

Assumptions to the Annual Energy Outlook 2025: Macroeconomic Activity Module

April 2025

Independent Statistics and Analysis U.S. Energy Information Administration www.eia.gov U.S. Department of Energy Washington, DC 20585

The U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this report do not represent those of DOE or any other federal agencies.

Table of Contents

Macroeconomic Activity Module	1
Key assumptions	1

Table of Tables

Table 1. Average annual economic growth in GDP, nonfarm employment, and productivity......2

Macroeconomic Activity Module

The Macroeconomic Activity Module (MAM) represents interactions between the U.S. economy and energy markets. Economic growth, as measured by changes in real GDP, drives energy demand. Associated economic factors, such as interest rates and disposable income, also strongly influence supply and demand for energy. This module shows how energy markets can affect the aggregate economy. For example, a slowdown in economic growth can result from increasing energy prices. Our publication, *Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System*, further describes the module.

Key assumptions

We expect the U.S. economy, measured by GDP, to increase by 1.8% per year from 2024 to 2050 in the Reference case. Specifically, real GDP grows by:

- 2.0% from 2024 to 2030
- 1.7% from 2031 to 2040
- 1.6% from 2041 to 2050

The growth rate of nonfarm employment and the productivity change rate associated with employment both help determine the GDP growth rate. Nonfarm employment grows by 0.3% from 2024 to 2050 in the Reference case.

In the Reference case, productivity (output per hour in nonfarm business) grows by 1.9% from 2024 to 2050, unchanged when compared with growth from 2000 to 2024. We anticipate steady growth in labor productivity to contribute to long-term GDP growth. Improvement in labor productivity reflects the positive effects of a growing capital stock and technological change over time. We expect annual growth for nonfarm labor productivity to remain between 1.3% and 2.3% throughout the projection period.

We expect nominal business-fixed investment as a share of nominal GDP to decline from 2024 to 2050. Additions to the capital stock and the technology base of that capital stock help sustain productivity growth of 1.9% from 2024 to 2050 in the Reference case.

In the Reference case, the U.S. population will grow by 0.3% per year from 2024 to 2050. In addition, the share of the population aged 65 and older will increase over time, and this demographic's share of the labor force will also rise. We derive population projections in the *Annual Energy Outlook 2025* (AEO2025) by using historical data from the U.S. Bureau of Economic Analysis and applying population growth rates from the S&P Global Market Intelligence U.S. Macroeconomic Model.

We assume that U.S. commercial floorspace (in square footage) will grow at an equivalent of 1.3% per year between 2024 to 2050. Commercial floorspace projections are based on an internal model using commercial floorspace data provided by Dodge Data and Analytics, Inc., and macroeconomic projections from the S&P Global Market Intelligence U.S. Macroeconomic Model.

U.S. economic growth, as projected in the Reference case, is uncertain, so AEO2025 uses the High and Low Economic Growth cases to project how alternative economic growth assumptions may affect

energy markets (Table 1). The High Economic Growth case incorporates higher population, labor force, investment, capital stock, and productivity growth rates than the Reference case. Higher productivity helps reduce production costs, which is passed on to consumers as lower prices. Lower prices, in turn, promote higher demand, greater output, and more employment. We project economic output in the High Economic Growth case to increase by 2.1% per year from 2024 to 2050. In this case, real GDP grows 0.3 percentage points per year faster than in the Reference case from 2024 to 2050. Annual growth in nonfarm employment in the High Economic Growth case is 0.2 percentage points more than in the Reference case, averaging 0.5% per year from 2024 to 2050.

The Low Economic Growth case assumes lower population, labor force, investment, capital stock, and roductivity gains that result in higher production costs and consumer prices and lower output and employment. In the Low Economic Growth case, we expect economic output to increase by 1.2% per year during the projection period. In this case, real GDP grows 0.6 percentage points per year slower relative to the Reference case. In the Low Economic Growth case, nonfarm employment is less than in the Reference case by 0.1 percentage points, averaging 0.2% per year from 2024 to 2050.

Assumptions	2024–2030	2031–2040	2041–2050	2024–2050
Real GDP (billion chain-weighted 2012\$)				
High Economic Growth Case	2.6%	2.1%	2.0%	2.1%
Reference Case	2.0%	1.7%	1.6%	1.8%
Low Economic Growth Case	1.4%	1.2%	1.2%	1.2%
Nonfarm employment				
High Economic Growth Case	1.1%	0.4%	0.4%	0.5%
Reference Case	0.4%	0.3%	0.3%	0.3%
Low Economic Growth Case	-0.4%	0.3%	0.3%	0.2%
Productivity				
High Economic Growth Case	2.0%	2.2%	2.8%	2.4%
Reference Case	1.8%	1.8%	2.2%	1.9%
Low Economic Growth Case	1.3%	1.2%	1.7%	1.4%

Table 1. Average annual economic growth in GDP, nonfarm employment, and productivity

Data source: U.S. Energy Information Administration, AEO2025 National Energy Modeling System, runs: ref2025.d032025a, hm2025.d032025a, and Im2025.d032425b

Note: Minor discrepancies with published data are a result of independent rounding.