTCAR}_{\text{Year-2}})] + \beta_5 [\log(\text{TRUEMPG}_{\text{Year-1}}) - \rho \log(\text{TRUEMPG}_{\text{Year-2}})] + \beta_6 [\log(\text{DUMM}_{\text{Year}}) - \rho \log(\text{DUMM}_{\text{Year-1}})]\right)},} \tag{82}
\]

where

\begin{align*}
\text{CARSHARE}_{\text{Year}} &= \text{historic car share}; \\
\text{INC00$16$}_{\text{Year}} &= \text{disposable income per capita for population age 16+, expressed in 2000 dollars}; \\
\text{PMGTR00C}_{\text{Year}} &= \text{fuel price in 2000$ per gallon}; \\
\text{AHPCAR}_{\text{Year}} &= \text{average car horsepower}; \\
\text{AWTCAR}_{\text{Year}} &= \text{average car weight}; \\
\text{TRUEMPG}_{\text{Year}} &= \text{vehicle fuel economy}; \\
\text{DUMM}_{\text{Year}} &= \text{dummy variable}; \text{ and} \\
\rho &= \text{autocorrelation coefficient for the difference equation}.
\end{align*}

Calculate new car and light truck (class 1 and 2a, less than 8,500 pounds GVWR) sales

\[
\text{NEWCARS}_{\text{Year}} = (\text{MC_SUVA}_{\text{Year}} + \text{TEMPCLS12A}_{\text{Year}}) \times \text{CARSHARE}_{\text{Year}},
\]

\[
\text{NEWCLS12A}_{\text{Year}} = (\text{MC_SUVA}_{\text{Year}} + \text{TEMPCLS12A}_{\text{Year}}) \times (1 - \text{CARSHARE}_{\text{Year}}), \tag{83}
\]

where

\begin{align*}
\text{NEWCARS}_{\text{Year}} &= \text{Total new car sales}; \\
\text{NEWCLS12A}_{\text{Year}} &= \text{Total new light truck sales}; \\
\text{MC_SUVA}_{\text{Year}} &= \text{Total car sales, from the Macroeconomic Activity Module}; \\
\text{TEMPCLS12A}_{\text{Year}} &= \text{Sales of class 1 and 2 light trucks}; \text{ and} \\
\text{CARSHARE}_{\text{Year}} &= \text{Share of light vehicles less than 8,500 GVW that are cars}.
\end{align*}

Calculate non-fleet, non-commercial sales of cars (groups=1-5) and light trucks (groups=6-11) across the 8 size classes

\[
\text{NVSTSC}_{\text{iregn,icl-year}} = \frac{\text{CLASS_SHARE}_{\text{iregn,icl-year}} \times \text{NEWCARS}_{\text{iregn,year}} \times (1 - \text{FLTCRAT}_{\text{year}}) \times \text{SALESR}_{\text{iregn,icl-year}}}{\text{1-5-year}},
\]

where

\begin{align*}
\text{CLASS_SHARE}_{\text{iregn,icl-year}} &= \text{class share, from the classification module}; \\
\text{NEWCARS}_{\text{iregn,year}} &= \text{new car sales, from the classification module}; \\
\text{FLTCRAT}_{\text{year}} &= \text{fleet ratio}; \\
\text{SALES}_{\text{iregn,icl-year}} &= \text{sales of cars and light trucks, from the classification module}; \text{ and} \\
\text{1-5-year} &= \text{year for class share}.
\end{align*}
where

\[NVS7SC_{\text{ireg}, i=p=6-11, i=11, \text{year}} = \text{CLASS_SHARE}_{\text{ireg}, i=p=6-11, \text{year}} \times \text{NEWCLS12A}_{\text{ireg}, \text{year}} \times \left(1 - \text{FLTTRAT}_{\text{year}}\right) \times \text{SALESHR}_{\text{ireg}, i=p=6-11, \text{year}}, \tag{84} \]

\[NVS7SC_{\text{ireg}, i=p, i=11, \text{year}} = \text{non-fleet, non-commercial sales}; \]

\[\text{FLTCRAT}_{\text{year}} = \text{fraction of new cars purchased by fleets by year}; \text{ and} \]

\[\text{FLTTRAT}_{\text{year}} = \text{fraction of new light trucks purchased by fleets by year}. \]

Sales are then combined for the 11 manufacturing groups, as follows

\[NCSTSC_{\text{ireg}, i=1, \text{year}} = \sum_{i=p=1}^{5} NVS7SC_{\text{ireg}, i=p, i=11, \text{year}}, \]

\[NLTSTSC_{\text{ireg}, i=1, \text{year}} = \sum_{i=p=6}^{11} NVS7SC_{\text{ireg}, i=p, i=11, \text{year}}, \tag{85} \]

where

\[NCSTSC_{\text{ireg}, i=1, \text{year}} = \text{sales of cars by the EPA vehicle size classes}; \text{ and} \]

\[NLTSTSC_{\text{ireg}, i=1, \text{year}} = \text{sales of light trucks by vehicle size class}. \]

The estimation of non-fleet market shares for cars and light trucks by market class starts with the most recent historical data reported by the National Highway Traffic Safety Administration and assumes growth at the same rate as the non-fleet, non-commercial share of sales of cars and light trucks

\[PASSHRR_{\text{ireg}, i=1, \text{year}} = PASSHRR_{\text{ireg}, i=1, \text{year}} - 1 \times \left(\frac{\sum_{i=1}^{11} NCSTSC_{\text{ireg}, i=1, \text{year}}}{\sum_{i=1}^{11} NCSTSC_{\text{ireg}, i=1, \text{year}} - 1} \right) \tag{86} \]

and

\[LTSSHRR_{\text{ireg}, i=1, \text{year}} = LTSSHRR_{\text{ireg}, i=1, \text{year}} - 1 \times \left(\frac{\sum_{i=1}^{11} NLTSTSC_{\text{ireg}, i=1, \text{year}}}{\sum_{i=1}^{11} NLTSTSC_{\text{ireg}, i=1, \text{year}} - 1} \right) \]

where

\[PASSHRR_{\text{ireg}, i=1, \text{year}} = \text{non-fleet market share for cars}; \text{ and} \]

\[LTSSHRR_{\text{ireg}, i=1, \text{year}} = \text{non-fleet market share for light trucks}. \]

The weighted average horsepower of cars and light trucks, weighted by the non-fleet market shares, is then calculated
\[AHP_{CAR_i,year} = \sum_{i=1}^{8} [P_ASSHRR_{i,year} \times LDV_HPW_{i,year}], \]
\[AHP_{TRUCK_i,year} = \sum_{i=1}^{8} [L_TSSHRR_{i,year} \times LDV_HPW_{i,year}], \]

(87)

A similar calculation occurs for the average weight of cars (AWT_CAR) and light trucks (AWT_TRUCK), weighted by the non-fleet market shares, as shown in the above equations.

2. Determine regional values of fuel demand and estimate pre-2012 regional vehicle sales

Regional demand shares for each of the 11 fuels, as defined in the State Energy Data System (SEDS), are
initialized, ensuring that no region has a zero share in the preceding period. Shares are then adjusted for
change over time, assuming growth at the rate of personal income growth in each region, and they are
renormalized so the shares add to 1.0

\[SEDSHR_{f_i,year} = \frac{MC_YPD_i,year}{\sum_{i=1}^{9} \frac{MC_YPD_i,year}{MC_YPD_i,year}}, \]

(88)

where

\[SEDSHR_{f_i,year} = \text{regional share of the consumption of a given fuel in period, year; and} \]

\[MC_Regional_YPD_i,year = \text{regional estimated disposable personal income.} \]

These shares are passed to other submodules in the Transportation Sector Demand Module and used
for the first year computation of VMT_LDR and VMTEER, in this case 1995.

The national total of new car and light truck sales is then allocated among regions, based on the
assumption that regional demand for new vehicles is proportional to regional travel demand. The
calculation proceeds as follows:

Estimate regional shares of driving demand\(^8\)

\[VMTL_{i,year} = VMTL_{i,year} \times LICDRIVER_{i,year}, \]

(89)

where

\[VMTL_{i,year} = \text{VMT per licensed driver from historical data; and} \]

\[LICDRIVER_{i,year} = \text{total regional licensed drivers.} \]

Calculate regional VMT shares (RSHR)

\(^8\) The development and estimation of the VMT equation is described in detail later, in the VMT
Component (Section 3). The calculation here is solely to estimate regional travel shares.
\[
RSHR_{\text{regn.year}} = \left(\frac{\sum_{iagr=1}^{5} \sum_{imf=1}^{2} VMTLDV_{iagr,imf,\text{regn.year}}}{\sum_{iagr=1}^{5} \sum_{imf=1}^{2} VMTLDV_{iagr,imf,\text{regn.year}}} \right)^{5/2},
\]

For historical data before 2012, allocate non-fleet car and light truck sales according to regional sales shares

a) Estimate regional car and light truck sales based on historical sales per licensed driver, \(\text{NewCarPerLD} \) and \(\text{NewLTPerLD} \) respectively

\[
cdcar_{\text{regn}} = \text{NewCarPerLD}_{\text{regn.year}} \times \sum_{iagr=1}^{5} \sum_{imf=1}^{2} \text{LICDRIVER}_{iagr,imf,\text{regn.year}},
\]

\[
cdlt_{\text{regn}} = \text{NewLTPerLD}_{\text{regn.year}} \times \sum_{iagr=1}^{5} \sum_{imf=1}^{2} \text{LICDRIVER}_{iagr,imf,\text{regn.year}},
\]

(91)

b) Estimate regional shares of car and light truck sales, \(cdcarshr \) and \(cdltsahr \), respectively

\[
ccdcarshr_{\text{regn.year}} = \frac{cdcar_{\text{regn}}}{c_{\text{regn}}},
\]

\[
ccdltshr_{\text{regn.year}} = \frac{cdlt_{\text{regn}}}{c_{\text{regn}}},
\]

(92)

c) Calculate pre-2012 regional car and light truck sales, \(NCS \) and \(NLTS \), respectively

\[
NCS_{\text{regn,icl.year}} = NCS_{\text{national,icl.year}} \times cdcarshr_{\text{regn.year}},
\]

\[
NLTS_{\text{regn,icl.year}} = NLTS_{\text{national,icl.year}} \times cdltsahr_{\text{regn.year}}.
\]

(93)

Consumer Vehicle Choice Component (CVCC)

The CVCC is a projection tool designed to support the LDV Submodule in the Transportation Sector Demand Module. The objective of the CVCC is to estimate the market penetration of conventional and AFVs from 1995 to 2050. To project technology market shares, the component uses estimates of the following variables and vehicle attributes: new car fuel economy (obtained from the MTCC), vehicle price, vehicle range, fuel availability, battery replacement cost, performance (measured by the horsepower-to-weight ratio), home refueling capability, maintenance costs, luggage space, make and model diversity or availability, and fuel price estimates generated by NEMS.

The component is useful for assessing the market penetration of conventional and AFVs and for analyzing policies that might affect their penetration.

The CVCC uses attribute-based discrete choice techniques and logit-type choice functions, which represent a demand function for vehicle sales in the United States. The demand function uses projections of the changes in vehicle and fuel attributes for the considered technologies to estimate the market share penetration for the various technologies.

The demand function is a logit discrete choice model represented as follows
\[
\log \left(\frac{P_k}{1 - P_k} \right) = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \cdots + \beta_k X_k + \epsilon_k,
\]

where

\begin{align*}
P_k &= \text{probability of consumer choosing vehicle (k);} \\
\beta_1 &= \text{constant term;} \\
\beta_1, \ldots, \beta_k &= \text{coefficients of vehicle and fuel attributes; and} \\
X_1, \ldots, X_k &= \text{vehicle and fuel attributes.}
\end{align*}

The basic structure of the projection component of the market share estimation for AFV sales is a three-dimensional matrix format. The matrix consists of \(I\) vehicle technology types, \(K\) attributes for each technology, and \(T\) year of projection. Each cell \(C_{ikt}\) in the \(C\) matrix contains a coefficient reflecting the value of attribute \(k\) of vehicle technology \(i\) for the given year \(t\).

The calculation of the market share penetration of AFV sales is expressed in the following equations

\[
S_{it} = P_{it} = \sum_{n=1}^{N} \frac{P_{itn}}{N},
\]

\[
P_{itn} = \frac{e^{V_{itn}}}{\sum_{i=1}^{T} e^{V_{itn}}},
\]

where

\begin{align*}
S_{it} &= \text{market share sales of vehicle type } i \text{ in year } t; \\
P_{it} &= \text{aggregate probability over population } N \text{ of choosing type } i \text{ in year } t; \\
n &= \text{individual } n \text{ from a population of size } N; \\
P_{itn} &= \text{probability of individual } n \text{ choosing type } i \text{ in year } t; \text{ and} \\
V_{itn} &= \text{function of the } K \text{ elements of the vector of attributes (X) and coefficients (}\beta)\text{, generally linear in parameters, in other words,} \\
V &= \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k \\
\text{and } V \text{ is specific to vehicle } i, \text{ year } t, \text{ and individual } n.
\end{align*}

This formulation assumes that the share of each technology is equivalent to the aggregate probability over the population of choosing that technology, which is produced by summing the individual
probability estimates. The individual probabilities are a function of the ratio of the V’s (taken as an exponential). The market share of each vehicle type is ultimately determined by its attributes relative to the attributes of all competing vehicles.

The coefficients of the vehicle attributes in the CVCC are assumed to remain constant over time, which enables the calculation of the C matrix to be less cumbersome. However, the methodology can use either changing or constant coefficient values for the vehicle attributes. The C matrix is replicated for each year of the analysis and for each target group. A V value is produced for each of the vehicle technologies and each of the target regions, sizes, and scenarios.

The CVCC operates in three stages by using a bottom-up approach to determine the eventual market shares of conventional and AFVs. Results from the lower stages are passed to the next higher stage in the sequence. Because the prices of AFVs are functions of sales volume (estimated in the MTCC), the CVCC goes through two iterations. First, the CVCC estimates sales volume using the previous year’s volume-dependent prices and then re-estimates prices and consequent sales.

The component projects market shares for 14 alternative fuel technologies as well as for conventional gasoline and diesel technologies. As stated above, the tree structure of the CVCC-logit model has three stages. In the first stage, the shares of vehicle sales are determined for five aggregate vehicle groups: conventional, hybrid, dedicated alternative fuel, fuel cell, and electric. The second stage of the logit model subdivides each of the five groups to estimate sales shares for the specific vehicle types within each group. The conventional vehicles consist of gasoline, diesel, flex-fuel ethanol, CNG/LNG, and LPG bi-fuels. Hybrid electric vehicles comprise gasoline and diesel hybrids and gasoline plug-in hybrid electric. Dedicated CNG/LNG and LPG make up the dedicated AFV group. Fuel cell vehicles include methanol reformers and hydrogen-based fuel cells. The fifth group is represented by 100-, 200-, and 300-mile-range electric vehicles. The third stage of the CVCC estimates the proportion of the travel in which flex or bi-fuel vehicles are using the alternative or gasoline fuel.

Several vehicle attributes are weighted and evaluated in the utility function. The following vehicle and fuel attributes are considered: vehicle price, fuel cost or cost of driving per mile (fuel price divided by fuel efficiency), vehicle range, fuel availability, battery replacement cost, performance (measured by the horsepower-to-weight ratio), home refueling capability, maintenance costs, luggage space, and make and model diversity or availability.

The vehicle attributes of vehicle purchase price, fuel cost, acceleration, maintenance, battery cost, and fuel availability are discussed in detail below.

The model first reads in the vehicle purchase price calculated in the MTCC

\[\text{PSPR}_{\text{ivtyp,ildv,icl}, \text{year}} = \text{LDV}_\text{PRI}_{\text{ivtyp,ildv,icl,year}}, \] \hspace{1cm} (96)

where

\[\text{LDV}_\text{PRI}_{\text{ivtyp,ildv,icl}, \text{year}} = \text{aggregate vehicle price, obtained from MTCC, and constrained not to drop lower than the gasoline vehicle price plus the high volume differential between gasoline and an advanced technology vehicle (ATV).} \]
Next the model estimates fuel costs per mile traveled

\[
FLCOST_{\text{ivtyp,ildv,icl,iregn,year}} = \frac{\text{FPRICE}_{\text{ildv,iregn,year}}}{\text{LDV MPG CL}_{\text{ivtyp,ildv,icl,year}}},
\]

where

- \(FLCOST_{\text{ivtyp,ildv,icl,iregn,year}} \) = fuel operating costs for each technology, in nominal dollars per mile;
- \(\text{FPRICE}_{\text{ildv,iregn,year}} \) = vehicle fuel price, in nominal dollars per gallon; and
- \(\text{LDV MPG CL}_{\text{ivtyp,ildv,icl,year}} \) = aggregate vehicle fuel economy.

The model estimates the time, in seconds, the vehicle requires to accelerate from 0 to 60 miles per hour (mph)

\[
ACCL_{\text{ivtyp,ildv,icl,year}} = e^{-0.00275 \times \left(\frac{\text{LDVHPW}_{\text{ivtyp,ildv,icl,year}}}{\text{WGT}_{\text{ivtyp,ildv,icl,year}}} \right)^{-0.776}},
\]

where

- \(ACCL_{\text{ivtyp,ildv,icl,year}} \) = acceleration time, in seconds, to accelerate from 0 to 60 miles per hour;
- \(\text{LDVHPW}_{\text{ivtyp,ildv,icl,year}} \) = horsepower; and
- \(\text{WGT}_{\text{ivtyp,ildv,icl,year}} \) = weight.

The model then calculates vehicle maintenance and battery costs in nominal dollars

\[
\begin{align*}
\text{MAINT}_{\text{ivtyp,1,ildv,icl,year}} &= \text{MAINTC\text{AR}_{\text{ildv,icl}}} \times \text{TMC}_P\text{GDP}_{\text{year}}, \\
\text{MAINT}_{\text{ivtyp,2,ildv,icl,year}} &= \text{MAINTTRK}_{\text{ildv,icl}} \times \text{TMC}_P\text{GDP}_{\text{year}},
\end{align*}
\]

where

- \(\text{MAINTC\text{AR}_{\text{ildv,icl}}} \) = car maintenance and battery costs;
- \(\text{MAINTTRK}_{\text{ildv,icl}} \) = light truck maintenance and battery cost; and
- \(\text{TMC}_P\text{GDP}_{\text{year}} \) = GDP deflator.

Fuel availability (TALT2) subroutine methodology

The fuel availability variable attempts to capture the dynamic associated with the increasing number of refueling stations. The premise is that the number of refueling stations is proportional to the number of vehicles. Therefore, as vehicle stocks accumulate over time, the number of refueling stations will increase as a function of a historical relationship between the number of refueling stations and vehicle stocks. Fuel availability is used in the logit-based CVCC as an input to determine the proportion of travel associated with the use of alternative fuels in a flex or bi-fuel vehicle. Fuel availability is also used in the utility function within the CVCC to allocate sales among various vehicle types or technology groups. The
The final fuel availability variable is configured as an index relative to the number of gasoline refueling stations.

Table 2 shows the mapping from engine technology fuel type to highway fuel type.

Table 2. Engine technology fuel type to highway fuel type

<table>
<thead>
<tr>
<th>Engine technology fuel type</th>
<th>Highway fuel type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>Gasoline</td>
</tr>
<tr>
<td>Gasoline and diesel hybrid, gasoline plug-in hybrid electric</td>
<td>Gasoline/diesel/electric</td>
</tr>
<tr>
<td>Flex-fuel ethanol</td>
<td>Ethanol/gasoline</td>
</tr>
<tr>
<td>Fuel cell methanol</td>
<td>Methanol</td>
</tr>
<tr>
<td>Bi-fuel and dedicated compressed natural gas (CNG)/liquefied</td>
<td>CNG/LNG/gasoline</td>
</tr>
<tr>
<td>natural gas (LNG)</td>
<td></td>
</tr>
<tr>
<td>Bi-fuel and dedicated liquefied propane gas (LPG)</td>
<td>LPG/gasoline</td>
</tr>
<tr>
<td>Dedicated electricity 100-, 200-, and 300-mile range</td>
<td>Electricity</td>
</tr>
<tr>
<td>Hydrogen fuel cell</td>
<td>Hydrogen</td>
</tr>
</tbody>
</table>

The model then calculates the vehicle stocks by the highway fuel type to determine the number of refueling stations that might be using the fuel. It estimates the vehicle stock used to calculate needed refueling stations

\[
PREDSTK_{ifuel,year} = \sum_{ildv=1}^{16} \left[W_{ifuel,ildv} \times LDVSTK_{ildv,year-1} \right], \quad (100)
\]

where

\[
PREDSTK_{ifuel,year} = \text{predicted vehicle stock used to calculate needed refueling stations;}
\]

\[
LDVSTK_{ildv,year-1} = \text{vehicle stock, by engine technology fuel type, 1 ... 16, using above mapping;}
\]

\[
W_{ifuel,ildv} = \text{weight given to assumed proportion of vehicle stock that refuel with a given fuel (for example, 25% of flex-fuel vehicles are fueled with flex-fuel, 75% are fueled with conventional gasoline); and}
\]

\[
ifuel = \text{highway fuel type, 1...8.}
\]

Next, the model estimates the number of new refueling stations needed to meet the requirements of the vehicle stock

\[
ALTSTAT_{ifuel,year} = ALTSTAT_{ifuel,year-1} + \frac{PREDSTK_{ifuel,year} - PREDSTK_{ifuel,year-1}}{STA_RAT_{ifuel}}, \quad (101)
\]

where

\[
ALTSTAT_{ifuel,year} = \text{total national level alternative fuel refueling stations based on historical ratio of vehicle stock per refueling station; and}
\]

\[
STA_RAT_{ifuel} = \text{ratio of refueling stations to vehicle stock based on history.}
\]
The total number of refueling stations is then allocated to the regions based on proportions of vehicle sales that use a given fuel

\[\text{FUELVSAL}_{\text{iregn},\text{fuel},\text{year}} = \text{NCSTECH}_{\text{iregn},\text{ict},\text{fuel},\text{year}} + \text{NLTECH}_{\text{iregn},\text{ict},\text{fuel},\text{year}} \]

\[\text{AFVSHREG}_{\text{iregn},\text{fuel},\text{year}} = \frac{\text{FUELVSAL}_{\text{iregn},\text{fuel},\text{year}}}{\sum_{\text{iregn}=1}^{\text{FUELVSAL}}}, \quad (102) \]

\[\text{ALTSTA}_{\text{iregn},\text{fuel},\text{year}} = \text{AFVSHREG}_{\text{iregn},\text{fuel},\text{year}} \times \text{ALTSTAT}_{\text{fuel},\text{n}} \]

where

\[\text{NCSTECH}_{\text{iregn},\text{ict},\text{fuel},\text{year}} = \text{regional car sales by fuel type}; \]

\[\text{NLTECH}_{\text{iregn},\text{ict},\text{fuel},\text{year}} = \text{regional light truck sales by fuel type}; \]

\[\text{FUELVSAL}_{\text{iregn},\text{fuel},\text{year}} = \text{regional vehicle sales within a fuel type}; \]

\[\text{AFVSHREG}_{\text{iregn},\text{fuel},\text{year}} = \text{regional vehicle sales share within fuel type}; \]

\[\text{ALTSTA}_{\text{iregn},\text{fuel},\text{year}} = \text{regional alternative fuel refueling stations by fuel type}. \]

Fuel availability is estimated as an index relative to the number of gasoline refueling stations on a regional basis

\[\text{FAVAIL}_{\text{fuel},\text{year},\text{iregn}} = \frac{\text{ALTSTA}_{\text{iregn},\text{fuel},\text{year}}}{\text{ALTSTA}_{\text{iregn},\text{gasoline},\text{year}}}, \quad (103) \]

where

\[\text{FAVAIL}_{\text{fuel},\text{year},\text{iregn}} = \text{regional fuel availability index of alternative fuel, by highway fuel type}. \]

The model then populates regional fuel availability variable \(\text{FAVIL}_{\text{ildv},\text{iregn},\text{year}} \) by mapping highway fuels (\(\text{ifuel} \)) to vehicle types (\(\text{ildv} \)).

Light vehicle AFV market penetration (TALT2X) subroutine methodology

Operation of this component begins at the third level and progresses to the first level because the values from the third and second levels are used as a part of the evaluation in the second and first levels of the logit model. The component starts at level three because it is the value function for all vehicle technologies. At level two, the component then calculates the share of technologies within each group, using the results of level three. Next, at level one, the component computes the value function and the share of each group using the previous two level results. Finally, the market share of each vehicle technology is calculated using the shares computed in level one and level two.

1. Level three
First, the CVCC calculates the share of fuel use between alternative fuel and gasoline use within the flex and bi-fuel vehicles

\[X31T2_{\text{typ},icl} = X31T1_{\text{typ},icl} * \frac{XR_{\text{typ},icl}}{XFC_{\text{typ},icl}} + \frac{BETAFA231T_{\text{typ},icl}}{XFC_{\text{typ},icl}}, \]

where

\[BETAFA31T_{\text{typ},icl} = \frac{X31T2_{\text{typ},icl}}{X31T1_{\text{typ},icl}} \]

\[(104) \]

\[T = \text{technology (3 = methanol flex-fuel, 4 = E85, 5 = CNG/LNG bi-fuel, 6 = LPG bi-fuel)}; \]

\[X31T2_{\text{typ},icl} = \text{coefficient for vehicle range}; \]

\[X31T1_{\text{typ},icl} = \text{coefficient for level 3 multi-fuel generalized cost by vehicle type and market class}; \]

\[XR_{\text{typ},icl} = \text{coefficient for logit level 2 vehicle range}; \]

\[XFC_{\text{typ},icl} = \text{coefficient for logit level 2 fuel cost}; \]

\[BETAFA31T_{\text{typ},icl} = \text{coefficient for fuel availability linear element}; \]

\[BETAFA231T_{\text{typ},icl} = \text{coefficient for fuel availability non-linear element}. \]

Utility values (value of monetized and non-monetized attributes to consumers) are estimated for the general cost function. The values in Equations 105–107 below vary across other dimensions as indicated in the subsequent glossary, but they are shown with the key dimension for brevity.

\[UISUM_{\text{fueltyp}} = X31T1 * FLCOST_{\text{fueltyp}} + \frac{X31T2}{VRANG31T_{\text{fueltyp}}} + BETAFA31T * \]

\[e^{BETAFA231T + FAVAL31T_{\text{fueltyp}}}, \]

where

\[UISUM_{\text{fueltyp}} = \text{utility value function for vehicle attributes at multi-fuel level for vehicle type, technology type, market class, and region}; \]

\[VRANG31T_{\text{fueltyp}} = \text{vehicle range in miles for technology T as defined in Equation 104 above, by vehicle type and market class}; \]

\[FAVAL31T_{\text{fueltyp}} = \text{fuel availability indexed relative to gasoline for technology T as defined in Equation 104 above, by vehicle type and region}; \]

\[\text{fueltyp} = \text{index representing each of the fuels that can be used in a multi-fuel vehicle (for example, gasoline and E85 for a flex-fuel vehicle).} \]

Utility values are exponentiated and summed
\[
ESUM_{\text{fueltyp}} = e^{UISUM_{\text{fueltyp}}},
\]
\[
ETOT = \sum_{\text{fueltyp}} ESUM_{\text{fueltyp}},
\] (106)

where

\[ESUM_{\text{fueltyp}} = \text{exponentiated utility of value}; \text{ and}\]

\[ETOT = \text{sum of } ESUM \text{ across fuel types gasoline and alternative fuel in flex and bi-fuel vehicles}.\]

\[ETOT\] is sent to the general cost function to estimate third level market share values

\[
GENCOST = \frac{\log(ETOT)}{X_31T_1},
\] (107)

where

\[GENCOST = \text{general cost function or value from third level that is used as the value of fuel cost of driving at the second level of the logit}.\]

2. Level two

The second level of the CVCC calculates the market shares among the AFV technologies within each of the five first level groups. The five groups are as follows:

1. Conventional vehicles (gasoline, diesel, flex-fuel ethanol, and bi-fuels CNG/LNG and LPG)
2. Hybrid electric vehicles (gasoline and diesel hybrid electric and gasoline plug-in hybrid electric)
3. Dedicated AFVs (CNG/LNG and LPG fueled)
4. Fuel cell vehicles (methanol and hydrogen fueled)
5. 100-, 200-, and 300-mile range electric vehicles

Second level market shares are estimated separately for flex and bi-fueled vehicles versus shares estimated for dedicated fuel vehicles.

Second level logit model calculations for the flex and bi-fuel vehicles determine their share within the conventional vehicles, which represents the first of five groups at the first level as follows

\[
UISUM_{it} = X_{21}^{\text{i_typ, i_cl}} \cdot P_{SPR}^{\text{i_typ, idv, i_cl, year}} + X_{22}^{\text{i_typ, i_cl}} \cdot G\text{ENCAST} +
X_{24}^{\text{i_typ, i_cl}} \cdot B_{RCOST}^{25} \text{i_typ, idv, i_cl, year} + X_{25}^{\text{i_typ, i_cl}} \cdot A_{CCL}^{26} \text{i_typ, idv, i_cl, year} +
X_{26}^{\text{i_typ, i_cl}} \cdot H_{FUEL}^{27} \text{i_typ, idv, i_cl, year} + X_{27}^{\text{i_typ, i_cl}} \cdot M_{AINT}^{28} \text{i_typ, idv, i_cl, year} +
X_{28}^{\text{i_typ, i_cl}} \cdot L_{UGG}^{29} \text{i_typ, idv, i_cl, year} + X_{29}^{\text{i_typ, i_cl}} \cdot M_{M A V A I L}^{30} \text{i_typ, idv, i_reg, year} +
X_{210}^{\text{i_typ, idv, i_reg, year}} ,
\] (108)

where
UISUM_{jt} = utility value for the vehicle type (jt) at the second level within one of the five groups (jg) at the first level;

X21_{ttyp,icl} = coefficient for vehicle price at the second level in dollars;

X24_{ttyp,icl} = coefficient for battery replacement cost at the second level;

X25_{ttyp,icl} = coefficient for vehicle acceleration time from 0 to 60 miles per hour in seconds;

X26_{ttyp,icl} = coefficient for electric vehicle and PHEV home refueling capability;

X27_{ttyp,icl} = coefficient for maintenance cost in dollars;

X28_{ttyp,icl} = coefficient for luggage space indexed to gasoline vehicle;

X29_{ttyp,icl} = coefficient for vehicle make and model diversity availability relative to gasoline;

X210_{ttyp,ildv,iregn} = represents the utility the consumer assigns to the vehicle not captured in the vehicle attributes of the model;

PSPR_{ttyp,ildv,icl,year} = vehicle price at the second level in dollars;

BRCOST25_{ttyp,ildv,icl,year} = battery replacement cost at the second level;

HFUEL_{ttyp,ildv,icl,year} = electric vehicle and PHEV home refueling capability dummy variable (0,1 value);

MAINT_{ttyp,ildv,year} = maintenance cost in dollars;

LUGG_{ttyp,ildv,icl,year} = luggage space indexed to gasoline vehicle; and

MMAVAIL_{ttyp,ildv,icl,iregn,year} = vehicle make and model diversity availability relative to gasoline exogenously determined in trnldv.xml.

Second level logit model utility values for all vehicle types except the flex and bi-fuel vehicles are calculated. These values are used to determine their share within the five groups (jg) at the first level where: jg=2 for hybrid vehicles; jg=3 for dedicated alcohol and gaseous vehicles; jg= 4 for fuel cell vehicles; and jg=5 for electric vehicles.

\[
UISUM_{jt} = X21_{ttyp,ict} \times PSPR_{ttyp,ildv,icl,year} + X22_{ttyp,ict} \times FLCOST + X23_{ttyp,ict} \times \frac{1}{VRNG_{ttyp,ildv,icl,year}} + X24_{ttyp,icl} \times BRCOST25_{ttyp,ildv,icl,year} + X25_{ttyp,ict} \times ACCL_{ttyp,ildv,icl,year} + X26_{ttyp,ict} \times HFUEL_{ttyp,ildv,icl,year} + X27_{ttyp,ict} \times MAINT_{ttyp,ildv,icl,year} + X28_{ttyp,ict} \times LUGG_{ttyp,ildv,icl,year} + X29_{ttyp,ict} \times \log(MMAVAIL_{ttyp,ildv,icl,year}) + X210_{ttyp,ildv} + BETAFA2 \times e^{BETAFALT_{ttyp,ict}^{TAVal}},
\]
Exponentiate the utility value for each vehicle technology \((jt)\) and sum across all vehicle technologies within a given group \((jg)\)

\[
ESUM_{jt} = e^{UISUM_{jt}},
\]

\[
ETOT_{jg} = \sum_{jt \in jg} ESUM_{jt},
\]

\[
XSHARE_{jg,jt} = \frac{ESUM_{jt}}{ETOT_{jg}},
\]

where \(XSHARE_{jg,jt} = \) market share of AFVs by the five vehicle groups and by technology.

3. Level one

First, calculate the generalized cost function, \(GCOST\), as a function of the sum of the exponentiated utility values for each group

\[
GCOST_{jg} = \frac{\log(ETOT_{jg})}{X_{21_{ivtyp,icl}}},
\]

Calculate the utility value, \(UISUM\), based on the generalized cost function, for \(jg=1,5\)

\[
UISUM_{jg} = X_{11_{ivtyp,icl}} * GCOST_{jg},
\]

Exponentiate the utility value, then sum up exponentiated utility values across the groups. The share of each group is then estimated as exponentiated utility value divided by the sum of the values.

\[
ESUM_{jg} = e^{UISUM_{jg}},
\]

\[
YSHARE_{jg} = \frac{ESUM_{jg}}{\sum_{jg=1} ESUM_{jg}},
\]

\[
HAPSHR44_{ivtyp,icl,iregn,iddv} = XSHARE_{jg,jt} * YSHARE_{jg},
\]

where

\(YSHARE_{jg} = \) market share of alternative vehicles by the five vehicle groups; and

\(HAPSHR44_{ivtyp,icl,iregn,iddv} = \) percent of total light-duty vehicles sales by technology type.

Legislative mandates affecting alternative vehicle sales in subroutine TLEGIS

Subroutine TLEGIS adjusts light-duty vehicle sales to elect state-level mandates on the sales of Zero Emission Vehicles (ZEV), including allowance for Transitional Zero Emission Vehicles (TZEV) and Advanced Technology Partial Zero Emission Vehicles (ATPZEV) toward credit compliance. States that currently have these legislative requirements are California, Colorado, Connecticut, Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island, and Vermont. For this section of the model, the index \(iregn\) is in the set (Census Division 1 (participating states Connecticut, Maine, Massachusetts, Rhode Island, and Vermont), Census Division 2 (participating states New Jersey and New
York), Census Division 5 (participating state Maryland), Census Division 8 (participating state Colorado), and Census Division 9 (participating states California and Oregon)).

a) Calculate regional vehicle sales for cars and light trucks, by technology and market class

\[\text{vsales}_{\text{i_typ}=1, \text{icl}, \text{ireg}, \text{ildv}, \text{year}} = \text{APSHR44}_{\text{i_typ}=1, \text{icl}, \text{ireg}, \text{ildv}, \text{year}} \times \text{NCS}_{\text{ireg}, \text{icl}, \text{year}}, \]

\[\text{vsales}_{\text{i_typ}=2, \text{icl}, \text{ireg}, \text{ildv}, \text{year}} = \text{APSHR44}_{\text{i_typ}=2, \text{icl}, \text{ireg}, \text{ildv}, \text{year}} \times \text{NLTS}_{\text{ireg}, \text{icl}, \text{year}}, \]

where

\[\text{APSHR44}_{\text{i_typ}, \text{icl}, \text{ireg}, \text{ildv}, \text{year}} = \text{percent of total light-duty vehicles sales by technology type}; \]

\[\text{NCS}_{\text{ireg}, \text{icl}, \text{year}} = \text{regional non-fleet car sales by market class}; \text{and} \]

\[\text{NLTS}_{\text{ireg}, \text{icl}, \text{year}} = \text{regional non-fleet light truck sales by market class}. \]

b) Determine regional ZEV credit mandate compliance requirements

\[\text{ZEV-COVERED-SALES}_{\text{ireg}} = \text{zev_state_alloc}_{\text{ireg}, \text{year}} \times \sum_{\text{i_typ}=1}^{2} \sum_{\text{icl}=1}^{16} \sum_{\text{ildv}=1}^{2} \text{vsales}_{\text{i_typ}, \text{icl}, \text{ireg}, \text{ildv}}, \]

\[\text{ZEV-CREDIT_REG}_{\text{ireg}, \text{izev}} = \text{ZEV-COVERED-SALES}_{\text{ireg}} \times \text{ZEV-Requirement}_{\text{izev}, \text{year}}, \]

where

\[\text{ZEV-COVERED-SALES}_{\text{ireg}} = \text{total vehicle sales by region covered under ZEV mandate}; \]

\[\text{zev_state_alloc}_{\text{ireg}, \text{year}} = \text{share of census division vehicle sales belonging to a ZEV participating state}; \]

\[\text{ZEV-CREDIT_REG}_{\text{ireg}, \text{izev}} = \text{credit requirement by region and ZEV classification type}; \text{and} \]

\[\text{izev} = \text{ZEV mandate classification (1=ATPZEV, 2=TZEV, 3=ZEV)}. \]

c) Calculate ZEV mandate credits earned through vehicle sales by region

\[\text{ZEV-CREDIT-LDV}_{\text{ireg}, \text{ildv}, \text{year}} = \text{VSALES}_{\text{T}, \text{ireg}, \text{ildv}, \text{year}} \times \text{zev_state_alloc}_{\text{ireg}, \text{year}} \times \text{zev_multiplier}_{\text{ildv}, \text{year}}, \]

where

\[\text{ZEV-CREDIT-LDV}_{\text{ireg}, \text{ildv}, \text{year}} = \text{total ZEV credits earned by region, vehicle fuel type, and year}; \]

\[\text{VSALES}_{\text{T}, \text{ireg}, \text{ildv}, \text{year}} = \text{total LDV sales by region, vehicle fuel type, and year}; \text{and} \]

\[\text{zev_multiplier}_{\text{ildv}, \text{year}} = \text{credits earned by vehicle fuel type per 1 unit new vehicle sale}. \]

d) Add ZEV credits earned from traveling provisions to calculate total ZEV credits earned by region,

\[\text{ZEV-CREDIT-EARN} \]
\[ZEV_CREDIT_EARN_{\text{regn,izev,year}} = ZEV_CREDIT_LDV_{\text{regn,ldv,year}} + traveling_CA_credit_{\text{regn,izev,year}}, \]

\[(117)\]

e) Adjust vehicle sales to reflect ZEV mandate adjustment, including use of credit bank

After calculating ZEV credit compliance requirements and ZEV credits earned, including traveling credit provisions, banked credits may be used for compliance. The credit bank includes ZEV and TZEV credits. TZEV credits include the transition of existing ATPZEV and PZEV credits into TZEV credits at a discount in 2017. The bank also maintains a time-dependent minimum threshold as a risk mitigation strategy.

\[
sales_adjustment = (ZEV_CREDIT_REG_{\text{regn,izev,year}} \ast (1 + \text{bank_buffer}_{\text{year}})) / (ZEV_CREDIT_EARN_{\text{regn,izev,year}} + \text{bank_draw}_{\text{regn,izev,year}}), \]

\[(118)\]

where

- sales_adjustment = amount of sales adjustment required to meet ZEV mandate and bank buffer compared to ZEV credits earned and bank draw;
- Bank_buffer_{year} = amount of credits maintained in bank as a risk mitigation strategy; and
- Bank_draw_{regn,izev,year} = amount of credit bank used toward meeting compliance.

LDV Fleet Component

The Light-Duty Vehicle Fleet Component generates estimates of the stock of cars and trucks used in business, government, utility, and taxi fleets and subsequently estimates travel demand, fuel efficiency, and energy consumption by these fleet vehicles before their transition to the private sector at predetermined vintages.9

Fleet vehicles are treated separately in the Transportation Sector Demand Module because of the special characteristics of these vehicles. The LDV Fleet Component generates estimates of the stock of cars and light trucks, VMT, fuel efficiency, and energy consumption that are distinct from those generated for personal light-duty vehicles in the LDV Submodule and LDV Stock Component. The primary purpose is not only to simulate as accurately as possible the very different sets of characteristics expected in fleets but also to allow for the greater opportunity for regulation and policy-making incorporation in fleet purchasing decisions. Legislative mandates for AFV purchase, such as fleet fuel economy, can be incorporated through the subroutine TFLTSTKS, which has been set up specifically for this purpose.

The component uses the same variable names used for cars and light trucks, which are distinguished by the value of an index designating vehicle type. Vehicles are also distinguished by their assigned type of

9 Taxis are estimated to be 5% of the business fleet. Separating out taxis allows specification of different vehicle characteristics (annual VMT and scrappage rate) and distribution within the fleet by size class and fuel type compared the business fleet. This new fleet includes both conventional and automated taxis and ride-hailing/transportation network provider services (for example, Uber and Lyft).
fleets. Business, government, utility, and taxi fleets are assumed to have different operating characteristics and retirement rates. This component includes three stages: 1) determine total vehicle purchases, surviving fleet stock, and travel demand; 2) calculate the fuel economy of fleet vehicles; and 3) estimate fuel consumption.

The flowchart for the LDV Fleet Component is presented in Figure 7. Additional flowcharts outlining major LDV Fleet calculations in more detail are presented throughout this section.
Figure 7. LDV Fleet Component

Note: The Emissions Module is currently inactive.
Fleet sales and stocks (subroutine TFLTSTKS)
The model calculates fleet acquisitions of cars and light trucks (Figure 8)

\[
FLTSAL_{vityp=1,ifleet,year} = FLTCRAT_{year} \times NEWCARS_{iregn,year} \times FLTCSHR_{ifleet,year},
\]

\[
FLTSAL_{vityp=2,ifleet,year} = FLTCRAT_{year} \times NEWCLS12A_{iregn,year} \times FLTTSHR_{ifleet,year},
\]

where

- \(FLTSAL_{vityp,ifleet,year}\) = sales to fleets by vehicle and fleet type;
- \(FLTCRAT_{year}\) = fraction of total car sales attributed to fleets;
- \(FLTTRAT_{year}\) = fraction of total light truck sales attributed to fleets;
- \(NEWCARS_{iregn,year}\) = total new car sales in a given year;
- \(NEWCLS12A_{iregn,year}\) = total new light truck sales in a given year;
- \(FLTCSHR_{ifleet,year}\) = fraction of fleet cars purchased by a given fleet type;
- \(FLTTSHR_{ifleet,year}\) = fraction of fleet trucks purchased by a given fleet type; and
- \(ifleet\) = index of fleet type: 1 = business, 2 = government, 3 = utility, 4 = taxi.

A new variable is then established, \(FLTECHSAL\), which disaggregates AFV sales by engine technology fuel type, \(ildv\), namely E85, battery electric, plug-in hybrid electric, CNG/LNG, LPG, hydrogen, diesel, and gasoline

\[
FLTECHSAL_{vityp,ifleet,icl,ildv,ihav} = FLTSAL_{vityp,ifleet,year} \times FLTLDVSHR_{ildv,ifleet,year} \times FLTSSHR_{ifleet,icl,vtyp}.
\]

where

- \(FLTECHSAL_{vityp,ifleet,icl,ildv,ihav}\) = Fleet sales by size class, technology, fleet type, and HAV level;
- \(FLTLDVSHR_{ildv,ifleet,year}\) = Alternative technology shares by fleet type (FLTCARSHR for car and FLTTRKSHR for light truck); and
- \(FLTSSHR_{ifleet,icl,vtyp}\) = Percent of fleet vehicles by fleet type, size class, and vehicle type.
Fleet vehicle sales and market shares are then adjusted on a regional basis to reflect sales of vehicles from state-level Zero Emission Vehicle (ZEV) credit mandates. This process is similar to the process implemented for the household vehicle sales in subroutine TLEGIS. The index \(\text{iregn} \) is the same here as in subroutine TLEGIS: it is in the set \{Census Division 1 (participating states: Connecticut, Maine, Massachusetts, Rhode Island, and Vermont), Census Division 2 (participating states New Jersey and New York), Census Division 5 (participating state Maryland), Census Division 8 (participating state Colorado), and Census Division 9 (participating states California and Oregon)\}.

1. **Calculate mandated sales of ZEVs by participating states**
 a) Determine regional ZEV credit mandate compliance requirements

\[
\text{fltsales}_{\text{intyp}, \text{ifleet}, \text{ici}, \text{iregn}, \text{ildv}} = \text{FLTECHSAL}_{\text{intyp}, \text{ifleet}, \text{ici}, \text{ildv}, \text{ihav}=1} \times c_{\text{XXshr}, \text{iregn}, \text{year}},
\]
\[COVERED_FLTSALES_{i,}\text{year} = \sum_{i=1:3,9,10,12} fltsales_{i,}\text{year} \]

\[ZEV_FLTCREDIT_REG_{i,}\text{year} = COVERED_FLTSALES_{i,}\text{year} \]

\[ZEV_Requirement_{i,}\text{year} \]

\[ZEV_FLTCREDIT_REG_{i,}\text{year} = \text{credit requirement by region and ZEV classification type;} \]

\[COVERED_FLTSALES_{i,}\text{year} = \text{total vehicle sales by region and fleet type covered under ZEV mandate;} \]

\[Zev_state_alloc_{i,}\text{year} = \text{share of census division vehicle sales belonging to a ZEV participating state;} \]

\[ifleet = \text{fleet type (1=business, 2=government, 3=utilities, 4=taxi).} \]

2. Calculate ZEV mandate credits earned through vehicle sales and traveling provisions by region

\[ZEV_FLTCREDIT_EARN_{i,}\text{year} = ZEV_FLTCREDIT_LDV_{i,}\text{year} + California_fltcredit_{i,}\text{year} \]

where

\[ZEV_FLTCREDIT_EARN_{i,}\text{year} = \text{total ZEV credits earned by sales and Section 177 states and California credit transfer provisions;} \]

\[ZEV_FLTCREDIT_LDV_{i,}\text{year} = \text{ZEV compliance credits earned by ildv type requirement by region and fleet type;} \]

\[California_fltcredit_{i,}\text{year} = \text{ZEV compliance credits transfer between California and other Section 177 states.} \]

3. If ZEV credit requirements are more than ZEV credits earned, including traveling credit provisions, then

\[a_fltsales_{i,}\text{year} = COVERED_FLTSALES_{i,}\text{year} \]

\[zev_state_alloc_{i,}\text{year} \]

\[ZEV_Requirement_{i,}\text{year} \]

\[zev_multiplier_{i,}\text{year} \]

\[(123) \]
the sales adjustment \(a_{\text{fltsales}_{\text{iregn,izev,year}}} \) is then added to the sales calculated before applying the ZEV mandate, \(F_{\text{LtechSal}} \). Sales for each fleet type are then summed across size classes

\[
F_{\text{Ltech}}_{\text{ityp,ifleet,ildv,ihav}} = \sum_{icl=1}^{8} F_{\text{LtechSal}}_{\text{ityp,ifleet,icl,ildv,ihav}}
\]

The next step is to modify the array of surviving fleet stocks from previous years and to add new acquisitions (Figure 9) by applying the appropriate survival factors to the current vintages and inserting \(F_{\text{Ltech}} \) into the most recent vintage

\[
F_{\text{Lstkn}}_{\text{ityp,ifleet,ildv,ihav,year}} = F_{\text{Lstkn}}_{\text{ityp,ifleet,ildv,ihav,year}} - 1 \ast \text{SURVFLTT}_{\text{ityp,ihav,year}} - 1, \\
\]

and

\[
F_{\text{Lstkn}}_{\text{ityp,ifleet,ildv,ihav,year}} = F_{\text{Ltech}}_{\text{ityp,ifleet,ildv,ihav}},
\]

where

\(F_{\text{LSTKN}} \) = fleet stock, by vehicle type, fleet type, technology, HAV level, and vintage;

\(\text{SURVFLTT} \) = survival rate of a given vintage; and

\(\text{iage} \) = index referring to vintage (age) of fleet vehicles.

Fleet vehicles are transferred to the household vehicle fleet as they age. Historical data informs the transfer shares by vintage and fleet type for both cars and light trucks. The stock allocated for transfer, \(O_{\text{ldf}} \), is removed from the fleet stock and sent to the LDV Stock Component to augment the fleet of private vehicles. Taxi fleet vehicles are not transferred to the private fleet because of their high mileage at end-of-life.

\[
O_{\text{ldf}}_{\text{ityp,ifleet,ildv,ihav,year}} = F_{\text{Lstkn}}_{\text{ityp,ifleet,ildv,ihav,year}} \ast F_{\text{lttrans}}_{\text{ifleet,ihav}},
\]
\[FLTSTKVN = FLTSTKVN - OLDFSTK, \] (126)

where

\[\text{OLDFSTK} = \text{Old fleet stocks of given types and vintages, transferred to the household vehicle stock;} \]

and

\[\text{FLTTRANSXX} = \text{Share of fleet vehicles that are transferred to the household vehicle stock, by vintage and fleet type. XX = \{PC: car, LT: light truck\}.} \]

Taxi fleet vehicles are not transferred to the private fleet because of their high mileage at end-of-life. Total surviving fleet vehicles are then summed across vintages, resulting in total fleet stock by technology, fleet type, fuel type, and HAV level

\[TFLTECHSTK_{vt,filt,ildv,ihav} = \sum_{iage=1}^{25} FLTSTKVN_{vt,iflt,ildv,iage,year,ihav}. \] (127)
Figure 9. Determine characteristics of existing LDV fleets

- **New fleet sales by fleet type and technology**
- **Apply survival factors to existing stock of fleet vehicles**
- **Sum surviving vehicles across vintages and calculate technology shares for cars and light trucks**
- **Estimate total fleet VMT by vehicle type and technology**
- **Pass to miles-per-gallon subroutine**

Inputs:
- Survival rates of fleet cars and light trucks
- Vintage at which fleet vehicles are transformed to private stock
- Historical annual vehicle miles traveled (VMT per vehicle, by vehicle and fleet type)
Table 3. Transfer vintage of fleet vehicles

<table>
<thead>
<tr>
<th>Vehicle type (vt)</th>
<th>Fleet type (flt)</th>
<th>Transfer vintage (vint) (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car (vt = 1)</td>
<td>Business (flt = 1)</td>
<td>3</td>
</tr>
<tr>
<td>Car</td>
<td>Government (flt = 2)</td>
<td>6</td>
</tr>
<tr>
<td>Car</td>
<td>Utility (flt = 3)</td>
<td>5</td>
</tr>
<tr>
<td>Car</td>
<td>Taxi (flt = 4)</td>
<td>Does not transfer</td>
</tr>
<tr>
<td>Light truck (vt = 2)</td>
<td>Business</td>
<td>3</td>
</tr>
<tr>
<td>Light truck</td>
<td>Government</td>
<td>6</td>
</tr>
<tr>
<td>Light truck</td>
<td>Utility</td>
<td>5</td>
</tr>
<tr>
<td>Light truck</td>
<td>Taxi</td>
<td>Does not transfer</td>
</tr>
</tbody>
</table>

Estimate taxi fleet HAV adoption (subroutine FLTHAV)

After calculating the total taxi sales by vehicle type, powertrain, size class, and fleet type and ensuring compliance with the ZEV mandate, the model estimates fleet adoption of HAV taxis. HAVs include three automation levels: Level 4a (L4a), Level 4b (L4b), and Level 5 (L5). L4a autonomous operation is restricted to low-speed (less than 35 mph) in limited geofenced areas such as urban centers. Low-speed-only operation requires a less sophisticated, lower-resolution, and lower-cost HAV system. L4b autonomous operation is restricted to limited geofenced areas, but it includes any (legal) speed roads and includes controlled environments such as limited-access highways. Highway speed operation requires a more sophisticated, higher-resolution, and more expensive HAV control system to accurately sense and react to its environment at longer range. It also needs faster computational speed because of the shorter response times needed at higher speeds. L5 vehicles can operate autonomously on all roads and road types and at all (legal) road speed limits and have no operational domain limitations. The L5 HAV system is marginally more expensive than the L4b system because it needs a more capable and expensive processor and controller.

Calculate HAV system costs

HAV systems include: 1) a light-detection and ranging (LiDAR) array 2) a lithium ion battery that powers the system; and 3) the remaining HAV system sensors, wiring, and supporting hardware.

LiDAR cost is modeled at the package level, assuming that cost and functionality would be technology-independent and similar whether the manufacturers implemented a single high-resolution, 360-degree field of view LiDAR unit or multiple LiDAR units with limited fields of view. Cost curves are estimated for two different LiDAR systems (represented by the $iLiDAR$ subscript in the equation): high-resolution (capable of both high- and low-speed operation) and low-resolution (capable of low-speed operation only). Each of the two cost curves has five different production phases with production thresholds specified in trmlldv.xlsx: R&D, Revolutionary, Evolutionary, Mature, and High-Volume. These phases are characterized by different learning rates. Faster learning takes place during the Revolutionary and Evolutionary phases, and slower learning occurs during the Mature and High-Volume phases.

$$\text{lidar}_{i\text{HAV}, t} = a_t \cdot \text{cumul_lidar_prod}_{i\text{lidar}, t-1}$$

(128)
where,
\[\text{LiDAR_cost}_{ihav,t} = \text{cost of LiDAR system ($)} \text{ used for HAV level } ihav; \]
\[a_t = \text{represents the (hypothetical) initial cost for the first unit produced;} \]
\[\text{cumul_LiDAR_prod}_{lidar,t} = \text{cumulative production of } i\text{LiDAR LiDAR systems;} \]
\[b_t = \text{parameter based on the learning rate.} \]

The input R&D production, in conjunction with the R&D phase of the cost curve, ensures that LiDAR system cost reduction continues even if HAVs do not penetrate the market to account for HAV testing and other uses (for example, defense, science, drones, and agriculture). The subroutine outputs are LiDAR system costs for high- and low-resolution systems based on cumulative production. The outputs are mapped from high- versus low-resolution (subscript \(i\text{LiDAR} \)) to Level 4a, 4b, or 5 (subscript \(ihav \)) for use in the HAVCALC subroutine. Level 4a uses low-resolution LiDAR, while Levels 4b and 5 use high-resolution LiDAR.

Total HAV system costs for L4a, L4b, and L5 are estimated in subroutine HAVCALC using Equation 120. The equation uses a time-based cost reduction curve and an initial cost (defined in trnldv.xml) to calculate system cost less the LiDAR and battery. The existing LIONCOSTCALC subroutine determines the battery cost per kWh for the HAV system battery.

\[
\text{hav_sys_cost}_{ihav,t} = \text{hav_sys_lrn}_{ihav,t} * \text{hav_init_cost}_{ihav} + \text{Li_ion_cost} \cdot \text{hav_battery_kWh}_{ihav} + \text{lidar_cost}_{ihav,t}. \tag{39}
\]

where,
\[\text{hav_sys_cost}_{ihav,t} = \text{total HAV system cost ($)}; \]
\[\text{HAV_sys_lrn}_{ihav,t} = \text{time-based HAV system cost reduction curve}; \]
\[\text{hav_init_cost}_{ihav} = \text{initial cost of HAV system, less LiDAR and battery ($)}; \]
\[\text{Li_ion_cost} = \text{li-ion battery cost ($/kWh)}; \]
\[\text{HAV_battery_kWh}_{ihav} = \text{HAV system battery capacity (kWh)}; \]
\[\text{LiDAR_cost}_{ihav,t} = \text{LiDAR system cost ($).} \]

The subroutine outputs are HAV system incremental costs for HAV levels L4a, L4b, and L5.

The FLTHAV subroutine uses a logit choice equation to estimate sales shares of each HAV level (levels 4a, 4b, and 5), based on revenue, operation and maintenance costs, operational domain, and new technology limitations. A time-dependent new technology variable is included to represent factors that limit adoption of new technologies, such as the lack of consumer knowledge, perceived risk, large capital requirements, limited model availability, production capacity restrictions, and other potential limitations. HAV levels 4a and 4b includes a parameter characterizing the disutility of the levels'
operational domain (speed, geography, weather) limitations.

\[taxi_{util}_{ir_\text{egn},ihav} = hav_{newtech_lim}_{ihav} + hav_{oper_limit}_{ir_\text{egn},ihav} + taxi_{rev_coef} \times taxi_{npv}_{ir_\text{egn},ihav} \] \hspace{1cm} (130)

\[flt_{hav_shares}_{ir_\text{egn},itvtyp,icl,ldv,year,ihav} = \frac{e^{taxi_{util}_{ir_\text{egn},ihav}}}{\sum_{ihav=1}^k e^{taxi_{util}_{ir_\text{egn},ihav}}}, \] \hspace{1cm} (431)

where,

- \(taxi_{util}_{ir_\text{egn},ihav} \) = utility of each HAV level.
- \(hav_{newtech_lim} \) = time-dependent function for new technology limitations;
- \(hav_{oper_limit}_{ir_\text{egn},ihav} \) = operational domain disutility for HAV levels 4a and 4b;
- \(taxi_{rev_coef} \) = revenue coefficient per $1,000 (1990$);
- \(taxi_{npv}_{ir_\text{egn},ihav} \) = net present value of lifetime taxi revenue, less operational costs;
- \(flt_{hav_shares}_{ir_\text{egn},itvtyp,icl,ldv,year,ihav} \) = HAV level \(ihav \) adoption.

The net present value of lifetime taxi revenue is calculated from up-front vehicle cost, trip revenue, driver salary (if applicable), and operating costs that include fuel, maintenance, insurance, and data fees.

\[taxi_{npv}_{ir_\text{egn},ihav} = -VehPrice + \sum_{t=1}^{life} \left((1 + taxi_{disc_r})^{-t} \right) \times (taxi_{mo_rev}_{ir_\text{egn},ihav} - taxi_{mo_cost}_{ir_\text{egn},ihav} - fuelpriceproj_t \times taxi_{fuel}_{ir_\text{egn},ihav}) \], \hspace{1cm} (132)

where,

- \(taxi_{npv}_{ir_\text{egn},ihav} \) = net present value of per vehicle taxi lifetime revenue ($);
- \(VehPrice \) = vehicle price ($);
- \(taxi_{disc_r} \) = taxi fleet discount rate;
- \(taxi_{mo_rev}_{ir_\text{egn},ihav} \) = monthly per vehicle taxi revenue ($);
- \(taxi_{mo_cost}_{ir_\text{egn},ihav} \) = monthly per vehicle taxi operating cost ($);
- \(fuelpriceproj_t \) = projected regional fuel price ($);
- \(taxi_{fuel}_{ir_\text{egn},ihav} \) = monthly per vehicle fuel consumption including motoring and idling; and
- \(life \) = expected taxi lifetime in months

The outputs are:
1. Ride-hailing/taxi fleet HAV level (that is, levels 0–3, 4a, 4b, and 5) distribution within vehicle type, class, powertrain, and census division
2. Ride-hailing/taxi fleet HAV sales by vehicle type, class, powertrain, census division, and HAV level

FLTHAV modifies two fleet sales variables (FLTECH and FLTECHSAL) and two fleet stock variables (FLTSTKVN and TFLTECHSTK) to ensure that the HAV sales and stock can be tracked and used in later calculations.

Calculate Fleet VMT (subroutine TFLTVMTS)
The fleet vehicle stock VMT is calculated as follows

\[
FLTVMTECH_{ivtyp,ifleet,ildv,ihav} = TFLTECHSTK_{ivtyp,ifleet,ildv,ihav} \times FLTVMTYR_{fleet,year,ivtyp},
\]

where

\[
FLTVMTECH_{ivtyp,ifleet,ildv,ihav} = \text{fleet VMT by technology, vehicle type, fleet type, and HAV level};
\]

\[
FLTVMTYR_{fleet,year,ivtyp} = \text{annual miles of travel per vehicle by vehicle type and fleet type}; \text{ and}
\]

\[
TFLTECHSTK_{ivtyp,ifleet,ildv,ihav} = \text{total stock within each technology, fleet type, and HAV level, calculated in Equation 137}.
\]

Calculate Fleet Sales and Stock mpg Fuel Economies (subroutine TFLTMPGS)
The average new vehicle fuel economies are calculated as follows (Figure 10)

\[
FTMPG_{ivtyp,ifleet,ildv,year} = \frac{\sum_{ihav=1}^{4} \sum_{icl=1}^{8} FLTECHSAL_{ivtyp,ifleet,icl,ildv,ihav}}{\sum_{ihav=1}^{4} \sum_{icl=1}^{8} LDV_{MPG,CL}_{ivtyp,ildv,icl,year}}
\]

where

\[
FTMPG_{ivtyp,ifleet,ildv,year} = \text{new fleet vehicle fuel efficiency, by vehicle type, fleet type and technology type}; \text{ and}
\]

\[
FLTECHSAL_{ivtyp,ifleet,icl,ildv,ihav} = \text{fleet sales by vehicle type, fleet type, size class, technology, fleet type, and HAV level}.
\]
Figure 10. Determine fuel economy and consumption for light-duty vehicle (LDV) fleets

- **Inputs:**
 - Regional VMT shares from Regional Sales Component

- **Exogenous Inputs:**
 - new car and light truck miles per gallon from Manufacturer Technology Choice Component (MTCC)

- **Inputs:**
 - fuel economy degradation factors

- **Inputs:**
 - market share of fleet cars and light trucks from Alternative Fuel Vehicle (AFV) Component
 - new AFV fuel economy from AFV Component

- **Outputs:**
 - total fleet fuel consumption, average fleet fuel economy, and total fleet VMT
The fuel efficiency of new vehicles is then added to an array of fleet stock efficiencies by vintage, which is adjusted to reflect the passage of time.

\[
\text{CMPFSTK}_{\text{fleet}, \text{iltv}, \text{iage}, \text{year}} = \text{FLTMPG}_{\text{ivtype}=1, \text{ifleet}, \text{iltv}, \text{year}},
\]
\[
\text{TMPGFSTK}_{\text{fleet}, \text{iltv}, \text{iage}, \text{year}} = \text{FLTMPG}_{\text{ivtype}=2, \text{ifleet}, \text{iltv}, \text{year}},
\]

where

\[
\text{CMPGFSTK}_{\text{fleet}, \text{iltv}, \text{iage}, \text{year}} = \text{car fleet mpg by fleet type, technology, and vintage};
\]
\[
\text{TMPGFSTK}_{\text{fleet}, \text{iltv}, \text{iage}, \text{year}} = \text{light truck fleet mpg by fleet type, technology, and vintage}.
\]

For \(i\text{age}=2\) to \(\text{maxage}\)

\[
\text{CMPGFSTK}_{\text{fit}, \text{iltv}, \text{iage}, \text{year}} = \text{CMPGFSTK}_{\text{fit}, \text{iltv}, \text{iage} - 1, \text{year} - 1},
\]
\[
\text{TMPGFSTK}_{\text{fit}, \text{iltv}, \text{iage}, \text{year}} = \text{TMPGFSTK}_{\text{fit}, \text{iltv}, \text{iage} - 1, \text{year} - 1},
\]

Average stock fuel efficiency by vehicle and fleet type is then calculated

\[
\text{MPGFLTSTK}_{\text{ivtype}=1, \text{ifleet}, \text{iltv}} = \frac{\sum_{\text{iage}=1}^{\text{maxage}} \sum_{\text{ihav}=1}^{16} \sum_{\text{iilv}=1}^{4} \text{FLTKV}_{\text{ivtype}=1, \text{ifleet}, \text{iltv}, \text{iage}, \text{ihav}} \text{CMPGFSTK}_{\text{fit}, \text{iltv}, \text{iage}, \text{year} + \text{CDFRFG}_{\text{year}}}}{\sum_{\text{iage}=1}^{\text{maxage}} \sum_{\text{ihav}=1}^{16} \sum_{\text{iilv}=1}^{4} \text{FLTKV}_{\text{ivtype}=1, \text{ifleet}, \text{iltv}, \text{iage}, \text{ihav}} \text{MPGFLTSTK}_{\text{ivtype}=1, \text{ifleet}, \text{iltv}}},
\]
\[
\text{MPGFLTSTK}_{\text{ivtype}=2, \text{ifleet}, \text{iltv}} = \frac{\sum_{\text{iage}=1}^{\text{maxage}} \sum_{\text{ihav}=1}^{16} \sum_{\text{iilv}=1}^{4} \text{FLTKV}_{\text{ivtype}=2, \text{ifleet}, \text{iltv}, \text{iage}, \text{ihav}} \text{MPGFLTSTK}_{\text{fit}, \text{iltv}, \text{iage}, \text{year} + \text{LTDFRFG}_{\text{year}}}}{\sum_{\text{iage}=1}^{\text{maxage}} \sum_{\text{ihav}=1}^{16} \sum_{\text{iilv}=1}^{4} \text{FLTKV}_{\text{ivtype}=2, \text{ifleet}, \text{iltv}, \text{iage}, \text{ihav}} \text{MPGFLTSTK}_{\text{ivtype}=2, \text{ifleet}, \text{iltv}}}.
\]

where

\[
\text{MPGFLTSTK}_{\text{ivtype}, \text{ifleet}, \text{iltv}} = \text{fleet stock mpg by vehicle, fleet, and technology type, across vintages};
\]

\[
\text{maxage} = \text{maximum vintage of vehicle in given fleet type};
\]

\[
\text{CDFRFG}_{\text{year}} = \text{car fuel efficiency degradation factor}; \text{and}
\]

\[
\text{LTDFRFG}_{\text{year}} = \text{light truck fuel efficiency degradation factor}.
\]

The overall fleet average mpg, \(\text{FLTMPGTOT}\), is calculated for cars and light trucks

\[
\text{FLTMPGTOT}_{\text{ivtype}} = \frac{\sum_{\text{ifleet}=1}^{4} \sum_{\text{iltv}=1}^{16} \sum_{\text{iilv}=1}^{4} \sum_{\text{ihav}=1}^{4} \text{FLTECHSTK}_{\text{ivtype}, \text{ifleet}, \text{iltv}, \text{iilv}, \text{ihav}} \text{MPGFLTSTK}_{\text{ivtype}, \text{ifleet}, \text{iltv}}}{\sum_{\text{ifleet}=1}^{4} \sum_{\text{iltv}=1}^{16} \sum_{\text{iilv}=1}^{4} \sum_{\text{ihav}=1}^{4} \text{FLTECHSTK}_{\text{ivtype}, \text{ifleet}, \text{iltv}, \text{iilv}, \text{ihav}}},
\]

\[
\text{Calculate Fuel Consumption by Fleet Vehicles (subroutine TFLTCONS)}
\]

Fleet fuel consumption, \(\text{FLTLDVC}\), is the quotient of fleet travel demand and fuel efficiency, which have been addressed above.
\[\text{FLTLDV}_c_{\text{itype},\text{ifeet},\text{idv}} = \frac{\sum_{\text{ihav}=1}^{4} \text{FLTVMTTECH}_{c_{\text{itype},\text{ifeet},\text{idv},\text{ihav}}} \text{MPGFLTSTK}_{c_{\text{itype},\text{ifeet},\text{idv}}}}{4}, \]

(139)

Consumption is then summed across fleet types and converted to values in British thermal units (Btu) in variable \(\text{FLTFCLDVBTU} \)

\[\text{FLTFCLDVBTU}_{\text{itype, idv, year}} = \sum_{\text{it}=1}^{4} \text{FLTLDV}_{c_{\text{itype},\text{ifeet},\text{idv}}} \times 0.1251, \]

(140)

Consumption totals for trucks and cars are added, and total consumption \(\text{FLTFUELBTU} \) is distributed among regions and highway fuel types

\[\text{FLTFUELBTU}_{\text{ireg, ifuel, year}} = \sum_{\text{it}=1}^{2} \text{FLTFCLDVBTU}_{c_{\text{itype},\text{ifeet},\text{idv},\text{year}}} \times \text{PctXX}_{\text{ireg, year}} \times \frac{\text{RSHR}_{\text{ireg, year}}}{\sum_{\text{it}=1}^{2} \text{PctXX}_{\text{ireg, year}}}, \]

(141)

where

\[\text{PctXX}_{\text{ireg, year}} = \text{share of VMT for each bi-fuel technology type that is on fuel 2, where XX} \]

\[= \{\text{AF, PHEV10, PHEV40}\}, \text{for example, PctPHEV10 is the share of PHEV10} \]

\[\text{miles that are electric}; \text{and} \]

\[\text{RSHR}_{\text{ireg, year}} = \text{regional share of total VMT}. \]

Non-Fleet LDV Stock Component (subroutine TSMOD)

The LDV Stock Component takes sales and efficiency estimates for new cars and light trucks from the LDV Submodule and returns the number and characteristics of the total surviving fleet of light-duty vehicles, along with regional estimates of LDV fuel consumption. Figure 11 shows the LDV Stock Component flowchart.

The LDV Stock Component uses vintage-dependent constants, such as vehicle survival, relative driving rates, and fuel economy degradation factors, to obtain estimates of stock efficiency.

The LDV Stock Component is perhaps the most important transportation sector component because the largest portion of transportation energy consumption is accounted for by light-duty vehicles that are at least a year old. The LDV Stock Component takes the results of the LDV Submodule (that is, the number and characteristics of newly purchased cars and light trucks) and integrates those into the existing stock of vehicles, taking into account vehicle retirements and vehicles that are transferred from fleets to private ownership. The result is a snapshot of the average car for each region.

These characteristics are passed to the VMT Component, which determines the average number of miles driven by each vehicle in each projection year. The vehicle characteristics and VMT are then used to project regional fuel consumption.

The first step is to calculate total vehicle sales by technology for the current iteration

\[\text{TECHNC}_{\text{idv, year}} = \sum_{\text{icl}=1}^{9} \sum_{\text{ireg}=1}^{9} \text{NCSTEC}_{\text{ireg, icl, idv, year}}, \]

(142)
\[\text{TECHNL}_{\text{ldv,year}} = \sum_{i=1}^{9} \sum_{r=1}^{9} \text{NLTTECH}_{r,\text{reg},i,\text{ldv,year}}, \] \hspace{1cm} (142)

where

- \(\text{TECHNS}_{\text{ldv,year}} = \) total new car sales, by technology type; and
- \(\text{TECHNL}_{\text{ldv,year}} = \) total new light truck sales, by technology type.

Sales are broken out regionally to populate \(\text{TECHNSREGN} \) and \(\text{TECHNLREGN} \). These sales values are assigned to the first vintage of the LDV stock array \(\text{LDV_STOCK} \) and the population of subsequent vintages is calculated.
Figure 11. LDV stock Component

Note: The Emissions Submodule is currently inactive.
For $iage = 2$ to 24 let

$$LDV_STOCK_{iregn,ivtyp,iown,ildv,iage,ihav,year} = LDV_STOCK_{iregn,ivtyp,iown=1,ildv,iage,ihav,year-1} * SSURV25_{iregn,iage-1,ivtyp},$$

(143)

where

$LDV_STOCK_{iregn,ivtyp,iown,ildv,iage,ihav,year} = \text{regional light-duty vehicle stock by vehicle type, ownership type, technology type, vintage, and HAV level;}$

$SSURV25_{iregn,iage,ivtyp} = \text{regional survival rate of cars and light trucks by vehicle type and vintage;}$ and

$iown = \text{owner type \{1:household, 2:business, 3:government, 4:utility, 5:taxi\}.}$

For $iage = 25$ (maxage) let

$$LDV_STOCK_{iregn,ivtyp,iown=1,ildv,iage,ihav,year} = LDV_STOCK_{iregn,ivtyp,iown=1,ildv,iage-1,ihav,year-1} * SSURV25_{iregn,maxage-1,ivtyp} + LDV_STOCK_{iregn,ivtyp,iown=1,ildv,iage,ihav,year-1} * SSURV25_{iregn,maxage,ivtyp},$$

(144)

The component encompasses 25 vintages, and the 25th vintage is an aggregate of all vehicles 25 years or older. $SSURV25$ contains 25 values measuring the percentage of vehicles of each vintage that survive into the next year. The stock of selected vintages and technologies calculated above is then augmented by a number of fleet vehicles that are assumed to roll over into the non-fleet population after a number of years of fleet service.

$$LDV_STOCK_{iregn,ivtyp,iown=1,ildv,iage,ihav,year} = LDV_STOCK_{iregn,ivtyp,iown=1,ildv,iage,ihav,year} + \left(OLDFSTKT_{ivtyp,ildv,iage} * CDXXSHR_{iregn,year-iage}\right),$$

(145)

where

$OLDFSTKT_{ivtyp,ildv,iage} = \text{total vehicles from fleets to households by vehicle and technology type, and vintage;}$ and

$CDXXSHR_{iregn,year} = \text{share of total LDVs by region, where XX = \{CAR: car, LT: light truck\}.}$

Total stocks of non-fleet cars and trucks are then determined by summing over regions, vintages and technology types.
\[STK_{CAR\text{ year}} = \sum_{\text{ireg}n=1}^{9} \sum_{\text{idv}=1}^{16} \sum_{\text{il}_{g}e=1}^{25} \sum_{\text{ihav}=1}^{4} LDV_{STOCK}\text{_ireg}_{n}\text{_ivt}_{y}p=1,\text{_iown}=1,\text{_idv}e,\text{_il}_{g}e,\text{_ihav},\text{_year}, \]
\[STK_{TR\text{ year}} = \sum_{\text{ireg}n=1}^{9} \sum_{\text{idv}=1}^{16} \sum_{\text{il}_{g}e=1}^{25} \sum_{\text{ihav}=1}^{4} LDV_{STOCK}\text{_ireg}_{n}\text{_ivt}_{y}p=2,\text{_iown}=1,\text{_idv}e,\text{_il}_{g}e,\text{_ihav},\text{_year}, \]

(146)

where

\[STK_{CAR\text{ year}} = \text{total stock of non-fleet cars; and} \]
\[STK_{TR\text{ year}} = \text{total stock of non-fleet light trucks.} \]

The above variables are then used to determine average fuel efficiencies of the current year’s stock of non-fleet vehicles.

Calculate Stock Efficiencies for Cars and Light Trucks (subroutine TMPGSTK)

Overall fuel efficiency is calculated as the weighted average of the efficiencies of new vehicles and the efficiencies of the surviving vintages.

Calculate national LDV sales by vehicle type, size class, and technology type, \(NVSALES \)

\[NVSALES_{\text{ivt}_{y}p=1,\text{icl},\text{idv},\text{year}} = \sum_{\text{ireg}n=1}^{9} NCSTEC{H}_{\text{ireg}n,\text{icl},\text{idv},\text{year}}, \]
\[NVSALES_{\text{ivt}_{y}p=2,\text{icl},\text{idv},\text{year}} = \sum_{\text{ireg}n=1}^{9} NLTEC{H}_{\text{ireg}n,\text{icl},\text{idv},\text{year}}, \]

(147)

The harmonic average efficiencies of the light-duty vehicles are calculated as follows

\[MPG_{\text{idv},\text{year}} = \frac{\sum_{\text{icl}=1}^{8} NVSALES_{\text{ivt}_{y}p=1,\text{icl},\text{idv},\text{year}}}{\sum_{\text{icl}=1}^{8} LDV_{\text{MPG},\text{CL},\text{ivt}_{y}p=1,\text{icl},\text{idv},\text{year}}}, \]
\[MPG_{\text{idv},\text{year}} = \frac{\sum_{\text{icl}=1}^{8} NVSALES_{\text{ivt}_{y}p=2,\text{icl},\text{idv},\text{year}}}{\sum_{\text{icl}=1}^{8} LDV_{\text{MPG},\text{CL},\text{ivt}_{y}p=2,\text{icl},\text{idv},\text{year}}}, \]

(148)

where

\[LDV_{\text{MPG},\text{CL},\text{ivt}_{y}p,\text{idv},\text{icl},\text{year}} = \text{new car fuel efficiency, by size class;} \]
\[MPG_{\text{idv},\text{year}} = \text{new car fuel efficiency, by technology type; and} \]
\[MPG_{\text{idv},\text{year}} = \text{new light truck fuel efficiency, by technology type.} \]

The overall fuel efficiency of cars and light trucks is then calculated across the 25 vintages addressed in the component.\(^{10}\) Older vehicles are driven less than newer vehicles, the fuel efficiencies of each vintage need to be weighted according to the average number of miles driven. The weighting of fuel economy

\(^{10}\) Initial values for on-road car and light truck fleet mpg are obtained from the Federal Highway Administration, *Highway Statistics, 2018*, U.S. Department of Transportation (2019).
by travel is done by summing the total number of miles driven across all vintages and technologies11

\[VMT_STK_HH_{ivtyp,ildv,iage,ihav,iregn} = LDV_STOCK_{iregn,ivtyp,iown=1,ildv,iage,ihave,year} \times XVMT_{iage,year,iregn}, \]

where

\[VMT_STK_HH_{ivtyp,ildv,iage,ihav,iregn} = \text{total miles driven by LDVs; and} \]
\[XVMT_{iage,year,iregn} = \text{average miles driven by each vintage of LDV, where } X = \{P: \text{car, L: light truck}\}. \]

The next step is to calculate the total energy consumed, in gallons of gasoline, across all vintages and technologies of cars and light trucks, CMPGT and TMPGT respectively. The on-road fuel efficiency of cars and trucks degrades over time, vintage fuel efficiencies must be adjusted using degradation factors

\[CMPGT_{year,iregn} = \sum_{ildv=1}^{16} \sum_{ihav=1}^{4} \sum_{iage=1}^{25} \frac{VMT_STK_HH_{ivtyp=1,ildv,iage,ihav,iregn}}{CMPGST_{ildv,iage,year,iregn} \times CDFRFG_{year,ihav}}, \]
\[TMPGT_{year,iregn} = \sum_{ildv=1}^{16} \sum_{ihav=1}^{4} \sum_{iage=1}^{25} \frac{VMT_STK_HH_{ivtyp=2,ildv,iage,ihav,iregn}}{TTMPGST_{ildv,iage,year,iregn} \times LTDFRFG_{year,ihav}}, \]

where

\[CMPGST_{ildv,iage,year,iregn} = \text{car stock fuel economy;} \]
\[TTMPGST_{ildv,iage,year,iregn} = \text{truck stock fuel economy;} \]
\[CDFRFG_{year,ihav} = \text{car fuel economy degradation factor; and} \]
\[LTDFRFG_{year,ihav} = \text{light truck fuel economy degradation factor.} \]

Stock fuel efficiency for cars and light trucks is the ratio of total travel to total consumption

\[SCMPG_{year} = \frac{\sum_{ildv} \sum_{iage} \sum_{ihav} \sum_{iregn} VMT_STK_HH_{ivtyp=1,ildv,iage,ihav,iregn}}{\sum_{iregn} CMPGT_{year,iregn}}, \]

and

\[STMPG_{year} = \frac{\sum_{ildv} \sum_{iage} \sum_{ihav} \sum_{iregn} VMT_STK_HH_{ivtyp=2,ildv,iage,ihav,iregn}}{\sum_{iregn} TMPGT_{year,iregn}}, \]

11 Vehicle miles calculated in this step are used to establish relative driving rates for the various technologies. Actual travel demand is generated by the model in a subsequent step.
where

\[SCMPG_{\text{year}} = \text{stock car fuel efficiency}; \] and

\[STMPG_{\text{year}} = \text{stock light truck fuel efficiency}. \]

Combining the results provides the average fuel efficiency for all light-duty vehicles, \(MPG_{\text{HH}} \)

\[
MPG_{\text{HH}}_{\text{year}} = \frac{\sum \text{VMT}_{\text{STK, HH}}}{\sum \text{COMPG}_{\text{IT, year}} + \text{TMPG}_{\text{IT, year} \text{reg}, \text{year}}}.
\]

(152)

Calculate the average fuel efficiency for cars and light trucks by technology

\[
\begin{align*}
\text{CMPG}_{\text{IT, year}} &= \frac{\sum \text{VMT}_{\text{STK, HH}, \text{reg}, \text{year}}}{\sum \text{COMPG}_{\text{IT, year}}}, \\
\text{TMPG}_{\text{IT, year}} &= \frac{\sum \text{VMT}_{\text{STK, HH}, \text{reg}, \text{year}}}{\sum \text{TMPG}_{\text{IT, year}}},
\end{align*}
\]

(153)

\[\text{CMPG}_{\text{IT, year}} = \text{average fuel efficiency of cars by powertrain}; \] and

\[\text{TMPG}_{\text{IT, year}} = \text{average fuel efficiency of light trucks by powertrain}. \]

These fuel efficiency figures are combined with the results of the subsequent VMT Component to determine the actual fuel consumption by light-duty vehicles.

VMT Component (subroutine TVMT)

The Vehicle Miles Traveled Component of the NEMS is a subcomponent of the LDV Stock Component that uses NEMS estimates of fuel price and personal income, along with population projections, to generate a projection of the demand for personal travel, expressed in vehicle miles traveled per licensed driver. This component is subsequently combined with projections of car fleet efficiency to estimate fuel consumption.

Projecting VMT per licensed driver in the mid- to long-term primarily seeks to address those effects that alter historical growth trends. The factors affecting future VMT trends in the model are the fuel cost of driving, disposable personal income, employment, vehicles per licensed driver, and past VMT trends. The Federal Highway Administration (FHWA) provides historical licensed driver rates by age cohort, gender, and region.

Annual vehicle stock, VMT, and fuel consumption data are also available from FHWA. All macroeconomic inputs are calculated based on a chain-weighted average. These data are used to estimate the VMT equation in the NEMS VMT Component

\[
\log(VMTLD_{\text{year}}) - \beta_1 \log(VMTLD_{\text{year} - 1}) = \alpha + \beta_2 \log(INC00S_{16, \text{year}}) + \beta_3 \log(COSTM_{\text{I, year}}) + \beta_4 \log(VPLD_{\text{year}}) + \beta_5 \log(EMP.RATE.VMT_{\text{year}}),
\]
where

\[VMT_{LD}^{\text{year}} = \text{VMT per licensed driver for the driving age population, by age cohort and gender} \]

\[COSTM_{\text{I}^{\text{year}}} = \text{fuel cost of driving} \]

\[VPLD_{\text{year}} = \text{light-duty vehicles per licensed driver} \]

\[EMP_{\text{year}} = \text{employment rate of population age 16 and older} \text{ from the Macroeconomic Activity Module} \]

\[\alpha, \beta = \text{coefficient estimates for the VMT per driver estimation, varying by age cohort and gender} \]

Of greater significance is the historical VMT and stock inputs provided by FHWA. In the past, FHWA’s estimate of the number and driving patterns of two-axle, four-tire trucks has been interpreted as representing that of light-duty trucks, defined as having a weight of less than 8,500 pounds and so properly within the scope of the LDV Submodule. To further refine the submodule, a category of truck has been defined as Class 2b vehicles, which comprise all single-unit trucks in the 8,500 to 10,000 pound range. The travel demands of these trucks are now modeled with the heavy-duty vehicles, based on aggregate measures of industrial output from the Macroeconomic Activity Module.

The generalized difference equation used to estimate the VMT per driver is given below

\[
VMT_{LD}^{\text{year}} = \exp(\alpha + \beta_1 \ln(VMT_{LD}^{\text{year}-1}) + \beta_2 \ln(INC00\$16^{\text{year}}) + \beta_3 \ln(COSTM_{\text{I}^{\text{year}}}) + \beta_4 \ln(VPLD_{\text{year}}) + \beta_5 \ln(EMP_RATE_VMT_{\text{year}})),
\]

(155)
Air Travel Submodule
The Air Travel Submodule of the NEMS Transportation Sector Demand Module comprises two separate components: the Air Travel Demand Component and the Aircraft Fleet Efficiency Component. These components use NEMS projections of fuel price, macroeconomic activity, and population growth, as well as assumptions about aircraft retirement rates and technological improvements, to generate projections of passenger and freight travel demand and the fuel required to meet that demand. The Air Travel Submodule receives exogenous estimates of aircraft load factors, new technology characteristics, and aircraft specifications that determine the average number of available seat miles each plane will supply in a year.

Air Travel Demand Component
The Air Travel Demand Component projects domestic and international per-capita passenger travel demand by 13 world regions (Table 4) on a per-capita basis, measured in revenue passenger-miles per-capita (RPMT_PC), and world regional air freight demand, measured in revenue ton-miles (RTM). Domestic travel means both takeoff and landing occur in the same region, while international travel means that either takeoff or landing is in the region but not both. Domestic and international travel are combined into a single regional demand for seat miles and are passed to the Aircraft Fleet Efficiency Component, which adjusts aircraft stocks to meet that demand. Aircraft stock is made up of three types of aircraft: wide body, narrow body, and regional jets.
Table 4. World regions in the National Energy Modeling System

<table>
<thead>
<tr>
<th>Region number</th>
<th>Region</th>
<th>Major countries in region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United States</td>
<td>United States</td>
</tr>
<tr>
<td>2</td>
<td>Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>3</td>
<td>Central America</td>
<td>Bahamas, Cayman Islands, Colombia, Costa Rica, Cuba, Dominican Republic, El Salvador, Guadeloupe, Guatemala, Honduras, Jamaica, Mexico, Netherlands Antilles, Panama, Peru, Trinidad, and Tobago</td>
</tr>
<tr>
<td>4</td>
<td>South America</td>
<td>Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Suriname, Uruguay, and Venezuela</td>
</tr>
<tr>
<td>5</td>
<td>Europe</td>
<td>Albania, Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Malta, Montenegro, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovenia, Slovakia, Spain, Sweden, Switzerland, Turkey, and the United Kingdom</td>
</tr>
<tr>
<td>6</td>
<td>Africa</td>
<td>Angola, Burundi, Benin, Botswana, Congo, Cote D'Ivoire, Cameroon, Cape Verde, Djibouti, Algeria, Western Sahara, Eritrea, Ethiopia, Gabon, Ghana, Gambia, Guinea, Kenya, Liberia, Lesotho, Libya, Morocco, Madagascar, Mali, Mauritania, Mauritius, Malawi, Mozambique, Namibia, Niger, Nigeria, Reunion, Rwanda, Seychelles, Sudan, Sierra Leone, Senegal, Somalia, Swaziland, Chad, Togo, Tunisia, Tanzania, Uganda, Rodrigues, Mauritius, Mayotte, South Africa, Zambia, and Zimbabwe</td>
</tr>
<tr>
<td>7</td>
<td>Mideast</td>
<td>Bahrain, Egypt, Israel, Iraq, Iran, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, United Arab Emirates, and Yemen</td>
</tr>
<tr>
<td>8</td>
<td>CIS</td>
<td>Armenia, Azerbaijan, Belarus, Georgia, Kyrgyzstan, Kazakhstan, Moldova, Republic of Mongolia, Russian Federation, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan</td>
</tr>
<tr>
<td>9</td>
<td>China</td>
<td>China, Hong Kong, and Macao</td>
</tr>
<tr>
<td>10</td>
<td>Northeast Asia</td>
<td>Japan, North Korea, and South Korea</td>
</tr>
<tr>
<td>11</td>
<td>Southeast Asia</td>
<td>Bhutan, Brunei, Cambodia, Guam, Indonesia, Malaysia, Burma, Philippines, Singapore, Taiwan, Thailand, and Vietnam</td>
</tr>
<tr>
<td>12</td>
<td>Southwest Asia</td>
<td>Afghanistan, Bangladesh, India, Nepal, Pakistan, and Sri Lanka</td>
</tr>
<tr>
<td>13</td>
<td>Oceania</td>
<td>Australia, Fiji, New Zealand, French Polynesia, Nauru, and New Caledonia</td>
</tr>
</tbody>
</table>
The Air Travel Demand Component is based on several assumptions about consumer behavior and the structure of the airline industry. Of greatest significance is the assumption that the deregulation of the industry has substantially altered the dynamics of passenger travel. Economic conditions are also assumed to affect travel demand.

The Air Travel Demand Component, as implemented in NEMS, is a series of fitted non-linear functions estimated from 1995 to 2015 for the United States and from 2000 to 2015 for the non-U.S. regions, which appear curvilinear, and is informed by domestic and international travel propensities and projected travel demands from outlooks published by aircraft manufacturers. Although more complex demand models using external factors are possible, projected travel demands were reduced to a minimum of three explanatory variables to project travel demands. As noted above, it is assumed that domestic and international U.S. travel are motivated by economic measures, namely, per capita disposable income, and for the non-U.S. regions described in Table 4, the main drivers for travel demand are population and GDP. Population growth was introduced in the equation by expressing the socio-economic variables in per capita form.

Key model relationships are presented below. Where numbers appear in place of variable names, parameters have been estimated statistically from trends. Figure 12 is a flowchart representing the Air Travel Submodule. The steps involved in calculating Air Travel Demand are listed below:

1) Calculate per capita revenue passenger-miles for domestic and international travel in the 13 world regions

United States

\[
RPMT_{PC_{wreg,di,year}} = CONSTANT_{RPM_{wreg,di}} + \left[\frac{INC00$NP_{year}}{INC00$NP_{BASE_YEAR}} \times \left(1 + \frac{SHAPE_{wreg,di}}{SHAPE_{BASE_YEAR}} \right) \right],
\]

\[
\text{where} \quad INC00$NP_{year} = \text{U.S. per capita personal disposable income in chain-weighted 2005 dollars};
\]

Non-U.S. regions

\[
RPMT_{PC_{wreg,di,year}} = CONSTANT_{RPM_{wreg,di}} + \left[\frac{PER_CAPITA_GDP_{year}}{PER_CAPITA_GDP_{BASE_YEAR}} \times \left(1 + \frac{SHAPE_{wreg,di}}{SHAPE_{BASE_YEAR}} \right) \right],
\]

\[
\text{where} \quad RPMT_{PC_{wreg,di,year}} = \text{per capita revenue passenger-miles for domestic (di=1) and international (di=2) travel in the 13 regions};
\]

\[
\text{PER_CAPITA_GDP}_{BASE_YEAR} = \frac{GDP_{wreg,year}}{Population_{wreg,year}}, \quad wreg = 2 \text{ through } 13;
\]
CONSTANT_RPM_{iwreg,di} = intercept per capita revenue passenger mile for domestic (di=1) and international (di=2) travel in the 13 regions;

SHAPE_{iwreg,di} = time trend to represent a natural growth function that resembles a compound interest type of formulation for domestic (di=1) and international (di=2) travel in the 13 regions;

iwreg = world regions = 1 through 13; and

BASE_YEAR = base year for GDP and population values for domestic (di=1) and international (di=2) travel in the 13 regions.
Figure 12. Air Travel Submodule

- **Begin Air Travel Submodule**
 - **Macro Inputs (historical):** price of jet fuel, non-fuel operating costs, per capita gross domestic product (GDP), disposable income, merchandise exports, and dedicated carrier factor
 - **Macro Inputs:** price of jet fuel, non-fuel operating costs, GDP and U.S. population, disposable income, merchandise exports, and dedicated carrier factor
 - **Exogenous Inputs:** aircraft survival curves
 - **Exogenous Inputs:** new technology adoption factors and incremental fuel efficiency gains from each technology

- **Estimate factors for air travel cost, air travel demand, and air freight demand equations**
 - **Calculate total number of U.S. and non-U.S. surviving planes**
 - **Calculate total demand for aviation jet fuel**

- **To Report Writer:**
 - total demand for jet fuel, number and efficiency of aircraft stock, and total demand for seat miles

- **To Emissions Submodule:**
 - total demand for jet fuel

Note: The Emissions Submodule is currently inactive.
2) Calculate domestic and international total revenue passenger-miles by region

\[
RPMT_{iwreg,di,year} = RPMT_{PCiwreg,di,year} \times WLDPOP_{iwreg,year},
\]

(158)

where

\[
RPMT_{iwreg,di,year} = \text{total revenue passenger-miles for domestic and international travel in the 13 regions; and}
\]

\[
wld_pop_{iwreg,year} = \text{world regional population for the NEMS regions.}
\]

3) Calculate domestic and international revenue passenger-miles by region, by aircraft type

For each aircraft body type \((atyp)\), defined as narrow body, wide body, and regional jet aircraft,\(^{12}\)

\[
RPM_{iwreg,di,iatyp,year} = RPMT_{iwreg,di,year} \times SHR_RPM_{iwreg,di,iatyp},
\]

(159)

where

\[
RPM_{iwreg,di,iatyp,year} = \text{revenue passenger-miles for domestic and international travel by region, by aircraft type; and}
\]

\[
SHR_RPM_{iwreg,di,iatyp} = \text{static share of domestic and international travel performed by region, by aircraft type in the most recent historical data year.}
\]

4) Calculate the dedicated U.S. and non-U.S. regional RTM of air freight

\[
RTM_{us,year} = \alpha + (\beta_1 \times PFT_{year} \times MC_JP_GDP_{year-1}) + (\beta_2 \times MC_XGR_{year}),
\]

and

\[
RTM_{iwreg,year} = RTM_{iwreg,year-1} \times \frac{WLD_GDP_{iwreg,year}}{WLD_GDP_{iwreg,year-1}},
\]

(160)

where

\[
MC_XGR_{year} = \text{value of merchandise exports, in 1996 dollars, from the NEMS Macroeconomic Activity Module;}
\]

\[
WLD_GDP_{iwreg,year} = \text{world regional by the 13 world NEMS regions;}
\]

\[
RTM_{iwreg,year} = \text{revenue ton-miles;}
\]

\(^{12}\) Narrow-body aircraft, such as the Airbus 320 and Boeing 737, have seating for approximately 120–180 passengers and are characterized by two banks of seats separated by a center aisle. Wide-body aircraft, such as the planned Boeing 777X, carry from 350 to 400+ passengers. Regional jets, such as the Canadair RJ-100, have seating for approximately 50–110 passengers.
PJFTR\textsubscript{year} = jet fuel costs in 1987 dollars; and

MC\textsubscript{JPGDP_year} = conversion to 2009 dollars.

5) Calculate the available seat miles demanded, incorporating the estimated load factors for domestic and international travel

\[ASM_{iwreg,di,iatyp,year} = \frac{RPM_{iwreg,di,iatyp,year}}{LoadFactor_{iwreg,di,iatyp,year}}, \]

and

\[SMDEMD_{iwreg,year} = \sum_{di=1}^{2} \sum_{iatyp=1}^{3} ASM_{iwreg,di,iatyp,year}, \]

where

\[ASM_{iwreg,di,iatyp,year} = \text{domestic and international demand for available seatmiles, by region, by aircraft type;} \]

\[SMDEMD_{iwreg,year} = \text{demand for available seat miles, by region;} \] and

\[\text{Load_Factor}_{iwreg,di,iatyp,year} = \text{exogenously determined load factor for domestic and international travel, by region, by aircraft type from the Boeing Current Market Outlook 2018.} \]

Aircraft Fleet Efficiency Component

The Aircraft Fleet Efficiency Component is a structured accounting mechanism that provides estimates of the number of narrow-body, wide-body, and regional jet aircraft available to meet passenger and freight travel demand subject to user-specified parameters. This mechanism also permits the estimation of fleet efficiency using a harmonically weighted average of the characteristics of active aircraft and those acquired to meet demand.

a) The intent of this component is to provide a quantitative approach for estimating aircraft fleet energy efficiency. Fuel efficiency of new acquisitions of aircraft are calculated based on estimates of technology penetration and efficiency improvements of a slate of nine aircraft technologies.

b) A structured accounting method provides estimates of the movement of aircraft, active and parked, both within and between regions. The structured accounting defines a priority scheme to determine which regions receive the aircraft.

c) The fleet average efficiency for each body type is then calculated as a weighted harmonic mean of efficiencies for the active aircraft stock.

The resulting fleet average efficiencies along with the demand for travel provide the projection of jet fuel consumption for commercial passenger and freight carriers to 2050.
The Air Travel Submodule estimates only commercial aircraft efficiencies. Efficiencies and fuel use of general aviation aircraft and military planes are not addressed. U.S. military jet fuel use is estimated in another model using projections of military budgets. Non-U.S. military jet fuel demand is not modeled.

Total fleet efficiency is based on separate estimates of the stock and efficiency of the three types of aircraft considered by the component: narrow-body, wide-body, and regional jets. The development of the hub and spoke system has led airlines to invest in smaller aircraft. In 1991, narrow-body aircraft accounted for approximately 54% of total available seat miles, wide-body aircraft accounted for 41%, and regional jets accounted for the remaining 5%. By 2018, narrow-body aircraft accounted for 67% of total available seat miles, wide-body aircraft accounted for 23%, and regional jets accounted for the remaining 9%. The component operates in six stages:

1. Estimates the sales of new U.S. and non-U.S. aircraft
2. Determines the total stock of aircraft by aircraft type
3. Determines the demand for commercial aircraft
4. Computes the flow of aircraft, active and parked, between U.S. and non-U.S. regions to satisfy demand and supply balance
5. Calculates the fleet efficiency improvements of newly acquired aircraft
6. Estimates fuel consumption

1) Sales of new U.S. and non-U.S. aircraft

First, determine the sales of new aircraft based on economic and travel demand growth. Travel demand, expressed as a demand for revenue passenger-miles, is obtained from the Air Travel Demand Component. Sales of new aircraft are based on the previous years’ sales and on economic activity.

\[
STKPASS_SALES_{iwreg=U.S.,year} = \alpha + \beta_1 \times (MC_GDPR_{year-1}),
\]

and

\[
STKPASS_SALES_{iwreg,year} = STKPASS_SALES_{iwreg,year-1} \times \frac{WLD_GDPR_{iwreg,year}}{WLD_GDPR_{iwreg,year-1}}, iwreg = 2, \ldots, 13,
\]

where

\[
STKPASS_SALES_{iwreg=U.S.,year} = \text{total U.S. sales of new passenger aircraft;}
\]

\[
STKPASS_SALES_{iwreg,year} = \text{total sales of new passenger aircraft by region;}
\]

U.S. = index representing U.S. region = 1; and

MC_GDPR = GDP in 2005 chain-weighted dollars, from the Macroeconomic Activity Module.

Sales of new passenger aircraft are then allocated between the three aircraft types considered by the component. The fraction of sales attributable to each aircraft type is based on historical data.
\[
STK_{\text{PASS}_{\text{wreg},\text{iatyp},\text{iage}=1,\text{year}}} = STK_{\text{PASS}_{\text{SALES}_{\text{wreg},\text{year}}} \times SHR_{\text{NEW}_{\text{STK}_{\text{wreg},\text{iatyp},\text{year}}}},
\]

where

\[
STK_{\text{PASS}_{\text{wreg},\text{iatyp},\text{iage},\text{year}}} = \text{U.S. and non-U.S. sales of new passenger aircraft, age}=1, \text{by the three aircraft types};
\]

\[
SHR_{\text{NEW}_{\text{STK}_{\text{wreg},\text{iatyp},\text{year}}} = \text{fraction of total sales attributable to each aircraft type}; \text{and}
\]

\[
iatyp = \text{wide-body, narrow-body and regional jet aircraft.}
\]

The rate of new aircraft acquisition significantly affects the average energy intensity of the fleet and, subsequently, the projection of energy demand. This component differs from other stock models in that retirements are not assumed to take place abruptly once the aircraft have reached a specified age. Instead, the survival function is based on an analysis of historical data obtained from Jet Information Services, Inc.

2) Stock estimation

The aircraft stock component provides an accounting for aircraft stocks and sales. The component tracks all passenger and cargo aircraft and calculates the number of aircraft required to meet demand. The first step is to determine the initial stock of aircraft available. The aircraft stock in the current year is determined as equal to the previous year’s stock, plus new sales, less those aircraft that have been scrapped, less initial parked aircraft.

An accurate portrayal of the age distribution of airplanes must be provided because of the relatively small size of the world fleet, which in 2018 numbered 30,600 aircraft. This distribution helps determine the number of aircraft retired from service each year and, consequently, has a strong influence on the number of new aircraft acquired to meet air travel demand. Because of the international nature of the market for aircraft, constructing a survival algorithm using only domestic deliveries and stocks is not feasible because aircraft of different vintages are regularly bought and sold on the international market. As a result, the surviving domestic stock of a given vintage may exceed the number of aircraft of that vintage that had originally been delivered domestically. This problem is mitigated by assuming that the scrappage rate of aircraft on a worldwide basis also characterizes that of domestic aircraft. The available aircraft capacity is calculated once the number of surviving aircraft by type is established. The stock of surviving passenger aircraft is subsequently estimated with the following equation

\[
STK_{\text{PASS}_{\text{wreg},\text{iatyp},\text{iage},\text{year}}} = STK_{\text{PASS}_{\text{wreg},\text{iatyp},\text{iage} = 1,\text{year} - 1} \times SURVAC_{\text{iatyp},\text{iage})),
\]

where

\[
STK_{\text{PASS}_{\text{wreg},\text{iatyp},\text{iage},\text{year}}} = \text{stock of surviving passenger aircraft by aircraft type, world region, and given age}; \text{and}
\]

\[
SURVAC_{\text{iatyp},\text{iage}} = \text{survival rate (1-scrap rate) of aircraft of a given age.}
\]
The stock component also accounts for the stock of cargo aircraft and cargo plane retirement. The surviving cargo aircraft are projected from historical data using the following equation

$$STK_CARGO_{iwreg,iatyp,iage,year} = STK_CARGO_{iwreg,iatyp,iage-1,year-1} \times SURVAC_{iwreg,iatyp,iage},$$

where

$$STK_CARGO_{iwreg,iatyp,iage,year} = \text{Thirteen world regions for stock of surviving cargo aircraft by aircraft type, by age.}$$

Older passenger planes are often converted for use in cargo service. Starting with passenger aircraft of vintage 25 years, the aircraft stock component moves aircraft into cargo service; aircraft are first assumed parked and then activated when needed. Reflecting this, the stock of cargo aircraft is defined by

$$STKCARGO_{iwreg,iatyp,iage,year} = STK_CARGO_{iwreg,iatyp,iage-1,year-1} + STK_PASS_{iwreg,iatyp,iage,year} \times CARGOPCT_{iage},$$

where

$$CARGO_PCT_{iage} = \text{percentage of passenger planes, aged 25 years or older, shifted to cargo service, based on historical data.}$$

The stock of passenger aircraft is then adjusted for the older planes that moved into cargo service

$$STK_PASS_{iwreg,iatyp,iage,year} = STK_PASS_{iwreg,iatyp,iage,year} \times (1 - CARGO_PCT_{iage}).$$

The total stock of passenger aircraft is then computed as follows

$$STK_SUP_TOT_{iwreg,iatyp,year} = \sum_{iage} STK_PASS_{iwreg,iatyp,iage,year},$$

where

$$STK_SUP_TOT_{iwreg,iatyp,year} = \text{total regional stock of passenger aircraft by aircraft type.}$$

3) Demand for commercial aircraft

The demand for commercial aircraft is then calculated based on the growth of travel demand. The seat miles flown per aircraft have historically grown slowly. Available seat miles demanded data are obtained from the Air Travel Demand Component, and the passenger demand for aircraft is calculated as

$$STK_PASS_DMD_{iwreg,iatyp,year} = \frac{ASMD_DEM_{iwreg,iatyp,year}}{ASMAC_{iwreg,iatyp,year}} \times 0.001,$$

where

$$STK_PASS_DMD_{iwreg,iatyp,year} = \text{passenger stock of aircraft demanded for each of the 13 world regions, by aircraft type;}$$
ASMDEMD_iwreg,iatyp,year = seat miles demanded by region, by aircraft type; and

ASMAC_iwreg,iatyp,year = available seat miles flown per aircraft, by region, by aircraft type.

Historical available seat miles per aircraft for the United States are computed by aircraft type and are assumed to vary over time, but they are constant for all regions.

The initial supply of active passenger aircraft, STKPASS_ACTIVE, consists of the total stock of aircraft less aircraft that are parked and is defined as

\[
STKPASS_ACTIVE_iwreg,iatyp,age,year = STKPASS_iwreg,iatyp,age,year - STKPASS_PARKED_iwreg,iatyp,age,year,
\]

where

STKPASS_ACTIVE_iwreg,iatyp,age,year = active stock of passenger aircraft, for each of the 13 world regions, by aircraft type and age.

The total supply of active passenger aircraft, STKPASS_ACTIVE_TOT, is then calculated for each region, aircraft type, and year

\[
STKPASS_ACTIVE_TOT_iwreg,iatyp,year = \sum_{age} STKPASS_ACTIVE_iwreg,iatyp,age,year.
\]

4) Movement of U.S. and non-U.S. aircraft

After calculating the initial demand for active world aircraft and the initial supply of active world aircraft, the difference between demand and supply for active aircraft, DEL_STKPASS, is estimated as

\[
DEL_STKPASS_iwreg,iatyp = STKPASS_DMD_iwreg,iatyp,year - STKPASS_ACTIVE_TOT_iwreg,iatyp,year
\]

Test the Difference:

First, for each region, 1 through 13, if the demand for aircraft is greater than the supply of aircraft then more aircraft are needed. Keep unparking all aircraft in that region until either 10% of the stock is left or until all aircraft demanded is supplied. Repeat this for all regions, skipping those whose supply of aircraft is greater than demanded.

Second, loop through all regions, wreg =1 through 13. For each region, wreg, if the demand for aircraft is greater than the supply of active aircraft, then loop through the remaining regions, nreg, not equal to wreg. If the supply of aircraft is greater than the demand for aircraft in that region, nreg, export active aircraft from nreg to wreg until either no more aircraft are needed in wreg or no more active aircraft are available from nreg. Then, move to the next region, wreg, and repeat this process.

Third, repeat the second step for the exporting and unparking of parked aircraft from nreg to wreg.

5) Fleet efficiency improvements
Efficiency improvements of newly acquired aircraft are determined by technology choice that is dependent on the year acquired, the type of aircraft and the price of fuel. The model accounts for nine technologies, $ifx = 1,2,...,9$. The first five technologies are generic, each being slightly more efficient, approximately 3%, and each entering the market at five-year intervals. The remaining four technologies are specific, and in order to model a smooth transition from old to new technologies, the efficiencies are based on $TRIGYEAR$, or the year the technology is introduced, and the improved efficiency gains of each technology over the previous generation of technology. Each new generation of technology replaces the previous one every five to six years, and the penetrations are based on a logistic function. The efficiencies of the aerodynamic and weight-reducing technologies are additive and are based on several logistic functions that reflect the commercial viability of each technology. The time effect ($TIMEFX$) and the price effect ($COSTFX$) are based on the assumption that the rate of technology incorporation is determined not only by the length of time the technology has been commercially viable, but also by the magnitude of a given technology's price advantage as shown in the following equation

$$TIMEFX_{ifx,iatyp,year} = TIMEFX_{ifx,iatyp,year-1} + (TIMECONST_{iatyp} * TPN_{ifx,iatyp} * TYRN_{ifx,iatyp}), \quad (173)$$

where

- $TIMEFX_{ifx,iatyp,year} =$ factor reflecting the length of time that aircraft technology ifx has been commercially viable, by year and aircraft type;
- $TIMECONST_{iatyp} =$ user-specified scaling constant, reflecting the importance of the passage of time;
- $TPN_{ifx,iatyp} =$ binary variable (0,1) that tests whether current fuel price exceeds the considered technology’s trigger price;
- $TYRN_{ifx,iatyp} =$ binary variable that tests whether current year exceeds the considered technology's year of introduction; and
- $ifx =$ index of technologies (6-9).

The cost effect is now calculated

$$COSTFX_{ifx,iatyp,year} = 10.0 \ast \left[\frac{TPJFGAL_{year} - TRIGPRICE_{ifx,iatyp}}{TPJFGAL_{year}} \right] \ast TPZ_{ifx,iatyp} \ast TPN_{ifx,iatyp} \ast TYRN_{ifx,iatyp}, \quad (174)$$

where

- $COSTFX_{ifx,iatyp,year} =$ factor reflecting the magnitude of the difference between the price of jet fuel and the trigger price of the considered technology, by aircraft type;
- $TPJFGAL_{year} =$ price of jet fuel;
- $TPZ_{ifx,iatyp} =$ price of jet fuel.
TRIGPRICE_{ifx,iatyp} = price of jet fuel above which the considered technology is assumed to be commercially viable; and

TPZ_{ifx,iatyp} = binary variable that tests whether implement the considered technology is dependent on fuel price.

The overall effect of time and fuel price on implementing technology improvements is defined by the equation

\[TOTALFX_{ifx,iatyp,year} = TIMEFX_{ifx,iatyp,year} + COSTFX_{ifx,iatyp,year} - BASECONST, \]
(175)

where

BASECONST = adjustment that anchors the logistic curve, thus ensuring that technologies are not incorporated before their commercial viability.

For each technology, a technology penetration function is defined as

\[TECHPEN_{ifx,iatyp,year} = \left[1 + e^{-TOTALFX_{ifx,iatyp,year}} \right]^{-1}, \]
(176)

The fractional fuel efficiency improvement is calculated for each aircraft type using the following equation

\[FRACIMP_{iatyp,year} = 1.0 + \sum_{ifx=1}^{9} EFFIMP_{ifx} * TECHPEN_{ifx,iatyp,year}, \]
(177)

where

FRACIMP_{iatyp,year} = fractional efficiency improvement for each aircraft type;

EFFIMP_{ifx} = fractional improvement associated with a given technology; and

iatyp = wide-body, narrow-body and regional jet aircraft.

Given the variety of non-exclusive technologies, some assumptions must be made:

1. Technologies enter the mix as they become viable and cost competitive
2. The inclusion of a technology with a higher trigger price is dependent on the previous use of those technologies with lower trigger prices
3. Efficiency gains attributable to each technology are directly proportional to the level of penetration of that technology

Fleet efficiency in seat-mpg is estimated using a series of simplifying assumptions. First, the new stock efficiency is determined for each type of aircraft and for domestic and international travel, using the following equations

\[ASMPGD_{iatyp,age=1,year} = ASMPGD_{atyp,age=1,year=2016} * FRACIMP_{iatyp,year}, \]

\[ASMPGI_{iatyp,age=1,year} = ASMPGI_{iatyp,age=1,year=2016} * FRACIMP_{iatyp,year}, \]
(178)
where

\[\text{ASMPGD}_{\text{latyp}, \text{age}, \text{year}} = \text{domestic aircraft fuel efficiency in available seat-mpg}; \text{ and} \]

\[\text{ASMPGI}_{\text{latyp}, \text{age}, \text{year}} = \text{international aircraft fuel efficiency in available seat-mpg}. \]

Second, stock efficiency is assumed to remain unchanged over time and is defined as

\[\text{ASMPGD}_{\text{latyp}, \text{age}, \text{year}} = \text{ASMPGD}_{\text{latyp}, \text{age}, \text{year} - 1}, \text{ and} \]

\[\text{ASMPGI}_{\text{latyp}, \text{age}, \text{year}} = \text{ASMPGI}_{\text{latyp}, \text{age}, \text{year} - 1}. \] \hspace{1cm} (179)

Total available seat-mpg, \(\text{ASMPGT}\), is computed as the harmonic average of domestic fuel efficiency and international fuel efficiency, weighted by the supply of regional aircraft and by domestic and international available seat miles.

\[\text{ASMPGT}_{\text{latyp}, \text{age}, \text{year}} = \left(\frac{\text{ASM}_{\text{DOM}} + \text{ASM}_{\text{INT}}}{\frac{\text{ASM}_{\text{DOM}}}{\text{ASMPGD}_{\text{latyp}, \text{age}, \text{year}}} + \frac{\text{ASM}_{\text{INT}}}{\text{ASMPGI}_{\text{latyp}, \text{age}, \text{year}}}} \right), \] \hspace{1cm} (180)

where

\[\text{ASM}_{\text{DOM}} = \text{available domestic seat miles}; \]

\[\text{ASM}_{\text{INT}} = \text{available international seat miles}; \]

\[\text{ASMPGD}_{\text{latyp}, \text{age}, \text{year}} = \text{domestic aircraft efficiency}; \text{ and} \]

\[\text{ASMPGI}_{\text{latyp}, \text{age}, \text{year}} = \text{international aircraft efficiency}. \]

6) Estimating fuel consumption

The total seat miles demanded are estimated by combining the demand for passenger seat miles and the revenue ton-miles, which are converted to seat miles

\[\text{SMD}_{\text{TOT}}_{\text{iwreg,year}} = \left(\text{SMDEM}_{\text{iwreg,year}} + \left(\text{RTM}_{\text{iwreg,year}} \times \text{EQSM} \right) \right) \times 0.001, \] \hspace{1cm} (181)

where

\[\text{SMD}_{\text{TOT}}_{\text{iwreg,year}} = \text{total seat miles demanded}; \text{ and} \]

\[\text{EQSM} = \text{factor converting revenue ton-miles to seat miles}. \]

The demand for jet fuel is then calculated as

\[\text{JFGA}_{\text{iwreg,year}} = \frac{\text{SMD}_{\text{TOT}}_{\text{iwreg,year}}}{\text{ASMPGT}_{\text{iotech = 2,year}}}. \] \hspace{1cm} (182)

The demand for aviation gasoline is calculated as

\[\text{QAGTR}_{\text{iregon,year}} = \text{QAGTR}_{\text{iregon,year=2013}} + \text{GAMMA} \times e^{-\text{KAPPA} \times (\text{year} - 1979)}, \] \hspace{1cm} (183)
where

\[QAGTR_{\text{ireg_year}} = \text{demand for aviation gasoline, in Btu}; \]

\[\text{GAMMA} = \text{baseline adjustment factor}; \text{ and} \]

\[\text{KAPPA} = \text{exogenously specified decay constant}. \]

Jet fuel demand is converted from gallons into Btu using the following relationships:

\[QJETR_{\text{ireg_year}} = JFGAL_{\text{wreg_year}} \times \frac{5.670\text{MMBtu/bbl}}{42\text{gal/bbl}}, \tag{184} \]

\[QJETR_{\text{ireg_year}} = \text{demand for jet fuel, in Btu}. \]

Jet fuel and aviation gasoline demand is allocated to the U.S. regions as follows:

\[QJETR_{\text{ireg_year}} = QJETR_{\text{ireg_year}} \times SEDSRJF_{\text{ireg_year}}, QAGTR_{\text{ireg_year}} = QAGTR_{\text{ireg_year}} \times SEDSRJF_{\text{ireg_year}}, \tag{185} \]

where

\[SEDSRJF_{\text{ireg_year}} = \text{regional shares of jet fuel demand, from the State Energy Data System}. \]
Freight Transportation Submodule

The Freight Transportation Submodule addresses the three primary modes of freight transport: truck, rail, and marine. This submodule uses NEMS projections of real fuel prices, trade indexes, coal production, and selected industries’ output from the Macroeconomic Activity Module to estimate travel demand for each freight mode and the fuel required to meet that demand. The carriers in each of these modes are characterized by long operational lifetimes and the ability to extend these lifetimes through retrofitting. This ability results in a low turnover of capital stock and the consequent dampening of improvement in average energy efficiency. Given the long projection horizon, however, this submodule provides estimates of modal efficiency growth, driven by assumptions about systemic improvements and the adoption of new technology.

Projections are made for each of the freight modes, and travel projections are based on the industrial output of specific industries and a ton-mile per industrial dollar output measure determined using the U.S. Department of Transportation’s Freight Analysis Framework (FAF), based on the U.S. Census Bureau’s 2012 Commodity Flow Survey (CFS). For rail, the model also uses NEMS coal projections to account for part of the travel. These values are then converted to energy demand using the average energy intensity for the mode in question. Total energy demand is subsequently shared out to the various types of fuel used for freight transport, taking into consideration the cost effectiveness of alternative fuels when considering fuel prices, travel behavior, and incremental engine and fuel storage costs. Rail and marine are considered in the aggregate with no distinction between classes of carriers.

The truck sector of the Freight Transportation Submodule incorporates additional levels of detail. The trucking sector is divided according to market class with stock adjustments for each market class and fuel type.

The Freight Transportation Submodule aggregates the value of output from various industries into a reduced classification scheme, relating the demand for transport to the growth in the value of output of each industrial category. The relationships used for truck, rail, and waterborne freight are presented in sequence below. The flowchart for the Freight Transportation Submodule is presented in Figure 13, which is further described in a report prepared for EIA by IHS Markit, Inc.

Freight Truck Stock Adjustment Component (FTSAC)

The FTSAC allows for manipulation of a number of important parameters, including the market penetration of existing and future fuel-saving technologies as well as alternative fuel heavy-duty vehicles to meet market demand and fuel efficiency standards. The FTSAC uses projections of real fuel prices and selected industries’ output from the Macroeconomic Activity Module to estimate freight truck travel demand and purchases. Projections of retirements of freight trucks, important truck stock

13 CFS, which is undertaken through a partnership between the U.S. Census Bureau and the Bureau of Transportation Statistics (BTS), is conducted every five years (years ending in 2 and 7) as part of the Economic Census.

14 IHS Global, Inc., NEMS Freight Transportation Module Improvement Study (June 20, 2014).
characteristics such as fuel technology market share and fuel economy, and fuel consumption come from the Transportation Sector Demand Module.
Figure 13. Freight Transportation Submodule

Exogenous Inputs:
- coefficient relating growth of value added to growth of each freight transport mode
- travel share allocated to each size class for trucks and domestic freighters
- energy efficiency of each transport mode for each year (determined exogenously)
- base year consumption of each fuel (rail and freighters) and share of vehicle miles traveled (VMT) allocated to each size class (trucks)

Macro Inputs:
- value of output of each industry
- demand for each fuel in previous year and change in gross trade

To Report Writer:
- total freight VMT and ton-miles traveled and total fuel consumption
- total demand for each fuel
- total demand for each fuel

To Miscellaneous Energy Submodule:
- total demand for each fuel

Note: The Emissions Submodule is currently inactive.
The FTSAC projects the consumption of diesel, motor gasoline, LPG, CNG/LNG, flex-fuel, electricity, and hydrogen accounted for by freight trucks in each of 12 industrial sectors. Throughout each submodule, 34 truck vintages, 19 truck market classes, 14 fuel-efficiency standard market subclasses and 2 fleet types are tracked, each having its own average fuel economy and number of miles driven per year (Table 5). The results, reported in four truck market classes, are defined as follows:

- Class 2b includes trucks 8,501 to 10,000 GVWR
- Class 3 includes trucks 10,001 to 14,000 pounds GVWR
- Classes 4 through 6 include trucks 14,001 to 26,000 pounds
- Classes 7 and 8 include trucks more than 26,000 pounds

The 14 fuel-efficiency market subclasses include one breakout for Classes 2b3 pickups and vans, three breakouts for vocational vehicles—Classes 2b–5, Classes 6–7, and Class 8, nine breakouts for tractors, and one heavy-haul. The 10 subclasses for heavy trucks include parceling the class by Class 7 or Class 8, day cab or sleeper cab, and low-, mid- or high-roof. This section presents and describes the methodology used by the component to project characteristics of each class. Figure 14 shows a flow chart of the Highway Freight Component.

Four main steps are executed for each projection year of the model run to produce estimates of fuel consumption. First, fuel economies of the incoming class of new trucks are estimated, allowing for market penetration of existing and new fuel-saving technologies to comply to minimum fuel efficiency requirements or consumer-driven demand. Relative fuel economies are used in this routine to determine the market share of each fuel technology in the current year’s truck purchases. The second routine determines the composition of the existing truck population, using the characteristics of the current year’s class of new trucks along with exogenously estimated vehicle scrappage and fleet transfer rates. New truck sales data from the Macroeconomic Activity Module are used to determine new truck purchases in the fourth routine. In the third routine, VMT demand is allocated among truck types and divided by fuel economy to determine fuel consumption. Finally, the truck stocks are rolled over into the next vintage, and the component is prepared for the next projection year.

15 Class 2b, 3, 4 to 6, and 7 to 8 trucks are also referred to as commercial light-, medium light-, medium heavy-, and heavy trucks, respectively.
Table 5. Freight truck vehicle fuel-efficiency market subclass category

<table>
<thead>
<tr>
<th>Vehicle category</th>
<th>Reporting size class</th>
<th>Fuel efficiency standard market size class</th>
<th>Fuel efficiency standard market subclasses</th>
<th>Roof</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2b</td>
<td>2b</td>
<td>2b–3 pickup and van</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>2b</td>
<td>2b–5 vocational</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2b–3 pickup and van</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2b–5 vocational</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4–6</td>
<td>4</td>
<td>2b–5 vocational</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>4–6</td>
<td>5</td>
<td>2b–5 vocational</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>4–6</td>
<td>6</td>
<td>6–7 vocational</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>7–8</td>
<td>7</td>
<td>6–7 vocational</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>7–8</td>
<td>7</td>
<td>Tractor—day cab</td>
<td>Low</td>
</tr>
<tr>
<td>10</td>
<td>7–8</td>
<td>7</td>
<td>Tractor—day cab</td>
<td>Mid</td>
</tr>
<tr>
<td>11</td>
<td>7–8</td>
<td>7</td>
<td>Tractor—day cab</td>
<td>High</td>
</tr>
<tr>
<td>12</td>
<td>7–8</td>
<td>8</td>
<td>8 vocational</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>7–8</td>
<td>8</td>
<td>Tractor—day cab</td>
<td>Low</td>
</tr>
<tr>
<td>14</td>
<td>7–8</td>
<td>8</td>
<td>Tractor—day cab</td>
<td>Mid</td>
</tr>
<tr>
<td>15</td>
<td>7–8</td>
<td>8</td>
<td>Tractor—day cab</td>
<td>High</td>
</tr>
<tr>
<td>16</td>
<td>7–8</td>
<td>8</td>
<td>Tractor—sleeper cab</td>
<td>Low</td>
</tr>
<tr>
<td>17</td>
<td>7–8</td>
<td>8</td>
<td>Tractor—sleeper cab</td>
<td>Mid</td>
</tr>
<tr>
<td>18</td>
<td>7–8</td>
<td>8</td>
<td>Tractor—sleeper cab</td>
<td>High</td>
</tr>
<tr>
<td>19</td>
<td>7–8</td>
<td>8</td>
<td>Heavy-haul</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Applies to Class 7 and Class 8 day and sleeper cabs only.

1. Estimate new truck fuel economies

The first step in the FTSAC is to determine the characteristics of the incoming class of truck purchases. Estimates of new commercial light, light, medium-heavy, and heavy truck fuel economies are generated endogenously and depend on the market penetration of specific fuel-saving technologies determined by consumer preference or regulatory requirements.
Figure 14. Highway Freight Component

Begin Freight Transport Submodule

Inputs: total freight traffic in base year (by industry), value of industry’s output, and coefficient relating growth of value added to growth of freight

Calculate total demand for highway freight in ton-miles, by industry

Calculate share of each technology in total truck sales

Calculate fuel efficiency for each truck class

Inputs: base year technology share and factor to account for changes in technology shares

Allocate VMT for each size class among fuel technologies

Calculate total freight VMT for each size class

Calculate total fuel use by trucks

Convert ton-miles traveled and sum over all industries

Inputs: share of vehicle miles traveled (VMT) allocated to each of three truck size classes

Go to Rail Freight Component

Inputs: fuel prices, time coefficient for efficiency improvements (exogenous), price coefficients for efficiency improvement (historical), and base year truck miles per gallon
Future technologies are adapted from the joint EPA and NHTSA Final Rulemaking to establish greenhouse gas emissions standards and fuel efficiency standards for medium- and heavy-duty engines and vehicles.16 A second more stringent phase (Phase 2) takes effect in 2021.17 Technologies include advanced transmissions, lightweight materials, synthetic gear lube, advanced drag reduction, advanced tires, electronic engine controls, turbo-compounding, hybrid powertrains, and direct-injection. Future technologies can enter the market throughout the component run depending on the year in which they become commercially available and on the level of fuel prices relative to a calculated cost-effective fuel price (based on capital costs) at which the technology becomes economically viable. Because prices vary by fuel type, the market shares of fuel-saving technologies are specified separately for diesel, gasoline, LPG, CNG/LNG, flexfuel, electric, PHEV diesel, PHEV gasoline, and hydrogen fuel cell trucks.

The first step in the component is to calculate the fuel trigger price at which the technology becomes economically viable:

\[
TRIGGERPRICE_{pXitech,icafe19,ifuel} = \frac{TECHCOST_{itech,isc19}}{\sum_{ip=1}^{PAYBACK_{icafe,itech}} \left(\frac{TECHEFF_{pXitech,icafe19,ifuel} \cdot ANNVMT_{19icafe19,ip,ifuel} \cdot TEMP_{BTU_{pXisc19,ifuel}}}{(1+DISCRTXG)^P} \right)}
\]

(186)

where

\[
TRIGGER_PRICE_pXitech,icafe19,ifuel = \text{fuel trigger price at which a technology, } itech, \text{ becomes economically viable in phase } X \text{ where } X = 1 \text{ for phase 1 and } x = 2 \text{ for phase 2 of the heavy duty vehicle fuel economy and greenhouse gas emission standard};
\]

\[
PAYBACK_{icafe,itech} = \text{payback period for a given technology and market class, in years (model increases PAYBACK to ensure compliance with minimum fuel efficiency standards)};
\]

\[
TECHCOST_{itech,isc19} = \text{incremental cost of a technology};
\]

\[
TEMP_BTU_{pXisc19,ifuel} = \text{average annual truck fuel usage};
\]

\[
ANNVMT_{19icafe19,ip,ifuel} = \text{average VMT by vintage by 19 size classes};
\]

TECHEFF_pXitech,icafe19,ifuel = incremental fuel economy improvement;

DISCRTXG = discount rate;

ip = index for payback periods;

itech = freight truck technologies;

icafe19 = 19 market classes;

ifuel = index referring to powertrain type, where 1 = diesel, 2 = gasoline, 3 = LPG, 4 = CNG/LNG, 5 = flexfuel, 6 = electric, 7 = PHEV diesel, 8 = PHEV gasoline, and 9 = hydrogen fuel cell; and

isc19 = map from 4 reporting size classes to 19 market classes.

Whether a future technology enters the market during a particular year depends on the cost-effective price of that technology relative to the average price of each fuel over the past three years.

The next step in the component is to calculate the average fuel price over the previous three years

\[
\text{Avg_Fuel}_\$\text{year,ifuel} = \frac{\text{PRICE}_{\text{year},i\text{fuel}} + \text{PRICE}_{\text{year-1},i\text{fuel}} + \text{PRICE}_{\text{year-2},i\text{fuel}}}{3},
\]

where

\[
\text{Avg_Fuel}_\$\text{year,ifuel} = \text{average price of fuel over three year, in dollars per million British thermal units;}
\]

and

\[
\text{PRICE}_{\text{year,ifuel}} = \text{price of each fuel, in dollars per thousand British thermal units.}
\]

Technology market penetration depends on the level of fuel prices relative to the technology’s cost-effective price. For each technology that has entered the market and for existing technologies, the effect of fuel prices on market penetration is determined for the current year by the equation

\[
\text{PREFF}_pX_{\text{itech,icafe19,ifuel}} = 1 + \text{TECHVAR}_{\text{itech,isc19}} \times \left(\frac{\text{Avg_Fuel}_\$i\text{fuel,year}}{\text{TRIGGER}\text{PRICE}_pX_{\text{itech,icafe19,ifuel}}} - 1\right),
\]

where

\[
\text{PREFF}_pX_{\text{itech,icafe19,ifuel}} = \text{effect of fuel price on market penetration rates for each freight technology in either phase 1 or phase 2 of the standards;}
\]

\[
\text{TECHVAR}_{\text{itech,isc19}} = \text{exogenously determined fuel price sensitivity parameter for each freight technology, representing the percentage increase in technology market share if fuel price exceeds cost-effective price by 100%; and}
\]

\[
\text{year} = \text{model year.}
\]
For each available technology, including existing technologies, by fuel efficiency market class and fuel type, the submodule determines the share of the available market in the current year.

For each fuel efficiency market class and technology, the market penetration over time is estimated using an S-shaped logistical equation defined as follows:

$$P_{\text{year}} = \text{TECHSHARE}_{pX_{\text{itech,isc}19}} + \left(\text{TECHMAX}_{(\text{itech,isc}19)} - \text{TECHBASE}_{pX_{\text{itech,icafe19},\text{ifuel}}} \right) \times \frac{1}{\text{TECHSHAPE}_{\text{itech,isc}19}} \times \frac{\text{TECHPENYR}_{pX_{\text{year},\text{itech,icafe19},\text{ifuel}}} - \text{TECHMID}_{\text{itech,isc}19}}{1 + e^{-\frac{\text{TECHSHAPE}_{\text{itech,isc}19}}{\text{TECHPENYR}_{pX_{\text{year},\text{itech,icafe19},\text{ifuel}}} - \text{TECHMID}_{\text{itech,isc}19}}}}$$

(189)

where

P_{year} = market penetration by year;

$\text{TECHSHARE}_{pX_{\text{itech,isc}19}}$ = market share of fuel-saving technology, by market size class and fuel type in Phase 1 and Phase 2;

$\text{TECHBASE}_{pX_{\text{itech,icafe19},\text{ifuel}}}$ = base year market penetration parameter;

$\text{TECHMAX}_{\text{itech,isc}19}$ = maximum market penetration parameter;

$\text{TECHMID}_{\text{itech,isc}19}$ = parameter for existing technologies;

$\text{TECHPENYR}_{pX_{\text{year},\text{itech,icafe19},\text{ifuel}}}$ = year that a technology becomes available for Phase 1 or Phase 2 of the fuel efficiency and greenhouse gas (GHG) heavy-duty vehicle (HDV) standards; and

$\text{TECHSHAPE}_{\text{itech,isc}19}$ = market penetration curve for existing technologies.

If the technology is an emission control technology or if the fuel price has reached the trigger price, then the technology share is as estimated by the following:

$$\text{TECHSHR}_{pX_{\text{year},\text{itech,icafe19},\text{ifuel}}} = \text{PREFF}_{pX_{\text{itech,icafe19},\text{ifuel}}} \times P_{\text{year}} \cdot$$

(190)

However, if the technology is a fuel efficiency technology and the fuel price has not reached the trigger price, but the previous year’s technology market share is non-zero, then the current year’s market share is assumed to grow at the same rate as the market penetration price sensitivity multiplier:

$$\text{TECHSHR}_{pX_{\text{year},\text{itech,icafe19},\text{ifuel}}} = \text{TECHSHR}_{pX_{\text{year}-1,\text{itech,icafe19},\text{ifuel}}} \times \frac{\text{PREFF}_{pX_{\text{itech,icafe19},\text{ifuel}}}}{P_{\text{year}}} \cdot$$

(191)
If technology A is superseded by another mutually exclusive technology B, technology A’s market share must be adjusted to reflect the smaller pool of vehicles in the base market

\[
TECHSHR_{pX_{year,itech,icafe19}} = TECHSHR_{pX_{year,itech,icafe19}} (1 - ADVSHR),
\]

where

\[
ADVSHR = \text{superseding effect, equal to the market share of the superseding technology.}
\]

Once the market shares in a given year are established, the effects of the technologies on the base fuel cost are tallied and combined to form a vector of mpg effects, which is used to augment the base fuel economy of new trucks of each market class and fuel type. The mpg effects are computed as follows

\[
MPGEFF_{pX_{ifuel,icafe19}} = \prod_{itech=1}^{TechpX} (1 - \text{TECHEFF}_{pX_{itech,icafe19}}) \times \text{TECHADJSHR}_{pX_{year,itech,icafe19}},
\]

where

\[
\text{MPGEFF}_{pX_{ifuel,icafe19}} = \text{total effect of all fuel-saving technologies on new truck fuel economy in a given year and market class, icafe19;}
\]

TechpX = the number of technologies in Phase 1 and Phase 2, that is 37 and 83, respectively; and

\[
\text{TECHADJSHR}_{pX_{year,itech,icafe19}} = \text{difference between the current tech share and the base tech share.}
\]

Fuel economy of new vintage, AGE = 1, freight trucks by market class can finally be determined as

\[
NEW_{MPG_{19}}_{year,ifuel,icafe19} = \frac{BASE_{MPG_{pX_{ifuel,icafe19}}}}{MPGEFF_{pX_{ifuel,icafe19}}},
\]

where

\[
NEW_{MPG_{19}}_{year,ifuel,icafe19} = \text{new truck fuel economy by 19 size classes; and}
\]

\[
BASE_{MPG_{pX_{ifuel,icafe19}}} = \text{fuel economy of new freight trucks with no fuel-saving technologies.}
\]

2. Determine the share of each fuel type in current year’s class of new trucks
Another major characteristic of each projection year’s class of new trucks is the market share of each powertrain type. Market share for freight trucks is divided among nine powertrain types: diesel, gasoline, LPG, CNG/LNG, flex-fuel, electric, PHEV diesel, PHEV gasoline, and hydrogen fuel cell.

Market penetration of alternative fuel freight trucks is more likely to be driven by legislative or regulatory action than by economic cost/benefit consideration. For this reason, separate trends are incorporated for fleet vehicles, which are assumed to be more likely targets of future legislation, and non-fleet vehicles. The fuel technology routine described below is intended to simulate economic competition among fuel types after the creation of a market for alternative fuel trucks by government action. The user specifies the market share alternative fuel trucks are likely to achieve if they have no cost advantage over conventional technologies. The inherent sensitivity of each fuel technology to the cost of driving is also specified exogenously. The latter parameter represents the commercial potential of each fuel technology beyond what is mandated by government and serves to modify the exogenous trend based on relative fuel prices and fuel economies. Additional user-specified parameters include the year in which the market penetration curves are initiated and the length of the market penetration cycle.

a) Market share AFVs

The first step in this process is to calculate the fuel cost for new trucks of each market class and fuel type that is defined as

\[
FCOST_{\text{regn}_\text{fuel},\text{iregn},\text{icafe}19,\text{year}} = \frac{\text{Avg. Fuel}_\text{S}_\text{regn}_\text{fuel},\text{iregn}}{\text{NEW MPG}_{19,\text{year},\text{fuel},\text{icafe}19}} \times \text{HRATE}_{\text{isc}19,\text{fuel}},
\]

(195)

where

\[
\text{FCOST}_{\text{regn}_\text{fuel},\text{iregn},\text{icafe}19,\text{year}} = \text{fuel cost of driving a truck by fuel type in dollar per mile};
\]

\[
\text{Avg. Fuel}_\text{S}_\text{regn}_\text{fuel},\text{iregn} = \text{average price of fuel over three-year period, in dollars per million British thermal units};
\]

\[
\text{HRATE}_{\text{isc}19,\text{fuel}} = \text{heat rate of fuel, in million British thermal units per gallon};
\]

\[
\text{iregn} = \text{index for census divisions}.
\]

The fuel cost of driving diesel trucks (Frt_Fuel=1) relative to LPG and CNG/LNG vehicles is then calculated as

\[
DCOST = 1 - \left(\frac{FCOST_{\text{regn}_\text{fuel},\text{iregn},\text{icafe}19,\text{year}}}{FCOST_{\text{regn}_\text{fuel}=1,\text{iregn},\text{icafe}19,\text{year}}} - 1 \right) \times PRAFDFXG_{\text{isc}19,\text{fuel}},
\]

(196)

where

\[
DCOST = \text{fuel cost per mile of diesel relative to AFVs};
\]
PRAFDFXGisc19,ifuel = parameter representing inherent variation in AFV market share as a result of a difference in fuel prices; and

ifuel = fuel type (1 = diesel, 3 = LPG, 4 = CNG/LNG, 5 = flex-fuel, 6 = electric, 7 = PHEV diesel, 8 = PHEV gasoline, and 9 = hydrogen fuel cell).

The market penetration curve parameters are determined during a user-specified trigger year in the following equations

\[
SLOPE = \frac{\ln(0.01)}{0.5 \cdot CYAFVXG_{isc19,ifuel,iflt}} \tag{197}
\]

where

SLOPE = logistic market penetration curve parameter;

CYAFVXGisc19,jfuel,iflt = logistic market penetration curve parameter representing number of years until maximum market penetration; and

Iflt = index for fleet vehicles: 1 for non-fleet vehicles and 2 for fleet vehicles.

\[
MIDYR = TRGSHXG_{icafe19,ifuel,iflt} + \left(0.5 \cdot CYAFVXG_{isc19,ifuel,iflt}\right), \tag{198}
\]

where

MIDYR = logistic market penetration curve parameter representing \textit{halfway point} to maximum market penetration; and

TRGSHXG_{icafe19,ifuel,iflt} = year in which each alternative fuel begins to increase in market share because of EPACT1992 or other factors.

After the market penetration of alternative fuel trucks has been triggered, the AFV market trend is determined through a logistic function as follows

\[
MPATH_regn_{icafe19,ifuel,iflt,year,iregn} = DCOST \times \left(BFSHXG_{isc19,ifuel,iflt} + \left(\frac{EFSHXG_{isc19,ifuel,iflt} - BFSHXG_{isc19,ifuel,iflt}}{1 + e^{SLOPE + curcalfy - MIDYR}}\right)\right), \tag{199}
\]

where

MPATH_regn_{icafe19,ifuel,iflt,year,iregn} = baseline market penetration;

BFSHXG_{isc19,ifuel,iflt} = base year (2010) market share;

EFSHXG_{isc19,ifuel,iflt} = maximum market share; and
curcalyr = current model year.

The market share of alternative fuel trucks is assumed to never be less than the previous year’s level in each sector. The final projected AFV market share used in the model is therefore defined as the maximum of the historical base year share and the projected share

\[
FUEL_SHR_regn_{\text{year},\text{icafe19},\text{ifuel},\text{iflt},\text{iregn}} = \max\{BFSHXG_{\text{isc19},\text{ifuel},\text{iflt},\text{iregn}}, MPATH_regn_{\text{icafe19},\text{ifuel},\text{iflt},\text{iregn}}\},
\]

(200)

FUEL_SHR_regn_{\text{year},\text{icafe19},\text{ifuel},\text{iflt},\text{iregn}} = market share of CNG freight trucks by region.

b) Economic market share of CNG and LNG

Subroutine TRUCK_STOCK performs the first step in projecting the market share of CNG and LNG freight trucks. This calculation is done by fleet, size class, VMT group, and region. VMT group, ivmt, is divided into 11 separate vehicle miles traveled categories.

First, calculate the annual fuel savings of CNG/LNG trucks as compared with diesel trucks

\[
ANN_S_SAVINGS_CNG_regn_{ivmt,iflt,icafe19,iregn} = VMT_VEH_{ivmt,iflt,isc19} \times (FCOST_regn_{fuel=1,iregn} - FCOST_regn_{fuel=4,iregn})
\]

(201)

where

ANN$_S$SAVINGS$_CNG$_regn$_{ivmt,iflt,icafe19,iregn} = annual fuel savings for CNG/LNG vehicles compared with diesel or gasoline vehicles;

VMT_VEH$_{ivmt,iflt,isc19}$= VMT per vehicle by fleet, non-fleet, size class, and VMT group; and

fuel = fuel type (1 = diesel for size classes 5–8; 2 = gasoline for size classes 2b–4; 4 = CNG/LNG).

Next, calculate the net value of these fuel savings in the projection year

\[
NPV_ADS_regn_{ivmt,iflt,icafe19,year,iregn} = \frac{ANN_S_SAVINGS_CNG_regn_{ivmt,iflt,icafe19,iregn}}{(1+DISCRTXG)^{year}},
\]

(202)

where

NPV$_{ADS}$$_{regn}_{ivmt,iflt,icafe19,year,iregn} = net present value of the fuel savings from using CNG/LNG;

and

year = payback year spans from one to four years.
The share of vehicles by VMT group, fleet or non-fleet, and size class for the year is then weighted by a payback share distribution that accounts for the average payback periods demanded by freight truck owner/operators

\[\text{BUY}_\text{CNG}_{\text{reg}n, \text{vmt}, \text{iflt}, \text{icafe}19, \text{year}, \text{iregn}} = \text{PBACK}_\text{SHR}_{\text{year}} \cdot \text{VEH}_\text{SHR}_{\text{vmt}, \text{iflt}, \text{isc}19}, \]

where

\[\text{BUY}_\text{CNG}_{\text{reg}n, \text{vmt}, \text{iflt}, \text{icafe}19, \text{year}, \text{iregn}} = \text{share of CNG vehicles brought by fleet, size class, and region;} \]

\[\text{PBACK}_\text{SHR}_{\text{year}} = \text{distribution of payback periods by owner/operators; and} \]

\[\text{VEH}_\text{SHR}_{\text{vmt}, \text{iflt}, \text{isc}19} = \text{percent share of vehicle fleet and size class.} \]

Positive purchase decisions, \(\text{BUY}_\text{CNG} \), by fleet, size class, and VMT group, occur if the incremental cost of CNG/LNG vehicles ($17,000 for Classes 2b and 3; $40,000 for Classes 4 to 6; and $60,000 for Classes 7 to 8) is less than the net present value of fuel savings, \(\text{NPV}_{\text{ADS}} \).

The shares of CNG vehicles purchased by fleet and by size class are then calculated as

\[\text{Fuel}_\text{Shr}_{\text{reg}n_{\text{year}}, \text{icafe}19, \text{ifuel}=4, \text{iflt}, \text{iregn}} = \text{Fuel}_\text{Shr}_{\text{reg}n_{\text{year}}, \text{icafe}19, \text{ifuel}=4, \text{iflt}, \text{iregn}} + \left(\sum_{\text{year}=1}^{4} \text{buy}_\text{cng}_{\text{reg}n_{\text{vmt}, \text{iflt}, \text{icafe}19, \text{year}, \text{iregn}}} \right) \cdot \text{MPATH}_\text{reg}n_{\text{icafe}19, \text{ifuel}=4, \text{iflt}, \text{year}, \text{iregn}}, \]

\[(204) \]

The market share variable \(\text{FUEL}_\text{SHR}_{\text{regn}} \) is then used in the following subroutine to calculate final market share for CNG trucks.

c) Market share of diesel trucks

The share of diesel, \(\text{ifuel} = 1 \), in conventional truck sales is projected through a time-dependent exponential decay function based on historical data that is defined by

\[\text{MPATH}_{\text{regn}_{\text{icafe}19, \text{ifuel}, \text{iflt}, \text{year}, \text{iregn}}} = \text{BFSHXG}_{\text{isc}19, \text{ifuel}, \text{iflt}} + \left(\text{EFSHXG}_{\text{isc}19, \text{ifuel}, \text{iflt}} - \text{BFSHXG}_{\text{isc}19, \text{ifuel}, \text{iflt}} \right) \cdot \left(1 - e^{-\text{CSTDXG}_{\text{isc}19, \text{iflt}} + \text{CSTDYG}_{\text{isc}19, \text{iflt}} + \text{curcatyr}} \right), \]

\[(205) \]

where
CSTDXG_{isc19,iflt}, CSTDVXG_{isc19,iflt} = exogenously determined market penetration curve parameters for diesel trucks.

Because any fuel type could exceed the user-specified maximum because of cost advantages over other technologies, market penetration must be capped at 100%.

Diesel market share is calculated as the projected share of diesel in conventional truck sales multiplied by the share occupied by conventional trucks. The remainder of truck purchases is assumed to be gasoline, \(ifuel=2 \)

\[
Fuel_{-Shr} regn_{year,icafe19,ifuel=2,if lt,iregn} = \max\left[0, 1 - \sum_{ifuel=1,3,9} Fuel_{-Shr} regn_{year,icafe19,ifuel,if lt,iregn}\right].
\]

(206)

d) Determine composition of existing truck stock

Once the characteristics of the incoming class of new trucks are determined, the next step is to determine the composition of the stock of existing trucks. Scrappage rates are applied to previous year’s truck population estimates

\[
TRK_{19,regn}_{year,icafe19,iage,ifuel,iflt,iregn} = TRK_{19,regn}_{year,icafe19,iage-1,ifuel,iflt,iregn} \times \left(1 - SCRAP_RAT E_{isc,iage-1,ifuel}\right),
\]

(207)

where

\[
TRK_{19,regn}_{year,icafe19,iage,ifuel,iflt,iregn} = \text{existing stock of trucks aggregated by vehicle weight class (isc)};
\]

\[
SCRAP_RAT E_{isc,iage,ifuel} = \text{factor representing the proportion of trucks of each vintage that are scrapped each year}; \text{ and}
\]

\[
iage = \text{index for vintage of vehicle from 234}; \text{ 1 implies new vehicle}.
\]

The new estimate of the number of existing trucks is simply the existing population (after scrappage) minus fleet transfers

\[
TRK_{19,regn}_{year,icafe19,iage,ifuel,iflt,iregn}
\]

\[
= TRK_{19,regn}_{year,icafe19,iage,ifuel,iflt,iregn}
\]

\[
- (TFFXGRT_{isc,iage} \ast TRK_{19,regn}_{year,icafe19,iage,ifuel,iflt=2,iregn}),
\]

and

\[
TRK_{19,regn}_{year,icafe19,iage,ifuel,iflt,iregn}
\]

\[
= TRK_{19,regn}_{year,icafe19,iage,ifuel,iflt,iregn}
\]

\[
+ (TFFXGRT_{isc,iage} \ast TRK_{19,regn}_{year,icafe19,iage,ifuel,iflt=2,iregn}),
\]

\]
e) Calculate purchases of new trucks

New truck purchases are based on Classes 2b and 3 truck sales and on the Macroeconomic Activity Module’s projection of Classes 4 through 8 truck sales that is split between truck Classes 4 to 6 and Classes 7 to 8, as defined at the beginning of this section

\[
\begin{align*}
\text{NEWTRUCKS}_{\text{regn} \text{year}, \text{isc}=1, \text{iflt}=3, \text{iregn}=11} &= \text{MC_VEHICLES}_{\text{isc}=3, \text{year}} \times 1000000, \\
\text{NEWTRUCKS}_{\text{regn} \text{year}, \text{isc}=2, \text{iflt}=3, \text{iregn}=11} &= \text{NEWCLS46}_{\text{year}} \times \text{MC_SUVTHAM}_{\text{year}} \times 1000000, \\
\text{NEWTRUCKS}_{\text{regn} \text{year}, \text{isc}=3, \text{iflt}=3, \text{iregn}=11} &= (1 - \text{NEWCLS46}_{\text{year}}) \times \text{MC_SUVTHAM}_{\text{year}} \times 1000000, \\
\text{NEWTRUCKS}_{\text{regn} \text{year}, \text{isc}=4, \text{iflt}=3, \text{iregn}=11} &= (\text{MC_VEHICLES}_{\text{isc}=1, \text{year}} + \text{MC_VEHICLES}_{\text{isc}=2, \text{year}} - \text{TEMPCLS12A}_{\text{year}}) \times 1000000.
\end{align*}
\]

where

\[
\begin{align*}
\text{NEWTRUCKS}_{\text{regn} \text{year}, \text{isc}, \text{iflt}, \text{iregn}} &= \text{national new truck sales where isc = 1 for Class 3, isc = 2 for Classes 46, isc = 3 for Classes 7–8, and isc = 4 for Class 2b;} \\
\text{MC_VEHICLES}_{\text{isc}, \text{year}} &= \text{sales of Class 1–3 trucks from the Macroeconomic Activity Module;} \\
\text{NEWCLS46}_{\text{year}} &= \text{truck Classes 4–6 share of total truck sales;} \\
\text{MC_SUVTHAM}_{\text{year}} &= \text{total new truck sales for Classes 4–8, from the Macroeconomic Activity Module;} \\
\text{TEMPCLS12A}_{\text{year}} &= \text{the total of Class 1–2 trucks that are considered light-duty vehicles; and} \\
\text{iregn} &= 11 = \text{total of all census divisions.}
\end{align*}
\]

The next step is to calculate the new truck sales, iage = 1,

\[
\begin{align*}
\text{TRK_19}_{\text{regn} \text{year}, \text{icafe}=19, \text{iage}=1, \text{ifuel}=1, \text{iflt}=2, \text{iregn}} &= \text{NEWTRUCKS}_{\text{regn} \text{year}, \text{isc}, \text{iflt}=3, \text{iregn}} \times \text{FLEETSHR}_{\text{isc}} \\
&\times \text{REGN_SHARE}_{\text{year} - 1, \text{iage}=1, \text{iflt}, \text{iregn}} \times \text{Fuel_Shr_regn}_{\text{year}, \text{icafe}=19, \text{ifuel}, \text{iflt}, \text{iregn}} \\
&\times \text{sc_share}_{\text{icafe}=19, \text{iflt}, \text{iregn}}
\end{align*}
\]
\[TRK_{19 _regn _year,i_cafe19,i_age=1,i_fuel,i_flt=1,i_regn} \\
= NEWTRUCKS_{ _regn _year,i_isc,i_flt=3,i_regn} \times (1 - FLEETS_HR_{isc}) \\
\times REGN_SHARE_{_year-1,i_age=1,i_flt,i_regn} \times Fuel_Shr_{ _regn _year,i_cafe19,i_fuel,i_flt,i_regn} \\
\times sc_share_{i_cafe19,i_flt,i_regn} \]
\tag{210}

where
\[FLEETS_HR_{isc} = \text{percentage of HDV in fleet use by size class;} \]
\[REGN_SHARE_{_year,i_age,i_flt,i_regn} = \text{regional share of new truck sales from previous model year by fleet;} \]
\[Fuel_Shr_{ _regn _year,i_cafe19,i_fuel,i_flt,i_regn} = \text{fuel shares for new trucks by size class, fleet/non-fleet, region; and} \]
\[sc_share_{i_cafe19,i_flt,i_regn} = \text{share of new trucks by size class.} \]

f) Calculate fuel consumption

The next stage of the component takes the total miles driven by trucks of each market class, fuel type, and age and divides by fuel economy to determine fuel consumption.

The aggregate VMT growth by economic sector, \(SEC \), is estimated. The model calculates the VMT growth rate using a ratio between current year and previous year total truck ton-miles. This VMT growth rate is then applied to the previous year truck VMT, by census division and industrial sector, to calculate truck VMT

\[TVMT_{_year,i_regn,i_sec} = TVMT_{_year-1,i_sec,i_regn,i_sec} \times \left(\frac{TTONMI_{_year,i_regn,i_sec}}{TTONMI_{_year-1,i_regn,i_sec}} \right), \]
\tag{211}

where
\[TVMT_{_year,i_regn,i_sec} = \text{freight truck vehicle miles traveled, by industrial sector and census division;} \]
\[TTONMI_{_year,i_regn,i_sec} = \text{freight truck ton-miles by industrial sector and census division; and} \]
\[i_sec = \text{index of economic sectors.} \]

The model then calculates the adjustment VMT per truck

\[VMT_ADJR_{_year} = \frac{\sum_{i_regn=1}^{10} \sum_{i_sec=1}^{10} TVMT_{_year,i_regn,i_sec}}{\sum_{i_isc,i_age,i_fuel,i_ivoc} ANNVMT_{_isc,i_age,i_fuel,i_ivoc} \times TRK_{19 _regn _year,i_cafe19,i_age,i_fuel,i_flt,i_regn=11}}, \]
\tag{212}
where

\[VMTADJR_{\text{year}} = \text{aggregate VMT adjustment factor}; \]
\[\text{ANNVMT}_{\text{isc,iage,ifuel,ivoc}} = \text{base year VMT per truck by freight reporting classes}; \text{ and} \]
\[ivoc = \text{index for vocational vehicles where 1 = non-vocational and 2 = vocational.} \]

The model applies the VMT adjustment to obtain VMT across all sectors

\[VMTFLTR_{\text{year,isc,iage,ifuel,iflt,iregn}} = \text{ANNVMT}_{\text{isc,iage,ifuel,ivoc}} \times VMTADJR \times TRK_{19,\text{iregn}} \times VMTSHRR_{\text{year,iregn}}, \]

where

\[VMTFLTR_{\text{year,isc,iage,ifuel,iflt,iregn}} = \text{HDV VMT}; \text{ and} \]
\[VMTSHRR_{\text{year,iregn}} = \text{regional share of VMT}. \]

Fuel consumption in gasoline- or diesel-gallons equivalent is calculated by dividing VMT by on-road fuel economy

\[FUELDMDR_{\text{year,isc,ifuel,iflt,iregn}} = \sum_{\text{iage}=1}^{34} (1 - VMTFLTR_{\text{CAV SHR}}) \times \frac{VMTFLTR_{\text{year,isc,iage,ifuel,iflt,iregn}}}{HDV_{\text{MPG}_{\text{year,isc,iage,ifuel}}}} + VMTFLTR_{\text{CAV SHR}} \times \frac{VMTFLTR_{\text{year,isc,iage,ifuel,iflt,iregn}}}{HDV_{\text{MPG}_{\text{CAV ADJ}}}} \]

where

\[FUELDMDR_{\text{year,isc,ifuel,iflt,iregn}} = \text{total freight truck fuel consumption by market class and fuel type, in gasoline- or diesel-gallons equivalent}; \]
\[HDV_{\text{MPG}_{\text{year,isc,bage,ifuel}}} = \text{fuel economy of freight trucks, by year, market class, fuel, and vintage}; \]
\[VMTFLTR_{\text{CAV SHR}} = \text{share of platoon-eligible freight truck VMT, VMT_CAV_ELIG, that is driven in platoons}; \text{ and} \]
\[HDV_{\text{MPG_CAV_ADJ}} = \text{operational energy savings from platooning, not including fuel economy improvement}. \]

\[^{18} \text{Freight truck fuels tracked in gasoline-gallons equivalent: gasoline, LPG, CNG, E85, and PHEV gasoline. Fuels tracked in diesel-gallons equivalent: diesel, LNG, electric, PHEV diesel, and hydrogen.} \]
Fuel consumption is then aggregated from powertrain fuel type to highway fuel type and is then converted from gallon equivalent to trillion Btu. This conversion requires multiplying by \(HRATE \), the heat rate of gasoline or diesel

\[
FUELBTU_{isc,ifuel7,ifl,iregn} = FUELDMR_{isc,ifuel7,ifl,iregn} \times HRATE_{isc,ifuel7} \times PCT_{VMT}_{ifuel7,ifl,iregn},
\]

(215)

where

\[
FUELBTU_{isc,ifuel7,ifl,iregn} = \text{total fleet truck fuel consumption by market class, fuel type, and region in trillion Btu};
\]

\[
PCT_{VMT}_{ifuel7,ifl,iregn} = \text{percentage of VMT traveled on each highway fuel (ifuel7) used in bi-fuel powertrains: flex-fuel (gasoline/ethanol) or plug-in hybrid electric (gasoline/electric or diesel/electric); and}
\]

\[
ifuel7 = \text{index for freight truck fuel type}.
\]

Rail Freight Component

Rail projections simplify the freight truck approach, in that only one class of freight rail and vehicle technology is considered. Projections of energy use by rail are driven by projections of coal production and of ton-miles traveled for each of the industrial categories used in the trucking sector. Figure 15 depicts the Rail Freight Component. The algorithm used to estimate energy consumption of rail freight is similar to the one used for trucks and is calculated in the following steps.

First, transfer coal ton-miles traveled (\(COAL_TMT \)) within NEMS as follows

\[
COAL_TMT_{year} = TTONMILE_{year},
\]

(215)

where

\[
COAL_TMT_{year} = \text{ton-miles traveled for coal in a given year; and}
\]

\[
TTONMILE_{year} = \text{billion ton-miles by railroad for coal by coal summed over regions, from the Coal Market Module}.
\]

Then, project the growth of coal rail freight ton-miles by census division

\[
RPROJ_CTONMI_{year,iregn} = RPROJ_CTONMI_{year-1,iregn} \times \left(1 + \left[\frac{COAL_TMT_{year} - COAL_TMT_{year-1}}{COAL_TMT_{year-1}}\right]\right),
\]

(216)

Next, project the growth of non-coal rail freight ton-miles by census division and industrial sector

\[
RPROJ_NCTONMI_{year,iregn,isic} = \left(\frac{T_SIC_{iregn,isic,year}}{1000}\right) \times RTM_OUTPUT_{iregn,isic},
\]

(217)
where

\[\text{RPROJ_NCTONMI}_{\text{year,iregn,isic}} = \text{ton-miles traveled for non-coal in a given year}; \]

\[\text{RTM_OUTPUT}_{\text{iregn,isic}} = \text{ton-miles traveled per dollar of industrial output, } ISIC=1,16; \] and

\[\text{TSIC}_{\text{iregn,isic,year}} = \text{value of output of industry } ISIC, \text{ in base year dollars.} \]

Calculate aggregated rail ton-miles traveled, \(RTMTT \), as follows

\[
RTMTT_{\text{year,iregn}} = \sum_{\text{iregn}=1}^{9} \sum_{\text{isic}=1}^{16} \text{RPROJ_NCTONMI}_{\text{year,iregn,isic}} + \sum_{\text{REG}=1}^{9} \text{RPROJ_CTONMI}_{\text{year,iregn}}, \tag{218}
\]

Energy consumption is then estimated using the projected rail energy efficiency

\[
\text{TQFRAILT}_{\text{year,iregn}} = RTMTT_{\text{year,iregn}} \times \text{FREFF}_{\text{year}}, \tag{219}
\]

where

\[\text{TQFRAILT}_{\text{year,iregn}} = \text{total energy consumption by freight trains}; \] and

\[\text{FREFF}_{\text{year}} = \text{freight rail energy efficiency}. \]
Figure 15. Rail Freight Component

Inputs:
- value of output of each industry, coefficient relating growth of value added to growth of rail transport, and total historical vehicle miles traveled (VMT)

Calculate total ton-miles traveled for rail freight sector

Inputs:
- rail freight energy efficiency (determined exogenously)

Calculate total energy consumption by rail freight sector

Inputs:
- base year consumption of each fuel

Allocate total energy consumption among various fuels

Go to Waterborne Freight Component
Rail efficiency gains resulting from technological development and increased system efficiency are based on an exogenous analysis of trends. To estimate the demand for the various fuels used for rail transport, the potential to switch from diesel to LNG based on cost-effectiveness is calculated. The net present value of switching to LNG is calculated by the following

\[
NPV_LNG_{year} = \frac{ANN_FUEL_SAVINGS_{PAYBK=1}}{1 + DISCRT} + \frac{ANN_FUEL_SAVINGS_{PAYBK}}{1 + DISCRT^{PAYBK}},
\]

(220)

where

\[NPV_LNG_{year} = \text{net present value of switching to LNG in year, Year;}\]

\[ANN_FUEL_SAVINGS = \text{annual fuel savings from switching to LNG from diesel;}\]

\[DISCRT = \text{discount rate for freight locomotives; and}\]

\[PAYBK = \text{payback period demanded for freight railroads.}\]

If the net present value of switching to LNG is greater than the freight locomotive incremental cost, then the LNG fuel share is determined by the maximum LNG penetration. If the net present value is less than the incremental cost, the LNG fuel share maintains at previous year values. Fuel consumption is then allocated to each region by

\[
TQRAIL_{Rail_Fuel,iregn,year} = TQRAIL_{iregn,year} \times RAIL_FUEL_SHR_{Rail_Fuel,year},
\]

(221)

where

\[TQRAIL_{Rail_Fuel,iregn,year} = \text{total regional fuel consumption for each technology; and}\]

\[RAIL_FUEL_SHR_{Rail_Fuel,year} = \text{share of rail freight fuel consumption, by fuel.}\]

Waterborne Freight Component

Two classes of waterborne freight transportation are considered in this component: domestic marine traffic and freighters conducting foreign trade. This method is useful because vessels that comprise freighter traffic on rivers and in coastal regions have different characteristics than those that travel in international waters. Figure 16 shows a flowchart of the Waterborne Freight Component.

Domestic marine

The estimate of total domestic waterborne transportation demand is driven by projections of industrial output and a measure of ton-mile per dollar of industrial output, as defined by

\[
STM_{iregn,year} = \sum_{isic=1}^{16} TSIC_{iregn,isic,year} \times DSTM_{OUTPUT_{iregn,isic}} \times (1 + ANN_DECLINE_{year}),
\]

(222)

where
\[\text{STMTT}_{\text{iregn,year}} = \text{total ton-miles of waterborne freight by census division in year, } Year; \]
\[\text{TSIC}_{\text{iregn,isc,year}} = \text{value of industrial output, ISIC, in base year dollars;} \]
\[\text{DSTM_OUTPUT}_{\text{iregn,isc}} = \text{domestic marine ton-mile per dollar of industrial output; and} \]
\[\text{ANN_DECLINE}_{\text{year}} = \text{domestic marine annual rate of ton-mile per dollar output decline.} \]
Allocate total energy demand among various fuels, by size class

Calculate total energy consumption by domestic freighters, by size class

Allocate ton-miles traveled among domestic freighter classes

Calculate total ton-miles traveled for domestic waterborne freight sector

Calculate total energy demand for each fuel from freight transport sector

Calculate total demand for each fuel in international marine shipping sector

Sum across size classes to determine total demand for each fuel

Allocate total energy demand among various fuels, by size class

Calculate total energy consumption by domestic freighters, by size class

Allocate ton-miles traveled among domestic freighter classes

Calculate total ton-miles traveled for domestic waterborne freight sector

Calculate total energy demand for each fuel from freight transport sector

Freight Output: total demand for each fuel
Energy use is subsequently estimated, using average energy efficiency

\[
TQDSHIPT_{\text{year,iregn}} = \text{STMTT}_{\text{year,iregn}} \times \text{DSEFF}_{\text{year}},
\]

(223)

where

- \(TQDSHIPT_{\text{year,iregn}} \) = domestic ship energy demand (thousand Btu) by census division; and
- \(\text{DSEFF}_{\text{year}} \) = average fuel efficiency, in thousand Btu per ton-mile.

Estimated changes in energy efficiency are exogenous. The next step in the component is allocating total energy consumption among four fuel types (distillate fuel, residual fuel oil, CNG, and LNG) using domestic shipping shares

\[
TQDSHIPR_{\text{Ship,Fuel,iregn,year}} = TQDSHIPT_{\text{iregn,year}} \times \text{DOMSHIP}_\text{FUEL_SHR}_{\text{Ship,Fuel,year}},
\]

(224)

where

- \(TQDSHIPR_{\text{Ship,Fuel,iregn,year}} \) = total regional domestic ship energy demand, by fuel and census division;
- \(\text{DOMSHIP}_\text{FUEL_SHR}_{\text{Ship,Fuel,year}} \) = domestic shipping fuel share; and
- \(\text{Ship,Fuel} \) = index referring to the four shipping fuel types.

The factor that allocates energy consumption among the four fuel types is based on 2006 data\(^{19}\) for distillate and residual fuel. Starting in 2013, LNG is allowed to penetrate the domestic shipping fuel demand, and therefore it reduces the share of both distillate and residual fuel throughout the projection period.

International marine

Fuel demand in international marine shipping is directly estimated, linking the level of international trade with the lagged consumption of the fuel in question as follows

\[
\text{ISFDT}_{\text{year}} = \text{ISFDT}_{\text{year−1}} + 0.5 \times \text{ISFDT}_{\text{year−1}} \times \text{INTS}_B \times \left[\frac{\text{GROSST}_{\text{year}}}{\text{GROSST}_{\text{year−1}}} - 1 \right],
\]

(225)

where

- \(\text{ISFDT}_{\text{year}} \) = total international shipping energy demand in year Year;
- \(\text{INTS}_B \) = for frozen technology case = 0.4, for high technology case = 0.6; and
- \(\text{GROSST}_{\text{year}} \) = value of gross trade (imports and exports), from the Macroeconomic Activity Module.

Total energy demand is then allocated among the four fuels by the following

\[ISFD_{\text{Ship, Fuel}, \text{year}} = ISFD_{\text{year}} \times \text{INTSHIP}_\text{FUEL SHR}_{\text{Ship, Fuel, year}}, \]

where

\[ISFD_{\text{Ship, fuel, year}} = \text{international} \text{freighter energy demand, by fuel}; \text{and} \]

\[\text{INTSHIP}_\text{FUEL SHR}_{\text{Ship, fuel, year}} = \text{international} \text{shipping fuel share.} \]

Regional fuel consumption is then calculated as

\[TQISHIP_{\text{R, Fuel, irdn, year}} = ISFD_{\text{Ship, Fuel, year}} \times SEDSHRXX_{\text{irdn, year}}, \]

where

\[TQISHIP_{\text{R, Fuel, irdn, year}} = \text{total regional energy demand by international freighters}; \text{and} \]

\[SEDSHRXX_{\text{irdn, year}} = \text{regional share of fuel demand, from SEDS, by fuel, XX=DS (distillate), XX=RS (residual).} \]

Emission Control Area (ECA) marine fuel

The North American ECAs generally extend 200 nautical miles (nm) from the U.S. and Canadian ports (50 nm for the U.S. Caribbean ECA). TDM estimates a 2012 baseline of fuel consumption (by billion British thermal units [Btu]) for ships traveling in each of the nine U.S. census divisions and Puerto Rico. Projections include auxiliary power and account for ship efficiency improvements, shipping demand changes, and fuel price fluctuations.

Baseline (2012) energy demand is estimated by the following

\[FUELCONS_{2012, \text{class, irdn}} = \text{TRANSITFUELCONS}_{2012, \text{class, irdn}} + \text{AUXFUELCONS}_{2012, \text{class, irdn}}, \]

The fleet turnover (FLEETTO) variable was computed from MARAD data to represent the rate of introduction of new vessels into the fleet moving through the North American ECA. The new vessels are assumed to be more efficient than their predecessors.

Projections of ECA energy demand are estimated by the following

\[ECAFUELCONS_{\text{irdn, year}} = \sum_{\text{class}}(\text{FUELCONS}_{2012, \text{class, irdn}} \times \text{MAX}[0,1 - (\text{year} - 2012) \times FLEETTO_{\text{class}}] \times \text{FUELCONS}_{2012, \text{class, irdn}} \times \{1 - \text{MAX}[0,1 - (\text{year} - 2012) \times FLEETTO_{\text{class}}]\} \times [1 - \text{EFFINC}_{\text{class}}^{1.5 \times \text{year} - 2012} \times \text{GEFFECTS}_{\text{class, year}}], \]

where
FLEETTO\textsubscript{class} = vessel fleet turnover, by vessel class;

EFFINC\textsubscript{class} = marine fuel efficiency improvement, by vessel class;

GEFFECTS\textsubscript{class,year} = fuel consumption from the various vessel classes may be directly related to AEO scenario outputs, imports of petroleum and products, by class and year; and

class = tanker, container, gas (LPG/LNG), roll-on/roll-off, bulk, or general cargo.

ECA fuel shares are revised each year based on changes in fuel prices since the base year. The fuel sharing is calculated using a logit formulation. The fuel sharing equation for each vessel CLASS is as follows

\[
FLTPROF_{mftype,iregn.year} = \frac{p^{\alpha}_{mftype} \cdot \beta_{mftype}}{\sum_{mftype} p^{\alpha}_{mftype} \cdot \beta_{mftype}},
\]

ECA fuel demand, by fuel type, is incorporated into international marine fuel demand (TQISHIPR).
Miscellaneous Energy Demand Submodule

The Miscellaneous Energy Demand (MED) Submodule addresses the projection of demand for several transportation fuels and sums total energy demand from all end-use categories. These categories include military operations, mass transit (passenger rail and buses), recreational boating, and lubricants used in all modes of transportation. Figure 17 presents the flowchart for the MED Submodule.

Military Demand Component

Figure 18 is a flowchart depicting the Military Demand Component. Fuel demand for military operations is considered to be proportional to the projected military budget. The fractional change in the military budget is first calculated as follows

\[\Delta MILTARGR_{year} = \frac{MC_{GFMLR_{year}}}{MC_{GFMLR_{year-1}}}, \]

where

- \(MILTARGR_{year}\) = growth in the military budget from the previous year; and
- \(MC_{GFMLR_{year}}\) = total defense purchases in year, Year, from the Macroeconomic Activity Module.

Total consumption of each of four fuel types is then determined by

\[MFD_{Mil_Fuel,year} = MFD_{Mil_Fuel,year-1} \times MILTARGR_{year}, \]

where

- \(MFD_{Mil_Fuel,year}\) = total military consumption of the considered fuel in year, Year; and
- \(Mil_Fuel\) = index of military fuel type: 1=Distillate, 2=Jet Fuel(Naptha), 3=Residual, 4=Jet Fuel(Kerosene).

Consumption is finally distributed among the nine census divisions by the following equation

\[QMILTR_{Mil_Fuel,iregn,year} = MFD_{Mil_Fuel,year} \times MILTRSHP_{Mil_Fuel,iregn,year}, \]

where

- \(QMILTR_{Mil_Fuel,iregn,year}\) = regional fuel consumption, by fuel type, in Btu; and
- \(MILTRSHP_{Mil_Fuel,iregn,year}\) = regional consumption shares, from 1991 data, held constant.
Figure 17. Miscellaneous Energy Demand Submodule

- **Macro Inputs (historical):** defense budget in run year and previous year
- **Other Inputs:** regional military fuel consumption in previous year and regional consumption shares (exogenous)
- **Inputs from Other Submodules:** light-duty vehicle (LDV) vehicle miles traveled, fuel economy by vehicle type (freight transportation submodule), and regional population (macro)
- **Exogenous Inputs:** coefficient relating income to fuel demand for recreational boating sector
- **Other Inputs:** transit, school, and intercity bus passenger miles and transit, school, and intercity bus efficiencies
- **Other Inputs:** transit, commuter, and intercity rail passenger miles and transit, commuter, and intercity rail efficiencies
- **Macro Inputs:** total disposable personal income and regional population projections
- **Other Inputs:** average passenger per LDV, base year British thermal units per vehicle mile, and coefficient mass transit to LDV travel
- **Inputs from Other Submodules:** LDV vehicles miles traveled (VMT), freight truck VMT, and fleet vehicle VMT
- **Exogenous Inputs:** coefficient relating highway travel to lubricant demand, regional shares of gasoline, and diesel consumption
- **Outputs:**
 - To Report Writer: regional fuel consumption for military, passenger rail, bus, recreational boating, and regional lubricant demand
 - To Emissions Submodule: regional fuel consumption for military, passenger rail, bus, and recreational boating

Note: The Emissions Submodule is currently inactive.
Figure 18. Military Demand Component

Begin Military Demand Component

Calculate fractional change in military budget

Calculate total military energy consumption by fuel in run year

Distribute military consumption among nine census divisions

To Mass Transit Component

Inputs: total defense budget in run year and previous year from Macro Module

Inputs: total consumption for fuels by military sector in year before run year

Inputs: regional consumption shares for military sector
Mass Transit Demand Component

Figure 19 depicts the Mass Transit Demand Component. The growth of passenger-miles in each mode of mass transit is assumed to be proportional to the growth of passenger-miles in light-duty vehicles. Changes to the Mass Transit Demand Component reflect passenger travel and energy demand by census division in the regional transit rail, regional commuter rail, and the regional intercity rail models. For each of these rail transit modes, the passenger-miles traveled, historical efficiencies, and travel demand log of income are read in. The sum of the three rail modes is captured by the following equation

\[
QMTTR_{ifuel,iregn,year} = TRED_{iregn,year} + CREDE_{iregn,year} + IREDER_{iregn,year}, \tag{234}
\]

where

\[
\begin{align*}
QMTTR_{ifuel,iregn,year} & \text{ passenger rail energy demand by fuel by census division;} \\
TRED_{iregn,year} & \text{ transit rail energy demand by census division;} \\
CREDE_{iregn,year} & \text{ commuter rail energy demand by census division; and} \\
IREDER_{iregn,year} & \text{ intercity rail energy demand by census division.}
\end{align*}
\]
Figure 19. Mass transit Demand Component

1. Begin Mass Transit Demand Component
2. Calculate total regional fuel consumption by passenger rail and bus
3. Calculate passenger-miles traveled for LDVs
4. Calculate passenger-miles traveled for seven mass transit modes
5. Calculate mass transit fuel efficiencies by mode in Btu per passenger-mile
6. Calculate total regional fuel consumption by mass transit vehicle

Other Inputs:
- passenger rail and bus passenger-miles and passenger rail and bus efficiencies (Btu/passenger-mile)
- Inputs: coefficient relating mass transit to LDV travel
- Inputs: base year mass transit in British thermal units (Btu) per passenger mile and fuel efficiency by vehicle type from Freight Transportation Submodule
- Inputs: regional population projections from Macro Module

Inputs from Other Submodules:
- light-duty vehicle (LDV) vehicle miles traveled from LDV Submodule and average number of passengers per LDV
The first set of equations describes the bus segment of the component for the transit bus mode, IM=1

\[TMPMT_{\text{ireg},\text{year}} = TBPMTPC_{\text{ireg},\text{year}} \times MC_NP16A_NP16A_{\text{ireg},\text{year}}, \]

(235)

where

\[TBPMT_{\text{ireg},\text{year}} = \text{passenger-miles traveled for the transit bus mode}; \]

\[TBPMTPC_{\text{ireg},\text{year}} = \text{passenger-miles traveled per capita for the transit bus mode}; \]

\[MC_NP16A_{\text{ireg},\text{year}} = \text{U.S. population age 16 and older from the Macroeconomic Activity Module}; \]

and

\[CAV_ADJ_{\text{ireg},\text{year}} = \text{change in travel demand as a result of ride hailing}. \]

Fuel efficiencies, in Btu per vehicle mile, are obtained from the Freight Submodule for buses and rail. Mass transit efficiencies, in Btu per passenger-mile, are calculated as

\[TBBTUPM_{\text{ireg},\text{year}} = TBBTUPM_{\text{ireg},\text{year}-1} \times TBSYSEFF_{\text{ireg}} \times 1 - \left(1 - \left(\frac{TRFTMPG_{\text{year}-1}}{TRFTMPG_{\text{year}}}\right)\right) \times \left(TBFSHR_{\text{ireg},\text{ifuel=diesel,year}} - TBFSHR_{\text{ireg},\text{ifuel=CNG,year}-1}\right) \times 0.25, \]

(236)

where

\[TBBTUPM_{\text{ireg},\text{year}} = \text{Btu per passenger-mile for the transit bus mode}; \]

\[TRFTMPG_{\text{year}} = \text{freight mpg, by vehicle type, from the Freight Transportation Module}; \]

\[TBSYSEFF_{\text{ireg}} = \text{bus system efficiency for the transit bus mode, in Btu per passenger}; \]

and

\[TBFSHR_{\text{ireg},\text{ifuel,year}} = \text{projected fuel share for transit buses, by fuel type}. \]

Total fuel consumption is calculated and distributed among regions according to their populations based on the following

\[QMTBR_{\text{im,ifuel,ireg},\text{year}} = TBPMT_{\text{ireg},\text{year}} \times TBBTUPM_{\text{ireg},\text{year}} \times TBFSHR_{\text{ireg,ifuel,year}}, \]

(237)

where

\[QMTBR_{\text{im,ifuel,ireg},\text{year}} = \text{regional consumption of fuel, by mode}. \]

The following equations describe the bus segment of the model for intercity and school buses

\[TMOD_{\text{im,year}} = TMPASMIL_{\text{im}} \times MC_NP_{\text{year}}, \]

(238)

where
The variables and indices used in the equations are as follows:

- **$\text{TMOD}_{im,\text{year}}$** is the passenger-miles traveled, by mode.
- **TMPASMIL_{im}** is the passenger-miles per capita, by bus mode.
- **$\text{MC_NP}_{\text{year}}$** is the U.S. population from the Macroeconomic Activity Module (adult population for intercity, child population for school); and
- **im** is the index of transportation mode: 1 = Intercity bus, 2 = School bus.

Fuel efficiencies, in Btu per vehicle mile, are obtained from the Freight Transportation Submodule for buses and rail and mass transit efficiencies, in Btu per passenger-mile, are calculated as:

$$\text{TMEFF}_{im,\text{year}} = \text{TMEFF}_{im,\text{year}-1} \cdot \text{BUSSYSEF}_{im} \cdot 1 \cdot \left(1 - \frac{\text{TRFTMPG}_{\text{year}-1}}{\text{TRFTMPG}_{\text{year}}} \cdot Q\text{MODFSHR}_{im,\text{fuel}\text{=diesel,year}}\right) \cdot 1 + \left(Q\text{MODFSHR}_{im,\text{fuel}\text{=CNG,year}} - Q\text{MODFSHR}_{im,\text{fuel}\text{=CNG,year}-1}\right) \cdot 0.25$$ \hspace{1cm} (239)

where

- **$\text{TMEFF}_{im,\text{year}}$** is Btu per passenger-mile, by mass transit mode; and
- **BUSSYSEF_{im}** is the bus system efficiency by mode, in Btu per passenger.

Total fuel consumption is calculated and distributed among regions according to their population shares:

$$Q\text{MTRBR}_{IM,\text{fuel,iregn,year}} = \text{TMOD}_{IM,\text{year}} \cdot \text{TMEFF}_{IM,\text{year}} \cdot \frac{\text{MC_NP}_{iregn,\text{year}}}{\sum_{iregn=1}^{\text{MC_NP}_{iregn,\text{year}}} \text{MC_NP}_{iregn,\text{year}}} \cdot Q\text{MODFSHR}_{IM,\text{fuel,iregn}}$$ \hspace{1cm} (240)

where

- **$\text{MC_NP}_{iregn,\text{year}}$** is the regional population projections, from the Macroeconomic Activity Module; and
- **$\text{QMODFSHR}_{IM,\text{fuel,iregn}}$** is the projected fuel share for intercity and school buses, by fuel type.

Recreational Boating Demand Component

Figure 20 depicts the Recreational Boating Demand Component. The growth in fuel use by recreational boats is related to the growth in disposable personal income. Initially, the recreational boating fuel consumption per capita is estimated for all years and is used subsequently to determine the national and regional fuel consumption for this activity. The following equations describe the model used:

$$R\text{BEDPC}_{\text{fuel,year}} = X_{1,\text{fuel}} + X_{2,\text{fuel}} \cdot \log\left(INC00\text{NPT}_{iregn,\text{year}}\right) + X_{3,\text{fuel}} \cdot PRICE04_{iregn,\text{year}}$$ \hspace{1cm} (241)

where
RBEDPC_{fuel,year} = recreational boating fuel consumption per capita in year, Year, fuel (where 1 = Gasoline and 2 = Diesel);

X1_{fuel} = energy demand constant term for the above fuel types;

X2_{fuel} = energy demand log of income for the above fuel types;

X3_{fuel} = energy demand fuel cost in 2004 dollars for the above fuel types;

INC00$NPT_{year} = per capita income in 2000 dollars; and

PRICE04_{fuel} = fuel price in 2004 dollars for the above fuel types.

This value is then used to estimate the national recreational boating fuel consumption for each year with the following equation

\[RECFD_{fuel,year} = RBEDPC_{fuel,year-1} \times \sum_{\text{region}=1}^{9} MC_{NP\text{region},year}, \]

(242)

where

RECFD_{fuel,year} = national recreational fuel consumption in year, Year, Fuel (where 1 = Gasoline and 2 = Diesel).

Following this step, the regional consumption is calculated according to population, as for mass transit

\[QRECR_{fuel,region,year} = RECFD_{fuel,year} \times \frac{MC_{NP\text{region},year}}{\sum_{\text{region}=1}^{9} MC_{NP\text{region},year}}, \]

(243)

where

QRECR_{fuel,region,year} = regional fuel consumption by recreational boats in Year, Fuel (where 1 = Gasoline and 2 = Diesel).
Figure 20. Recreational Boating Demand Component

Begin Recreational Boating Component

Calculate total diesel and gasoline consumption by recreational boats

Inputs:
- total disposable income from Macro Module and coefficient relating income to fuel demand for boats

Calculate total regional diesel and gasoline consumption by recreational boats

Inputs:
- regional population projections from Macro Module

Go to Lubricant Demand Component
Lubricant Demand Component

Figure 21 shows a flowchart of the Lubricant Demand Component. The growth in demand for lubricants is considered to be proportional to the growth in highway travel by all types of vehicles. Total highway travel (VMT) is first determined as

\[
HYWAY_{\text{year}} = \sum VMT_{\text{HH,year}} + FTVMT_{\text{year}} + \sum FLTVMT_{\text{year}},
\]

where

- \(HYWAY_{\text{year}}\) = total highway VMT;
- \(VMT_{\text{HH,year}}\) = total household light-duty VMT;
- \(FTVMT_{\text{year}}\) = total freight truck VMT, from the Freight Transportation Submodule; and
- \(FLTVMT_{\text{year}}\) = total fleet vehicle VMT, from the LDV Fleet Component.
Figure 21. Lubricant Demand Component

Begin Lubricant Demand Component

Calculate total highway VMT

Calculate total demand for lubricants

Allocate demand among the nine census divisions

End of Miscellaneous Energy Demand Submodule

Inputs:
- total light-duty vehicle (LDV) vehicle miles traveled (VMT) from LDV Submodule, total freight truck VMT from Freight Submodule, and total fleet VMT from Fleet Component

Inputs:
- coefficient relating highway travel to lubricant demand

Inputs:
- regional shares of gasoline and diesel consumption
Lubricant demand is then estimated based on the following:

\[
LUBFD_{\text{year}} = LUBFD_{\text{year}-1} \times \left[\frac{HYWAY_{\text{year}}}{HYWAY_{\text{year}-1}} \right]^{\text{BETALUB}},
\]

(245)

where

- \(LUBFD_{\text{year}}\) = total demand for lubricants in year, \(\text{Year}\); and
- \(\text{BETALUB}\) = constant of proportionality, relating highway travel to lubricant demand.

The lubricant demand is allocated to regions by a regional weighting of all types of highway travel as follows:

\[
QLUBR_{\text{iregn,year}} = LUBFD_{\text{year}} \times \left[\frac{\sum \text{VMTH}_{\text{year}} \times \text{SHRMG}_{\text{iregn,year}} + (\sum \text{FTVMT}_{\text{year}}) \times \text{SHRMG}_{\text{iregn,year}} + \text{FTVMT}_{\text{year}} \times \text{SHRDS}_{\text{iregn,year}}}{HYWAY_{\text{year}}} \right],
\]

(246)

where

- \(QLUBR_{\text{iregn,year}}\) = regional demand for lubricants in year, \(\text{Year}\), in Btu;
- \(\text{SHRMG}_{\text{iregn,year}}\) = regional share of motor gasoline consumption, from SEDS; and
- \(\text{SHRDS}_{\text{year}}\) = regional share of diesel consumption, from SEDS.
Appendix A. Model Abstract

Model name

Transportation Sector Demand Module

Model acronym

TRAN

Description

The Transportation Sector Demand Module is part of the NEMS and incorporates an integrated modular design that is based on economic, engineering, and demographic relationships that model transportation sector energy consumption at the census division level. It comprises the following submodules: Light-Duty Vehicles (including light-duty fleet vehicles, light-duty stock, and commercial light trucks), Air Travel, Freight Transportation (truck, rail, and marine), and Miscellaneous Energy Demand (military, mass transit, and recreational boats). The model provides sales estimates of 2 conventional and 14 alternative fuel light-duty vehicles and consumption estimates of 12 fuel types.

Purpose of the model

As a component of the National Energy Modeling System, the transportation model generates projections (through 2050) of transportation sector energy consumption. The transportation model facilitates policy analysis of energy markets, technological development, environmental issues, and regulatory development as they affect transportation sector energy consumption.

Most recent model update

November 2019 Model Interfaces

Receives inputs from the Electricity Market Module, Liquid Fuels Market Module, Natural Gas Transmission and Distribution Module, and the Macroeconomic Activity Module.

Documentation

Energy system described

Domestic transportation sector as well as international aviation and marine energy consumption.
Coverage

a) Geographic: nine census divisions: New England, Middle Atlantic, East North Central, West North Central, South Atlantic, East South Central, West South Central, Mountain, and Pacific.
b) Time Unit/Frequency: annual, 1995 through 2050.
c) Products: motor gasoline, aviation gasoline, diesel (distillate), residual oil, electricity, jet fuel, LPG, CNG, LNG, methanol, ethanol, hydrogen, lubricants, and pipeline fuel.
d) Economic Sectors: projections are produced for personal and commercial travel, freight trucks, railroads, domestic and international marine, aviation, mass transit, and military use.

Independent expert reviews conducted

Status of evaluation efforts by sponsor:

None.

DOE input sources:

a) State Energy Data (SEDS), June 2019.
b) Short-Term Energy Outlook, October 2019.
c) Macroeconomic Activity Module Inputs: new vehicle sales, economic and demographic indicators, and defense spending.
d) NEMS supply models: fuel prices

Non-DOE input sources:

e) National Energy Accounts.
g) U.S. Department of Transportation, Bureau of Transportation Statistics: Air Carrier Summary Data, various years, April, 2018.
j) Oak Ridge National Laboratory, Transportation Energy Data Book Ed. 37, ORNL-5198, January 2019.
l) U.S. Environmental Protection Agency, Engines and Vehicles Compliance Information System, various years.
n) IHS Markit Polk, National Vehicle Population Profile, various years.
o) IHS Markit Polk, Trucking Industry Profile, various years.
Appendix B. Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEO2020: Annual Energy Outlook 2020</td>
<td></td>
</tr>
<tr>
<td>AFV: alternative fuel vehicle</td>
<td></td>
</tr>
<tr>
<td>AFVADJ: alternative fuel vehicle adjustment subroutine</td>
<td></td>
</tr>
<tr>
<td>ASM: available seat miles</td>
<td></td>
</tr>
<tr>
<td>ATPZEV: advanced technology partial zero emission vehicle</td>
<td></td>
</tr>
<tr>
<td>ATV: advanced technology vehicle</td>
<td></td>
</tr>
<tr>
<td>Btu: British thermal units</td>
<td></td>
</tr>
<tr>
<td>CAV: connected and automated vehicle</td>
<td></td>
</tr>
<tr>
<td>CFS: Commodity Flow Survey</td>
<td></td>
</tr>
<tr>
<td>CNG: compressed natural gas</td>
<td></td>
</tr>
<tr>
<td>CVCC: Consumer Vehicle Choice Component</td>
<td></td>
</tr>
<tr>
<td>CAFE: corporate average fuel economy</td>
<td></td>
</tr>
<tr>
<td>$/kWh: dollars per kilowatthour</td>
<td></td>
</tr>
<tr>
<td>$/kW: dollars per kilowatt</td>
<td></td>
</tr>
<tr>
<td>DOT: Department of Transportation</td>
<td></td>
</tr>
<tr>
<td>RPMD: domestic revenue passenger-miles</td>
<td></td>
</tr>
<tr>
<td>EV: electric vehicle</td>
<td></td>
</tr>
<tr>
<td>EV100: electric vehicle with 100 miles driving range</td>
<td></td>
</tr>
<tr>
<td>EV200: electric vehicle with 200 miles driving range</td>
<td></td>
</tr>
<tr>
<td>EV300: electric vehicle with 300 miles driving range</td>
<td></td>
</tr>
<tr>
<td>ECA: Emission control area</td>
<td></td>
</tr>
<tr>
<td>EPA: Environmental Protection Agency</td>
<td></td>
</tr>
<tr>
<td>FAF: Freight analysis framework</td>
<td></td>
</tr>
<tr>
<td>FC: fuel cell</td>
<td></td>
</tr>
<tr>
<td>FCV: fuel cell vehicle</td>
<td></td>
</tr>
<tr>
<td>FHWA: Federal Highway Administration</td>
<td></td>
</tr>
<tr>
<td>FFV: flex-fuel vehicle</td>
<td></td>
</tr>
<tr>
<td>FTSAC: freight truck stock adjustment component</td>
<td></td>
</tr>
<tr>
<td>GDP: gross domestic product</td>
<td></td>
</tr>
<tr>
<td>GVWR: gross vehicle weight rating</td>
<td></td>
</tr>
<tr>
<td>HAV: highly automated vehicle (subset of CAV)</td>
<td></td>
</tr>
<tr>
<td>HEV: hybrid electric vehicle</td>
<td></td>
</tr>
<tr>
<td>ICE: internal combustion engine</td>
<td></td>
</tr>
<tr>
<td>kWh: kilowatthour</td>
<td></td>
</tr>
<tr>
<td>RPMI: international revenue passenger-miles</td>
<td></td>
</tr>
<tr>
<td>LNG: liquefied natural gas</td>
<td></td>
</tr>
<tr>
<td>LDV: light-duty vehicle</td>
<td></td>
</tr>
</tbody>
</table>
LPG: liquefied propane gas
LEV: low-emission vehicle
MTCC: Manufacturers Technology Choice Component
mpg: miles per gallon
MEDS: Miscellaneous Energy Demand Submodule
NEMS: National Energy Modeling System
NHTSA: National Highway Traffic Safety Administration
NiMH: nickel metal hydride
PHEV: plug-in hybrid electric vehicle
PHEV10: plug-in hybrid electric vehicle with 10 miles all electric range
PHEV40: plug-in hybrid electric vehicle with 40 miles all electric range
REG: census division
R&D: research and development
RPM: revenue passenger-miles
RTM: revenue ton-miles
SMD: seatmiles demanded
SUV: sport utility vehicle
SEDS: State Energy Data System
TMT: ton-miles traveled
ULEV: ultra-low-emission vehicle
VIUS: Vehicle and Inventory Use Survey
VMT: vehicle miles traveled
VMTC: Vehicle Miles Traveled Component
ZEV: zero-emission vehicle
Appendix C. Details of Subroutines Used in the Model

A flowchart of the calls made by the Transportation Sector Demand Module is provided in Figure 22. The figure shows the first level subroutines on the left side and the subsequent calls made by the first level subroutine in the second, third, and fourth levels. A description of each of these subroutines, in the order presented in Figure 22, is also provided in this section. TRAN is a subroutine that is called by the NEMS main module several times. To optimize the convergence time for the solution, some of the subroutines that provide data for TRAN subroutine are only called once. These subroutines include READNHTSA, READHIST, and READSTOCK.

SUBROUTINE: TRAN

Description: The NEMS transportation model encompasses a series of semi-independent modules that address different aspects of the transportation sector. Projections are generated through separate consideration of energy consumption within the various modes of transport, including private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts such as mass transit and recreational boating. The model also provides projections of selected intermediate values that are generated to determine energy consumption. These elements include estimates of passenger travel demand by light vehicle, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport that are linked to projections of industrial output. The NEMS Transportation Sector Demand Module consists of four submodules developed to represent a variety of travel modes that are very different in design and use, except for their intended purpose of conveying passengers or freight, or both. The four submodules are Light-Duty Vehicle, Air Travel, Freight Transportation (heavy truck, rail, and marine), and Miscellaneous Energy Demand.

Called by: NEMS Main Module; Emissions Module

Calls: TRANLBLS; READWK1; TMAC; NEWLDV; TMPGNEW; TFLTVMTS; TSMOD; TMPGSTK; TCURB; TFLTMPGS; TFLTCONS; TRANFRT; TVMT; TMPGAG; TCOMMCL_TRK; TRAIL; TSHIP; TAIRT; TAIREEFF; TMISC; TCONS; TINTEG; TBENCHMARK; TEMISS; TREPORT; TOUTPUT

Equations: 1247

SUBROUTINE: READLDV

Description: Reads the spreadsheet input file trnldev.xlsv.

Called by: TRAN

Calls: None
Equations: None

SUBROUTINE: READSTOCK

Description: Reads the spreadsheet input file trnstockx.xlsx.

Called by: TRAN

Calls: None

Equations: None

SUBROUTINE: TMAC

Description: This subroutine reassigns MACRO data to TRAN subroutine local variables.

Called by: TRAN

Calls: None

Equations: None

SUBROUTINE: NEWLDV

Description: This subroutine segments new light vehicle sales by cars, light trucks less than 8,500 pounds GVWR and light trucks from 8,500 pounds GVWR to 10,000 pounds GVWR.

Called by: TRAN

Calls: None

Equations: None

SUBROUTINE: TMPGNEW

Description: This subroutine starts the fuel economy module, AFV module, and loads data inputs. After completion, the average price of vehicles is computed.

Called by: TRAN

Calls: READNHTSA; READHIST; AFVADJ; FEMCALC; CGSHARE; TREG; TLDV; CAFECALC; CAFETEST

Equations: 1144

SUBROUTINE: READNHTSA

Description: This subroutine reads the NHTSA calibration data file trnnhtsax.xlsx.

Called by: TMPGNEW

Calls: None
SUBROUTINE: READHIST

Description: This subroutine reads new light-duty vehicle sales data for 1990 through the year the MTCC base year from the historical data file (trnfemx.xlsx). These data are required to support output beginning in 1990. This subroutine assigns historical attribute data to report writer variables, historical technology penetration data to report writer variables, and historic ATV offsets to report writer variables. AFVADJ is called to calibrate current year ATV attributes using current year gasoline data.

Called by: TMPGNEW

Calls: AFVADJ

Equations: None

SUBROUTINE: AFVADJ

Description: This subroutine establishes alternative fuel vehicle (AFV) characteristics relative to conventional gasoline. AFVADJ is an initialization subroutine and calculates the price, weight, fuel economy, and horsepower for the AFVs for all historical years through the base year in the MTCC. Most of these values are set relative to the gasoline vehicle values. All of the incremental adjustments used for alternative fuels have been exogenously determined and are included in the data input file, trnldvx.xlsx. Sixteen vehicle and fuel types are represented: conventional gasoline, turbo direct-injection diesel, flex-fuel ethanol, dedicated CNG, dedicated LPG, CNG bi-fuel, LNG bi-fuel, LPG bi-fuel, dedicated electric, diesel electric hybrid, plug-in gasoline electric hybrids, gasoline electric hybrid, methanol fuel cell, and hydrogen fuel cell.

Called by: TMPGNEW; READHIST

Calls: EVCALC; HEVCALC; PHEV10CALC; PHEV40CALC; FCCALC

Equations: 1–81

SUBROUTINE: FEMCALC

Description: This subroutine determines the cost-effective market shares of technologies for each vehicle class. The resulting fuel economy, weight, horsepower, and price are calculated. This subroutine then calculates possible market share in the absence of any engineering notes and the basic incremental technology cost by incorporating learning/volume production cost effects. It also determines number of years into production for scientific and design learning and the probabilistic cost change because of scientific learning. This subroutine tracks cumulative penetration as a surrogate for cumulative production. It calculates manufacturing cost adjustments and volume production cost adjustments. The mandatory and supersedes engineering notes are then applied to calculate annual horsepower adjustment as a result of technology introduction alone. Electric hybrid and plug-in hybrid vehicles have an additional price adjustment to account for battery cost. The adjustment is based on the adjusted cost for a midsize gasoline car and is scaled in accordance with the ratio of the weight of the gasoline version of the current vehicle to...
the weight of a midsize gasoline car. Additional learning curve adjustments are based on the learning curves of NiMH and lithium ion batteries. Consumer performance demand is adjusted downward as the horsepower-to-weight ratio increases so that performance gains cannot continue indefinitely. This subroutine calculates the horsepower demand required to maintain a minimum horsepower-to-weight ratio and adjusts fuel economy up or down in accordance with the sum of consumer-driven horsepower adjustment and any horsepower giveback.

Called by: TMPGNEW

Calls: NOTE_SUPER; EVCALC; HEVCALC; PHEV10CALC; PHEV40CALC; FCCALC; FEMRANGE; CALIBNHTSA;

Equations: 1–144

SUBROUTINE: NOTE_SUPER

Description: This subroutine ensures that related technologies do not exceed a specific cumulative penetration. Although individual technology penetrations are controlled via the basic allowable maximum penetrations, the combined penetrations of two or more technologies are controlled here. Accordingly, this subroutine will never add market penetration, but it can subtract excess penetration initially allocated to a superseded technology. The maximum allowable market penetration for a related technology chain is taken as the greater of the maximum penetrations for each component technology and can thus be adjusted externally through the maximum market penetration matrix in the TRNLDV.XML file. Even though the maximum penetration for the chain may exceed that of an individual technology, no problems arise because the penetration of that individual technology is constrained by its specific maximum in the individual technology market penetration algorithms. This subroutine starts the Fuel Economy Model, AFV Model, and loads data inputs. After completion, the average price of vehicles is computed.

Called by: TRAN

Calls: None

Equations: None

SUBROUTINE: EVCALC

Description: This subroutine calculates battery costs and related quantities for electric vehicles. It applies learning curves to battery price, aggregates battery price based on NiMH and lithium ion market share, and adds to vehicle price. This subroutine also calculates vehicle weight as a function of battery weight, market share, and vehicle fuel economy as a function of vehicle weight.

Called by: FEMCALC
Calls: None
Equations: 1–144

SUBROUTINE: HEVCALC

Description: This subroutine calculates battery costs and related quantities for hybrid electric vehicles. It applies learning curves to battery prices, aggregates battery price based on NiMH and lithium ion market share, and adds to vehicle price. This subroutine also calculates vehicle weight as a function of battery weight and market share, as well as vehicle fuel economy as a function of vehicle weight.

Called by: FEMCALC
Calls: None
Equations: 1–144

SUBROUTINE: LIONCOSTCALC

Description: This subroutine calculates lithium ion battery cost ($/kWh) for PHEVs, EVs, and HAV systems for the four phases of the cost curve: the Revolutionary, Mature, and High-Volume phases. Lithium-ion capacity additions are calculated, and then the battery costs are calculated.

Called by: AFVADJ
Calls: None
Equation: 36

SUBROUTINE: PHEV10CALC

Description: This subroutine calculates battery costs and related quantities for plug-in hybrid electric vehicles with a 10-mile all-electric range. It applies learning curves to battery prices, aggregates battery price based on NiMH and lithium ion market share, and adds to vehicle price. This subroutine also calculates vehicle weight as a function of battery weight and market share, as well as vehicle fuel economy as a function of vehicle weight.

Called by: FEMCALC
Calls: None
Equations: 1–144

SUBROUTINE: PHEV40CALC
Description: This subroutine calculates battery costs and related quantities for PHEV with a 40-mile all-electric range. It applies learning curves to battery prices, aggregates battery price based on NiMH and lithium ion market share, and adds to vehicle price. This subroutine also calculates vehicle weight as a function of battery weight and market share, as well as vehicle fuel economy as a function of vehicle weight.

Called by: FEMCALC

Calls: None

Equations: 1–144

SUBROUTINE: FCCALC

Description: This subroutine calculates several parameters that include base fuel cell cost and input fuel cell costs in $/kW, base cost of an onboard battery to start the vehicle, and retail price of the fuel cell and battery at 1.75 times cost plus a $1,500 amortization cost. The vehicle price is then adjusted to include the price of the fuel cell and battery. This subroutine also estimates fuel cell vehicle fuel economy using estimates of gallons per mile per 1,000 pounds of vehicle weight.

Called by: FEMCALC

Calls: None

Equations: 1–144

SUBROUTINE: CALIBNHTSA

Description: This subroutine calibrates factors that are based on historical NHTSA data through the last available data year. All ATV calibration factors are set to equal corresponding gasoline vehicle calibration factors to preserve the differential relationships between gasoline vehicles and ATVs.

Called by: FEMCALC

Calls: None

Equations: None

SUBROUTINE: FEMRANGE

Description: This subroutine calculates vehicle range estimates.

Called by: FEMCALC

Calls: None

Equations: 1–144
SUBROUTINE: CGSHARE

Description: This subroutine calculates light vehicle market class shares, average horsepower, and weight for cars and light trucks. It sets domestic and import shares of total cars and light trucks using historic NHTSA sales data. It then calculates non-fleet non-commercial sales of cars and light trucks by market class and overall non-fleet, as well as non-commercial class shares for cars and light trucks. The domestic and import groups are combined to calculate market class shares and sales of conventional vehicles. This subroutine also estimates average horsepower and weight for new cars and light trucks.

Called by: TMPGNEW

Calls: None

Equations: 1–144

SUBROUTINE: TREG

Description: This subroutine estimates the regional values for fuel demand, fuel cost, VMT demand, VMT shares, and sales of non-fleet vehicles. It calculates regional shares of fuel, regional income, regional driving demand, regional VMT shares, and regional sales of non-fleet cars and light trucks.

Called by: TMPGNEW

Calls: None

Equations: 1–144

SUBROUTINE: TLDV

Description: This subroutine initiates the vehicle choice routine.

Called by: TMPGNEW

Calls: TATTRIB; TALT2; TALT2X; TFLTSTKS; TLEGIS

Equations: 1–144

SUBROUTINE: TATTRIB

Description: This subroutine adjusts the LDV attributes such as mpg, price, range, and horsepower so they can be used throughout the model. The LDV attributes for gasoline are calculated in the subroutine CGSHARE. This subroutine determines vehicle price of ATVs to reflect differing price structures depending on whether they are in low- or high-volume production. As production moves from low to high volume, prices will decline. It estimates the ATV production volume price point using BASE year price differentials, constrained at both ends by high- and low-production volume prices (in other words,
price can never drop lower than the high-volume production price or rise higher than
the low-volume production price). It then combines domestic and import ATV
attributes. The routine assumes the same domestic versus import sales shares as
gasoline to provide for an equitable comparison of attributes across vehicle types. It
bypasses the EPACT routine when PSPR equals zero to ensure that non-allowable vehicle
classes do not end up with negative prices. All non-zero prices should be larger than the
maximum credit, so an abort switch is activated in any other instance where the vehicle
price goes negative.

Called by: TLDV
Calls: FLEXSHR
Equations: 1–144

SUBROUTINE: FLEXSHR

Description: This subroutine calculates the VMT shares for flex-fuel and bi-fuel vehicles. After
parameters for minimum alternative fuel use in flex-fuel and bi-fuel vehicles are set, it
calculates an arithmetic average ethanol (E85) price. It then calculates regional price
ratios for the minimum amount of alternative fuel that is used to fill the alternative fuel
station availability array. This subroutine uses an alternative fuel choice logit model
based on fuel price and fuel availability. It can also simulate an aggressive E85 vehicle
penetration with no consideration regarding fuel availability. It then calculates the
national average alternative fuel use percentage for flex- and bi-fuel vehicles. Weighted
mpg and VMT shares for PHEVs are then calculated. Because the mpg for the gasoline
engine and the electric motor are very different, VMT shares are weighted with the
mpgs.

Called by: TATTRIB
Calls: None
Equations: 1–144

SUBROUTINE: TALT2

Description: This subroutine calculates regional fuel availability for highway fuels that include
gasoline, diesel, ethanol, methanol, CNG/LNG, LPG, electricity, and hydrogen. It
estimates the vehicle stocks used to calculate the number of refueling stations by
weighting flex-fuel and bi-fuel at 25%. It calculates the total number of refueling stations
needed based on an historic ratio of vehicle stock per refueling station. It regionalizes
the predicted stations by regional vehicle sales and estimates fuel availability.

Called by: TLDV
Calls: None
SUBROUTINE: TALT2X

Description: This subroutine calculates level 1 and level 2 light vehicle market penetration estimates in the AFV model. It increases flexfuel make/model availability when E85 is price competitive. Fuel availability and range are calculated in call statements.

Called by: TLDV

Calls: TALT314; TALT315; TALT316

Equations: 1–144

SUBROUTINE: TALT314

Description: This subroutine calculates fuel cost, vehicle range, and fuel availability for ethanol flex-fuel vehicles.

Called by: TALT2X

Calls: None

Equations: 1–144

SUBROUTINE: TALT315

Description: This subroutine calculates fuel cost, vehicle range, and fuel availability for CNG bi-fuel and LNG bi-fuel vehicles.

Called by: TALT2X

Calls: None

Equations: 1–144

SUBROUTINE: TALT316

Description: This subroutine calculates fuel cost, vehicle range, and fuel availability for LPG bi-fuel vehicles.

Called by: TALT2X

Calls: None

Equations: 1–144

SUBROUTINE: TFLTSTKS
Description: This subroutine calculates sales and stocks of fleet vehicles used in business, government, utility, and taxi fleets. It calculates the fleet acquisitions for cars and light trucks. It combines federal and state EPACT regulations (EPACTREG) into one government mandate for both by averaging based on stocks from each. This subroutine can also adjust vehicle sales and market shares to reflect legislative mandates on sales of Zero Emission Vehicles (ZEV), including Transitional Zero Emission Vehicles (TZEV) and Advanced Technology Partial Zero Emission Vehicles (ATPZEV). Participating states include California, Connecticut, Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island, and Vermont. It calculates fleet stock by fleet type, technology, and vintage and assigns fleet vehicles of retirement vintage to another variable, before removal from the fleet. Taxis do not transfer to the passenger vehicle fleet because of their high mileage. The total surviving vehicles, by vehicle, fleet type, and engine technology are calculated.

Called by: TLDV

Calls: None

Equations: 1–163

SUBROUTINE: TLEGIS

Description: This subroutine adjusts vehicle sales and market shares to reflect legislative mandates on sales of ZEV, including TZEV and ATPZEV. Participating states include California, Connecticut, Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island, and Vermont. After estimating the total adjusted vehicle sales, calculations are made for new absolute market shares for each vehicle technology.

Called by: TLDV

Calls: None

Equations: 1–163

SUBROUTINE: CAFECALC

Description: This subroutine combines fuel economies from all vehicles and checks if the combined car and light truck mpg is greater than the CAFE standard.

Called by: TMPGNEW

Calls: None

Equations: 1–163

SUBROUTINE: CAFETEST
Description: This subroutine ensures that CAFE standards are met by increasing the sales of hybrid (gasoline and diesel) and diesel cars and light trucks.

Called by: TMPGNEW

Calls: None

Equations: 1–144

SUBROUTINE: TFLTVMTS

Description: This subroutine calculates VMT for fleets.

Called by: TRAN

Calls: None

Equations: 1–165

SUBROUTINE: TSMOD

Description: This subroutine calculates light vehicle stocks by technology type. Total new vehicle sales by technology and fraction of a given vintage that survive are calculated. This subroutine adds retired fleet vehicles to the appropriate vintage of the non-fleet population and calculates total stocks of cars and light trucks. Vehicle stock by fuel type and LDV shares of each technology are also calculated.

Called by: TRAN

Calls: None

Equations: 1–163

SUBROUTINE: TMPGSTK

Description: This subroutine calculates light vehicle stock mpg by technology and also calculates new car and light truck sales for eight market classes. It computes the average mpg of the 14 AFVs technologies, average new car and light truck mpg, and stock mpg for cars and light trucks. It also calculates total miles driven by each type of vehicle (cars and light trucks) by vintage, household vehicle stock mpg for cars and light trucks, average mpg of light-duty vehicles, average vehicle mpg by technology, and average car and light truck mpg by technology.

Called by: TRAN

Calls: None

Equations: 1–163
SUBROUTINE: TCURB

Description: This subroutine calculates the stock average weight (by vintage) of cars and light trucks.

Called by: TRAN

Calls: None

Equations: 1–163

SUBROUTINE: TFLTMPGS

Description: This subroutine calculates mpg for new fleet cars and light trucks, as well as fleet stock. It adjusts the vintage array of fleet stock efficiencies to account for new additions. This subroutine then calculates overall fleet average mpg by fuel technology.

Called by: TRAN

Calls: None

Equations: 1–163

SUBROUTINE: TFLTCONS

Description: This subroutine calculates fuel consumption of fleet vehicles by region.

Called by: TRAN

Calls: None

Equations: 1–144

SUBROUTINE: TRANFRT

Description: This subroutine calculates fuel consumption for freight trucks, Classes 2b–8. It applies scrappage rates to truck populations, excluding new trucks. It then calculates stock transfers from fleet to non-fleet ownership, processes new truck sales from the Macroeconomic Activity Module, and distributes new truck sales into market classes and ownership classes. It then estimates fuel shares of new truck sales under technology penetration assumptions. Aggregate VMT and per truck VMT are estimated and used to calculate fuel demand by sector and vintage.

Called by: TRAN

Calls: TFRTRPT; INIT; TRUCK_NEW; TRUCK_STOCK; TRUCK_VMT; TRUCK_FUEL

Equations: 196–253

SUBROUTINE: TFRTRPT
SUBROUTINE: INIT

Description: This subroutine initializes variables in TRANFRT and assigns variables for each run. It copies inputs for prices and macroeconomic output from the NEMS global data call for each year. It summarizes Economic Output into 12 Sectors: 1) chemicals, rubber, and plastic, 2) primary metals, 3) processed food, 4) paper products, 5) petroleum products, 6) stone, clay, glass, and concrete, 7) metal durables, 8) other manufacturing, 9) agriculture, 10) mining, 11) utility, and 12) government.

Called by: TRANFRT

Calls: CFREAD

Equations: 196–253

SUBROUTINE: CFREAD

Description: This subroutine reads input for the freight model from spreadsheet input file trnhdvx.xlsx, including variables such as non-fleet VMT per truck by fuel and vintage, new truck sales, and Class 4–6 shares of Class 4–8 trucks, etc.

Called by: INIT

Calls: None

Equations: 196–253

SUBROUTINE: CFREADSTOCK

Description: This subroutine reads input for the freight model from spreadsheet input file trnstockx.xlsx, including variables such as fleet stocks by fuel, vintage, gross vehicle weight, and vocational versus non-vocational.

Called by: INIT

Calls: None

Equations: None

SUBROUTINE: WR_FSHFLT

Description: This subroutine writes reports that support the freight model.

Called by: TRANFRT

Calls: None

Equations: None
Description: This subroutine calculates fuel shares of the entire truck stock, excluding new trucks, for comparison with the fuel shares assigned in subroutine TRUCK_NEW.

Called by: TRUCK_STOCK

Calls: None

Equations: 196–227

SUBROUTINE: TRUCK_VMT

Description: This subroutine estimates aggregate VMT growth by economic sector by factoring VMT per truck such that the total VMT of the stock, including new trucks, matches the aggregate across sectors. It calculates aggregate VMT growth based on growth in real economic output by sector.

Called by: TRANFRT

Calls: FAC

Equations: 196–227

SUBROUTINE: TRUCK_FUEL

Description: This subroutine calculates fuel demand from VMT and mpg by market class, fuel, and fleet/non-fleet. This subroutine is called by TRANFRT during history years. It determines fuel consumption in gallons of gasoline equivalent and passes VMT to TRAN for benchmarking. This subroutine summarizes personal and fleet light-duty vehicle sales and mpg by technology. It combines fleet and non-fleet cars and fleet and non-fleet light trucks and calculates total sales. Sales shares for each technology within cars and light trucks are calculated and summed. A harmonically averaged new car and light truck mpg is calculated separately. It also calculates fleet average stock car and light truck mpg, fleet average stock vehicle mpg, and fuel economy and sales separately for personal and fleet vehicles.

Called by: TRANFRT

Calls: None

Equations: 1–256

SUBROUTINE: TRUCK_NEW

Description: This subroutine determines the trigger price at which each technology is considered viable. For all emission technologies, the trigger price is set negative so it will penetrate. This subroutine implements fuel-saving technologies that include various technologies that are adopted when commercially available and cost-effective. It sets a market penetration price sensitivity factor and applies penetration criteria such as: 1)
technology availability, 2) technology applicability to the fuel or market class, and 3) economical trigger price or price required by regulation. It subtracts the effects of technologies being superseded by more advanced technologies. It calculates combined market share of the chosen technology and more advanced technologies that are competing with it. It then reduces market share of next less advanced technology because of the penetration of competing higher technologies. In other words, the market share of a less-advanced technology is assumed to apply to that part of the market not yet taken by the more-advanced technologies. It determines combined mpg improvement of fuel-saving technologies by weighting each technology’s improvement by its market share. In the frozen technology scenario (which assumes that regulated efficiency changes as a result of changes in emission standards), technology adoption is stopped after 2010. This subroutine implements the market penetration equation: s-shaped logistical equation to estimate market penetration over time. It outputs the market penetration fraction.

Called by: TRANFRT

Calls: None

Equations: 1–256

SUBROUTINE: TRUCK_STOCK

Description: This subroutine estimates new vehicle sales, stocks, and fuel economy. This subroutine determines the share of each fuel for new truck sales. The results of this subroutine can be altered by 1) changing the trigger year, 2) changing the slope, or 3) altering the base year or end year share. Cost of diesel per mile relative to other fuels is considered to derive a logistic penetration curve parameter. This subroutine returns SLOPE and Mid-Point on Logistic penetration curve. This subroutine determines the market share of CNG freight trucks purchased by fleet, size, and VMT groups. Purchase decisions are estimated by calculating the net present value of annual fuel savings as compared with diesel trucks, weighted by a payback share distribution. This subroutine calculates total personal light vehicle VMT. It calculates cost of driving per mile, unadjusted VMT per licensed driver, total VMT for light-duty vehicles, VMT for personal travel, and VMT by technology.

Called by: TRANFRT

Calls: WR_FSHFLT

Equations: 1–256

SUBROUTINE: TRAIL

Description: This subroutine calculates energy consumption by rail by region and fractional change in fuel efficiency.
SUBROUTINE: TSHIP

Description: This subroutine calculates energy use for shipping. It calculates the international shipping fuel use (including use within Emission Control Areas of North America) split by the fuel types: distillate fuel oil, LNG, and residual fuel oil. It calculates ton-miles traveled for domestic shipping and the fractional change in fuel efficiency.

Called by: TRAN
Calls: None
Equations: 228–234

SUBROUTINE: TRANAIR

Description: This subroutine calls the air freight subroutines TAIRT and TAIREFF.

Called by: TRAN
Calls: TAIRT; TAIREFF
Equations: 166–195

SUBROUTINE: TAIRT

Description: This subroutine calculates total seat miles demanded for domestic and international air travel as well as revenue ton-miles for air freight. After initializing the variables representing aircraft sales, active aircraft, and stock for narrow-body, wide-body, and regional jets, it calculates the yield (ticket price), load factors, and revenue passenger-miles for domestic and international by aircraft type. It also calculates dedicated revenue ton-miles of air freight, available seat miles demanded (domestic and international), demand for available seat miles, and revenue ton-miles.

Called by: TRANAIR
Calls: None
Equations: 166–195

SUBROUTINE: TAIREFF

Description: This subroutine calculates aircraft sales, stocks, new technology penetration, efficiency improvement, and energy use for air travel. It calculates total fuel efficiency.
improvements for aircraft for domestic and international combined. It calculates seat miles demanded, incorporating revenue ton-miles, jet fuel demand in gallons, aviation gas demand, and regionalizes commercial jet fuel and aviation gasoline.

Called by: TRANAIR
Calls: None
Equations: 166–195

SUBROUTINE: TMISC

Description: This subroutine calculates miscellaneous transportation energy use from the military, mass transit (buses and rail), recreational boating, and lubricant demand. It also calculates bus efficiency in Btu/passenger-mile, bus energy demand by segment, and regionalizes commuter bus energy demand by regional population. It also calculates demand growth and regional recreational boating energy demand by population. It calculates regional lubricant demand by summing VMT shares for freight and light-duty vehicles.

Called by: TRAN
Calls: None
Equations: 241–256

SUBROUTINE: TCONS

Description: This subroutine combines VMT and efficiencies by technology to estimate fuel consumption for light-duty vehicles by fuel type. It calculates gasoline, methanol, ethanol, CNG, LNG, and LPG consumption as well as electric, liquid hydrogen, and diesel consumption. It sums total consumption of all fuels.

Called by: TRAN
Calls: None
Equations: 1–163

SUBROUTINE: TINTEG

Description: This subroutine calculates total transportation energy consumption by fuel type for all modes.

Called by: TRAN
Calls: None
Equations: 1–256
SUBROUTINE: TBENCHMARK

Description: This subroutine is used for benchmarking transportation-specific consumption variables. It benchmarks consumption by fuel type for various transport modes including light-duty vehicles, commercial light trucks, freight trucks by fuel type and market class, domestic shipping, international shipping, rail, military, and mass transit. It also is used to benchmark commercial fleet vehicle consumption by fuel type and VMT by technology for commercial fleets, commercial light trucks, and freight trucks as well as ton-miles traveled (TMT) for rail and ships.

Called by: TRAN

Calls: None

Equations: 1–256

SUBROUTINE: TEMISS

Description: This subroutine calculates vehicle emissions by the three criteria pollutants: hydrocarbons, carbon monoxide, and nitrous oxides. This routine sums up total VMT across market classes, reads emission factors in grams per mile, and initializes emissions variables. It aggregates emissions by age (or vintage) for the model’s report writer by converting the weight of emissions in grams to million metric tons.

Called by: TRAN

Calls: TRANFRT

Equations: 1–256

SUBROUTINE: TREPORT

Description: This subroutine generates the parameters used in the model’s report writer. It generates tables for total freight truck VMT and energy efficiency index. It calculates energy use by fuel type within light-duty vehicles.

Called by: TRAN

Calls: None

Equations: None

SUBROUTINE: LIDARCOSTCALC

Description: This subroutine calculates the LiDAR system cost using a classic experience curve model, based on the cumulative production of all LiDAR systems to date for five phases: R&D, Revolutionary, Evolutionary, Mature, and High-Volume. Two levels
of LiDAR system costs are estimated: high- and low-resolution, the latter applying to L4a vehicles and the former to L4b and L5 vehicles.

Called by: HAVCALC
Calls: None
Equations: 119

SUBROUTINE: HAVCALC
Description: This subroutine calculates the total HAV system incremental cost using output from LIONCOSTCALC, LIDARCOSTCALC, and an exogenous time-based cost reduction curve for the remainder of the HAV system components
Called by: FLTHAV
Calls: LIDARCOSTCALC
Equations: 120

SUBROUTINE: FLTHAV
Description: This subroutine determines HAV adoption within the taxi fleet based on revenue and fuel, maintenance, and operational costs, as well as operational domain and new technology limitations. The output includes 1) ride-hailing/taxi fleet HAV distribution within vehicle type, class, powertrain, and census division by level (that is, Levels 0–3, 4a, 4b, and 5) and 2) ride-hailing/taxi fleet HAV sales by vehicle type, class, powertrain, census division, and HAV level.
Called by: TLDV
Calls: HAVCALC
Equations: 121–123

FUNCTION: FUNCMAX
Description: This function returns the maximum possible market share given previous period values. It is intended to reflect institutional factors leading to production lags.
Called by: FEMCALC
Calls: None
Equations: 1–256
FUNCTION: HARMONIC_MEAN

Description: This function computes a harmonic mean, used for averaging fuel economy measured in miles per gallon. The calculation essentially takes the reciprocal of mpg, or efficiency, and computes the quantity-weighted average and then converts the result back to miles per gallon by taking the reciprocal.

Called by: TRANFRT; TRUCK_STOCK; TFRTRPT

Calls: None

Equations: 196–227
Figure 22. Flowchart of calls made by TRAN subroutine
Figure 22. Flowchart of calls made by TRAN subroutine (cont.)
Figure 22. Flowchart of calls made by TRAN subroutine (cont.)
Appendix D. Input and Output Variables in Transportation Model

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Variable description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation specific macro variables</td>
<td></td>
</tr>
<tr>
<td>INC00$16</td>
<td>Disposable income per capita for population 16+ (2000$)</td>
</tr>
<tr>
<td>INC00$NPT</td>
<td>Disposable income per capita (thousands of 2000$)</td>
</tr>
<tr>
<td>INCOME</td>
<td>Disposable income per capita (1990 $)—fuel economy component</td>
</tr>
<tr>
<td>MC_GFMLR</td>
<td>Federal government purchases—defense</td>
</tr>
<tr>
<td>MC_SUVTHAM</td>
<td>Total new truck sales for Classes 4–8, from the Macroeconomic Activity Module</td>
</tr>
<tr>
<td>NEWCARS</td>
<td>New car sales</td>
</tr>
<tr>
<td>NEWCLS12A</td>
<td>New light truck sales, Classes 1–2a</td>
</tr>
<tr>
<td>TMC_PGDP</td>
<td>GDP deflator</td>
</tr>
<tr>
<td>Global definitions</td>
<td></td>
</tr>
<tr>
<td>ACCL</td>
<td>Vehicle acceleration—0 to 60 mph</td>
</tr>
<tr>
<td>ACTUAL_MKT</td>
<td>Technology market share = MKT_PEN</td>
</tr>
<tr>
<td>AFVADJFE</td>
<td>ATV fuel economy differential</td>
</tr>
<tr>
<td>AFVADJHP</td>
<td>ATV horsepower differential</td>
</tr>
<tr>
<td>AFVADJPR</td>
<td>ATV price differential (1/2 low volume car/truck,3/4 High volume car/truck)</td>
</tr>
<tr>
<td>AFVADJPRH</td>
<td>ATV high volume price differential</td>
</tr>
<tr>
<td>AFVADJRN</td>
<td>ATV range differential</td>
</tr>
<tr>
<td>AFVADJWT</td>
<td>ATV weight differential</td>
</tr>
<tr>
<td>AHPCAR</td>
<td>Average car horsepower</td>
</tr>
<tr>
<td>APSHR44</td>
<td>Percentage of total light-duty vehicles sales by technology type</td>
</tr>
<tr>
<td>APSHR55</td>
<td>Absolute regional market shares of adjusted vehicle sales</td>
</tr>
<tr>
<td>ATPZEV</td>
<td>Total (percentage) mandated natural gas, hybrid and methanol/natural gas fuel cell vehicles</td>
</tr>
<tr>
<td>AVSALES</td>
<td>Total adjusted vehicle sales</td>
</tr>
<tr>
<td>AVSALEST</td>
<td>Total regional adjusted vehicle sales by market class</td>
</tr>
<tr>
<td>AWTCAR</td>
<td>Average car weight</td>
</tr>
<tr>
<td>AWTRUCK</td>
<td>Average light truck weight</td>
</tr>
<tr>
<td>BASE</td>
<td>FEM attribute index value for the base year</td>
</tr>
<tr>
<td>BATTERY</td>
<td>Weighted average battery cost</td>
</tr>
<tr>
<td>BETAF2</td>
<td>ATV NMLM level 2, fuel availability 1</td>
</tr>
<tr>
<td>BRCOST25</td>
<td>Battery replacement cost—currently set to zero</td>
</tr>
<tr>
<td>CAFE_STAND</td>
<td>CAFE standards</td>
</tr>
<tr>
<td>CDCARSHR</td>
<td>Share of total cars by region</td>
</tr>
<tr>
<td>CDFREG</td>
<td>Car fuel efficiency degradation factor</td>
</tr>
<tr>
<td>CDLTSHR</td>
<td>Share of total light trucks by region</td>
</tr>
<tr>
<td>CDFREFG</td>
<td>Car fuel efficiency degradation factor</td>
</tr>
<tr>
<td>CFCoeffA, CFCoeffA2, CFCoeffB, CFCoeffB2, CFCoeffC, CFCoeffC2, CFCoeffD, CFCoeffD2</td>
<td>Coefficients to determine size class market share</td>
</tr>
<tr>
<td>CLASS_SHARE</td>
<td>Vehicle class market shares (within vehicle groups)</td>
</tr>
<tr>
<td>CMPGSTK</td>
<td>Car fuel economy</td>
</tr>
<tr>
<td>CMPGT</td>
<td>Car stock mpg</td>
</tr>
<tr>
<td>CMPGT_IT</td>
<td>Average fuel efficiency of cars by powertrain</td>
</tr>
<tr>
<td>Variable name</td>
<td>Variable description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>COSTEF_FUEL</td>
<td>Cost effectiveness of mpg improvement of a subsystem technology</td>
</tr>
<tr>
<td>COSTEF_PERF</td>
<td>Cost effectiveness of performance improvement of a subsystem technology</td>
</tr>
<tr>
<td>cumul_lidar_prod</td>
<td>Cumulative LiDAR system production (L4a, L4b, and LS variants)</td>
</tr>
<tr>
<td>CURRENT</td>
<td>FEM attribute index value for the current year</td>
</tr>
<tr>
<td>DEL_COSTABS</td>
<td>Absolute incremental change in cost ($)</td>
</tr>
<tr>
<td>DEL_COSTWGT</td>
<td>Relative incremental change in cost (dollars per pound [$/lb])</td>
</tr>
<tr>
<td>DEL_FE</td>
<td>Incremental fractional change in fuel economy</td>
</tr>
<tr>
<td>DEL_HP</td>
<td>Incremental fractional change in horsepower</td>
</tr>
<tr>
<td>DEL_WGTABS</td>
<td>Absolute incremental change in weight (lb)</td>
</tr>
<tr>
<td>DEL_WGTWGT</td>
<td>Relative incremental change in weight (lb/base vehicle lb)</td>
</tr>
<tr>
<td>DELTA_MKT</td>
<td>Incremental increase in subsystem technology market share</td>
</tr>
<tr>
<td>DISCOUNT</td>
<td>Discount rate</td>
</tr>
<tr>
<td>DOMCAR = 1</td>
<td>Vehicle group index value for a domestic car</td>
</tr>
<tr>
<td>Elec_Stor$</td>
<td>Cost of on-board electricity systems and storage</td>
</tr>
<tr>
<td>EV_Batt_Wt</td>
<td>EV battery weight (lbs) per kWh</td>
</tr>
<tr>
<td>EV_DOD</td>
<td>EV battery depth of discharge (percentage)</td>
</tr>
<tr>
<td>EV_kWhr</td>
<td>EV battery size (kWh)</td>
</tr>
<tr>
<td>FAVAIL</td>
<td>Fuel availability by technology, region, year</td>
</tr>
<tr>
<td>FAVL</td>
<td>Fuel availability index relative to gasoline</td>
</tr>
<tr>
<td>FIRST_HAV_YEAR</td>
<td>First year of market availability for each HAV level</td>
</tr>
<tr>
<td>FIRST_LIDAR_YEAR</td>
<td>First year available for low- and high-speed LiDAR</td>
</tr>
<tr>
<td>FLCOST</td>
<td>Fuel cost per mile</td>
</tr>
<tr>
<td>FLT</td>
<td>Fleet indexes</td>
</tr>
<tr>
<td>FLTCARSHR</td>
<td>Fleet car sales shares by technology</td>
</tr>
<tr>
<td>FLTCRAT</td>
<td>Fraction of total car sales attributed to fleets</td>
</tr>
<tr>
<td>FLTCSHR</td>
<td>Fraction of fleet cars purchased by a given fleet type</td>
</tr>
<tr>
<td>FLTECH</td>
<td>Vehicle purchases by fleet type and technology</td>
</tr>
<tr>
<td>FLTECHSAL</td>
<td>Fleet sales by size, technology, and fleet type</td>
</tr>
<tr>
<td>FLTFCLDVBT</td>
<td>Regional fuel consumption by fleet vehicles, by technology</td>
</tr>
<tr>
<td>FLTDLC</td>
<td>Fuel consumption by technology, vehicle, and fleet type</td>
</tr>
<tr>
<td>FLTLDVSHR</td>
<td>Percentage of fleet vehicles by fleet type and size</td>
</tr>
<tr>
<td>FLTMPG</td>
<td>New fleet vehicle fuel efficiency, by fleet type and vehicle technology type</td>
</tr>
<tr>
<td>FLTMPGTOT</td>
<td>Overall fuel efficiency of new fleet cars and light trucks</td>
</tr>
<tr>
<td>FLTSAI</td>
<td>Sales to fleets by vehicle and fleet type</td>
</tr>
<tr>
<td>FLTSKSHR</td>
<td>Percentage of fleet vehicles by fleet type, size class, and vehicle type</td>
</tr>
<tr>
<td>FLTSTKVN</td>
<td>Fleet stock, by fleet type, technology, and vintage</td>
</tr>
<tr>
<td>FLTOTMPG</td>
<td>Total fleet mpg</td>
</tr>
<tr>
<td>FLTTRAT</td>
<td>Fraction of total truck sales attributed to fleets</td>
</tr>
<tr>
<td>FLTTRKSHR</td>
<td>Fleet light truck sales shares by technology</td>
</tr>
<tr>
<td>FLTTSHR</td>
<td>Fraction of fleet trucks purchased by a given fleet type</td>
</tr>
<tr>
<td>FLTVMT</td>
<td>Fleet VMT by technology, vehicle type, and fleet type</td>
</tr>
<tr>
<td>FLTVMTHAV</td>
<td>Benchmarked fleet VMT (billion miles)</td>
</tr>
<tr>
<td>FLTVMTYR</td>
<td>Annual miles of travel per fleet vehicle</td>
</tr>
<tr>
<td>FPMpg</td>
<td>CAFE by size class</td>
</tr>
<tr>
<td>FPMpgGrp</td>
<td>CAFE by manufacturer</td>
</tr>
<tr>
<td>FPRICE</td>
<td>Fuel price by region</td>
</tr>
</tbody>
</table>

U.S. Energy Information Administration | NEMS Model Documentation 2020: Transportation Sector Demand Module
<table>
<thead>
<tr>
<th>Variable name</th>
<th>Variable description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPrint</td>
<td>Vehicle footprint value</td>
</tr>
<tr>
<td>FUELCELL</td>
<td>Incremental fuel cell cost</td>
</tr>
<tr>
<td>FuelCell$/kW</td>
<td>Fuel cell cost ($/kW)</td>
</tr>
<tr>
<td>FUELSAVE</td>
<td>Expected fuel savings of advanced subsystem technology</td>
</tr>
<tr>
<td>GAS</td>
<td>Vehicle fueling configuration index value for gasoline</td>
</tr>
<tr>
<td>HAV_battery_kWh</td>
<td>HAV system battery energy capacity (kWh)</td>
</tr>
<tr>
<td>hav_init_cost</td>
<td>Initial cost of HAV system ($)</td>
</tr>
<tr>
<td>hav_newtech_lag</td>
<td>Lag term for phase out of new technology limits</td>
</tr>
<tr>
<td>hav_newtech_lim</td>
<td>Time-dependent HAV technology new technology limit</td>
</tr>
<tr>
<td>hav_oper_limit</td>
<td>Disutility of operational domain limits for HAV levels 4a and 4b</td>
</tr>
<tr>
<td>hav_sys_cost</td>
<td>Cost of HAV system ($)</td>
</tr>
<tr>
<td>HAV_sys_lrn</td>
<td>Time-based HAV system learning curve</td>
</tr>
<tr>
<td>HEV_Batt_Wt</td>
<td>HEV battery weight (lbs) per kWh</td>
</tr>
<tr>
<td>HEV_kWhr</td>
<td>HEV battery size (kWh)</td>
</tr>
<tr>
<td>HEV_Sys_$/</td>
<td>HEV non-battery system cost</td>
</tr>
<tr>
<td>HFUEL</td>
<td>Vehicle class base horsepower</td>
</tr>
<tr>
<td>I,J,K</td>
<td>Miscellaneous indexes</td>
</tr>
<tr>
<td>IAGE</td>
<td>Age indexes</td>
</tr>
<tr>
<td>IATV</td>
<td>ATV type indexes</td>
</tr>
<tr>
<td>ICL</td>
<td>Index for six size classes</td>
</tr>
<tr>
<td>IFUEL</td>
<td>Fuel engine technology</td>
</tr>
<tr>
<td>ILDV</td>
<td>Index for light-duty vehicle powertrains</td>
</tr>
<tr>
<td>IREGN,IRAILREGN</td>
<td>Region indexes</td>
</tr>
<tr>
<td>ITECH</td>
<td>Technology type</td>
</tr>
<tr>
<td>IVTYP</td>
<td>Vehicle type</td>
</tr>
<tr>
<td>LEARN_COST_MULTIPLER</td>
<td>Technology learning curve parameters</td>
</tr>
<tr>
<td>LDVSTK</td>
<td>Vehicle stock, by engine technology fuel type, 1 … 16, using above mapping</td>
</tr>
<tr>
<td>Li_ion_Cost</td>
<td>Lithium ion battery cost ($/kWh)</td>
</tr>
<tr>
<td>LIDAR_COEF_A</td>
<td>LiDAR production cost curve coefficient</td>
</tr>
<tr>
<td>LIDAR_COEF_B</td>
<td>LiDAR production cost curve coefficient</td>
</tr>
<tr>
<td>LIDAR_cost</td>
<td>Cost of LiDAR system ($)</td>
</tr>
<tr>
<td>LIDAR_PROD_THRS</td>
<td>Cumulative production phase thresholds for LiDAR systems</td>
</tr>
<tr>
<td>LIDAR_RND_PROD</td>
<td>LiDAR R&D production, 1995–2050</td>
</tr>
<tr>
<td>LION_MKTSH</td>
<td>Lithium ion battery market share for electric vehicles</td>
</tr>
<tr>
<td>LTDFRFG</td>
<td>Degradation factor for light trucks</td>
</tr>
<tr>
<td>LTSHRR</td>
<td>Light truck market shares by class</td>
</tr>
<tr>
<td>LTSTK</td>
<td>Light-duty vehicle light truck stock by fuel type and vintage</td>
</tr>
<tr>
<td>LTSTKREGN</td>
<td>Light-duty vehicle light truck stock by fuel type, vintage, and region</td>
</tr>
<tr>
<td>LUBFD</td>
<td>Transportation lubricant demand</td>
</tr>
<tr>
<td>LUGG</td>
<td>Vehicle luggage space</td>
</tr>
<tr>
<td>LVMT</td>
<td>Average miles driven by each vintage of light truck</td>
</tr>
<tr>
<td>MAINT</td>
<td>Vehicle maintenance cost</td>
</tr>
<tr>
<td>MAINTCAR</td>
<td>Car maintenance cost by technology, market class</td>
</tr>
<tr>
<td>MAINTTRK</td>
<td>Truck maintenance cost by technology, market class</td>
</tr>
<tr>
<td>MANDMKSH</td>
<td>Mandatory engineering note parameters</td>
</tr>
<tr>
<td>MAX_SHARE</td>
<td>Maximum technology market share = MMAX</td>
</tr>
<tr>
<td>Variable name</td>
<td>Variable description</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>MAXAGE</td>
<td>Vintage 25 for light-duty vehicles</td>
</tr>
<tr>
<td>MFD</td>
<td>Total military use by fuel type</td>
</tr>
<tr>
<td>MKT_FUEL</td>
<td>Subsystem technology market share based on efficiency cost effectiveness</td>
</tr>
<tr>
<td>MKT_MAX</td>
<td>Technology market share cap</td>
</tr>
<tr>
<td>MKT_PEN</td>
<td>Technology market share</td>
</tr>
<tr>
<td>MKT_PENF</td>
<td>Technology penetration aggregated over class</td>
</tr>
<tr>
<td>MKT_PERF</td>
<td>Subsystem technology market share based on performance cost effectiveness</td>
</tr>
<tr>
<td>MMAVAIL</td>
<td>ATV make/model availability</td>
</tr>
<tr>
<td>MMMAX</td>
<td>Maximum technology market share = MKT_MAX</td>
</tr>
<tr>
<td>MPG</td>
<td>New car fuel economy, by size class</td>
</tr>
<tr>
<td>MPGFC</td>
<td>New car fuel economy, by engine technology fuel type</td>
</tr>
<tr>
<td>MPGFLT</td>
<td>Average fuel efficiency for all light-duty vehicles</td>
</tr>
<tr>
<td>MPGFLTSTK</td>
<td>Light-duty fleet vehicle stock fuel economy</td>
</tr>
<tr>
<td>MPGT</td>
<td>New light truck fuel economy, by engine technology fuel type</td>
</tr>
<tr>
<td>N</td>
<td>Trans variable for current year</td>
</tr>
<tr>
<td>NCS</td>
<td>New car sales, by market class and region</td>
</tr>
<tr>
<td>NCSDECH</td>
<td>Regional car sales by fuel type</td>
</tr>
<tr>
<td>NCTSC</td>
<td>Car sales by class</td>
</tr>
<tr>
<td>NHTSALYR</td>
<td>Last year of NHTSA data</td>
</tr>
<tr>
<td>NiMH_Cost</td>
<td>Nickel metal hydride battery cost ($/kWh)</td>
</tr>
<tr>
<td>NLTECH</td>
<td>Regional light truck sales by fuel type</td>
</tr>
<tr>
<td>NLTS</td>
<td>New light truck sales, by market class and region</td>
</tr>
<tr>
<td>NLTSTSC</td>
<td>Light truck sales by class</td>
</tr>
<tr>
<td>NUM_SUP</td>
<td>Engineering note counters</td>
</tr>
<tr>
<td>NUMTECH</td>
<td>Actual number of input technologies</td>
</tr>
<tr>
<td>NVSLES</td>
<td>Total new LDV sales by size class</td>
</tr>
<tr>
<td>NVS7SC</td>
<td>Non-fleet, non-commercial sales</td>
</tr>
<tr>
<td>OLDFSTK</td>
<td>Old fleet stocks of given types and vintages, transferred to the private sector</td>
</tr>
<tr>
<td>OLDFSTKT</td>
<td>Total transferred vehicles from fleets to households</td>
</tr>
<tr>
<td>PASSHRR</td>
<td>Car market shares by class</td>
</tr>
<tr>
<td>PASSK</td>
<td>Light-duty vehicle car stock by fuel type and vintage</td>
</tr>
<tr>
<td>PASSTKREGN</td>
<td>Light-duty vehicle car stock by fuel type, vintage, and region</td>
</tr>
<tr>
<td>PAYBACK</td>
<td>Payback period</td>
</tr>
<tr>
<td>PERF_CAP</td>
<td>Vehicle class performance cap</td>
</tr>
<tr>
<td>PERF_FACT</td>
<td>Vehicle class base performance factor</td>
</tr>
<tr>
<td>PERGRP</td>
<td>Manufacture share of sales by size class</td>
</tr>
<tr>
<td>PHASESHR</td>
<td>Fraction of total mandatory share by year</td>
</tr>
<tr>
<td>PHEV_DOD</td>
<td>PHEV battery depth of discharge</td>
</tr>
<tr>
<td>PHEV10_Batt_Wt</td>
<td>PHEV10 battery weight (lbs) per kWh</td>
</tr>
<tr>
<td>PHEV40_Batt_Wt</td>
<td>PHEV40 battery weight (lbs) per kWh</td>
</tr>
<tr>
<td>PHEV40Bat$KWh</td>
<td>PHEV40 battery cost per kWh</td>
</tr>
<tr>
<td>PRICE</td>
<td>Vehicle class base price (low volume)</td>
</tr>
<tr>
<td>PRICE_EX</td>
<td>Expected fuel price used in cost effectiveness calculation</td>
</tr>
<tr>
<td>PRICELH</td>
<td>Vehicle class base price (high volume)</td>
</tr>
<tr>
<td>PLSLOPE</td>
<td>Expected rate of change in future fuel price</td>
</tr>
<tr>
<td>Variable name</td>
<td>Variable description</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>PSPR</td>
<td>Average vehicle price</td>
</tr>
<tr>
<td>RANGE</td>
<td>Vehicle driving range</td>
</tr>
<tr>
<td>RATIO_LN</td>
<td>Used to determine size class shares</td>
</tr>
<tr>
<td>REG_COST</td>
<td>CAFE non-compliance fine</td>
</tr>
<tr>
<td>REGCOST</td>
<td>CAFE fine</td>
</tr>
<tr>
<td>REQ_MKT</td>
<td>Required market share—see engineering notes</td>
</tr>
<tr>
<td>REQUIRES</td>
<td>Required engineering note parameters</td>
</tr>
<tr>
<td>RSHR</td>
<td>Regional share of total VMT</td>
</tr>
<tr>
<td>SALESHR</td>
<td>Car and light truck sales shares by group</td>
</tr>
<tr>
<td>SCMPG</td>
<td>On-road stock mpg household cars</td>
</tr>
<tr>
<td>SIGN</td>
<td>Positive or negative indicator</td>
</tr>
<tr>
<td>SSURV25</td>
<td>Survival rate of cars and light trucks by vintage</td>
</tr>
<tr>
<td>STA_RAT</td>
<td>Refuel stations per vehicle stock</td>
</tr>
<tr>
<td>STKCAR</td>
<td>Total stock of non-fleet cars</td>
</tr>
<tr>
<td>STKTR</td>
<td>Total stock of non-fleet light trucks</td>
</tr>
<tr>
<td>STMPG</td>
<td>On-road stock mpg household light trucks</td>
</tr>
<tr>
<td>SUPERSEDES</td>
<td>Supersedes engineering note parameters</td>
</tr>
<tr>
<td>SURVFLT</td>
<td>Survival rate of given vintage</td>
</tr>
<tr>
<td>SYNERGY</td>
<td>Synergy engineering note parameters</td>
</tr>
<tr>
<td>SYNR_DEL</td>
<td>Synergy engineering note parameters</td>
</tr>
<tr>
<td>TANKSIZE</td>
<td>Vehicle class base fuel tank size</td>
</tr>
<tr>
<td>TAXI_DATA_FEE</td>
<td>Monthly data fee for sensor data collection and transfer</td>
</tr>
<tr>
<td>TAXI_DISC_R</td>
<td>Discount rate applied for fleet capital investment</td>
</tr>
<tr>
<td>TAXI_IDLE_GPH</td>
<td>Fuel consumption per hour during taxi idling</td>
</tr>
<tr>
<td>TAXI_IDLE_HRS</td>
<td>Idle hours per month per taxi</td>
</tr>
<tr>
<td>TAXI_INSURE</td>
<td>Taxi monthly insurance cost</td>
</tr>
<tr>
<td>TAXI_LIVE_FRAC</td>
<td>Fraction of revenue generating miles</td>
</tr>
<tr>
<td>TAXI_MAINT_COST</td>
<td>Fixed monthly maintenance cost per taxi vehicle</td>
</tr>
<tr>
<td>TAXI_MAINT_MI</td>
<td>Per mile maintenance cost</td>
</tr>
<tr>
<td>TAXI_MI_ANNUAL</td>
<td>Average annual mileage per taxi for investment decisions</td>
</tr>
<tr>
<td>TAXI_MI_LIFE</td>
<td>Expected taxi lifetime mileage for investment decisions</td>
</tr>
<tr>
<td>TAXI_NEWTECH_PD</td>
<td>Parameter for new technology limit phase-out curve</td>
</tr>
<tr>
<td>TAXI_NEWTECH_R</td>
<td>Parameter for new technology limit phase-out curve</td>
</tr>
<tr>
<td>TAXI_REV_COEF</td>
<td>Taxi lifetime present value (PV) revenue coefficient (per $1,000)</td>
</tr>
<tr>
<td>TAXI_REV_PERMI</td>
<td>Revenue per mile, per taxi vehicle</td>
</tr>
<tr>
<td>TAXI_SALARY</td>
<td>Taxi driver annual compensation</td>
</tr>
<tr>
<td>TAXI_SHIFTS</td>
<td>Average shifts per taxi per day</td>
</tr>
<tr>
<td>TECHCOST</td>
<td>First cost of subsystem technology—cost adjustments (economies of scale, etc.) made to this value</td>
</tr>
<tr>
<td>TECHNCS</td>
<td>Total new car sales, by engine technology fuel type</td>
</tr>
<tr>
<td>TECHNLT</td>
<td>Total new light truck sales, by engine technology fuel type</td>
</tr>
<tr>
<td>TFLTECHSTK</td>
<td>Total stock, by technology and fleet type</td>
</tr>
<tr>
<td>TMPASMIL</td>
<td>Passenger miles per capita by bus type</td>
</tr>
<tr>
<td>TMPGT</td>
<td>Light truck stock mpg</td>
</tr>
<tr>
<td>TMPGT_IT</td>
<td>Average fuel efficiency of light trucks by powertrain</td>
</tr>
<tr>
<td>TOT_MKT</td>
<td>Total market share of subsystem technology</td>
</tr>
<tr>
<td>TOTMICT</td>
<td>Total miles driven by cars</td>
</tr>
<tr>
<td>TOTTMITT</td>
<td>Total miles driven by light trucks</td>
</tr>
<tr>
<td>Variable name</td>
<td>Variable description</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>TTLZEV</td>
<td>Total (percentage) mandated ZEV sales</td>
</tr>
<tr>
<td>TTMPGSTK</td>
<td>Truck fuel economy</td>
</tr>
<tr>
<td>USEDCAP</td>
<td>Fraction of vehicle class performance cap used</td>
</tr>
<tr>
<td>VAL_PERF</td>
<td>Value of performance improvement to consumer</td>
</tr>
<tr>
<td>VALUEPERF</td>
<td>Vehicle class base performance value</td>
</tr>
<tr>
<td>VMT</td>
<td>Annual VMT by vintage</td>
</tr>
<tr>
<td>VRNG</td>
<td>Vehicle range</td>
</tr>
<tr>
<td>VSPLDV</td>
<td>Light-duty vehicle shares of each of the 16 vehicle technologies</td>
</tr>
<tr>
<td>VT</td>
<td>Vehicle type, car and light truck</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Vehicle class base curb weight</td>
</tr>
<tr>
<td>WGT</td>
<td>Light-duty vehicle weight</td>
</tr>
<tr>
<td>X21</td>
<td>ATV NMLM level 2, vehicle price</td>
</tr>
<tr>
<td>X210</td>
<td>ATV calibration coefficients</td>
</tr>
<tr>
<td>X211</td>
<td>ATV calibration coefficients'</td>
</tr>
<tr>
<td>X212</td>
<td>ATV calibration coefficients</td>
</tr>
<tr>
<td>X22</td>
<td>ATV NMLM level 2, fuel cost</td>
</tr>
<tr>
<td>X23</td>
<td>ATV NMLM level 2, range</td>
</tr>
<tr>
<td>X24</td>
<td>ATV NMLM level 2, battery replacement</td>
</tr>
<tr>
<td>X25</td>
<td>ATV NMLM level 2, acceleration</td>
</tr>
<tr>
<td>X26</td>
<td>ATV NMLM level 2, EV home refueling</td>
</tr>
<tr>
<td>X27</td>
<td>ATV NMLM level 2, maintenance cost</td>
</tr>
<tr>
<td>X28</td>
<td>ATV NMLM level 2, luggage space</td>
</tr>
<tr>
<td>X29</td>
<td>ATV NMLM level 2, make/model availability</td>
</tr>
<tr>
<td>X31</td>
<td>ATV NMLM level 3, multi-fuel generation cost</td>
</tr>
<tr>
<td>ZEV</td>
<td>Total (percentage) mandated electric vehicles</td>
</tr>
<tr>
<td>ZFCV</td>
<td>Total (percentage) mandated hydrogen fuel cell vehicles</td>
</tr>
</tbody>
</table>

LDV Submodule

LDV Stock Accounting Component

| PVMT | Car VMT per vintage |

LDV VMT Stock Component

<table>
<thead>
<tr>
<th>COSTMI</th>
<th>Fuel cost of driving one mile (2004 cents per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP_RATE</td>
<td>Employment rate</td>
</tr>
<tr>
<td>LIDRIVER</td>
<td>Licensed drivers by region, gender, and age cohorts</td>
</tr>
<tr>
<td>VMTHH</td>
<td>Total household LDV VMT</td>
</tr>
<tr>
<td>VMTEER</td>
<td>Sum of regional VMT</td>
</tr>
<tr>
<td>VMTLD</td>
<td>VMT per licensed driver</td>
</tr>
<tr>
<td>VMTLDR</td>
<td>Regional vehicle miles traveled per licensed driver</td>
</tr>
</tbody>
</table>

New LDV

| CARSHRT | Non-normalized projected car share |

Air Demand Submodule

Aircraft Efficiency
Variable name	**Variable description**
ASMAC | Available seat miles per aircraft by type
ASMPGT | Aircraft efficiency after technology addition (1=new, 2=Stock)
ASMPGD | Domestic aircraft efficiency, by type and vintage
ASMPGI | International aircraft efficiency, by type and vintage

Aircraft Technology Penetration
- **BASECONST**: Base constant
- **EFFIMP**: Fractional improvement associated with a given technology
- **TIMECONST**: Time constant
- **TRIGPRICE**: Jet fuel price in dollars per gallon necessary for cost effectiveness
- **TRIGYEAR**: Year of technology introduction by aircraft type

Available Seat Miles (ASM)
- **ASM_DOM**: Total domestic available seat miles
- **ASM_INT**: Total international available seat miles
- **SMDEMD**: Total available seat miles

Aircraft Sales
- **SHR_NEW_STK**: Share of new aircraft sales by type

Aircraft Stocks
- **STK_SUP_TOT**: Aircraft stock (passenger plus cargo) total by aircraft type
- **STKPASS_ACTIVE_TOT**: Passenger aircraft total active stock by aircraft type
- **SURVAC**: Aircraft survival curves by aircraft type

Yield
- **YIELD**: Revenue per passenger mile

Freight Transportation Submodule

Rail Freight Model
- **DISCRT**: Discount rate applied by freight railroads
- **FREFF**: Freight rail efficiency (1,000 Btu/ton-mile)
- **PAYBK**: Payback period demanded by freight railroads
- **RAIL_FUEL_SHR**: Historic rail fuel shares
- **RTM_OUTPUT**: Freight rail ton-miles per dollar industrial output
- **RTMTT**: Freight rail travel (billion ton-miles)
- **TQRAIL**: Total energy demand

Waterborne Freight Component

Domestic Waterborne
- **ANN_DECLINE**: Annual rate of ton-mile per dollar output decline
- **DOMSHIP_FUEL_SHR**: Domestic shipping fuel share
- **DSEFF**: Domestic marine vessel efficiency
- **DSTM_OUTPUT**: Domestic marine ton-miles per dollar industrial output
- **STMTT**: Domestic marine travel (billion ton-miles)
<table>
<thead>
<tr>
<th>Variable name</th>
<th>Variable description</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Waterborne</td>
<td></td>
</tr>
<tr>
<td>GROSST</td>
<td>Gross tons shipped</td>
</tr>
<tr>
<td>INTSHIP_FUEL_SHR</td>
<td>International shipping fuel share</td>
</tr>
<tr>
<td>ISFD</td>
<td>Energy demand by fuel type (1-diesel, 2-residual, 3-CNG, 4-LNG)</td>
</tr>
<tr>
<td>ISFDT</td>
<td>Total international shipping energy demand in year</td>
</tr>
<tr>
<td>TQISHIPR</td>
<td>Regional energy demand by fuel type</td>
</tr>
<tr>
<td>Miscellaneous Energy Demand Submodule</td>
<td></td>
</tr>
<tr>
<td>Transit Rail Submodule</td>
<td></td>
</tr>
<tr>
<td>TR_CAV_ADJ</td>
<td>Transit rail HAV adjustment factor to account for HAV taxi impact on transit rail travel demand</td>
</tr>
<tr>
<td>TRED</td>
<td>Transit rail energy demand by census division</td>
</tr>
<tr>
<td>Commuter Rail Submodule</td>
<td></td>
</tr>
<tr>
<td>CR_CAV_ADJ</td>
<td>Commuter rail HAV adjustment factor to account for HAV taxi impact on commuter rail travel demand</td>
</tr>
<tr>
<td>CREDE</td>
<td>Commuter rail electricity demand by census division</td>
</tr>
<tr>
<td>Intercity Rail Submodule</td>
<td></td>
</tr>
<tr>
<td>IREDER</td>
<td>Intercity rail electricity demand by census division</td>
</tr>
<tr>
<td>Bus Mass Transit</td>
<td></td>
</tr>
<tr>
<td>BUSSYSEF</td>
<td>Bus system efficiency by mode, in Btu per passenger</td>
</tr>
<tr>
<td>QMODFSHR</td>
<td>Bus fuel shares</td>
</tr>
<tr>
<td>TB_CAV_ADJ</td>
<td>Transit bus HAV adjustment factor to account for HAV taxi impact on transit bus travel demand</td>
</tr>
<tr>
<td>TMEFF</td>
<td>Bus efficiency (Btu/passenger mile)</td>
</tr>
<tr>
<td>TMOD</td>
<td>Bus passenger miles</td>
</tr>
<tr>
<td>Recreational Boating Demand Component</td>
<td></td>
</tr>
<tr>
<td>RBEDPC</td>
<td>Energy demand per capita by fuel type</td>
</tr>
<tr>
<td>RECFD</td>
<td>Energy demand by fuel type (gasoline, diesel)</td>
</tr>
<tr>
<td>Miscellaneous Transportation Energy Variables</td>
<td></td>
</tr>
<tr>
<td>QLUBR</td>
<td>Lubricant energy demand by region</td>
</tr>
<tr>
<td>QMILTR</td>
<td>Military energy demand by fuel by region</td>
</tr>
<tr>
<td>QMTBR</td>
<td>Bus energy demand by fuel by region</td>
</tr>
<tr>
<td>QMTTRR</td>
<td>Passenger rail energy demand by fuel by region</td>
</tr>
<tr>
<td>QRECR</td>
<td>Recreational boat energy demand by region</td>
</tr>
<tr>
<td>Car light truck sales shares</td>
<td></td>
</tr>
<tr>
<td>CARSHARE</td>
<td>Projected car share of LDV sales</td>
</tr>
<tr>
<td>DUMMM</td>
<td>Car share dummy</td>
</tr>
<tr>
<td>Variables in TRANFRT Submodule</td>
<td></td>
</tr>
<tr>
<td>Variable name</td>
<td>Variable description</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>AGE</td>
<td>Number of vintages for truck stocks 1–34</td>
</tr>
<tr>
<td>CAFE19</td>
<td>Number of truck classes with CAFE breakout for Classes 7–8 tractors</td>
</tr>
<tr>
<td>CUR</td>
<td>Current year subscript (= 2)</td>
</tr>
<tr>
<td>CURCALYR</td>
<td>Current model year</td>
</tr>
<tr>
<td>FLT</td>
<td>Fleet vehicles: 1—non-fleet, 2—fleet</td>
</tr>
<tr>
<td>FUEL</td>
<td>Number of powertrain types: 1—diesel, 2—gasoline, 3—LPG, 4—CNG/LNG, 5—flex-fuel, 6—electric, 7—PHEV diesel, 8—PHEV gasoline, 9—hydrogen fuel cell</td>
</tr>
<tr>
<td>LAG</td>
<td>Lag year subscript (= 1)</td>
</tr>
<tr>
<td>SC</td>
<td>Number of truck market Classes: 1—Medium Light, Class 3, 2—Medium Heavy, Classes 4–6, 3—Heavy, Classes 7–8, 4—commercial light truck, class 2b</td>
</tr>
<tr>
<td>SEC</td>
<td>Number of industrial sectors</td>
</tr>
<tr>
<td>TECH</td>
<td>Technologies available in Phase 1 of the heavy-duty CAFE and greenhouse gas emission standards</td>
</tr>
<tr>
<td>TECHP2</td>
<td>Technologies available in Phase 2 of the heavy-duty CAFE and greenhouse gas emission standards</td>
</tr>
<tr>
<td>VOC</td>
<td>Vocational truck: 1—non-vocational, 2—vocational</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subscripts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IAGE</td>
<td>Index for vintage</td>
</tr>
<tr>
<td>IAGR</td>
<td>Index for population age group</td>
</tr>
<tr>
<td>IATV</td>
<td>Index for alternative fuel vehicle powertrain types (subset of ildv)</td>
</tr>
<tr>
<td>ICAFE19</td>
<td>Index for size classes for fuel consumption standard</td>
</tr>
<tr>
<td>ICL</td>
<td>Index for vehicle market/size class</td>
</tr>
<tr>
<td>IFLEET</td>
<td>Index for fleet</td>
</tr>
<tr>
<td>IFUEL</td>
<td>Index for light-duty vehicle highway fuel type (8)</td>
</tr>
<tr>
<td>IFUEL11</td>
<td>Index for SEDS fuel type (11)</td>
</tr>
<tr>
<td>IGP</td>
<td>Index for passenger vehicle manufacturing group</td>
</tr>
<tr>
<td>IGVW</td>
<td>Index for vehicle weight classes: 1—blank, 2—class 2b, 3—class 3, 4—class 4, 5—class 5, 6—class 6, 7—class 7, 8—class 8</td>
</tr>
<tr>
<td>ILDV</td>
<td>Index for vehicle powertrain type</td>
</tr>
<tr>
<td>IMF</td>
<td>Index for gender (1 = male, 2 = female)</td>
</tr>
<tr>
<td>IOWN</td>
<td>Index for vehicle owner type: 1—household, 2—business, 3—government, 4—utility, 5—taxi)</td>
</tr>
<tr>
<td>IP</td>
<td>Index for payback periods</td>
</tr>
<tr>
<td>IREGN</td>
<td>Index for census divisions</td>
</tr>
<tr>
<td>ISC</td>
<td>Index for aggregated vehicle weight class</td>
</tr>
<tr>
<td>ISEC</td>
<td>Index for industrial sector</td>
</tr>
<tr>
<td>ITC</td>
<td>Index for light duty vehicle technology type (92 technologies)</td>
</tr>
<tr>
<td>ITECH</td>
<td>Index for technology</td>
</tr>
<tr>
<td>ITR</td>
<td>Index for NEMS iteration</td>
</tr>
<tr>
<td>IVOC</td>
<td>Index for vocation</td>
</tr>
<tr>
<td>IVTYP</td>
<td>Index for passenger vehicle type (1 = car, 2 = light truck)</td>
</tr>
<tr>
<td>IYR</td>
<td>Index for year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mapping</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ISC19</td>
<td>Map 19 CAFE classes back to 4 size classes (SC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable name</td>
<td>Variable description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ADVSHR</td>
<td>Superseding effect, equal to the market share of the superseding technology</td>
</tr>
<tr>
<td>ANN_S_SAVINGS_CNG_regn</td>
<td>Annual fuel savings for CNG/LNG vehicles compared with diesel or gasoline vehicles</td>
</tr>
<tr>
<td>ANNVMT</td>
<td>Average annual VMT per vehicle by four reporting classes</td>
</tr>
<tr>
<td>ANNVMT_19</td>
<td>Average VMT by vintage by 19 size classes</td>
</tr>
<tr>
<td>AVG_FUEL_$</td>
<td>Average price of fuel over three years</td>
</tr>
<tr>
<td>AVG_FUEL_$_REGN</td>
<td>Average price of fuel over three years by region</td>
</tr>
<tr>
<td>BASEMPG_p1, BASEMPG_p2</td>
<td>Fuel economy of new freight trucks with no fuel-saving technologies for Phase 1 and Phase 2 of the HDV CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>BFSHXG</td>
<td>Base year (2010) market share of each fuel</td>
</tr>
<tr>
<td>BUY_CNG_regn</td>
<td>Share of CNG vehicles brought by fleet, size class, and region</td>
</tr>
<tr>
<td>CSTDVXG</td>
<td>Market penetration curve parameter for diesel</td>
</tr>
<tr>
<td>CSTDXG</td>
<td>Market penetration curve parameter for diesel</td>
</tr>
<tr>
<td>CYAFVXG</td>
<td>Logistic market penetration curve parameter</td>
</tr>
<tr>
<td>DCOST</td>
<td>Fuel cost per mile of diesel relative to alternative fuel vehicles</td>
</tr>
<tr>
<td>DISCRTXG</td>
<td>Discount rate</td>
</tr>
<tr>
<td>EFSHXG</td>
<td>Final market share of each fuel</td>
</tr>
<tr>
<td>FCOST_regn</td>
<td>Fuel cost of driving a truck by fuel type in dollars per mile</td>
</tr>
<tr>
<td>FLEETSHR</td>
<td>Percentage of HDV in fleet use by size class</td>
</tr>
<tr>
<td>FUEL_SHR_regn</td>
<td>Fuel shares for new trucks by size class, fleet/non-fleet by region</td>
</tr>
<tr>
<td>FUELBTUR</td>
<td>Total truck fuel consumption in trillion Btu by region</td>
</tr>
<tr>
<td>FUELMEDR</td>
<td>Freight truck fuel consumption by region</td>
</tr>
<tr>
<td>HDV_MPG</td>
<td>Fuel economy size class, vintage, and fuel in mpg miles/cubic CNG</td>
</tr>
<tr>
<td>HRATE</td>
<td>Heat rate by fuel type</td>
</tr>
<tr>
<td>MIDYR</td>
<td>Logistic market penetration curve parameter representing halfway point to maximum market penetration</td>
</tr>
<tr>
<td>MPEFF_p1, MPEFF_p2</td>
<td>Total effect of all fuel-saving technology on new truck fuel efficiency for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>NEW_MPG_19</td>
<td>New truck fuel economy by 19 size classes</td>
</tr>
<tr>
<td>NEWCLS46</td>
<td>Share of truck sales in Class 4–8 that are Class 4–6, by year</td>
</tr>
<tr>
<td>NEWTRUCKS_regn</td>
<td>Sales of new trucks by market class, region, and fleet/non-fleet plus total</td>
</tr>
<tr>
<td>NPV_ADS_regn</td>
<td>Net present value of the fuel savings from using CNG/LNG</td>
</tr>
<tr>
<td>P</td>
<td>Market penetration by year</td>
</tr>
<tr>
<td>PAYBACK</td>
<td>Payback period for each technology by CAFE size class and fuel</td>
</tr>
<tr>
<td>PRAFDXG</td>
<td>Parameter: variation in AFV market share because of different fuel prices</td>
</tr>
<tr>
<td>PREFF_p1, PREFF_P2</td>
<td>Market penetration price sensitivity multiplier for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>SCRAP_RATE</td>
<td>Truck scrappage rate</td>
</tr>
<tr>
<td>SLOPE</td>
<td>Logistic market penetration curve parameter</td>
</tr>
<tr>
<td>TECHADJSHR_p1, TECHADJSHR_p2</td>
<td>Difference between the current tech share and the base tech share for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>TECHBASE_p1, TECHBASE_p2</td>
<td>Base year market penetration parameter for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>TECHEFF_p1, TECHEFF_p2</td>
<td>Percentage improvement in fuel economy by technology for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>TECHMAX, TECHMAX_p2</td>
<td>Maximum market share for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>Variable name</td>
<td>Variable description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>TECHMID, TECHMID_p2</td>
<td>Number of years to 50% penetration for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>TECHPENYR_p1, TECHPENYR_p2</td>
<td>Year that a technology becomes available for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>TECHSHAPE, TECHSHAPE_p2</td>
<td>Market penetration shape constant for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>TECHSHARE_p1, TECHSHARE_p2</td>
<td>TECHSHR_pX if the technology penetration is less than the base year technology penetration or TECHBASE_pX if the technology is greater than or equal to the base share penetration for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>TECHSHR_p1, TECHSHR_p2</td>
<td>Market share of fuel-saving technology, by market size class and fuel type in Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>TECHVAR</td>
<td>Fuel price sensitivity parameter</td>
</tr>
<tr>
<td>TEMP_BTU_p1, TEMP_BTU_p2</td>
<td>Average annual truck fuel usage for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>TEMPCLS12A</td>
<td>The total of Class 1–2 trucks that are considered light-duty vehicles</td>
</tr>
<tr>
<td>TFFXGRT</td>
<td>Exogenous percentage of trucks/vintage transferred from fleet to non-fleet</td>
</tr>
<tr>
<td>TRGSHXG</td>
<td>Logistics parameter: halfway to maximum market penetration</td>
</tr>
<tr>
<td>TRIGGER_PRICE_p1, TRIGGER_PRICE_P2</td>
<td>Trigger price when technology becomes economical</td>
</tr>
<tr>
<td>TRK_19_regn</td>
<td>Existing stock of trucks by 19 size classes and regions</td>
</tr>
<tr>
<td>TTONMI</td>
<td>Freight truck ton-miles by industrial sector and census division</td>
</tr>
<tr>
<td>TVMT</td>
<td>Freight truck vehicle miles traveled, by industrial sector and census division</td>
</tr>
<tr>
<td>VEH_SHR</td>
<td>Percentage share of vehicle fleet and size class</td>
</tr>
<tr>
<td>VMT_VEH</td>
<td>VMT per vehicle by fleet and size class for Phase 1 and Phase 2 of the HDC CAFE and GHG standards, respectively</td>
</tr>
<tr>
<td>VMTADJR</td>
<td>Aggregate VMT adjustment factor</td>
</tr>
<tr>
<td>VMTFLTR</td>
<td>HDV VMT</td>
</tr>
</tbody>
</table>
Appendix E. Bibliography

The Transportation Sector Demand Module is documented along with a series of other NEMS model documentation reports at www.eia.doe.gov/reports/. Most of the references in the Bibliography refer to the model documentation reports and their publication numbers or other EIA reports that provide data inputs to the model. The references listed below are available (or will soon be available) and reflect changes incorporated for AEO2020.

