ENERGY
ANALYSIS

Students use graphs of historical data and research historical and societal events to determine and analyze trends in energy.
Teacher Advisory Board

Shelly Baumann, Rockford, MI
Constance Beatty, Kankakee, IL
Sara Brownell, Canyon Country, CA
Amy Constant, Raleigh, NC
Joanne Coons, Clifton Park, NY
Regina Donour, Whitesburg, KY
Darren Fisher, Houston, TX
Deborah Fitton, Cape Light Compact, MA
Linda Fonner, New Martinsville, WV
Melanie Harper, Odessa, TX
Linda Hutton, Kitty Hawk, NC
Barbara Lazar, Albuquerque, NM
Robert Lazar, Albuquerque, NM
Hallie Mills, Bonney Lake, WA
Mollie Mukhamedov, Port St. Lucie, FL
Don Pruett, Sumner, WA
Larry Richards, Eaton, IN
Barry Scott, Stockton, CA
Joanne Spaziano, Cranston, RI
Gina Spencer, Virginia Beach, VA
Tom Spencer, Chesapeake, VA
Nancy Stanley, Pensacola, FL
Scott Sutherland, Providence, RI
Robin Thacker, Henderson, KY
Bob Thompson, Glen Ellyn, IL
Doris Tomas, Rosenberg, TX
Patricia Underwood, Anchorage, AK
Jim Wilkie, Long Beach, CA
Carolyn Wuest, Pensacola, FL
Debby Yerkes, Ohio Energy Project, OH
Wayne Yonkelowitz, Fayetteville, WV

NEED Mission Statement
The mission of the NEED Project is to promote an energy conscious and educated society by creating effective networks of students, educators, business, government and community leaders to design and deliver objective, multi-sided energy education programs.

Teacher Advisory Board Vision Statement
In support of NEED, the national Teacher Advisory Board (TAB) is dedicated to developing and promoting standards-based energy curriculum and training.
TABLE OF CONTENTS

Correlations to National Science Standards 4
Teacher Guide .. 5-6
Energy Flow Transparency Masters 8-15
Energy Measurements ... 16
Energy Flow Explanation ... 16
U.S. Energy Data .. 17
U.S. Energy Timeline .. 18
Sample Graphs ... 19-20
Energy Flow Graphs .. 21-24
Transportation Graphs .. 25-28
Evaluation Form ... 29

FOR A COMPREHENSIVE GLOSSARY OF ENERGY-RELATED TERMS GO TO:

www.eia.doe.gov/glossary/index.html

Energy data come from the Energy Information Administration (EIA) at www.eia.doe.gov. Transportation and vehicle data come from EIA and the Bureau of Transportation Statistics at www.bts.gov.
Correlations to National Science Standards

(Bolded standards are emphasized in the unit.)

INTERMEDIATE (5-8) STANDARD–B: PHYSICAL SCIENCE

3. Transfer of Energy
 a. Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical.
 b. Energy is transferred in many ways.
 g. The sun is the major source of energy for changes on the earth’s surface. The sun loses energy by emitting light. A tiny fraction of that light reaches earth, transferring energy from the sun to the earth. The sun’s energy arrives as light with a range of wavelengths.

INTERMEDIATE–D: EARTH AND SPACE SCIENCE

3. Earth in the Solar System
 b. The sun is the major source of energy for phenomena on the earth’s surface, such as growth of plants, winds, ocean currents, and the water cycle.

INTERMEDIATE–E: SCIENCE AND TECHNOLOGY

2. Understandings about Science and Technology
 c. Technological solutions are temporary and have side effects. Technologies cost, carry risks, and have benefits.

SECONDARY (9-12) STANDARD–F: SCIENCE IN PERSONAL AND SOCIAL PERSPECTIVES

3. Natural Resources
 a. Human populations use resources in the environment to maintain and improve their existence.
 b. The earth does not have infinite resources; increasing human consumption places severe stress on the natural processes that renew some resources, and depletes those resources that cannot be renewed.
 c. Humans use many natural systems as resources. Natural systems have the capacity to reuse waste but that capacity is limited. Natural systems can change to an extent that exceeds the limits of organisms to adapt naturally or humans to adapt technologically.
Teacher Guide

GOAL

TO ENHANCE STUDENTS’ CRITICAL THINKING SKILLS BY RESEARCHING AND ANALYZING HISTORICAL DATA AND EVENTS TO DETERMINE AND EXPLAIN ENERGY TRENDS.

BACKGROUND

Students practice graphing data, research historical events, and analyze the graphs in this guide and the Energy Information Administration’s Energy Perspectives booklet to determine and explain energy trends in the United States during the last 50 years.

TIME

Three to five 45-minute class periods plus outside research and homework.

MATERIALS

- Energy Perspectives booklet (also online at www.eia.doe.gov/emeu/aer/contents.html)
- U.S. history textbook as a resource
- NEED’s Secondary Energy Infobook (individual factsheets are available online at www.need.org)
- Overhead projector

PROCEDURE

Step One—Preparation

- Familiarize yourself with the activity, the U.S. Energy Flow diagram on page 15 (explanation on page 16), and with the graphs in this booklet and the Energy Perspectives booklet.
- Make copies of the graphs you want the students to analyze from this booklet (pages 21-28) and the Energy Perspectives booklet. (You can have all of the students use the same graphs and conduct classroom discussions or assign groups of students to different sets of graphs and have them make presentations to the class.)
- Make copies of the pages you have chosen from NEED’s Secondary Energy Infobook or obtain a class set of infobooks for the students to use by calling NEED at 1-800-875-5029. Individual factsheets are also available online at www.need.org/guides.htm.

Step Two—Introduction: Energy Yesterday, Today and Tomorrow

- Introduce the activity by discussing with the students how energy has been used throughout the history of the United States, the changing energy sources that have been used, the energy sources we use today and the purposes for which they are used, the major historical events that have had an effect on energy, and how the future energy picture might change.
- Use the Energy Flow transparencies and explanation to give an overview of energy consumption and production.
Distribute the **U.S. Energy Timeline** and **U.S. Energy Data** sheets to the students.

Discuss how the students can graphically compare aspects of the data to determine energy trends.

Discuss the historical events listed that have significantly affected the energy trends in the U.S.

Step Three—Graphing Data

- Have the students create graphs in class and as homework to answer the following questions:

 How has per capita consumption of energy changed in the last 50 years?

 How has the percentage of energy we import from other countries changed in the last 50 years?

 How has the mix of energy sources changed in the last 50 years in production and consumption considering fossil fuels, uranium (nuclear) energy and renewable energy sources?

- Check the students’ graphs for accuracy and understanding. Use transparencies of the sample graphs and discuss the answers to the questions.

Step Four—Analyzing Data and Determining Energy Trends (pages 21–28)

- Explain the assignment—the students will analyze the information in the graphs, determine the trends that are implied by the information, and research historical events that may have affected or may affect those trends.

Option One: All Students Analyzing the Same Graphs

- If all of the students are assigned the same graphs, distribute the background information and sets of graphs you have chosen, and have each student write an explanation of the graphs, the trends and the significant historical events. Allow them to begin the assignment in class and give them several days to complete the assignment as homework.

- Discuss the assignment upon completion to develop a consensus within the group.

Option Two: Groups of Students Analyzing Different Sets of Graphs

- If the students are working in groups to analyze different sets of graphs, divide the students into groups and distribute the background information and sets of graphs you have chosen for them to analyze. Explain that each group will prepare a five-minute presentation for the class to explain the graphs, the trends, and the significant historical events. Allow the groups to begin the assignment in class and give them several days to complete the assignment, either as homework or as class work.

- Monitor group work.

- Have each group make its presentation.

- Discuss the assignment upon completion to develop an overall sense of what will happen in the energy sector in the near future and possible events that could have an effect that direction.

Technology Connection

- Have the students conduct web-based research and prepare PowerPoint presentations on one aspect of energy and how its use has changed in the last fifty years.

Step Five—Evaluation

- Evaluate individual and group work according to your own expectations.

- Evaluate the activity with the students using the Evaluation Form on page 29 and send to NEED.
U.S. ENERGY FLOW 2006
PROGRESSIVE
FLOW CHART
PAGES 8-14

COMPLETE FLOW CHART
PAGE 15

FOR A COMPREHENSIVE GLOSSARY OF
ENERGY-RELATED TERMS GO TO:
www.eia.doe.gov/glossary/index.html
*Natural Gas Plant Liquids include petroleum (oil) & propane.
EXPORTS 4.93Q
(Petroleum - 2.79Q & Other - 2.14Q)

FOSSIL FUELS
84.76Q

Coal 22.51Q
Natural Gas 22.43Q
Petroleum 39.76Q

Uranium - 8.21Q

Renewables - 6.84Q
U.S. ENERGY FLOW 2006

PRODUCTION

COAL 23.79Q
NATURAL GAS 19.02Q
CRUDE OIL 10.87Q
NGPL* 2.35Q
URANIUM 8.21Q
RENEWABLES 6.79Q
CRUDE OIL & PRODUCTS 29.03Q
OTHER 5.46Q

DOMESTIC PRODUCTION 71.03Q
FOSSIL FUELS 56.03Q

TOTAL SUPPLY 104.80Q

IMPORTS 34.49Q

FOSSIL FUELS 84.76Q
Coal 22.51Q
Natural Gas 22.43Q
Petroleum 39.76Q

TOTAL DEMAND 99.87Q
Uranium - 8.21Q
Renewables - 6.84Q
Adjustments 0.72Q

EXPORTS 4.93Q
(Petroleum - 2.79Q & Other - 2.14Q)

CONSUMPTION

RESIDENTIAL 21.05Q
COMMERCIAL 18.00Q
INDUSTRIAL 32.43Q
TRANSPORTATION 28.40Q

*Natural Gas Plant Liquids include liquefied petroleum gases & propane.
ENERGY MEASUREMENTS

1 cal = Calorie—a measure of heat energy—the amount of heat energy needed to raise the temperature of one gram of water by one degree Celsius.

1 cal = 4.187 joules

1 Btu = British thermal unit—a measure of heat energy—the amount of heat energy needed to raise the temperature of one pound of water by one degree Fahrenheit. One Btu is approximately the amount of energy released by the burning of one wooden kitchen match.

1 Btu = 1,054 joules
1 Btu = 252 calories
1 Q = Quad—1 quadrillion Btu. Quads are used to measure very large quantities of energy. The U.S. uses one quad of energy about every 3.7 days.

1 therm = 100,000 Btu; approximately the amount of heat energy in one CCF of natural gas.

1 kWh = Kilowatt-hour—one kilowatt of electricity over one hour. One kilowatt-hour of electricity is the amount of energy it takes to burn a 100 watt light bulb for 10 hours. The average cost of one kilowatt-hour of electricity for residential customers in the U.S. is about nine cents.

1 kWh = 3.6 million joules (3.6 MJ).
1 kWh = 3,412 Btu

1 CF = Cubic foot—a measure of volume—one CF of natural gas contains about 1,020 Btu.
1 CCF = One hundred cubic feet—one CCF of natural gas contains about one therm of heat energy.
1 MCF = One thousand cubic feet—one MCF of natural gas for residential consumers costs $10–13.

ENERGY FLOW DIAGRAM EXPLANATION

The left side of the diagram shows energy production by source (supply) and imports figures for 2006 in the U.S.: The top four on the list—coal, natural gas, crude oil, and NGPL—are fossil fuels that provided 56.03 quads of energy. Uranium (nuclear) produced 8.21 quads of energy. Renewables (solar, wind, hydropower, geothermal, and biomass) produced 6.79 quads of energy. The bottom two show imports—mostly crude oil and petroleum products that produced 29.03 quads of energy, while all other imported energy produced 5.46 quads of energy. The adjustment figure is a ‘balancing’ figure so that both sides of the graph are equal and includes uncounted inputs. The diagram shows that most of 2006 U.S. energy supply came from fossil fuels and that the U.S. imported 33% of its total energy supply.

The right side of the diagram shows energy consumption figures by energy source and sector of the economy: The U.S. exported 4.93 quads of energy in 2006. The residential sector (homes) consumed 21.05 quads of energy or 21.1% of total energy consumption. The commercial sector (businesses) consumed 18.00 quads of energy or 18.0% of total energy consumption. The industrial sector (manufacturing) consumed 32.43 quads of energy or 32.5% of total energy consumption. The transportation sector (vehicles) consumed 28.40 quads of energy or 28.4% of total energy consumption.
U.S. Historical Energy Data

Basic Energy Information

<table>
<thead>
<tr>
<th>DATE</th>
<th>POPULATION</th>
<th>PRODUCTION (in quads)</th>
<th>CONSUMPTION (in quads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>151,326,000</td>
<td>35.6</td>
<td>34.6</td>
</tr>
<tr>
<td>1960</td>
<td>179,323,000</td>
<td>42.8</td>
<td>45.1</td>
</tr>
<tr>
<td>1970</td>
<td>203,302,000</td>
<td>63.5</td>
<td>67.8</td>
</tr>
<tr>
<td>1980</td>
<td>226,542,000</td>
<td>67.2</td>
<td>78.3</td>
</tr>
<tr>
<td>1990</td>
<td>248,422,000</td>
<td>70.7</td>
<td>84.6</td>
</tr>
<tr>
<td>2000</td>
<td>281,422,000</td>
<td>71.2</td>
<td>98.9</td>
</tr>
<tr>
<td>2006</td>
<td>299,398,000</td>
<td>71.0</td>
<td>99.9</td>
</tr>
</tbody>
</table>

Energy Production by Source (in quads)

<table>
<thead>
<tr>
<th>DATE</th>
<th>COAL</th>
<th>NATURAL GAS</th>
<th>PROPANE</th>
<th>PETROLEUM (OIL)</th>
<th>URANIUM (NUCLEAR)</th>
<th>RENEWABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>14.1</td>
<td>6.2</td>
<td>0.4</td>
<td>11.9</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>1960</td>
<td>10.8</td>
<td>12.7</td>
<td>0.8</td>
<td>15.6</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>1970</td>
<td>14.6</td>
<td>21.7</td>
<td>1.2</td>
<td>21.7</td>
<td>0.2</td>
<td>4.1</td>
</tr>
<tr>
<td>1980</td>
<td>18.6</td>
<td>19.9</td>
<td>1.4</td>
<td>19.1</td>
<td>2.7</td>
<td>5.5</td>
</tr>
<tr>
<td>1990</td>
<td>22.5</td>
<td>18.3</td>
<td>1.2</td>
<td>16.5</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>2000</td>
<td>22.6</td>
<td>19.7</td>
<td>1.9</td>
<td>12.9</td>
<td>7.9</td>
<td>6.2</td>
</tr>
<tr>
<td>2006</td>
<td>23.8</td>
<td>19.0</td>
<td>1.8</td>
<td>11.4</td>
<td>8.2</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Energy Consumption by Source (in quads)

<table>
<thead>
<tr>
<th>DATE</th>
<th>COAL</th>
<th>NATURAL GAS</th>
<th>PROPANE</th>
<th>PETROLEUM (OIL)</th>
<th>URANIUM (NUCLEAR)</th>
<th>RENEWABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>12.3</td>
<td>6.0</td>
<td>0.3</td>
<td>13.0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>1960</td>
<td>9.8</td>
<td>12.4</td>
<td>0.7</td>
<td>19.3</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>1970</td>
<td>12.3</td>
<td>21.8</td>
<td>1.1</td>
<td>28.3</td>
<td>0.2</td>
<td>4.1</td>
</tr>
<tr>
<td>1980</td>
<td>15.4</td>
<td>20.4</td>
<td>1.3</td>
<td>33.0</td>
<td>2.7</td>
<td>5.5</td>
</tr>
<tr>
<td>1990</td>
<td>19.2</td>
<td>19.7</td>
<td>1.1</td>
<td>32.4</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>2000</td>
<td>22.6</td>
<td>24.0</td>
<td>1.8</td>
<td>36.4</td>
<td>7.9</td>
<td>6.2</td>
</tr>
<tr>
<td>2006</td>
<td>22.6</td>
<td>21.6</td>
<td>1.9</td>
<td>38.8</td>
<td>8.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Year</td>
<td>Event</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>First atomic reactor to produce power began operation in Idaho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>Demonstration of a solar cell by Bell Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>Atomic Energy Act enacted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>First coal pipeline constructed to move mixture of coal and water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>First nuclear power plant began operation in Pennsylvania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>First fuel cell designed to produce electricity from hydrogen and oxygen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>OPEC - Organization of Petroleum Exporting Countries - established to control oil production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>First geothermal power plant began operation in California</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>Fuel cells were used in the space program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>Recycling program started for aluminum cans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>Short-lived Arab oil embargo to protest Six Day War</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>Wild and Scenic Rivers Act enacted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>Oil discovered on Alaska's North Slope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>Environmental Protection Agency created</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>First waste-to-energy plant began operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>Arab oil embargo to protest Arab/Israeli War</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>Gasoline rationing began</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>Plastic bottles began to replace glass; plastic recycling began</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>55 mile per hour speed limits imposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>Arab oil embargo lifted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>Electric Vehicle Act enacted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>Trans-Alaska oil pipeline opened</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>Strategic Petroleum Reserve began</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>Department of Energy created</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>National Energy Act and PURPA (Public Utility Regulatory Policies Act) enacted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>Iranian Revolution shut down oil exports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>Nuclear accident occurred at Three Mile Island Nuclear Power Plant in Pennsylvania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>OPEC raised crude oil prices—oil prices triple between January 1979 and September 1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>President Carter announced effort to reduce dependence on foreign oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>First solar photovoltaic (PV) power plant opened in Utah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>Price controls ended on crude oil and petroleum products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>First solar-thermal power plant opened in California</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>OPEC lowered price of crude oil for first time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>Vertical-blade turbine began producing electricity in Hawaii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>Exxon Valdez oil tanker spilled 240,000 barrels of crude oil in Alaska's Prince William Sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>Shippingport Atomic Power Station decommissioned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>High efficiency PV cells developed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>Iraq invaded Kuwait causing crude oil price increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Electric utility deregulation began</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Invasion of Iraq disrupted crude oil supplies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Major electricity blackout occurred in the Northeast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>Oil prices reach new high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
U.S. PRODUCTION BY ENERGY SOURCE

U.S. CONSUMPTION BY ENERGY SOURCE
U.S. COAL FLOW 2006

PRODUCTION —— In million short tons —— CONSUMPTION
U.S. NATURAL GAS FLOW 2006

PRODUCTION ——— In trillion cubic feet ——— CONSUMPTION
U.S. PETROLEUM (OIL) FLOW 2006

PRODUCTION -> CONSUMPTION

In million barrels per day
MOTOR VEHICLE MILEAGE

Miles per Vehicle in Thousands

- Vans, Pickups, SUVs
- Trucks
- Passenger Cars

*Included in trucks until 1970

© 2007 THE NEED PROJECT • P.O. BOX 10101 • MANASSAS, VA 20108 • 1-800-875-5029 Energy Analysis PAGE 27
MOTOR VEHICLE FUEL ECONOMY

- Passenger Cars
- Vans, Pickups, SUVs*
- Trucks

*Included in Trucks until 1970
ENERGY ANALYSIS
Evaluation Form

State: ___________ Grade Level: ___________ Number of Students: ___________

1. Did you conduct the entire activity? Yes No
2. Were the instructions clear and easy to follow? Yes No
3. Did the activity meet your academic objectives? Yes No
4. Was the activity age appropriate? Yes No
5. Were the allotted times sufficient to conduct the activity? Yes No
6. Was the activity easy to use? Yes No
7. Was the preparation required acceptable for the activity? Yes No
8. Were the students interested and motivated? Yes No
9. Was the energy knowledge content age appropriate? Yes No
10. Would you use the activity again? Yes No

How would you rate the activity overall (excellent, good, fair, poor)?

How would your students rate the activity overall (excellent, good, fair, poor)?

What would make the activity more useful to you?

Other Comments:

Please fax or mail to:

NEED Project
PO Box 10101
Manassas, VA 20108
FAX: 1-800-847-1820