Storage Futures Study

June 22, 2021

Speakers:
Will Frazier, ReEDS Diurnal Storage Lead Author
NREL is analyzing the rapidly increasing role of energy storage in the electrical grid through 2050.

- “Four Phases” - theoretical framework driving storage deployment
- Techno-Economic Analysis of Storage Technologies
- Deep dive on future costs of distributed and grid batteries
- Various cost-driven grid scenarios to 2050
- Distributed PV + storage adoption analysis
- Grid operational modeling of high-levels of storage
- The Challenge of Defining Long-Duration Energy Storage

One Key Conclusion: Under all scenarios, dramatic growth in grid energy storage is the least cost option.

https://www.nrel.gov/analysis/storage-futures.html
Grid-Scale Diurnal Storage Scenarios

Combinations of these sensitivities are used to create a total of 19 scenarios

Variable Renewable Energy Cost
- Reference Cost
- Low Wind Cost
- High Wind Cost
- Low PV Cost
- High PV Cost

Storage Cost
- Reference Cost
- Low Battery Cost
- High Battery Cost

Natural Gas Price
- Reference NG price
- High NG price
- Low NG price

Transmission cost
- Reference transmission cost
- High transmission cost
Improvements to Storage Representation in ReEDS

7 years of weather and load data for analyzing system reliability

Storage resources are split out by duration to capture the relationship between duration, capacity provision, energy arbitrage, and cost

Dispatch of generation, storage, and transmission simulated for each hour of year to inform investment decisions
Modelled storage deployment in ReEDS

Reference Case

- 12-hour Pumped-Hydro Storage
- 10-hour Battery Storage
- 8-hour Battery Storage
- 6-hour Battery Storage
- 4-hour Battery Storage
- 2-hour Battery Storage

Resource Sensitivity Scenarios

- Low Battery Cost Case
- Reference Case
- High Battery Cost Case
Interaction of Storage and Net Load (2050 in California)

Net load profiles → inform capacity value of storage
Energy price profiles → inform energy time-shifting value of storage
Storage Correlates with PV More than Wind

Peaking capacity potential (GW)
(determined by net load shape)

Energy time-shifting potential (TWh)
(determined by energy price profiles)
Amount of Generation that Goes through Storage

- % of Total Generation Used to Charge Storage
- PV Penetration (%)
- Wind Penetration (%)

- National
- Regional
Transmission Correlates More with Wind
Economic Deployment versus Peaking Capacity Potential

Storage is optimized based on the relationship between:
- capacity value
- energy value
- storage duration
- storage cost & performance
Grid-Scale Diurnal Storage Scenarios

Key Takeaways

- Capacity value drives deployment, but energy arbitrage value is needed to realize optimal deployment.
- Diurnal storage is more synergistic with PV penetration than with wind penetration.
- Significant storage growth (>125 GW) in all scenarios.
- Any storage technology that can meet the cost and performance values used in this paper will be competitive.
Questions and Discussion

https://www.nrel.gov/analysis/storage-futures.html

Encouraging everyone to share/forward NREL outreach on social media

• NREL also posted items on Linkedin, Twitter, etc.