

Estimation of Carbon Dioxide Emissions in the *Short-Term Energy Outlook*

Introduction

Energy-related carbon dioxide (CO₂) emissions account for about 98 percent of U.S. CO₂ emissions (EIA, <u>Emissions of Greenhouse Gases Report</u>). The vast majority of CO₂ emissions come from fossil fuel combustion (coal, natural gas, and petroleum), with small amounts from the nonfuel use of energy inputs, and emissions from electricity generation using non-biogenic municipal solid waste and geothermal energy. Other sources include emissions from industrial processes, such as cement and limestone production.¹

The EIA <u>Short-Term Energy Outlook</u> (STEO) is a monthly forecast of energy supply, consumption, and prices that looks forward from 12 to 24 months (every January the outlook is extended through December of the following year). The STEO provides a history and forecast of CO₂ emissions from the consumption of the three fossil fuels: coal, natural gas, and petroleum. The historical and projected CO₂ emissions are available as monthly, quarterly, and annual data series from either the STEO <u>Table</u> <u>9a. U.S. Energy Indicators</u> or from the STEO <u>Custom Table Builder</u>². Long-term forecasts of CO₂ emissions are available in the EIA <u>Annual Energy Outlook</u>. The short-term forecasts for CO₂ emissions are calculated from the STEO projections of fossil fuel consumption and estimated conversion factors of CO₂ emissions per unit of fuel consumed calculated from the historical <u>Monthly Energy Review</u> (MER) database and the <u>Emissions of Greenhouse Gases Report</u>.

Forecast Procedures

STEO CO₂ emission projections are based on STEO projections of fossil fuel consumed (in quadrillion Btu) and calculated CO₂ emissions factors (million metric tons CO₂ emissions per quadrillion Btu fuel consumed). The calculated CO₂ emissions factors are based on historical emissions and consumption reported in the

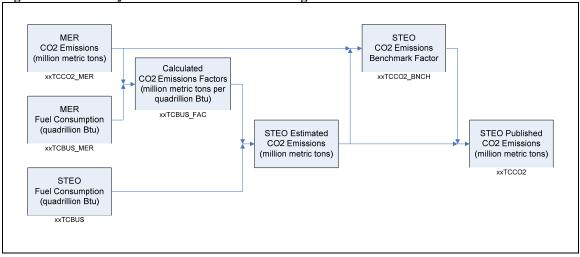
¹ For a more detailed explanation of the calculation of anthropogenic CO₂ emissions refer to EIA Documentation for Emissions of Greenhouse Gases in the United States 2006.

² The historical monthly CO₂ emissions in the *STEO* database are from the EIA <u>Monthly Energy</u> <u>Review</u> (MER). The monthly MER data are benchmarked to the annual <u>Emissions of Greenhouse</u> <u>Gases</u> report. The MER will begin publishing monthly emissions in August 2009.

MER. The historical MER data, in turn, are benchmarked to the annual *Emissions of Greenhouse Gases* report.

The *STEO* may not exactly reproduce the *MER* energy consumption and CO₂ emissions history because *STEO* projects some fuel consumption at a more aggregated level and can not account for differences in nonfuel use. For example, the *STEO* does not disaggregate total petrochemical feedstock into naphtha feedstock and gas oil feedstock, which is necessary for accurate CO₂ emissions accounting. Consequently a benchmarking procedure is used to scale forecast CO₂ emissions calculated by the *STEO* model up or down based on a benchmark factor calculated from the most recent 12 months of CO₂ emissions history published in the *MER*, by dividing the *MER* emissions by the *STEO* calculated emissions. A summary of annual average CO₂ emission benchmarking factors is provided in Table 1.

Table 1. STEO CO₂ Emission Benchmarking Factors


	Natural Gas	Petroleum	Coal
1994	1.0053	1.0009	0.9980
1995	1.0069	1.0009	0.9996
1996	1.0077	1.0009	0.9989
1997	1.0110	1.0009	1.0002
1998	1.0078	1.0009	0.9990
1999	1.0050	1.0009	0.9973
2000	0.9985	1.0009	1.0039
2001	1.0011	1.0009	1.0049
2002	1.0104	1.0009	1.0081
2003	1.0121	1.0009	1.0074
2004	0.9967	1.0009	1.0081
2005	1.0027	1.0009	1.0001
2006	0.9988	1.0006	1.0046
2007	1.0015	1.0007	1.0036
Source: EIA, Short-Term Energy Outlook, August 2009.			

Detailed Methodology

A flow chart of the *STEO* procedure for calculating CO₂ emissions is shown in Figure 1, followed by details of the calculation procedures.

2

Figure 1. STEO CO₂ Emission Calculation Flow Diagram

1. Download two variables (fuel consumption and CO₂ emissions) for each of 23 fuels from the historical *MER* database:

xxTCCO2_MER = CO₂ emissions from fuel xx, million metric tons per month xxTCBUS_MER = Fuel xx consumed, quadrillion Btu per month

where xx is:

AB = Aviation gasoline blending components

AR = Asphalt and road oil

AV = Aviation gasoline blend components

BD = biodiesel

CL = Coal

DF = Distillate fuel oil

EO = Fuel ethanol

FE = Petrochemical feedstocks

JF = Jet fuel

KS = Kerosene

LG = Liquefied petroleum gas

LU = Lubricating oil

MB = Motor gasoline blending components

MG = finished motor gasoline

MS = Miscellaneous petroleum products

NG = Natural Gas

PC = Petroleum coke

PP = Pentanes plus

RF = Residual fuel oil

SG = Still gas

SN = Special naphthas

UO = Unfinished oils

WX = Waxes

2. Calculate historical CO₂ emission conversion factors³ by dividing monthly total CO₂ emissions (million metric tons) by total product consumption (quadrillion Btu) reported in the *MER*.

```
xxTCCO2_FAC = xxTCCO2_MER / xxTCBUS_MER
```

xxTCCO2_FAC = annual average CO₂ emission factor for fuel xx, million metric tons CO₂/quadrillion Btu fuel consumed

The CO₂ emission conversion factors from the most recent full year of historical data are used through the forecast.

3. Estimate historical CO₂ emissions from the *STEO* database using the calculated historical CO₂ emission conversion factors and *STEO* estimates of total fuel consumed:

```
xxTCCO2 = xxTCBUS * xxTCCO2_FAC
```

xxTCCO2 = STEO estimate of CO2 emissions from fuel xx, million metric tons per month

4. Calculate *MER*-to-*STEO* CO₂ emission benchmark factors (shown through 2007 in Table 1), which are equal to the CO₂ emission reported by the MER divided by the CO₂ emissions estimated from the STEO model:

```
xxTCCO2_BNCH = xxTCCO2_MER / xxTCCO2

xxTCCO2_BNCH = MER-to-STEO CO2 emission benchmark factor for fuel xx
```

5. Extend the historical *MER*-to-*STEO* CO₂ emission benchmark factors over the forecast period using a 12-month moving average:

```
xxTCCO2\_BNCH = @MOVAV(xxTCCO2\_BNCH , 12) xxTCCO2\_BNCH = forecast of \textit{MER-to-STEO} CO_2 emission benchmark factor for fuel xx \\ @MOVAV(..) = moving average of previous 12 months
```

6. Replace the estimated historical CO₂ emissions in the STEO database with values reported in the *MER*:

```
xxTCCO2 = xxTCCO2\_MER
```

7. Forecast CO₂ emissions based on STEO forecasts of fuel consumption, the CO₂ emission conversion factors, and the *MER*-to-*STEO* CO₂ emission benchmark factors:

-

³ The calculated *STEO* CO₂ emission conversion factors are not the same as carbon or CO₂ emissions coefficients. The calculated *STEO* factors may include an adjustment for non-fuel use depending on the fuel.

xxTCCO2 = (xxTCBUS * xxTCCO2_FAC) * xxTCCO2_BNCH

xxTCCO2 = STEO estimate of CO2 emissions from fuel xx, million metric tons
xxTCBUS = STEO estimate of total fuel xx consumed, quadrillion Btu
xxTCCO2_FAC = CO2 emission factor for fuel xx, million metric tons CO2/quadrillion Btu
fuel
xxTCCO2_BNCH = MER-to-STEO emission benchmark factor for fuel xx

Total petroleum emissions are calculated as the sum of the individual petroleum fuels.

Energy Information Administration/Short-Term Energy Outlook Model Documentation — August 2009