Electricity Demand modelling and projections in Europe combining the advantages of macro-economic and technology-oriented models by hard links

Dr. Felipe Toro, Andrea Herbst, Dr. Felix Reitze, Prof. Dr. Eberhard Jochem
Overview presentation

- Current EU-Wide context for Electricity Demand
- Overview of Modelling Approaches and FORECAST FC4 Platform
- Hybrid Modelling Approach and Challenges
- The case of Steel Modelling and TRANSFORM/MATEFF/IMPULSE Module
- Results for:
 - Steel Modelling
 - Energy and Electricity Demand Projections in EU
- Conclusion - Discussion
EU-Context: current Energy Efficiency objectives must fulfill long term requirements across different sectors

- The EU Energy Roadmap, published in 2011 by the EU Commission, serves as a basis for discussion for the future energy and climate policy in EU until 2050.
- All sectors must contribute to the Emissions Reduction Objective of -85% compared to the 1990 levels.
- The new Energy Efficiency Objectives in the framework of the Directive require actions from electricity consumers and producers
- The role of Energy Efficiency is until now insufficiently analysed
- Electricity is highly probable to be the most important energy carrier in 2050
- Energy Efficiency influences significantly in which way the electricity sector must be reorganized

EU Context: Electricity Demand will **continue to increase** in case, if not handled.

Table:

<table>
<thead>
<tr>
<th>EU27</th>
<th>Total 2008</th>
<th>2003 vs. 2008</th>
<th>Relative change 2008-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Energy</td>
<td>1800 Mtoe</td>
<td>±0.0%</td>
<td>REF -2.0%</td>
</tr>
<tr>
<td>Final Energy</td>
<td>1160 Mtoe</td>
<td>+0.3%</td>
<td>REF +5%</td>
</tr>
<tr>
<td>Electricity Demand</td>
<td>2860 TWh</td>
<td>+7.0%</td>
<td>REF +44%</td>
</tr>
</tbody>
</table>
Combining aspects from both Top-Down and technology-based bottom-up simulations for Electricity Demand and Energy Efficiency Potentials

TOP-DOWN MODEL
- economy as a whole
- aggregated effects

- Macroeconomic model

HYBRID MODEL SYSTEM
- Econometric models
- System-dynamic models
- General equilibrium models
- Input-output models

TRANSFORM/MATEFF/IMPULSE
- Technology-oriented model
- sector- and process level
- technological detail

BOTTOM-UP MODEL
- Optimisation models
- Multi-agent models
- Accounting models
- Simulation models

Source: Herbst et al. 2012a, 2012b
A technology-based bottom-up modelling platform for electricity and energy demand simulation and energy efficiency potentials

Definition Scenario
Assumptions GDP, energy carrier wholesale-prices, population, policy intensity

FORECAST Macro
Gross value added, physical production, employment

FORECAST Pricing
Sector specific retail prices, incl. tax legislation

FORECAST
Annual demand

Industry
Branch: Pulp & Paper
Process: Paper
Saving Option: Shoe press

Tertiary
Branch: Finance
Energy service
Saving option: LEDs

Residential
Sub-Modules: Appliances
Technology: Screens
Efficiency Class: LCD

Others
Agriculture
Rail transport
Electric mobility
Others

Results
Energy demand, efficiency & substitution potentials, related Investments, Indicators, GHG emissions

IREES
Institute for Resource Efficiency and Energy Strategies
eLOAD: Simulating hourly electricity demand from annual results for different sectors and electric appliances and processes

FORECAST Macro
Gross value added, physical production, employment, etc.

FORECAST Pricing
Sector specific retail prices

FORECAST
Annual demand results:
Electricity & Fuel Demand, Potentials, Indicators, GHG Emissions

Consideration of structural change
- Load curves, load profiles
- Temperature

eLOAD
Hourly demand

DSM adjustment
- DSM parameters
- Pricing: RTP, TOU, CPP

Results
Hourly demand curve and profiles
Transparent simulation of inter-sectoral and intra-industrial structural change and its influences on future energy and electricity demand

Objectives:

- Linkage of a macro-economic model with a bottom-up model by means of transparent transformation of value added into physical units of production (tons) of energy-intensive products
- Structural changes (foreign trade) and material efficiency & substitution considered

Challenges of the TRANSFORM-module:

- Decoupling of gross value added and physical production development (e.g. quality improvements, additional product-accompanying services)
- Insufficient or no knowledge about process-shifts
- Improvements in material efficiency by design or properties & recycling
- Changes due to material substitution & saturation effects
- Trade effects

Source: Herbst, A., Jochem, E. (2013a) following Jochem et al., 2007&2008; Schade et al., 2009; Fleiter et al. 2013, TEP Energy
STEEL PRODUCTION ROUTES AND SCRAPPAGE AVAILABILITY

Final basic product, distinguishing primary and recycle chains of production

- Traditional metal, energy-intensive, very much quality differentiated, highly traded, stagnating production in Europe since 1979
- Used in construction, vehicle industry, shipbuilding, investment goods and durable goods industries

Basic oxygen furnace route (BOF)

- Primary production
- Raw material: iron ore, coke, gas and raw iron and some steel scrap
- Primary energy consumption three times higher than for secondary production route

Electric arc furnace route (EAF)

- Secondary production
- Raw material: steel scrap

Apparent Steel Use (ASU)

- Steel production minus exports of finished steel and foreign trade of steel products
- per capita ASU declining since 1979 (except Italy)
Steel Material Flow Analysis – Highly Complex and Data Demanding Simulation and Modelling

Steel production (crude steel to semi- and finished products)

Oxygen
Electricity
Natural gas
Iron ore, sinter
Coke

Converter
BOF
EAF

Steel scrap
Prompt scrap
Post-use scrap
Home scrap

Steel good manufacture (asu)

Exports of finished steel
Imports of steel goods
Export of steel goods
Imports of finished steel

Scrap export
Scrap import

Results reflect **stagnation in total steel production**, slight increases in post-use **recycling rates** further increase the share of electric steel (the basis of this projection is high economic growth in Europe)

- **Electric steel production** follows rather different pathways:
 - stagnation/decrease in Italy after 2025; France little increases; United Kingdom continues historic trends; Total steel use (TSU) dominates German results (stagnation in oxygen steel and increase in electric steel)
 - In less favourable economic growth scenarios, Europe has to face surplus production capacity particularly in oxygen steel production

Source: Herbst et al. (2014)
A STABILIZATION OF THE ELECTRICITY DEMAND IN EUROPE TO THE PRESENT LEVELS IS POSSIBLE

Assumptions

- Baseline from EU official source PRIMES
- Almost 70 TWh correspond to heat pumps in households and services sectors (12% all European Households)
- 60 TWh correspond to ca. 23 Mio. E-Cars (8% of Pass. Car Stock)
- On the contrary: the electrification of 66% of the complete passenger car stock would require an additional of 260 TWh

Gross electricity demand and efficiency potentials

Source: Fraunhofer ISI on behalf of Federal Environmental Ministry, 2012
INDUSTRIAL ENERGY AND ELECTRICITY DEMAND CAN BE REDUCED BY 52% IN 2050

- Baseline from EU official source PRIMES grows 17% compared to 2008.
- Final energy demand reduction potential of 52% compared to baseline.
- 75% efficiency increase from cross-cutting technologies.
- Cost savings in 2050 amount to 102 billion Euros (€2005).

Source: Fraunhofer ISI on behalf of Federal Environmental Ministry, 2012
Conclusions

- The design of a bridge between macro-economic and technology-oriented energy demand models combines the advantages of both model types. However,
 - the econometric analysis is cumbersome and data-intensive,
 - future structural and technology changes may vary the coefficients of those equations
 - energy-intensive basic products: effects of material efficiency & substitution, and recycling, changes in foreign trade have to be looked at from a material flow perspective
- Future electricity demand should be clearly separated in effects of electricity efficiency, structural changes, and additional electricity demand due to new electricity applications.
- Future electricity demand of Europe is likely to stagnate in the next decades. Electricity efficiency and structural change to less energy-intensive branches may fully compensate effects of additional electricity applications and growth effects.
- Load shaping and shifting by DMS will be one of several strategies to make the transition to renewables in the coming decades a success story, as electricity use has to follow the electricity supply in the long term, opposite to present supply patterns.
Thank you for your attention!

Dr. Felipe Andres TORO, PhD & MBA
Tel.: +49 721 9152636 -21
Mail: f.toro@irees.de

Research Areas
• Modelling Electricity and Energy Demand and simulation of the diffusion of Energy Technologies in Industry, Services and Transport sectors
• Barriers for Energy Efficiency Technologies in Industry and Services and development of Strategies, Policy Instruments and promoting factors
• Techno-Economic Potential Analysis and Cost-Benefit for industrial Co-Generation and Renewable Energies
• Modelling of Energy and Material Efficiency in energy intensive industries based on scenario assumption and frameworks
• Energy Policy, Economics and Climate Policy

IREES GmbH
Schönfeldstraße 8, 76131 Karlsruhe, Deutschland
www.irees.de
References

Examples of energy projections and policy advice of FORECAST/eLOAD

European Commission
- Energy saving potentials in all sectors until 2030 (http://www.eepotential.eu)
- Long-term climate mitigation scenarios for the EU (www.adamproject.eu)
- European Institute of Technology: “Case studies of the EU energy system in 2050” (www.esa2.eu)

National governmental institutions
- Long-term climate policy scenarios for Germany (http://www.umweltbundesamt.de/uba-info-medien/4412.html)
- Saving potentials and costs in German energy-intensive industry (http://publica.fraunhofer.de/dokumente/N-214110.html)
- Support of integrated heating and cooling strategy

European energy utilities
- Long-term EU electricity demand scenarios in European countries
- Load curves and DSM potentials in European countries
- CHP potentials and structure of heat demand (temperature levels) in Switzerland
- Long-term electricity demand and load curves of the German household sector
- Scenarios for industry demand for EU ETS CO2 certificates (EUAs)
Forecast development:
Common work of the involved four research institutes

- **Fraunhofer Institute for Systems- and Innovation Research (ISI), Karlsruhe**
 - Responsibilities: Coordination, programming, industry sector, household sector, load curves

- **IREES (Institut für Ressourceneffizienz und Energiestrategien), Karlsruhe**
 - Responsibilities: TRANSFORM/MATEFF and support tertiary and industry sectors, agriculture

- **TEP Energy, Zurich**
 - Responsibilities: tertiary sector, programming, load curves
Example: loadcurve in Germany 2010 (left) and 2035 (right)