TIMES modeling for International Electricity Markets

Amit Kanudia

Energy Information Administration, January 15, 2015

Contents

- Role of models in Energy-environment policy
- ETSAP methodology and tools
- Structure of a typical TIMES model
- TIMES formulation
- Using the methodology and tools to gain deep insights
- Engaging people beyond the core team
- TIMES-IEM

Important definitions

- 1. Policy objectives
 - The <u>basic need</u> for which intervention is considered necessary
- 2. Measures and targets
 - Influence the decision-making environment to meet objectives
- 3. Actions
 - New decisions that address #1
 - Some of these can be triggered by #2

Examples of Objectives, Measures and Actions

- 1. Policy objectives
 - Sustainability (reliable energy supply, clean air, climate)
 - Security (Import dependence)
- 2. Measures and targets
 - Taxes & subsidies
 - Renewable portfolio/clean energy standards
 - ETS cap & trade
- 3. Actions
 - Deployment of solar/wind electricity
 - Substitution of high carbon fuels with low/no carbon for space heating
 - Installation of scrubbers in power plants
 - Use of electric vehicles

Modeling for policy formulation

Modeling for policy evaluation

ETSAP methodology and tools

The Energy Technology Systems Analysis Program (ETSAP) is an Implementing Agreement of the International Energy Agency (IEA), first established in 1976. It functions as a consortium of member country teams and invited teams that actively cooperate to establish, maintain, and expand a consistent multi-country energy/economy/environment/engineering (4E) analytical capability.

http://www.iea-etsap.org

ETSAP methodology and tools

ETSAP contracting parties

Active users of ETSAP methodology/tools

Typical TIMES model

TIAM – Reference Energy System

- Input
 - Energy service demands
 - Technologies
 - Resources
 - Various system constraints
 - Policy objectives/measures
- Output
 - investments/capacity/operation of all technologies
 - flows of energy, materials, and emissions
 - marginal values (shadow price) of energy, of CO2
 - imports/exports, extraction
 - demand reductions
 - other mitigation options (CH4, N2O)

TIMES Variables

TIMES Variables

Variables contd.

Associated bound parameters

COM_BNDCON(r,t,c,s,l)

COM BNDNET(r,t,c,s,l)

- Commodity oriented (only created if bound provided):
 - i. VAR_COMPRD(r,t,c,s): total production of a commodity COM_BNDPRD(r,t,c,s,l)
 - ii. VAR_COMCON(r,t,c,s): total consumption of a commodity
 - iii. VAR_COMNET(r,t,c,s): net level of a commodity (production – consumption)
- Blending variables
 - i. VAR_BLND(r,t,ble,opr): amount of blending stock opr needed for the production of blending product ble

TIMES Equations

Basic equations

•	EQ(I)_COMBAL _{r,t,c,s}	Commodity balance
•	EQ_ACTFLO _{r,v,t,p,s}	Definition of activity variable
•	EQ_CAPACT _{r,v,t,p,s}	Utilization constraint
•	EQ_PTRANS _{r,v,t,p,cg1,cg2,s}	Transformation equation
•	EQ(I)_INSHR/OUTSHR	Share constraints on in/output side of process
•	EQ_OBJ	Objective function

Commodity Balance Equation

Process Transformation Equation

- Transformation equations establishes relationship between the flows of two commodity groups.
- Example 1: Efficiency of coal plant ECOASTM000

Definition of the Activity Variable

- Activity of a process equals the sum of the flows specified in the Primary Commodity Group (PRC_ACTUNT).
- Activity variable is created on the timeslice level specified by PRC_TSL.

$$= VAR_ACT_{r,v,t,RFLX00,s} = VAR_FLO_{r,v,t,RFLX00,OILDSL,s} + VAR_FLO_{r,v,t,RFLX00,OILGSL,s}$$

Uwe Remme

Basics of TIMES

Capacity Utilization Equation

Flow Share Equations

- Possibility to limit the share of a commodity flow within a commodity group on the input or output side of a process.
- Example

Objective Function

- Discounted sum of the annual costs minus revenues:
 - + Investment costs
 - + Costs for sunk material during construction time
 - + Variable costs
 - + Fix operating and maintenance costs
 - + Surveillance costs
 - + Decommissioning costs
 - + Taxes
 - Subsidies
 - Recuperation of sunk material
 - Salvage value
- Cost documentation of investments made before the first model year
- Technical and economic lifetime
- Investment and decommissioning lead-times
- General and technology specific discount rate

Basic variables and parameters

Other features

- Grid balancing
 - DC load flow equations
- Residual load approach
 - using deterministic variation parameters that are statistically calibrated outside the model
 - Minimum limits on thermal generation
- Foresight and uncertainty
 - Easy to control the span of optimization window
 - Multi-stage stochastic

Key factors that improve insights

- Sufficient well-grounded detail to realistically represent availability of and access to resource and technology options
 - Geographical sensitivity
 - Installation level representation converts a famous liability of LP into an asset
- Ability to make a large number of runs
- Detailed model + many runs => need for sophisticated results analysis tools

Gaining insights from TIMES models

Key factors addressed

- VEDA allows rule-based specs for rapid building of large models
- Special features to create large number of scenario specs based on a mix of dimensions
- Runs management system (VRQ) that allows multiple computers to perform multiple runs (simultaneously), as per their own resource availability
- VEDAViz and VEDA BE used for results analysis

Large VEDA-TIMES Models

Japan example: Policy formulation Relationships rather than Numbers

kanors

http://vedaviz.com/Index.aspx?vid=162237

Portals can be used to widen engagement

Energy Security and Clean Air scenarios for Indian Power Sector: http://vedaviz.com/Portal/Playground.aspx?p=IMRT23Dec14&g=a24c44

Global electricity scenarios from TIAM-World(EMF27): http://vedaviz.com/Portal/Playground.aspx?p=FEMF27Sep27&g=ec12b8

Self-sufficiency/Climate/Costs tradeoffs for Japan: http://vedaviz.com/Portal/Playground.aspx?p=JMRT-PO01Oct13&g=77f822

IEM based on Country-level data

- Existing, under construction and planned (firm) units (Platts)
 - Easy to maintain
- Efficiency by vintage
 - Age-dependent costs and efficiency with endogenous retirement
- Fuel consumption for electricity generation
 - Determine utilization for base-year calibration
- Electricity demand
 - GDP elasticity for future projection
- Load curves
- Solar/wind/biomass resource
- Fossil supply
 - Trade links (regional)
- International electricity trade links

Data-model independence

- Technology granularity
 - Unit-level Vs model plants (by vintage-fuel)
- Regional representation
 - Country level Vs aggregated regions
 - Regional runs
- Model horizon
 - Full flexibility in number and lengths of periods
- Break into pieces and run in parallel

Possible uses

- National policies
 - Detailed characterization will help accuracy
- Resource potential and demand/load curve detail will help realism
- Model policy objectives for clean air, energy security and carbon abatement

