The VBA code provided at the bottom of this document is an updated version (from ArcGIS 9.0 to ArcGIS 9.2) of the polygon smoothing algorithm described below. A bug that occurred when multiple wells had the same location was also fixed.

SMOOTH OIL & GAS FIELD OUTLINE POLYGONS

MADE FROM BUFFERED WELLS

Why smooth buffered field outlines? See the issues in the figure below:

[image: image1.wmf]These small areas are

probably valid field areas

If included, would result

in a smoother, more

"geologic"

-

appearing outline

The smoothing application provided as VBA code below does the following:

· Adds area to the concave portions; doesn’t add area to convex portions to maintain buffer spacing
· Fills in non-field “islands” smaller than buffer size

· Joins separate polygon rings with a “bridge” if sufficiently close

· Minimizes increase in total field area

Methodology: creates trapezoids between neighboring wells within an oil/gas field. Wells are considered neighbors if the distance between them is less than or equal to 2.5x the average of their radii (see figure below of “rules”).

Creates a new "smoothed" polygon feature class (FC) from the second layer in the map. The new FC is in the same workspace as the original FC, but with "_smu" suffix added to name.

The first layer must contain the well points originally used to create the unsmoothed field outlines (which are in the second layer).

 The original polygon outline is used to optimize the "unioning" step. If a trapezoid falls entirely within the original field outline then it is omitted since it will not change the outline.

[image: image2.wmf]
Results of smoothing application as applied to the unsmoothed above example:

[image: image3.wmf]
Copy the code into ThisDocument or a module.

Set up a UIControl button to run the code.
Inputs:

1) Layer (0) is the well points used to make the field outline

2) Layer (1) is unsmoothed buffered field outlines

Output: Smoothed outlines with suffix ”_smu” in the same workspace as unsmoothed outlines.

Code by Kirk Kuykendall, AmberGIS; text by Sam Limerick, Z, Inc.

==

Option Explicit

Private m_TC As ITrackCancel

Private Declare Function GetTickCount Lib "kernel32" () As Long

Sub Smooth()

 '

 ' Creates a new "smoothed" polygon featureclass from the second

 ' layer in the TOC(which is an "unsmoothed" polygon)in the map.

 ' The new featureclass is created in the same workspace as the

 ' original featureclass, but with a "_smu" suffix. You can use

 ' shapefiles or GDB feature classes.

 '

 ' The first layer in the TOC must contain the points originally used

 ' to create the unsmoothed polyon in layer 2(layer 2 created by buffering

 ' the points with a radius and unioning the resultant polygons).

 '

 ' The approach involves creating trapezoids between neighboring

 ' wells. Wells are considered neighbors if the distance between

 ' them is less than or equal to 2.5x the average of their radii.

 '

 ' The original polygon outline is used to optimize the "unioning"

 ' step. If a trapezoid falls entirely within the original field

 ' outline then it is omitted since it will not change the outline

 ' any.

 '

 ' Watch the lower left corner task bar for some progress reports

 ' that the processing is indeed happening.

 '

 On Error GoTo EH

 Dim pMxDoc As IMxDocument

 Set pMxDoc = ThisDocument

 Dim pMC As IMouseCursor

 Set pMC = New MouseCursor

 pMC.SetCursor 2

 Dim lTicks As Long

 lTicks = GetTickCount

 ' get the wells point layer

 Dim pWellFLayer As IFeatureLayer

 Set pWellFLayer = pMxDoc.FocusMap.Layer(0)

 If pWellFLayer.FeatureClass.ShapeType <> esriGeometryPoint Then

 MsgBox "first layer must be a point layer"

 Exit Sub

 End If

 ' make sure the required columns are present on the wells featureclass

 Dim vFld As Variant

 For Each vFld In Array("buffer", "field")

 If pWellFLayer.FeatureClass.FindField(vFld) = -1 Then

 MsgBox vFld & " column not found on " & pWellFLayer.Name

 Exit Sub

 End If

 Next vFld

 ' get the layer with the unsmoothed field outlines

 Dim pBufferLayer As IFeatureLayer

 Set pBufferLayer = pMxDoc.FocusMap.Layer(1)

 If pBufferLayer.FeatureClass.ShapeType <> esriGeometryPolygon Then

 MsgBox "second layer must be a polygon layer"

 Exit Sub

 End If

 ' make sure the required columns are present on the field outline

 ' featureclass.

 For Each vFld In Array("field")

 If pBufferLayer.FeatureClass.FindField(vFld) = -1 Then

 MsgBox vFld & " column not found on " & pBufferLayer.Name

 Exit Sub

 End If

 Next vFld

 ' if there are selected field outlines, then just process those,

 ' otherwise process all features in the unsmoothed layer.

 Dim pInFCur As IFeatureCursor

 Dim pFSel As IFeatureSelection

 Set pFSel = pBufferLayer

 If pFSel.SelectionSet.Count = 0 Then

 Set pInFCur = pBufferLayer.FeatureClass.Search(Nothing, False)

 Else

 pFSel.SelectionSet.Search Nothing, False, pInFCur

 End If

 ' create a new featureclass that has same columns as the unsmoothed

 ' featureclass, overwriting it if it already exists.

 ' (also adds a "PctChange" field)

 Dim pOutFC As IFeatureClass

 Set pOutFC = CreateFC(pBufferLayer.FeatureClass, _

 pBufferLayer.FeatureClass.AliasName & "_smu")

 If pOutFC Is Nothing Then

 MsgBox "no output featureclass created"

 Exit Sub

 End If

 If pOutFC.FindField("PctChange") = -1 Then

 MsgBox "new featureclass is missing PctChange field"

 Exit Sub

 End If

 Set m_TC = New CancelTracker

 m_TC.CancelOnKeyPress = True

 Dim pOutFCur As IFeatureCursor

 Set pOutFCur = pOutFC.Insert(True)

 Dim pBufferFeat As IFeature

 Set pBufferFeat = pInFCur.NextFeature

 Do Until pBufferFeat Is Nothing

 ' put the name of the field being processed in the caption, that

 ' way if there is a crash, we can select that field and

 ' step through the program and debug it more easily.

 Application.Caption = pBufferFeat.Value(pInFCur.FindField("field"))

 ' make a smoothed field outline using the unsmoothed outline

 ' plus the wells belonging to the oilfield.

 Dim pFieldOutline As IPolygon

 Set pFieldOutline = MakeFieldOutline(pWellFLayer.FeatureClass, _

 pBufferFeat)

 If Not m_TC.Continue Then Exit Do

 If Not pFieldOutline Is Nothing Then

 ' compute percent change

 Dim dPctChange As Double

 dPctChange = GetArea(pFieldOutline) / GetArea(pBufferFeat.Shape)

 Dim pFeatBuff As IFeatureBuffer

 Set pFeatBuff = pOutFC.CreateFeatureBuffer

 Set pFeatBuff.Shape = pFieldOutline

 ' copy all column values

 CopyColumns pFeatBuff, pBufferFeat

 ' moved to avoid problems if pctchange is present in original featclass

 pFeatBuff.Value(pFeatBuff.Fields.FindField("PctChange")) = dPctChange

 pOutFCur.InsertFeature pFeatBuff

 Else

 Debug.Print "nothing written for field " & _

 pBufferFeat.Value(pBufferFeat.Fields.FindField("Field"))

 End If

 Set pBufferFeat = pInFCur.NextFeature

 Loop

 pOutFCur.Flush

 If m_TC.Continue Then

 ' wake up the user

 Beep

 Application.Caption = ""

 lTicks = GetTickCount - lTicks

 MsgBox "Done seconds = " & lTicks / 1000

 Else

 MsgBox "canceled"

 End If

 Set m_TC = Nothing

 Exit Sub

EH:

 MsgBox "error in Smooth: " & Err.Description & ", " & Err.Number

 Set m_TC = Nothing

End Sub

Function MakeFieldOutline(pWellFC As IFeatureClass, _

 pBufferFeat As IFeature) As IPolygon

 On Error GoTo EH

 Dim sField As String

 sField = pBufferFeat.Value(pBufferFeat.Fields.FindField("Field"))

 Dim sWhere As String

 sWhere = "field = '" & sField & "'"

 Dim cSubFieldIDs As Collection

 Set cSubFieldIDs = GetSubFields(pWellFC, sWhere)

 Dim l As Long

 Dim pOutPolygon As IPolygon

 For l = 1 To cSubFieldIDs.Count

 Dim pPolygon As IPolygon

 Set pPolygon = MakeSubFieldOutline(pWellFC, pBufferFeat, sField, cSubFieldIDs.Item(l))

 If pOutPolygon Is Nothing Then

 Set pOutPolygon = pPolygon

 Else

 Dim pTopoOp As ITopologicalOperator

 Set pTopoOp = pOutPolygon

 Set pOutPolygon = pTopoOp.Union(pPolygon)

 End If

 If Not m_TC.Continue Then Exit Function

 Next l

 Set MakeFieldOutline = pOutPolygon

 Exit Function

EH:

 MsgBox "error in MakeFieldOutlines: " & Err.Description & ", " & Err.Number

End Function

Function GetSubFields(pWellFC As IFeatureClass, sWhere As String) As Collection

 '

 ' return a collection of unique subField ID values.

 '

 Dim pOutColl As Collection

 Set pOutColl = New Collection

 Dim lFld As Long

 lFld = pWellFC.FindField("SubField")

 If lFld = -1 Then

 ' no subfield column so just add one id (0)

 pOutColl.Add -1

 Set GetSubFields = pOutColl

 Exit Function

 End If

 Dim pQF As IQueryFilter

 Set pQF = New QueryFilter

 pQF.WhereClause = sWhere

 Dim pFCur As IFeatureCursor

 Set pFCur = pWellFC.Search(pQF, False)

 Dim pDict As Scripting.Dictionary

 Set pDict = New Dictionary

 Dim pFeat As IFeature

 Set pFeat = pFCur.NextFeature

 Do Until pFeat Is Nothing

 Dim lSubFieldID As Long

 lSubFieldID = pFeat.Value(lFld)

 If pDict.Exists(lSubFieldID) Then

 pDict.Item(lSubFieldID) = pDict.Item(lSubFieldID) + 1

 Else

 pDict.Add lSubFieldID, 1

 End If

 Set pFeat = pFCur.NextFeature

 Loop

 Dim vID As Variant

 For Each vID In pDict.Keys

 pOutColl.Add vID

 Next

 Set GetSubFields = pOutColl

End Function

Function MakeSubFieldOutline(pWellFC As IFeatureClass, _

 pBufferFeat As IFeature, _

 ByVal sOilFieldName As String, _

 ByVal lSubFieldID As Long) As IPolygon

 '

 ' union more trapezoids with pBufferFeat.Shape to and

 ' return the unioned polygon. Such that the trapezoids are formed

 ' by pairs of neighboring wells.

 ' find max buffer radius

 On Error GoTo EH

 Dim sWhere As String

 If lSubFieldID > -1 Then

 sWhere = "field = '" & sOilFieldName & "' and Subfield = " & lSubFieldID

 Else

 sWhere = "field = '" & sOilFieldName & "'"

 End If

 Debug.Print "finding all wells " & sWhere

 ' make a hashtable of radii keyed by OID, and maxradius

 Dim dMaxRadius As Double

 Dim pRadiusDict As Scripting.Dictionary

 GetRadii pWellFC, sWhere, pRadiusDict, dMaxRadius

 If dMaxRadius < 0 Then Exit Function

 If Not m_TC.Continue Then Exit Function

 Dim lFld As Long

 lFld = pWellFC.FindField("buffer")

 Dim pPntDict As Scripting.Dictionary

 Set pPntDict = LoadDictionary(pWellFC, sWhere)

 ' Its called a matrix since it can be thought of as a symmetric binary

 ' sparse matrix.

 ' populate pOIDDict with potential neighbors, later we will cull some

 ' of the neighbors.

 Dim pOIDDict As Scripting.Dictionary

 Set pOIDDict = MakeMatrix(pRadiusDict, dMaxRadius, pWellFC, sWhere, pPntDict)

 If Not m_TC.Continue Then Exit Function

 ' make a collection of trapezoids based on neighbor relationships

 ' defined in the matrix. Trapezoids contained entirely within the old

 ' unsmoothed outline are tossed.

 Dim cTrapezoids As Collection

 Set cTrapezoids = MakeTrapezoids2(pPntDict, pOIDDict, pRadiusDict, _

 pWellFC, sWhere, pBufferFeat.ShapeCopy)

 If Not m_TC.Continue Then Exit Function

 Debug.Print cTrapezoids.Count & " trapezoids created"

 ' union the collection of trapezoids with the original field outline

 ' and return that geometry

 Set MakeSubFieldOutline = UnionTrapezoids(cTrapezoids, _

 pBufferFeat.ShapeCopy)

 Exit Function

EH:

 MsgBox "error in MakeFieldOutlines: " & Err.Description & ", " & Err.Number

End Function

Sub GetRadii(pFC As IFeatureClass, ByVal sWhere As String, _

 ByRef pDict As Scripting.Dictionary, _

 ByRef dMaxRadius As Double)

 '

 ' fill up pDict with radii from the featureclass's "buffer" field

 '

 ' (return the max radius also.)

 On Error GoTo EH

 dMaxRadius = -1

 Set pDict = New Scripting.Dictionary

 Dim pQF As IQueryFilter

 Set pQF = New QueryFilter

 pQF.WhereClause = sWhere

 Dim lFld As Long

 lFld = pFC.FindField("buffer")

 If lFld = -1 Then

 MsgBox "GetMaxRadius cannot find buffer column"

 Exit Sub

 End If

 Dim pFCur As IFeatureCursor

 Set pFCur = pFC.Search(pQF, True)

 Dim pFeat As IFeature

 Set pFeat = pFCur.NextFeature

 Do Until pFeat Is Nothing

 Dim dRadius As Double

 ' convert feet to meters

 dRadius = pFeat.Value(lFld) * 0.3048

 If dRadius > dMaxRadius Then

 dMaxRadius = dRadius

 End If

 If Not m_TC.Continue Then Exit Sub

 pDict.Add pFeat.OID, dRadius

 Set pFeat = pFCur.NextFeature

 Loop

 Exit Sub

EH:

 MsgBox "error in GetRadii: " & Err.Description & ", " & Err.Number

End Sub

Function MakeMatrix(ByVal pRadiusDict As Scripting.Dictionary, _

 ByVal dMaxRadius As Double, _

 ByVal pFC As IFeatureClass, _

 ByVal sWhere As String, _

 ByRef pPntDict As Scripting.Dictionary) As Scripting.Dictionary

 '

 ' populate pOIDDict keys of OIDs and list of

 ' features that are within dMaxRadius

 ' also populate pPntDict with the points

 Dim pOIDDict As Scripting.Dictionary

 Set pOIDDict = New Scripting.Dictionary

 '

 ' e.g. pOIDDict.Item(22) might contain "32,34,25" which

 ' means that features whose oids are 32,34 and 25 are within

 ' 2.5x avgradius of feature whose OID is 22.

 '

 ' pRadiusDict is already populated and used as a lookup

 ' table for finding radii.

 '

 On Error GoTo EH

 Dim pQF As IQueryFilter

 Set pQF = New QueryFilter

 pQF.WhereClause = sWhere

 Dim lFld As Long

 lFld = pFC.FindField("buffer")

 If lFld = -1 Then

 MsgBox "makematrix cannot find buffer column"

 Exit Function

 End If

 Dim pFeatIndex As IFeatureIndex2

 Set pFeatIndex = New FeatureIndex

 Set pFeatIndex.FeatureClass = pFC

 Set pFeatIndex.FeatureCursor = pFC.Search(pQF, False)

 Application.StatusBar.Message(0) = "indexing " & pFC.AliasName

 pFeatIndex.Index Nothing, GetExtent(pFC)

 Dim pIQ As IIndexQuery2

 Set pIQ = pFeatIndex

 Application.StatusBar.ShowProgressBar "building matrix", 0, _

 pRadiusDict.Count, 1, True

 Application.StatusBar.ProgressBar.Position = 0

 Set pOIDDict = New Scripting.Dictionary

 Set pPntDict = LoadDictionary(pFC, sWhere)

 Dim pFCur As IFeatureCursor

 Set pFCur = pFC.Search(pQF, False)

 Dim pFeat As IFeature

 Set pFeat = pFCur.NextFeature

 Do Until pFeat Is Nothing

 Dim pTopoOp As ITopologicalOperator

 Set pTopoOp = pFeat.Shape

 Dim pPoint1 As IPoint

 Set pPoint1 = pFeat.Shape

 Dim dRad1 As Double

 dRad1 = pRadiusDict.Item(pFeat.OID)

 Dim c As Collection

 Set c = New Collection

 Dim vOIDs As Variant

 pIQ.IntersectedFeatures pTopoOp.Buffer(dMaxRadius * 3#), vOIDs

 Dim vOID As Variant

 For Each vOID In vOIDs

 Dim pPoint2 As IPoint

 Set pPoint2 = pPntDict.Item(vOID)

 Dim dRad2 As Double

 dRad2 = pRadiusDict.Item(vOID)

 Dim dAvgRadius As Double

 dAvgRadius = (dRad1 + dRad2) / 2#

 Dim dist As Double

 dist = GetDist(pPoint1, pPoint2)

 If dist <= (3# * dAvgRadius) And vOID <> pFeat.OID Then

 c.Add vOID

 End If

 Next vOID

 pOIDDict.Add pFeat.OID, c

' Debug.Print pFeat.OID & " has " & c.Count & " neighbors"

 Application.StatusBar.ProgressBar.Step

 If Not m_TC.Continue Then Exit Function

 Set pFeat = pFCur.NextFeature

 Loop

 Application.StatusBar.HideProgressBar

 Debug.Print pPntDict.Count & " points in memory"

 Set MakeMatrix = pOIDDict

 Exit Function

EH:

 MsgBox "error in MakeMatrix: " & Err.Description & ", " & Err.Number

End Function

Function LoadDictionary(pFC As IFeatureClass, sWhere As String) As Scripting.Dictionary

 Dim pPntDict As Scripting.Dictionary

 Set pPntDict = New Scripting.Dictionary

 Dim pQF As IQueryFilter

 Set pQF = New QueryFilter

 pQF.WhereClause = sWhere

 Dim pFCur As IFeatureCursor

 Set pFCur = pFC.Search(pQF, False)

 Dim pFeat As IFeature

 Set pFeat = pFCur.NextFeature

 Do Until pFeat Is Nothing

 pPntDict.Add pFeat.OID, pFeat.ShapeCopy

 Set pFeat = pFCur.NextFeature

 Loop

 Set LoadDictionary = pPntDict

End Function

Function MakeTrapezoids2(ByVal pPntDict As Scripting.Dictionary, _

 ByVal pOIDDict As Scripting.Dictionary, _

 ByVal pRadiusDict As Scripting.Dictionary, _

 ByVal pFC As IFeatureClass, _

 ByVal sWhere As String, _

 ByVal pPolygon As IPolygon) As Collection

 '

 ' returns a collection of trapezoids that fill in the gaps between

 ' closely neighboring wells.

 '

 '

 ' create trapezoids based on the matrix (pOIDDict)

 ' which describes what OIDs are near other OIDs

 '

 Simplify pPolygon

 ' pFC is the wells featureclass.

 ' Create a spatial index that allows us to more quickly determine

 ' if a trapezoid falls completely within pPolygon, in which case

 ' we can omit it.

 Dim pSpatialIndex As ISpatialIndex

 Set pSpatialIndex = pPolygon

 pSpatialIndex.AllowIndexing = True

 pSpatialIndex.Invalidate

 Dim pRelOp As IRelationalOperator

 Set pRelOp = pSpatialIndex

 On Error GoTo EH

 Set MakeTrapezoids2 = New Collection

 Application.StatusBar.ShowProgressBar "making trapezoids", 0, _

 pPntDict.Count, 1, True

 Application.StatusBar.ProgressBar.Position = 0

 Dim pQF As IQueryFilter

 Set pQF = New QueryFilter

 pQF.WhereClause = sWhere

 Dim pFCur As IFeatureCursor, pFeat As IFeature

 Set pFCur = pFC.Search(pQF, False)

 ' loop through each well point

 Set pFeat = pFCur.NextFeature

 Do Until pFeat Is Nothing

 Dim pPoint1 As IPoint

 Set pPoint1 = pPntDict.Item(pFeat.OID)

 Dim dRadius1 As Double

 dRadius1 = pRadiusDict.Item(pFeat.OID)

 Dim cNeighbors As Collection

 Set cNeighbors = pOIDDict.Item(pFeat.OID)

' Debug.Print pFeat.OID & " has " & cNeighbors.Count & " neighbors"

 If pFeat.OID = 80 Then

 Debug.Print "ok"

 End If

 Dim l As Long

 For l = 1 To cNeighbors.Count

 Dim lOID As Long

 lOID = cNeighbors.Item(l)

 If lOID > pFeat.OID Then

 Dim pTrapezoid As IPolygon

 Set pTrapezoid = _

 MakeTrapezoid3(pPntDict.Item(pFeat.OID), pRadiusDict.Item(pFeat.OID), _

 pPntDict.Item(lOID), pRadiusDict.Item(lOID))

 If Not pTrapezoid Is Nothing Then

 If Not pRelOp.Contains(pTrapezoid.Envelope) Then

 If Not pRelOp.Contains(pTrapezoid) Then

 Application.StatusBar.ProgressBar.Message = _

 "making trapezoids (" & MakeTrapezoids2.Count & ")"

 ' add the trapezoid to the collection for later use.

 MakeTrapezoids2.Add pTrapezoid

 End If

 Else

 'Debug.Print "skipping "

 ' the trapezoid falls completely within the original

 ' field outline, so there's no need to keep it.

 End If

 End If

 Else

 ' its a symmetric matrix, so don't worry about

 ' this half (otherwise duplicates would be created

 End If

 If Not m_TC.Continue Then Exit Function

 Next l

 Application.StatusBar.ProgressBar.Step

 Set pFeat = pFCur.NextFeature

 Loop

 Application.StatusBar.HideProgressBar

 Exit Function

EH:

 MsgBox "error in MakeTrapezoids2: " & Err.Description & ", " & Err.Number

End Function

Function MakeTrapezoid3(pPoint1 As IPoint, dRadius1 As Double, _

 pPoint2 As IPoint, dRadius2 As Double) As IPolygon

 '

 ' Makes a trapezoid that connects two wells, based on how close

 ' they need to be.

 '

 Dim pOutTrapezoid As IPolygon

 Set pOutTrapezoid = Nothing

 Dim dAvgRadius As Double

 dAvgRadius = (dRadius1 + dRadius2) / 2#

 Dim dDist As Double

 dDist = GetDist(pPoint1, pPoint2)

 ' Jack says:

 ' "How about using the full diameter trapezoid for all

 ' pairs with < =2 distance and the ½ for all

 ' from >2 to 2.5. So those buffers that overlap or touch

 ' would get a tangent from the full diameter and those

 ' that are separated (but <= 2.5) would get a 'neck'

 ' based on a smaller circle (radii)."

 If dDist < (dAvgRadius * 2.5) And dDist > 0# Then

 Dim pTrapezoid As IPolygon

 Dim dRadiusFactor As Double

 If dDist > (2# * dAvgRadius) Then

 dRadiusFactor = 0.5

 Else

 dRadiusFactor = 1#

 End If

 ' make a trapezoid based on the two points and the radii

 Set pTrapezoid = MakeTrapezoid(pPoint1, dRadiusFactor * dRadius1, _

 pPoint2, dRadiusFactor * dRadius2)

 Simplify pTrapezoid

 Set pOutTrapezoid = pTrapezoid

 Else

 ' the two points are close, but not close enough

 ' no trapezoid created

 End If

 Set MakeTrapezoid3 = pOutTrapezoid

End Function

'Function UnionTrapezoids(cTrapezoids As Collection, _

' pPolygon As IPolygon) As IPolygon

' On Error GoTo EH

' Dim pWSF As IWorkspaceFactory

' Set pWSF = New FileGDBWorkspaceFactory

'

' Dim pFWS As IFeatureWorkspace

' Set pFWS = pWSF.OpenFromFile("C:\Projects\EIA\Kirk_Smooth3\Scratch.gdb", 0)

'

' Dim pDS As IDataset

' On Error Resume Next

' Set pDS = pFWS.OpenFeatureClass("Trapezoids")

' If Err.Number = 0 Then

' pDS.Delete

' End If

' Err.Clear

' On Error GoTo EH

'

' Dim pFlds As IFieldsEdit

' Set pFlds = New esrigeodatabase.Fields

' pFlds.AddField MakeField("ObjectID", esriFieldTypeOID)

' pFlds.AddField m_outFC.Fields.Field(m_outFC.FindField(m_outFC.ShapeFieldName))

'

' Dim pFC As IFeatureClass

' Set pFC = pFWS.CreateFeatureClass("Trapezoids", pFlds, m_outFC.CLSID, Nothing, esriFTSimple, "Shape", "")

'

' Dim pFCur As IFeatureCursor

' Set pFCur = pFC.Insert(False)

'

' Dim l As Long

' For l = 1 To cTrapezoids.Count

' Dim pFBuff As IFeatureBuffer

' Set pFBuff = pFC.CreateFeatureBuffer

' Set pFBuff.Shape = cTrapezoids.Item(l)

' pFCur.InsertFeature pFBuff

' Next l

' pFCur.Flush

' Exit Function

'EH:

' MsgBox "error in UnionTrapezoids: " & Err.Description & ", " & Err.Number

'End Function

Function UnionTrapezoids(cTrapezoids As Collection, _

 pPolygon As IPolygon) As IPolygon

 On Error GoTo EH

 Application.StatusBar.ShowProgressBar "unioning trapezoids", 0, _

 cTrapezoids.Count, 1, True

 Application.StatusBar.ProgressBar.Position = 0

 ' ITopologicalOperator.Union was found to raise an error

 ' occasionally, so the code below relies on a workaround.

 '

 ' The workaround involves keeping a list of bad trapezoids and

 ' also a backup polygon. When a trapezoid causes an error, it

 ' is added to the list and processing starts over at the last

 ' savepoint.

 '

 Simplify pPolygon

 Dim pBackup As IPolygon

 Set pBackup = Clone(pPolygon)

 Dim pBadOnes As New Scripting.Dictionary

 Dim pTopoOp As ITopologicalOperator

 Set pTopoOp = Clone(pPolygon)

 Dim l As Long

 l = 1

 Dim lBackupID As Long

 lBackupID = 1

 Do While l < cTrapezoids.Count + 1

 Dim pTrapezoid As IPolygon

 Set pTrapezoid = cTrapezoids.Item(l)

 If pBadOnes.Exists(l) Then

 Debug.Print "moving bad trapezoid" & l & _

 " attempt " & pBadOnes.Item(l)

 Dim pTrans2D As ITransform2D

 Set pTrans2D = pTrapezoid

 ' move 10 centimeters

 pTrans2D.Move 0.1, 0.1

 End If

 On Error Resume Next

 Set pTopoOp = pTopoOp.Union(pTrapezoid)

 If Err.Number = 0 Then

 l = l + 1

 ' every 100 steps make a backup

 If l Mod 100 = 0 Then

 Set pBackup = Clone(pTopoOp)

 lBackupID = l

 Debug.Print l

 End If

 Application.StatusBar.ProgressBar.Step

 Else

 Application.StatusBar.ProgressBar.Message = _

 "errorcount: " & pBadOnes.Count

 If Not pBadOnes.Exists(l) Then

 pBadOnes.Add l, 1

 Else

 ' a repeat offender !

 Debug.Print "repeat offender encountered"

 pBadOnes.Item(l) = pBadOnes.Item(l) + 1

 End If

 l = lBackupID

 Set pTopoOp = pBackup

 Application.StatusBar.ProgressBar.Position = l

 End If

 If Not m_TC.Continue Then Exit Function

 On Error GoTo EH

 Loop

 Application.StatusBar.HideProgressBar

 Set UnionTrapezoids = pTopoOp

 Exit Function

EH:

 MsgBox "error in UnionTrapezoids: " & Err.Description & ", " & Err.Number

End Function

Function GetExtent(pGDS As IGeoDataset) As IEnvelope

 Set GetExtent = pGDS.Extent

End Function

Function GetDist(pProxOp As IProximityOperator, pGeom As IGeometry) As Double

 Dim pPCS As IProjectedCoordinateSystem

 Set pPCS = pGeom.SpatialReference

 Dim d As Double

 d = pProxOp.ReturnDistance(pGeom) * pPCS.CoordinateUnit.MetersPerUnit

 GetDist = d

End Function

Function MakeTrapezoid(pPoint1 As IPoint, dDist1 As Double, _

 pPoint2 As IPoint, dDist2 As Double) As IPointCollection

 On Error GoTo EH

 ' create a new polygon based on points and distances

 Set MakeTrapezoid = New Polygon

 Dim pLine As ILine

 Set pLine = New esriGeometry.Line

 pLine.PutCoords pPoint1, pPoint2

 Dim pCPoint As IConstructPoint, dDist As Double

 Set pCPoint = New Point

 pCPoint.ConstructOffset pLine, esriNoExtension, 0#, True, dDist1

 MakeTrapezoid.AddPoint pCPoint

 pCPoint.ConstructOffset pLine, esriNoExtension, 1#, True, dDist2

 MakeTrapezoid.AddPoint pCPoint

 pCPoint.ConstructOffset pLine, esriNoExtension, 1#, True, -dDist2

 MakeTrapezoid.AddPoint pCPoint

 pCPoint.ConstructOffset pLine, esriNoExtension, 0#, True, -dDist1

 MakeTrapezoid.AddPoint pCPoint

 Exit Function

EH:

 MsgBox "error in MakeTrapezoid: " & Err.Description & ", " & Err.Number

End Function

Sub Simplify(pTopoOp2 As ITopologicalOperator2)

 pTopoOp2.IsKnownSimple = False

 pTopoOp2.Simplify

End Sub

Function Clone(pClone As IClone) As IClone

 Set Clone = pClone.Clone

End Function

Function GetArea(pArea As IArea) As Double

 GetArea = pArea.Area

End Function

Sub CopyColumns(pFBuff As IFeatureBuffer, pInFeat As IFeature)

 ' copy all field values from pInFeat to pFBuff based

 ' on field names. Skip the geometry and non-editable fields

 Dim lOutFld As Long

 For lOutFld = 0 To pFBuff.Fields.FieldCount - 1

 If pFBuff.Fields.Field(lOutFld).Editable Then

 If pFBuff.Fields.Field(lOutFld).Type _

 <> esriFieldTypeGeometry Then

 Dim lInFld As Long

 lInFld = pInFeat.Fields. _

 FindField(pFBuff.Fields.Field(lOutFld).Name)

 If lInFld > -1 Then

 pFBuff.Value(lOutFld) = pInFeat.Value(lInFld)

 End If

 End If

 End If

 Next lOutFld

End Sub

Function MakeField(sName As String, lType As esriFieldType, _

 Optional lLen As Long) As esrigeodatabase.IField

 ' make a new field

 Dim pFldEdit As IFieldEdit

 Set pFldEdit = New esrigeodatabase.Field

 pFldEdit.Name = sName

 pFldEdit.Type = lType

 If lLen > 0 Then

 pFldEdit.Length = lLen

 End If

 Set MakeField = pFldEdit

End Function

Function CreateFC(pInFC As IFeatureClass, sName As String) As IFeatureClass

 '

 ' create a featureclass identical to pInFC and in the

 ' same workspace as pInFC, but named sName

 '

 Dim pFWS As IFeatureWorkspace

 Set pFWS = GetWS(pInFC)

 Dim pDS As IDataset

 On Error Resume Next

 Set pDS = pFWS.OpenFeatureClass(sName)

 If Err.Number = 0 Then

 Debug.Print "deleting " & pDS.Name

 pDS.Delete

 Else

 Err.Clear

 End If

 On Error GoTo EH

 Dim pFldsEdit As IFieldsEdit

 Set pFldsEdit = Clone(pInFC.Fields)

 If pInFC.FindField("PctChange") = -1 Then

 pFldsEdit.AddField MakeField("PctChange", esriFieldTypeDouble)

 End If

 Set CreateFC = pFWS.CreateFeatureClass(sName, pFldsEdit, _

 pInFC.CLSID, Nothing, _

 esriFTSimple, _

 pInFC.ShapeFieldName, "")

 Exit Function

EH:

 MsgBox "error in CreateFC: " & Err.Description & ", " & Err.Number

End Function

Function GetWS(pDS As IDataset) As IWorkspace

 Set GetWS = pDS.Workspace

End Function

_1191419926.ppt

Uses both the buffered field outline polygon file and the well location point file

		Begins by comparing the distance between each pair of wells within a field outline to the average of the two wells’ calculated buffer sizes.

		If that distance </= 2X the average buffer size, the buffers are either just touching or overlapping. Build a trapezoid through both wells that extends to the full diameter of the buffers and then union to the outline (A)

		If the inter-well distance is between 2- 2.5 X the average buffer size, a trapezoid of 1/2 buffer diameter is drawn and unioned to the boundary polygon for that field (B). This thinner union of the wells reflects a higher uncertainty that the field is hydraulically connected in the subsurface within the space between the wells.

		If the inter-well distance > 2.5 X the average buffer, size no trapezoid is drawn and the field outline remains segmented (C).

(A)

Distance between wells Distance between wells
</= 2 X (average buffer size): =2 - 2.5 X (average buffer size):
Draw Full Diameter Trapezoid Draw Half Buffer Diameter Trapezoid
& Union with Buffers & Union with Buffers

Tangent Trapezoid
Smoothing Application
Rules

Wells
Buffer

©)
Distance between wells
> 2.5 X (average buffer size):
Do not Draw Trapezoid

Trapezoids

_1191420464.ppt

This shows an example of a field boundary before and after smoothing via the tangent trapezoid technique.

Note that:

		the concave boundary areas have been filled in

		all but largest interior non-field “islands” have been filled in

		fjord-like indentations in the field boundary are smoothed over

		spaces between multiple polygon “rings” are joined if close enough together

		Single-well buffers that are very far away are left “un-bridged”, and are not smoothed.

		 The ratio of smoothed boundary area to unsmoothed boundary area was calculated to ensure that field area additions were minimized. The mean % increase in field area from unsmoothed to smoothed boundaries was 4.2 percent. Less than 1 percent of all fields exceeded an 8 percent change, and only 0.02 percent of all fields had a 10-14 percent change.

Field Boundary
Before & After Tangent
Trapezoid Smoothing

_1191419186.ppt

These small areas are

probably valid field areas

If included, would result

in a smoother, more

"geologic" - appearing outline

We have always had an issue with details in the appearance of buffered field outlines.

This slide shows the buffered outline for a single field with multiple enclosed polygon “rings” and highlights 4 problems:

		The scalloped or botryoidal (grape cluster- like) appearance of edges

		Small interior areas that get left out of the polygon by buffers that don’t quite overlap

		Small spaces between multiple isolated rings of the overall polygon

		Narrow fjord or inlet-like gaps

We considered these small gaps to be valid parts of the field area and should therefore be included in it. That is the way a geologist or petroleum engineer would subjectively & more smoothly draw the field boundary by hand.

I must admit that amongst our team, I had doubts about the smoothing process. Ugly as they are, it’s obvious they are computer/buffer generated (“Visual metadata”). If you smooth too much and the metadata gets separated, someone might mistake them for “geologic” outlines.

Buffered Field
Outline Issues

Small Interior
Non-field "Islands"

Small Spac

ee
Multiple Po Iyg R gs

