

Assumptions to the Annual Energy Outlook 2025: Carbon Capture, Allocation, Transportation, and Sequestration Module

April 2025

Independent Statistics and Analysis U.S. Energy Information Administration www.eia.gov U.S. Department of Energy Washington, DC 20585

The U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this report do not represent those of DOE or any other federal agencies.

Table of Contents

Carbon Capture, Allocation, Transportation, and Sequestration Module1
Key assumptions2
Capture facility assumptions2
Pipeline network cost and assumptions3
Saline storage assumptions4
CO ₂ EOR assumptions5
Price assumptions5
Technology improvement rate assumptions6
Capacity expansion and financing assumptions6
Legislation and Regulations7
Inflation Reduction Act of 20227
Bipartisan Budget Act of 20187
Energy Improvement and Extension Act of 20087
Appendix
Notes and Sources

Table of Figures

Figure 1. CCATS nodal network representation	1
Figure 2. Map of CO ₂ EOR sites.	5

Table of Tables

Table 1. CO ₂ capture at represented existing facilities	. 2
Table 2. Select cost curves based on pipeline region from Brown et al	4
Table 3. Select maximum flow rates	.4
Table 4. Summary of storage formations	. 5
Table 5. CCATS time periods and capacity expansion assumptions	. 6
Table 6. CCATS financing assumptions	. 6

Carbon Capture, Allocation, Transportation, and Sequestration Module

The Carbon Capture, Allocation, Transportation, and Sequestration (CCATS) Module in the National Energy Modeling System (NEMS) models and projects the capture, transport, and storage of CO₂ across the United States.

The CCATS module represents three distinct components of CO_2 flow as interconnected nodes in a network (Figure 1):

- **Capture facilities**: Facilities where CO₂ is captured from various sources including electric power generation, ethanol production, natural gas processing, hydrogen production, and cement production.
- **Trans-shipment points**: A pipeline network that connects capture sites to sequestration locations, including both existing infrastructure and potential expansion routes.
- Sequestration sites: Destinations where CO₂ is stored, either in saline formations or as an input for enhanced oil recovery (EOR) wells.

Figure 1. CCATS nodal network representation

Source: U.S. Energy Information Administration

Note: CCATS=Carbon Capture, Allocation, Transportation, and Sequestration Module

For trans-shipment and sequestration node types, the CCATS accounts for both operating and investment costs for capacity expansion. The module optimizes the flow of CO₂ from supply sources to sequestration sites using a linear program that minimizes total system costs while incorporating applicable tax credits and other revenues as negative costs.

The CCATS module receives CO₂ supply from other NEMS modules and CO₂ demand from the Hydrocarbon Supply Module (HSM) to determine optimal transportation routes and sequestration locations. It then returns prices to these modules, which inform their carbon capture and investment decisions.

The following sections detail the key assumptions, data sources, and methodologies used in modeling each component of the CCATS module system.

Key assumptions

Capture facility assumptions

The CCATS module receives captured CO₂ supplies from other modules in NEMS either at the censusregion or census-division level. However, the CCATS module optimization model operates on a more granular level, specifically at the discrete facility level, to provide more accurate projections geographically. Accordingly, the CCATS module disaggregates captured CO₂ to specific CO₂ supply facilities. First, we assign supply to facilities with existing infrastructure to capture CO₂. As the CO₂ industry grows, the CCATS module makes assumptions on which facilities start capturing CO₂ based on estimated costs to install capture technology and costs to connect supply facilities to the pipeline network.

For natural gas power plants, coal power plants, and bioenergy with carbon capture and storage power plants in the electric power sector, we use modified versions of National Energy Technology Laboratory (NETL) power plant studies.^{1,2} These data provide the locations, expected cost of capture, and estimated CO₂ capture potential of existing power plants suitable for carbon capture retrofit.

For ethanol, natural gas processing, hydrogen (represented by ammonia), and cement facilities, we use the NETL Industrial Carbon Capture Retrofit Database³ to identify facilities suitable for retrofit with carbon capture. Subsequently, we combine estimated capture cost and CO₂ capture potential from this dataset with geographic location data from the U.S. Environmental Protection Agency's (EPA) Greenhouse Gas Reporting Program.⁴ We also use EPA Subpart PP⁵ and an analysis by the Clean Air Task Force (CATF)⁶ to determine whether a facility has been capturing CO₂, and if so, for how long. Finally, we make modifications to assessed CO₂ capture potential based on EIA-64A, EIA-757, and EIA-816 survey data.

Table 1. CO₂ capture potential at represented existing facilities

million metric tons (MMmt)

			Coal power		Natural gas	Natural gas
Census division	Ammonia	Cement	plant	Ethanol	power plant	processing
New England	-	0.3	8.8	_	36.4	-
Middle Atlantic	-	5.1	67.1	0.5	165.8	_
East North	0.8	8.2	303.1	12.0	219.5	0.5
Central						
West North	2.5	14.1	425.7	31.5	25.8	0.0
Central						
South Atlantic	1.1	13.7	444.1	-	238.9	
East South	0.9	6.4	214.5	1.0	147.8	-
Central						
West South	9.7	12.7	326.9	1.4	332.4	9.7
Central						

			Coal power		Natural gas	Natural gas
Census division	Ammonia	Cement	plant	Ethanol	power plant	processing
Mountain	0.6	8.0	219.1	_	120.4	3.3
Pacific	0.1	10.0	-	-	121.1	-
Total	15.6	78.6	2,009.3	46.4	1,408.1	13.6

Data source: U.S. Department of Energy, National Energy Technology Laboratory; U.S. Environmental Protection Agency; Clean Air Task Force⁷

Note: CCATS=Facilities with a capture cost greater than \$70/MMmt (2023\$) are excluded from the optimization.

- =no data existing facilities

In addition to existing facilities, the CCATS module includes the option to install carbon capture at new facilities. These representative facilities use capture costs provided by the other NEMS modules.

Pipeline network cost and assumptions

Captured CO_2 is transported from capture sites to either enhanced oil recovery (EOR) or saline storage via pipelines. In the CCATS module, CO_2 can be transported directly from a supply source to a sequestration site or indirectly via a series of trans-shipment points. This representation reflects current industry dynamics where some smaller CO_2 supply sites send captured CO_2 to a single storage or EOR site, while other groups of CO_2 capture infrastructure are connected via a regional pipeline network.

We build our transportation network by first representing the existing U.S. CO₂ pipeline network. We then create a second uniform grid to represent the trans-shipment network that can be used for capacity expansion. Finally, we include all the CO₂ capture sites, CO₂ EOR sites, and saline formation storage sites to the network.

Connections are then formed between these nodes and filtered based on pipeline length and node type. For example, sequestration nodes cannot connect to other sequestration nodes. Any pipelines that cross over water or over land that is covered under the National Park Service⁸ or National Register of Historic Places⁹ have added cost multipliers that account for rerouting or additional permitting costs associated with these routes. The routes that are created are finally merged with cost calculations based on pipeline route distances.

Regionalized pipeline costs are based on the Fossil Energy and Carbon Management (FECM)/NETL CO₂ Transport Cost Model,¹⁰ which uses a natural gas pipeline study from Brown et al. that is modified to account for the higher costs of CO₂ pipelines.¹¹ The FECM/NETL CO₂ Transport Cost Model is highly granular and therefore inclusive of capital, operating, and financing costs by pipeline diameter, length, and pump count. By applying these cost factors across dozens of pipeline diameters and pump counts, we produce a minimum cost curve for each pipeline length, assuming a 20-year project lifespan. Once a minimum cost curve is calculated for each assessed pipeline length, electricity costs are backed out of the cost curve, leaving only fixed operating and maintenance costs and capital costs. Finally, a linear regression is performed on the minimum cost curve data for each pipeline length to produce cost equations for the model.

Pipeline region	Pipeline length (miles)	Cost curve slope (dollars per metric ton of CO ₂)
New England	150	\$51.42
Great Plains	150	\$23.47
New England	400	\$142.93
Great Plains	400	\$68.67

Table 2. Select investment cost curves based on pipeline region from Brown et al.

Data source: U.S. Energy Information Administration

Variable electricity operating costs for pipelines in the CCATS module are based on maximum flowrates and pump requirements. We treat CO₂ that is within the pipelines as a supercritical fluid, modeling the fluid as incompressible. We assume pump stations are built along the pipeline at a frequency of no more than two pumps per 100 miles. With these parameters, and with an array of pipeline lengths and pipe diameters, we calculate a maximum flowrate for each diameter, pump, and length combination, and thereby a corresponding pump power requirement as well. Electricity prices are received endogenously from NEMS.

Pipeline		Diameter (inches)					
length	Number of	12	24	36	48		
(miles)	pumps						
150	0	2.50	15.15	43.39	91.45		
150	1	3.54	21.48	61.48	129.53		
150	2	4.35	26.33	75.36	158.75		
400	0	1.52	9.23	26.47	55.81		
400	1	2.16	13.11	37.54	79.13		
400	2	2.65	16.08	46.04	97.02		

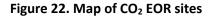
Table 3. Select maximum flow rates

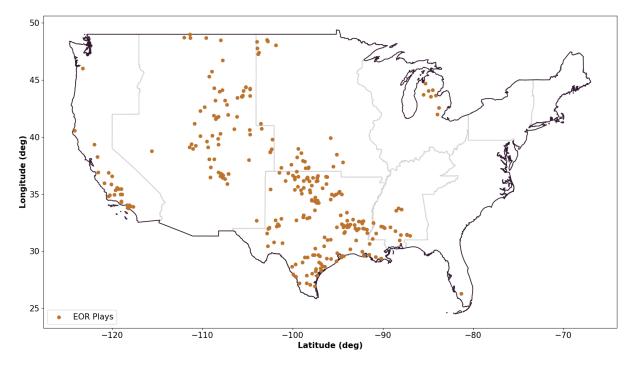
million metric tons per year

Data source: U.S. Energy Information Administration

Saline storage assumptions

Saline formations are the only storage option for CO₂ in the CCATS module. Accurately modeling CO₂ storage requires multiple calculations to determine not only the amount of CO₂ that can be stored in each formation but also the cost of setting up an injection site, injecting CO₂, and storing CO₂ in the formation. To do this, we relied on the Fossil Energy (FE)/NETL CO₂ Saline Storage Cost Model¹² for the list of geologic formations, as well as the base geologic/engineering calculations for injection rates and maximum CO₂ storage amounts in the formations. We used this same tool to estimate the costs for each individual injection project. A summary of the storage formations that are input into the module are shown in Table 4. A detailed list of formations that are input to the module are listed in the Appendix.


Table 4. Summary of storage formations


	South	Midwest	West	Midwest	Northeast
Area (square miles)	675,703	262,009	375,353	17,128	8,201
Average max CO ₂ per injection project (million metric tons)	7,783,104	5,679,189	8,472,865	4,021,910	5,037,070
Maximum number of injection projects	9,145	3,172	4,357	90	30
Average injection rate per project (million metric tons per project per year)	2,334,931	1,135,838	1,694,573	134,064	167,903

Data source: U.S. Energy Information Administration

CO₂ EOR assumptions

Maximum demand for captured CO_2 from EOR sites is provided by the HSM at the geological formation level. The CCATS module is not required to meet all CO_2 demanded for EOR because the CCATS module does not represent natural sources of CO_2 . Natural sources of CO_2 fulfilled 62% of CO_2 supplied to EOR in 2023.¹³

Data source: U.S. Energy Information Administration, Hydrocarbon Supply Module Note: EOR=enhanced oil recovery

Price assumptions

CO₂ prices are calculated after the CCATS module linear program has solved using a regional weighted average of the shadow prices produced by the module. This price is inclusive of transportation and sequestration costs, net policy revenue, and revenue from selling CO₂ to EOR sites. This price does not include capture costs because these costs are calculated by the NEMS modules that interface with the CCATS module as part of their carbon capture decisions.

Technology improvement rate assumptions

The CCATS module includes a technology improvement rate that reduces the cost of a technology over time. A report by the U.S. Department of Energy (DOE)¹⁴ estimates that major cost reductions are possible for carbon capture but only moderate and small reductions for transport and storage, respectively. We therefore include an annual improvement rate of 1% for pipeline transport and saline storage.

Capacity expansion and financing assumptions

The CCATS module projects operation and capacity expansion of carbon transport and storage using three time periods (Table 5). The first time period is the current NEMS year, the second time period is the following year, and the third time period is a longer time horizon to inform long-term decisions. Capacity can be added during any period, but it is not available to use until the following time period.

Table 5. CCATS time periods and capacity expansion assumptions

Time period	Duration (years)	Capacity expansion
1	1	Yes
2	1	Yes
3	18	Yes

Data source: U.S. Energy Information Administration

Note: CCATS= Carbon Capture, Allocation, Transportation, and Sequestration Module

The CCATS module uses the assumptions shown in Table 6 for transportation and storage infrastructure investments. The fixed operation and maintenance (O&M) fraction is the relative amount of fixed O&M costs as compared with the capital investment cost. The buffer assumption is the amount of extra capacity that must be built.

Table 6. CCATS financing assumptions

Parameter	Value
Debt ratio	40%
Return over capital cost	5%
Risk premia	2%
Financing years—transportation	20
Financing years—storage	26
Fixed O&M—transportation	2.5%
Fixed O&M—storage	8.7%
Capacity expansion buffer	15%

Data source: U.S. Energy Information Administration

Note: CCATS=Carbon Capture, Allocation, Transportation, and Sequestration Module;

O&M=operation and maintenance costs

Legislation and Regulations

Inflation Reduction Act of 2022¹⁵

The Inflation Reduction Act of 2022 (IRA) extended the 45Q tax credit to facilities that begin construction before 2032 and increased the credit. The tax credit value of captured CO₂ sent to EOR sites was increased to \$60 per metric ton (mt), while the tax credit value of captured CO₂ sent to storage sites was increased to \$85/mt.

Bipartisan Budget Act of 2018¹⁶

The Bipartisan Budget Act of 2018 included extending the availability of the 45Q tax credit to facilities that began construction before 2024 and increased the tax credit. For EOR, the tax credit began at \$10/mt and increased to \$35/mt in 2027. For saline storage, the tax credit began at \$20/mt and increased to \$50/mt in 2027. After 2027, the tax credit is inflation adjusted. The tax credit is available for 12 years.

Energy Improvement and Extension Act of 2008¹⁷

The Energy Improvement and Extension Act of 2008 included the establishment of the 45Q tax credit for the capture and sequestration of CO_2 from industrial facilities. This law established that CO_2 must be captured and disposed of within the United States.

Appendix

Table A1. Summary of storage formations

				Max CO ₂ per injection	Maximum	
Formation	State	Basin	Area (square miles)	project (million metric tons)	number of injection projects	Injection rate (million metric tons/project/year)
Arbuckle1	ОК	Northern Shelf Area	10,229.00	1,952,657.66	265.00	65,088.59
Arbuckle3	KS	Las Animas Arch	3,039.00	4,776,083.73	19.00	159,202.79
Arbuckle4	KS	Ozark Plateau	32,460.00	12,889,089.28	157.00	429,636.31
Atoka1	тх	Permian	51,294.00	2,863,937.62	809.00	95,464.59
Basal Cambrian1	MT	Kevin Dome	8,799.00	2,539,374.01	55.00	84,645.80
Basal Cambrian8	ND	Williston	11,350.00	1,442,924.17	179.00	48,097.47
Canyon1	тх	Palo Duro	15,157.00	3,201,386.12	239.00	106,712.87
Canyon2	NM	Tucumcari	8,502.00	1,670,288.41	257.00	55,676.28
Canyon3	ΤХ	Permian	49,915.00	3,794,327.57	953.00	126,477.59
Cedar Keys-Lawson1	FL	South Florida	5,666.00	1,668,290.87	137.00	55,609.70
Cedar Keys-Lawson2	FL	South Florida	16,981.00	13,335,416.14	80.00	444,513.87
Cedar Keys-Lawson3	FL	South Florida	889.00	4,949,458.38	7.00	164,981.95
Cisco1	ТΧ	Palo Duro	15,012.00	5,122,363.46	55.00	170,745.45
Dakota2	со	Piceance	3,054.00	1,754,409.67	27.00	58,480.32
Dakota3	со	San Juan	2,904.00	2,283,712.42	13.00	76,123.75
Dakota5	UT	Uinta	10,678.00	2,912,670.48	44.00	97,089.02
Dakota6	со	Raton	2,540.00	2,550,808.39	10.00	85,026.95
Dakota8	СО	Denver	22,831.00	4,913,197.51	101.00	163,773.25
Dakota9	WY	Denver	5,028.00	3,326,973.64	20.00	110,899.12
Dakota10	NE	Denver	8,564.00	4,251,048.57	45.00	141,701.62
Domengine1	CA	Sacramento	2,069.00	17,495,740.20	10.00	583,191.34
Entrada1	со	Piceance	9,237.00	3,865,293.80	50.00	128,843.13
Entrada2	UT	Uinta	10,799.00	22,806,044.88	44.00	760,201.50
Entrada6	WY	Denver	5,028.00	12,612,289.66	20.00	420,409.66
Entrada7	NE	Denver	8,564.00	3,792,771.09	45.00	126,425.70
Entrada9	NM	San Juan	5,705.00	2,234,254.79	47.00	74,475.16
Eutaw1	MS	Gulf Coast Onshore	29,518.00	2,968,396.80	129.00	98,946.56
Eutaw2	AL	Gulf Coast Onshore	8,478.00	1,873,159.34	41.00	62,438.64
Eutaw3	FL	Gulf Coast Onshore	13,014.00	1,498,763.65	59.00	49,958.79
Fountain1b	CO	Denver	5,044.00	12,090,925.60	31.00	403,030.85
			-,	,,		,

Fountain2a	CO	Denver	2,794.00	4,536,023.46	11.00	151,200.78
Fountain2b	CO	Denver	2,794.00	18,853,646.70	11.00	628,454.89
Frio1	ТХ	Gulf Coast	4,855.00	16,653,776.68	20.00	555,125.89
		Onshore				
Frio2	ТХ	Gulf Coast	4,357.00	34,495,968.50	20.00	1,149,865.62
		Onshore				
Frio3a	ТХ	Gulf Coast	1,193.00	32,675,228.34	8.00	1,089,174.28
		Onshore				
Frio3b	ТХ	Gulf Coast	1,193.00	15,498,370.92	8.00	516,612.36
		Onshore				
Frio4	ТХ	Gulf Coast	694.00	21,721,909.90	5.00	724,063.66
		Onshore				
Frio5	ТХ	Gulf Coast	323.00	8,392,730.31	3.00	279,757.68
		Onshore				
sFrio6	ТХ	Gulf Coast	1,889.00	2,808,286.19	137.00	93,609.54
		Onshore				
Frio7a	ТΧ	Gulf Coast	1,537.00	23,918,233.97	15.00	797,274.47
		Onshore				
Frio7b	ТХ	Gulf Coast	1,537.00	4,509,141.32	15.00	150,304.71
		Onshore				
Frio8	ТΧ	Gulf Coast	1,200.00	10,117,116.81	15.00	337,237.23
		Onshore				
Frio9a	ТΧ	Gulf Coast	2,342.00	31,001,127.13	16.00	1,033,370.90
		Onshore				
Frio9b	ТΧ	Gulf Coast	2,342.00	14,668,101.05	16.00	488,936.70
		Onshore	·			,
Frio10	ТХ	Gulf Coast	2,317.00	36,601,443.29	12.00	1,220,048.11
		Onshore	,			, -,
Frio11	ТΧ	Gulf Coast	259.00	12,413,314.70	3.00	413,777.16
		Onshore	200100	,, o o	0.00	
Frio12a	ТХ	Gulf Coast	2,121.00	52,124,769.01	8.00	1,737,492.30
ino i zu		Onshore	2,121.00	52,121,705.01	0.00	1,707,192.00
Frio12b	ТХ	Gulf Coast	2,121.00	49,280,181.29	8.00	1,642,672.71
110120	IA	Onshore	2,121.00	49,200,181.29	8.00	1,042,072.71
Frio13a	ТХ	Gulf Coast	1,762.00	34,052,725.44	9.00	1 125 000 95
FIIUISa	IA		1,702.00	54,052,725.44	9.00	1,135,090.85
Fu: - 1 2 h	τv	Onshore	1 702 00	21 471 252 00	0.00	1 040 045 10
Frio13b	ТХ	Gulf Coast	1,762.00	31,471,352.98	9.00	1,049,045.10
Г.::		Onshore	4 702 00		0.00	050 600 ==
Frio13c	ТХ	Gulf Coast	1,762.00	28,758,682.49	9.00	958,622.75
		Onshore				
Fusselman1	ТХ	Permian	51,068.00	16,710,464.42	195.00	557,015.48
Glorieta1	NM	Albuquerque	1,834.00	4,776,489.80	7.00	159,216.33

Hermosa1a	со	Paradox	1,466.00	7,284,078.15	9.00	242,802.60
Hermosa1b	СО	Paradox	1,466.00	7,843,455.80	9.00	261,448.53
Knox1	IL	Illinois	10,500.00	5,155,921.61	56.00	171,864.05
Knox2	IL	Illinois	5,560.00	4,969,805.46	21.00	165,660.18
Knox3	IN	Illinois	4,930.00	1,038,353.39	149.00	34,611.78
Knox4	IN	Illinois	1,275.00	3,975,685.45	6.00	132,522.85
Knox5	KY	Illinois	2,610.00	6,529,070.24	11.00	217,635.67
Knox6	KY	Illinois	1,700.00	3,978,697.40	8.00	132,623.25
Leonard1	ТΧ	Permian	51,294.00	4,722,387.15	809.00	157,412.91
Leonard2	NM	Permian	9,346.00	1,231,927.08	565.00	41,064.24
Lower Tuscaloosa1	AL	Gulf Coast Onshore	10,592.00	7,644,937.56	113.00	254,831.25
Lower Tuscaloosa2	AL	Gulf Coast	2,571.00	2,014,798.71	133.00	67,159.96
		Onshore	_,	_,,		
Lower Tuscaloosa3	FL	Gulf Coast Onshore	9,454.00	5,408,449.23	127.00	180,281.64
Lower Tuscaloosa5	GA	Gulf Coast Onshore	2,855.00	7,126,558.24	15.00	237,551.94
Lower Tuscaloosa7	LA	Gulf Coast Onshore	2,857.00	10,470,488.21	14.00	349,016.27
Lower Tuscaloosa8	MS	Gulf Coast Onshore	13,379.00	3,633,394.79	211.00	121,113.16
Lower Tuscaloosa9	MS	Gulf Coast Onshore	8,003.00	18,873,440.48	29.00	629,114.68
Lower Tuscaloosa10	MS	Gulf Coast Onshore	4,393.00	16,965,974.56	27.00	565,532.49
Lyons2	СО	Denver	2,784.00	2,335,698.67	12.00	77,856.62
Lyons3	СО	Canon City	1,590.00	2,276,967.95	6.00	75,898.93
, Madison Gp-Mission Canyon1	ND	Williston	29,617.00	9,118,374.74	131.00	303,945.82
Madison Gp-Mission Canyon2	ND	Williston	3,536.00	5,884,731.43	21.00	196,157.71
Madison Gp-Mission Canyon3	SD	Williston	10,420.00	2,368,032.56	64.00	78,934.42
Madison Gp-Mission Canyon4	MT	Williston	42,151.00	3,309,151.39	695.00	110,305.05
Madison1	WY	Powder River	27,700.00	12,864,049.47	157.00	428,801.65
Mesaverde1	со	San Juan	2,024.00	1,838,940.28	61.00	61,298.01
Mesaverde2	NM	San Juan	8,455.00	6,647,575.83	42.00	221,585.86
Minnelusa1	WY	Powder River	9,960.00	9,510,675.74	43.00	317,022.52
Minnelusa2	MT	Powder River	3,611.00	10,075,616.00	17.00	335,853.87

Morrison1	со	San Juan	1,958.00	15,204,270.08	10.00	506,809.00
Morrison2	NM	San Juan	8,520.00	6,725,462.48	103.00	224,182.08
Morrison3	СО	Denver	24,922.00	4,304,702.66	113.00	143,490.09
Morrison7	UT	Uinta	8,007.00	5,011,104.70	121.00	167,036.82
Mount Simon2	IL	Illinois	5,957.00	15,162,834.74	24.00	505,427.82
Mount Simon3	IL	Illinois	20,633.00	1,658,830.92	1,069.00	55,294.36
Mount Simon5	IN	Illinois	5,054.00	6,660,417.16	47.00	222,013.91
Mount Simon6	IN	Illinois	29,370.00	3,025,531.38	761.00	100,851.05
Mount Simon7	MI	Michigan	5,446.00	4,971,305.34	79.00	165,710.18
Mount Simon8	MI	Michigan	4,788.00	3,577,577.19	28.00	119,252.57
Mount Simon11	KY	Arch-Cincinnati	10,350.00	1,059,960.60	139.00	35,332.02
Nugget1	со	Green River	5,877.00	4,261,737.98	71.00	142,057.93
Nugget2	WY	Green River	22,707.00	7,384,532.77	142.00	246,151.09
Paluxy1	ТΧ	East Texas	409.00	13,556,553.59	2.00	451,885.12
Paluxy2	ΤХ	East Texas	8,108.00	2,661,385.92	173.00	88,712.86
Paluxy3	тх	East Texas	11,534.00	1,002,212.76	523.00	33,407.09
Paluxy4	AL	Gulf Coast	16,568.00	2,286,732.20	601.00	76,224.41
		Onshore				
Paluxy5	FL	Gulf Coast	9,820.00	5,930,552.54	137.00	197,685.08
		Onshore				
Queen1	ТΧ	Palo Duro	51,294.00	3,405,636.08	809.00	113,521.20
Queen2	NM	Tucumcari	9,346.00	4,442,134.02	113.00	148,071.13
Red River1	ND	Williston	55,614.00	14,348,516.32	262.00	478,283.88
Red River2	MT	Williston	21,307.00	7,496,199.80	131.00	249,873.33
Repetto1	CA	Los Angeles	51.00	3,870,653.93	3.00	129,021.80
Repetto2a	CA	Los Angeles	320.00	26,976,584.54	2.00	899,219.48
Repetto2b	CA	Los Angeles	320.00	32,671,038.51	2.00	1,089,034.62
Repetto2c	CA	Los Angeles	320.00	30,209,182.11	2.00	1,006,972.74
Repetto3a	CA	Los Angeles	125.00	5,043,356.42	3.00	168,111.88
Repetto3b	CA	Los Angeles	125.00	20,635,791.92	1.00	687,859.73
Repetto3c	CA	Los Angeles	125.00	6,187,250.37	3.00	206,241.68
Repetto3d	CA	Los Angeles	125.00	16,457,241.00	1.00	548,574.70
Rose Run3	PA	Appalachian	8,201.00	5,037,069.78	30.00	167,902.33
Seven Rivers1	NM	Permian	9,346.00	5,947,611.62	113.00	198,253.72
Seven Rivers2	ТΧ	Permian	51,068.00	18,834,103.45	195.00	627,803.45
St. Peter7	MI	Michigan	2,100.00	7,336,445.47	8.00	244,548.18
St. Peter8	MI	Michigan	11,160.00	2,164,875.21	44.00	72,162.51
St. Peter10	MI	Michigan	9,200.00	5,769,950.09	47.00	192,331.67
Starkey1	CA	Sacramento	2,069.00	2,971,953.83	125.00	99,065.13
, Stevens1	CA	San Joaquin	2,393.00	4,427,856.87	14.00	147,595.23
Strawn1	ТХ	Permian	51,068.00	3,080,878.23	195.00	102,695.94

Tensleep4	WY	Wyoming Thrust Belt	6,902.00	1,326,490.78	417.00	44,216.36
Tensleep5	UT	Wyoming Thrust Belt	4,436.00	14,230,266.81	24.00	474,342.23
Washita- Fredericksburg1	AL	Gulf Coast Onshore	13,025.00	2,596,912.00	787.00	86,563.73
Washita- Fredericksburg2	FL	Gulf Coast Onshore	10,473.00	9,954,416.53	131.00	331,813.88
Waste Gate1	MD	Coastal Plain	904.00	9,883,387.52	5.00	329,446.25
Weber2	СО	Piceance	5,438.00	4,269,542.52	34.00	142,318.08
Weber3	со	Sand Wash	5,712.00	9,499,292.61	28.00	316,643.09
Winters1a	CA	Sacramento	2,069.00	21,648,469.58	15.00	721,615.65
Winters1b	CA	Sacramento	2,069.00	29,175,917.97	10.00	972,530.60
Wolfcamp1	ТΧ	Palo Duro	15,012.00	10,468,354.72	99.00	348,945.16
Wolfcamp2	NM	Tucumcari	8,502.00	2,284,004.67	257.00	76,133.49
Woodbine1	ТΧ	East Texas	13,575.00	2,455,364.20	547.00	81,845.47

Data source: U.S. Energy Information Administration

Notes and Sources

² U.S. Department of Energy, National Energy Technology Laboratory. *Eliminating the Derate of Carbon Capture Retrofits (Rev. 2)*. Kyle L. Buchheit, Alex Zoelle, Eric Lewis, Marc Turner, Tommy Schmitt, Norma Kuehn, Sally Homsy, Shannon McNaul, Sarah Leptinsky, Allison Guinan, Mark Woods, Travis Shultz, Timothy Fout, Gregory Hackett, https://doi.org/10.2172/1968037

³ U.S. Department of Energy, National Energy Technology Laboratory. *Industrial CO2 Capture Retrofit Database (IND CCRD)*. By Sydney Hughes, Alex Zoelle, Mark Woods, Samuel Henry, Sally Homsy, Sandeep Pidaparti, Norma Kuehn, Hannah Hoffman, Katie Forrest, Timothy Fout, William Summers, Steve Herron, and Eric Grol. Report no. DOE/NETL-2024/4408. 2023. https://netl.doe.gov/energy-analysis/details?id=42be56f6-f37e-46f4-88ea-a77868da32f3.

⁴ U.S. Environmental Protection Agency, Office of Atmospheric Protection. Greenhouse Gas Reporting Program (GHGRP) *FLIGHT*. Accessed February 5, 2025. https://www.epa.gov/ghgreporting.

⁵ U.S. Environmental Protection Agency. Subpart PP – Suppliers of Carbon Dioxide. Accessed February 5, 2025. https://www.epa.gov/ghgreporting/subpart-pp-suppliers-carbon-dioxide.

⁶ Clean Air Task Force. US Carbon Capture Activity and Project Table. Accessed February 5, 2025. https://www.catf.us/ccstableus/.

⁷ U.S. Department of Energy, National Energy Technology Laboratory. *Cost and Performance Baseline for Fossil* Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity. Tommy Schmitt, Sarah Leptinsky, Marc Turner, Alexander Zoelle, Charles W. White, Sydney Hughes, Sally Homsy, Mark Woods, Hannah Travis Shultz; Robert E. James III, https://doi.org/10.2172/1893822; U.S. Department of Energy, National Energy Technology Laboratory. Eliminating the Derate of Carbon Capture Retrofits (Rev. 2) Kyle L. Buchheit, Alex Zoelle, Eric Lewis, Marc Turner, Tommy Schmitt, Norma Kuehn, Sally Homsy, Shannon McNaul, Sarah Leptinsky, Allison Guinan, Mark Woods, Travis Shultz, Timothy Fout, Gregory Hackett, https://doi.org/10.2172/1968037; U.S. Department of Energy, National Energy Technology Laboratory. Industrial CO₂ Capture Retrofit Database (IND CCRD). By Sydney Hughes, Alex Zoelle, Mark Woods, Samuel Henry, Sally Homsy, Sandeep Pidaparti, Norma Kuehn, Hannah Hoffman, Katie Forrest, Timothy Fout, William Summers, Steve Herron, and Eric Grol. Report no. DOE/NETL-2024/4408. 2023. https://netl.doe.gov/energy-analysis/details?id=42be56f6-f37e-46f4-88ea-a77868da32f3; U.S. Environmental Protection Agency, Office of Atmospheric Protection. Greenhouse Gas Reporting Program (GHGRP) FLIGHT. Accessed February 5, 2025. https://www.epa.gov/ghgreporting; U.S. Environmental Protection Agency. Subpart PP – Suppliers of Carbon Dioxide. Accessed February 5, 2025. https://www.epa.gov/ghgreporting/subpartpp-suppliers-carbon-dioxide; Clean Air Task Force. U.S. Carbon Capture Activity and Project Table. Accessed February 5, 2025. https://www.catf.us/ccstableus/.

⁸ U.S. General Services Administration. "National Park Boundaries." Data.Gov. Last modified December 2, 2020. Accessed February 5, 2025. https://catalog.data.gov/dataset/national-park-boundaries.

⁹ U.S. General Services Administration. "National Register of Historic Places." Data.Gov. Last modified November 2, 2014. Accessed February 5, 2025. https://catalog.data.gov/dataset/national-register-of-historic-places-7eebd.
¹⁰ National Energy Technology Laboratory U.S. Department of Energy. *FECM/NETL CO₂ Transport Cost Model (2023): Description and User's Manual*. David Morgan, Allison Guinan, Alana Sheriff. https://doi.org/10.2172/1992905

¹¹ D. Brown, K. Reddi and A. Elgowainy, "The Development of Natural Gas and Hydrogen Pipeline Capital Cost Estimating Equations," International Journal of Hydrogen Energy, vol. 47, pp. 33813-33826, 2022.
¹² National Energy Technology Laboratory. FE/NETL CO2 Saline Storage Cost Model: User's Manual. U.S. Department of Energy, Pittsburgh, PA, 2017.

¹ U.S. Department of Energy, National Energy Technology Laboratory. *Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity*. Tommy Schmitt, Sarah Leptinsky, Marc Turner, Alexander Zoelle, Charles W. White, Sydney Hughes, Sally Homsy, Mark Woods, Hannah Travis Shultz; Robert E. James III, https://doi.org/10.2172/1893822

¹³ EPA. Supply, Underground Injection, and Geologic Sequestration of Carbon Dioxide. Last modified January 14, 2025. Accessed February 5, 2025. https://www.epa.gov/ghgreporting/supply-underground-injection-and-geologic-sequestration-carbon-dioxide.

¹⁴ U.S. Department of Energy. *Pathways to Commercial Liftoff: Carbon Management*. By Ramsey Fahs, Rory Jacobson, Andrew Gilbert, Dan Yawitz, Catherine Clark, Jill Capotosto, Colin Cunliff, Brandon McMurtry, and Uisung Lee. 2023. Accessed February 5, 2025. https://liftoff.energy.gov/wp-content/uploads/2024/02/20230424-Liftoff-Carbon-Management-vPUB_update4.pdf.

¹⁵ H.R.5376 - 117th Congress (2021-2022): Inflation Reduction Act of 2022. (2022, August 16).

https://www.congress.gov/bill/117th-congress/house-bill/5376

¹⁶ H.R.1892 - 115th Congress (2017-2018): Bipartisan Budget Act of 2018. (2018, February 9).

https://www.congress.gov/bill/115th-congress/house-bill/1892

¹⁷ H.R.6049 - 110th Congress (2007-2008): Energy Improvement and Extension Act of 2008. (2008, September 29). https://www.congress.gov/bill/110th-congress/house-bill/6049