```
Release: February2018
Nex MECS will be filded in 2019 Table 8.3 Number of Estabishments by Usage of Cogeneration Technologies, 2014;
    L Level:National Dats;
    Colum: Usgege whthin Cogenenation Techologies;
```


Released. Febinary 2018
Next M ESC will bef fieded in 20
RSE Table 8.3 Relative Standard Errors for Table 8.3;

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Nalcs code(a) Subsector and industry}} \& \multirow[b]{2}{*}{Estabishments(b)} \& \multirow[b]{2}{*}{\[
\begin{array}{r}
\text { Establishments with } \\
\text { Any Cogeneration } \\
\text { Technology in Use(c) }
\end{array}
\]} \& \multicolumn{3}{|l|}{Steam Turbines Supplied by Either Conventional or Fluidized
Bed Boilers} \& \multicolumn{3}{|l|}{Conventional Combusion Turbines with Heat Recovery} \& \multicolumn{3}{|l|}{Combined.Cycte Combusion Turbines} \& \multicolumn{3}{|l|}{Interal Combusion Engines with Heat Recovery} \& \multicolumn{3}{|l|}{Steam Turbines Supplied by Heat Recovered from High-Temperature Processes} \\
\hline \& \& \& \& In Use(d) \& Not in Use(e) \& Don't Know \& In Use(d) \& \[
\begin{aligned}
\& \text { Nust in } \\
\& \text { Usele }
\end{aligned}
\] \& Don't Know \& In Use(d) \& Not in Use(e) \& Don't Know \& In Use(d) \& Not in Use(e) \& Don't Know \& In Use(d) \& Noti inse(e) \& Don't Know \\
\hline \multicolumn{19}{|c|}{Total United States} \\
\hline 311 \& food \& 0.0 \& 9.0 \& 6.7 \& 3.0 \& 12.8 \& 17.2 \& 3.2 \& 12.3 \& 15.3 \& 3.0 \& 12.4 \& 20.2 \& \({ }^{3} 1\) \& 12.5 \& 19.2 \& 3.1 \& \\
\hline \({ }^{3112}\) \& Grain mand Oiseed miling \& 0.0 \& \({ }_{11,4}\) \& 15.1 \& 3.9 \& 21.0 \& 94 \& \({ }_{4}^{4.1}\) \& 20.0 \& 11.0 \& 4.0 \& 20.5 \& \({ }_{13,1}^{13}\) \& 4.1 \& 203 \& 45.6 \& 4.0 \& \\
\hline \({ }_{-31131}^{312121}\) \& Weet Corn Miling \({ }_{\text {Sugar }}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0.1}^{0.0}\) \& \(\frac{0.0}{0.1}\) \& \({ }_{0.1}^{0.0}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0.1}^{0.0}\) \& 0.0
0.1 \& \({ }_{0}^{0.0}\) \& \(\frac{0.0}{x}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0.1}^{0.0}\) \& \({ }^{\text {x }}\) \& \& \& \& \& \\
\hline 3114 \& Fruit and Vegeetilie Preserving and Speciliv Food \& 0.0 \& 14.2 \& \& 5.9 \& 23.7 \& 44.0 \& 5.8 \& 22.7 \& 9.2 \& 6.3 \& 21.8 \& \& 5.8 \& 23.0 \& 9.2 \& 5.0 \& \({ }_{23,6}\) \\
\hline \& \& 0.0 \& 25.2 \& 39.1 \& \& \& \& \& \& 39.4 \& 4.7 \& 19.7 \& \& 5.3 \& 18.2 \& \({ }_{41.7}\) \& 4.8 \& \\
\hline \& Animal Sluighteiein and Proceessing \& 0.0 \& \({ }^{415}\) \& - \& 4.9 \& 22.6 \& 82. \& 4.9 \& \& \& 35 \& 19.7 \& 49.0 \& 5.0 \& 20.6 \& 15.5 \& 4.9 \& \\
\hline 312 \& Beverage and Tobacco products \& 0.0 \& 9.3 \& 4.9 \& 4.5 \& 17.6 \& 7.0 \& 4.6 \& 17.4 \& 7.0 \& 4.9 \& 16.6 \& 13.6 \& 4.8 \& 170 \& 7.0 \& 4.7 \& 17.2 \\
\hline 3121 \& Beverages \& 0.0 \& 10.6 \& 7.0 \& \({ }^{4.6}\) \& 18.0 \& 7.0 \& 4.7 \& 17.8 \& 7.0 \& 5.1 \& 16.9 \& 13.6 \& 5.0 \& 17.4 \& 7.0 \& 4.9 \& 17.5 \\
\hline \({ }_{313}^{3122}\) \& Trexicem \& \(\stackrel{0.0}{0.0}\) \& \({ }_{84.1}^{0.1}\) \& \({ }_{9} 9.14\) \& \({ }_{3.1}^{0.1}\) \& \({ }^{0.1}\) \& \({ }_{13.4}{ }^{\text {x }}\) \& \({ }_{4}^{0.1}\) \& \begin{tabular}{l}
0.1 \\
\hline
\end{tabular} \& \({ }_{-}^{\text {x }}\) \& 0.1
3.1 \& \({ }_{38.9}\) \& \({ }_{9}{ }^{\text {x }}\) \& \begin{tabular}{l}
0.1 \\
3.5 \\
\hline
\end{tabular} \& \({ }_{35.1}^{0.1}\) \& \({ }_{-}^{x}\) \& \({ }_{4}^{0.1}\) \& \({ }^{0.1}\) \\
\hline \({ }^{314}\) \& Textie Product mils \& 0.0 \& 16.9 \& 16.9 \& 7.5 \& 61.1 \& x \& 9.4 \& 50.3 \& \(\times\) \& 75 \& 61.3 \& \({ }^{\text {x }}\) \& 7.5 \& 60.7 \& \(\times\) \& 75 \& 61.1 \\
\hline 315 \& Apparel \& 0.0 \& \& \& 21.1 \& \& \& \& \& \({ }^{\text {x }}\) \& \& \& \({ }^{1}\) \& 26.3 \& 327 \& \(\times\) \& \& \\
\hline 316
321 \& Leathe and Allied Products \& \(\stackrel{0.0}{0.0}\) \& 14.6
46.4 \& \({ }_{4}^{\times 8}\) \& -17 \& - \begin{tabular}{l}
31.3 \\
14.6 \\
\hline
\end{tabular} \& \({ }_{66.4}{ }^{\text {x }}\) \& \begin{tabular}{l}
2.9 \\
3.4 \\
\hline 1
\end{tabular} \& \begin{tabular}{c}
37.2 \\
13.0 \\
\hline 1
\end{tabular} \& \({ }_{973}{ }^{\text {x }}\) \& \({ }_{3}^{1.6}\) \& \({ }_{\substack{34.4 \\ 13.0}}^{1.0}\) \& - 14.6 \& \({ }_{3}^{1.7}\) \& \begin{tabular}{l}
31.5 \\
129 \\
\hline 12.9
\end{tabular} \& \({ }_{5}{ }_{5}{ }^{\text {x }}\) \& \begin{tabular}{l}
1.7 \\
29 \\
\hline 18
\end{tabular} \& \\
\hline 321113 \& Sawnils \& 0.0 \& 6.2 \& 5.5 \& 3.3 \& 13.1 \& 5.5 \& 3.6 \& 12.9 \& 5.5 \& 3.2 \& 12.6 \& 15.3 \& \({ }_{3.1}^{3.1}\) \& 12.4 \& 5.5 \& 3.1 \& 12.8 \\
\hline 3212 \& Veneer, Plywood, and Engineered Woods \& 0.0 \& 10.9 \& 9.4 \& 5.8 \& 29.1 \& 177 \& 6.1 \& 26.0 \& x \& 6.1 \& \({ }^{25.7}\) \& 17.7 \& 6.1 \& 26.5 \& 10.3 \& 6.0 \& 27.9 \\
\hline \& Reconstuted Wood Products \& 0.0 \& 17.7 \& 177 \& 1.6 \& 22.5 \& 177 \& 1.0 \& \({ }_{\text {17, }}^{178}\) \& x \& 0.7 \& \({ }_{178}^{177}\) \& \({ }^{177}\) \& 1.0 \& 177 \& 17.7 \& 0.8 \& \\
\hline 3219 \& Ofine Wood Products \& 0.0 \& 68.3 \& \& \& 20.3 \& \& \& \& 993 \& 4.8 \& \& \& 4.8 \& 178 \& \& \& \\
\hline 322 \& Paper \& 0.0 \& 2.8 \& 0.2 \& 5.0 \& 40.4 \& 13.9 \& 5.5 \& 37.7 \& 0.1 \& 4.8 \& 39.9 \& 0.1 \& 4.9 \& 37.1 \& 0.0 \& 4.8 \& \\
\hline -322110 \& \({ }^{\text {Puip milis }}\) \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& x \& 0.0 \& 0.0 \& \& \& 0.0 \& \({ }^{\text {x }}\) \& \(x\) \& 0.0 \& \& 0.0 \& 0.0 \& \\
\hline - 322121 \& Paper Mils, except Newsprint \& 0.0 \& 0.1
0.0 \& \(\frac{0.1}{0.0}\) \& \({ }_{0}^{0.1}\) \& \({ }_{0}^{0.1}\) \& 0.1 \& 0.1
0.0 \& 0.1 \& \({ }_{0}^{0.1}\) \& 0.1
0.0 \& \({ }_{0}^{0.1}\) \& \(\stackrel{0}{0}\) \& \({ }_{0}^{0.1}\) \& 0.1 \& 0.0 \& . 0.1 \& \({ }_{0}^{0.1}\) \\
\hline \(-322130\) \& Papertoard Milis \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& \({ }_{0}^{0.0}\) \& 0.0 \& 0.0
0.0 \& \({ }_{0.0}^{0.0}\) \& 0.0 \& 0.0 \& \\
\hline \({ }^{323}\) \& Printing and Realied Supoort \& 0.0 \& 67.0 \& \(\times\) \& 3.8 \& 15.6 \& \& 3.8 \& 15.5 \& - \& 3.7 \& 16.1 \& 67.0 \& 3.8 \& 15.7 \& x \& 3.5 \& 16.7 \\
\hline \({ }^{324}\) \& Petroleum and Coal Products \& 0.0 \& 23.6 \& 31.3 \& 2.6 \& 9.7 \& 34.4 \& 3.1 \& 9.9 \& 323 \& 2.5 \& 9.0 \& 29.3 \& 2.6 \& \({ }^{8.4}\) \& 28.4 \& 29 \& \\
\hline -324110 \& Petroleum हiefineries \& 0.6 \& 36.2 \& 36.2 \& 12.3 \& 36.2 \& 36.2 \& 7.6 \& 36.2 \& 36.2 \& 53 \& 36.2 \& 36.2 \& \({ }^{4.4}\) \& 36.2 \& 36.2 \& 18.2 \& \\
\hline 324121 \& Asphat Paving Mixture and Block \& 0.0 \& 33.1 \& 68.7 \& 2.6 \& 9.1 \& \(\times\) \& 3.8 \& 10.4 \& 79.1 \& 2.7 \& 8.6 \& 375 \& 2.9 \& 8.1 \& 85.5 \& 2.7 \& \\
\hline \({ }^{324122}\) \& Asphat Shingle and Coting Materials \& 0.0 \& - \& \(\times\) \& 3.1 \& 19.8 \& \({ }^{\times}\) \& 4.2 \& 18.5 \& \(\times\) \& 4.2 \& 17.1 \& \(\times\) \& 4.2 \& 18.4 \& \({ }^{\text {x }}\) \& 4.1 \& 20.0 \\
\hline 324199 \& Other Peitoleum and Coal Products \& 0.0 \& 90.0 \& \& .0.0 \& \({ }^{0.0}\) \& \({ }^{13} 0^{\circ}\) \& \({ }^{0.0}\) \& -0.0 \& \({ }^{2}\) \& \% 0.0 \& \({ }^{0.0}\) \& 56 \& \({ }^{0.0}\) \& \({ }^{0.0}\) \& \({ }^{0.0}\) \& 0.0 \& \({ }^{0.0}\) \\
\hline \[
\frac{325}{325110}
\] \& \({ }_{\text {chem }}^{\substack{\text { chemicas } \\ \text { Petrochemicais }}}\) \& 0.0 \& \begin{tabular}{l}
7.8 \\
26.6 \\
\hline
\end{tabular} \& \({ }_{2} 96.6\) \& 3.5
7.0 \& 14.1
26.6 \& 13.0
26.6 \& 3.6
3.5 \& 13.8
26.6 \& \({ }^{26.6}\) \& 3.8
2.7 \& \({ }^{13.2}\) \& \(\stackrel{5.6}{\times}\) \& 3.6
0.6 \& 13.6
26.6 \& 12.5
26.6 \& 3.6
7.0 \& \({ }_{26.6}^{13.9}\) \\
\hline -325120 \& Industrill 6 ses \& 0.0 \& 15.0 \& 15.0 \& 9.5 \& 19.5 \& 15.0 \& 9.7 \& 18.2 \& x \& 9.5 \& 19.4 \& - \& 9.5 \& 19.5 \& 15.0 \& 9.5 \& 19.6 \\
\hline 335180 \& Other Basic loorganic Chemicals \& 0.0 \& \({ }^{227}\) \& 34.0 \& 9.1 \& 34.6 \& 12.7 \& 8.9 \& 33.4 \& \({ }^{12.7}\) \& 9.1 \& 32.5 \& \({ }^{127}\) \& 8.8 \& 34.2 \& 30.2 \& 9.0 \& 35.0 \\
\hline \({ }^{325193}\) \& Ethin Alcohor \& 0.0 \& 18.2 \& 25.2 \& 3.4 \& 173 \& 20.9 \& 2.0 \& 14.7 \& - \& 17 \& 14.0 \& \(\times\) \& \({ }^{1.6}\) \& 14.2 \& 27.7 \& 19 \& 17.7 \\
\hline 325194 \& Cocilic crudes, hitermedite and Gum and Wood Chemicals \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 124 \& 0.0 \& 0.0 \& 12 \& \(\stackrel{0.0}{6.5}\) \& 0.0 \& x \& 0.0 \& -0.0 \\
\hline \({ }^{255199}\) \& Ofter Basic organic Chemicals \& 0.0 \& 13.9 \& 12.4 \& 6.6 \& 40.4 \& 18.7 \& 6.6 \& 36.2 \& 12.4 \& 6.6 \& 349 \& 12.4 \& 6.5 \& 37.9 \& 13.0 \& 6.7 \& \({ }^{38,3}\) \\
\hline \({ }^{3252211}\) \& Plastics Meterils sand Resins \& 0.0 \& 10.5 \& 219 \& \({ }_{10}^{1.7}\) \& 34.8 \& 10.9 \& \({ }_{18}^{18}\) \& 323 \& \({ }_{8}^{8.1}\) \& 18 \& 27.4 \& \({ }_{8}^{8.1}\) \& \({ }^{18}\) \& 254 \& \({ }_{8}^{8.1}\) \& 3.1 \& \({ }^{37.4}\) \\
\hline \({ }_{3252220}^{32212}\) \& Antificial and S Syntreicic fibers nod filimenis \& \({ }_{0}^{0.0}\) \& 0.0 \& 0.0 \& \({ }_{0}^{0.0}\) \& 0.0 \& \({ }^{0.0}\) \& 0.0
0.0 \& 0.0 \& \({ }^{0.0}\) \& 0.0
0.0 \& 0.0
0.0 \& \({ }_{0} .0\) \& \({ }_{0}^{0.0}\) \& \(\bigcirc\) \& 0.0 \& 0.0 \& \\
\hline 325311 \& Nitrogenous fertizers \& 0.0 \& 22.9 \& 22.9 \& 2.1 \& 22.9 \& 22.9 \& 2.2 \& 22.9 \& x \& 1.5 \& 22.9 \& 229 \& 1.1 \& 22.9 \& 22.9 \& 3.5 \& 22.9 \\
\hline \({ }^{-325312}\) \& Phosphatic ferilizers \& \(\bigcirc\) \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& \({ }^{\text {x }}\) \& \({ }^{0.0}\) \& 0.0. \& \({ }_{13}{ }^{\text {x }}\) \& 0 \& 0.0 \& \({ }^{\times}\) \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& -0.00 \\
\hline \({ }_{-325412}^{32542}\) \& - Phimmeceutaial ind Medicices \& 0.0 \& 10.9
13.9 \& 11.0
13.9 \& \({ }_{12}{ }^{12}\) \& \& 10.8
13.9 \& \& \({ }^{27.3}\) \& \& \(\frac{19}{10.2}\) \& \& \& \& \& \& \& \\
\hline 325992 \& Phootegrapic Filim, Papeer, Plate, and Chemicils \& 0.0 \& 25.5 \& 25.5 \& 10.9 \& 53.4 \& \% \& 10.6 \& 53.4 \& , \& 10.4 \& 55.5 \& \(\times\) \& 10.4 \& 55.5 \& \(\bar{x}\) \& 10.4 \& \\
\hline \({ }^{326}\) \& Plasitics and Fubber Products \& 0.0 \& 52.5 \& 66.6 \& 4.3 \& 18.1 \& 64.9 \& \({ }^{4.4}\) \& 17.4 \& x \& \({ }_{4}^{43}\) \& 17.9 \& 64.9 \& \({ }^{4.1}\) \& 185 \& 87.2 \& 4.1 \& 185 \\
\hline \({ }_{3227120}^{327}\) \& Noometalic Mineara Products Cliv Buidine Maieria and Reffactores \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 327211 \& Fhat Coiss \& 0.0 \& \({ }^{\times}\) \& \({ }^{\text {x }}\) \& 0.0 \& \({ }_{0.0}\) \& ¢ \& 1.1
0.0 \& 14.9
0.0 \& \({ }^{\times}\) \& 1.8
0.0 \& 18.9
0.0 \& \({ }^{x}\) \& \({ }_{0}^{1.2}\) \& \({ }^{13.5}\) \& x \& 1.8
0.0 \& 20.8
0.0 \\
\hline \({ }^{327212}\) \& Othe Pressed and Blown GIass and Glasware \& 0.0 \& \(\times\) \& \(\times\) \& 1.8 \& 24.7 \& \(\times\) \& 2.2 \& 23.6 \& \(x\) \& 19 \& 24.3 \& \(\times\) \& 19 \& 24.3 \& \(x\) \& 19 \& \({ }^{24.2}\) \\
\hline \begin{tabular}{l}
327213 \\
327215 \\
\hline
\end{tabular} \& \({ }^{\text {Class Containers }}\) Glasp Prouustrom Purchased Giass \& 0.0 \& \({ }_{112}\) \& \& \({ }^{0.0}\) \& \& \& \& \& \({ }^{\text {x }}\) \& \& \& \& \& \& \& \& \\
\hline \({ }^{327215}\) \& Glass roaucts from Purchased Glass \& 0 \& \({ }_{31.2}^{11.2}\) \& \& \({ }^{2.6}\) \& 34.0 \& \({ }^{13.0}\) \& 0.8 \& \({ }^{141.1}\) \& x \& 1.0 \& 15.1 \& \({ }^{10.6}\) \& \({ }^{.8}\) \& \({ }_{318}^{14.8}\) \& \({ }^{\text {x }}\) \& 0.8 \& \\
\hline \({ }^{3273710}\) \& \({ }_{\text {cement }}^{\text {Lime }}\) \& 0 \& 319 \& \({ }_{0} 0.0\) \& 0.8
0.0 \& 31.9
0.0 \& \({ }^{\mathrm{x}}\) \& 0.8
0.0 \& \({ }_{31.9}^{0.0}\) \& x \& 1.0
0.0 \& 31.9
0.0
0. \& 0 \& 1.0
0.0 \& \({ }^{31.9}\) \& 31.9
0.0 \& 1.0
0.0 \& \begin{tabular}{l}
31.9 \\
0.0 \\
\hline
\end{tabular} \\
\hline \({ }^{327420}\) \& Gupsim \& 0.0 \& \& \& 6.4 \& 749.9 \& \& \({ }_{1} 1.1\) \& 173 \& \& \({ }_{1}^{11}\) \& 17.3 \& \& 8.5 \& 56.4 \& - \& 0.9 \& \\
\hline \({ }^{327993}\) \& Mineral Wool \& 0.0 \& - \& \(x\) \& 1.7 \& 25.9 \& - \& 1.5 \& 26.1 \& - \& 1.7 \& 25.9 \& - \& 1.7 \& 25.9 \& \({ }^{\circ}\) \& 1.5 \& \({ }^{26.1}\) \\
\hline 331 \& Primary Metals \& 0.0 \& 6.1 \& 2.5 \& 2.5 \& 14.8 \& 12.1 \& 2.3 \& 14.0 \& 2.6 \& 23 \& 13.3 \& 6.6 \& 2.5 \& 12.8 \& 3.3 \& 23 \& \\
\hline \({ }^{\text {che }} 3131110\) \& \& \(\stackrel{0.0}{0.0}\) \& -3.3. \& \(\stackrel{33}{3} \times\) \& 0.6

10.6 \& $\begin{array}{r}3.3 \\ 34.8 \\ \hline\end{array}$ \& $\stackrel{33}{8}$ \& ${ }^{0.6}$ \& \& $\stackrel{3.3}{4}$ \& ${ }_{\text {coib }}^{0.6}$ \& 3.3
30.4

3 \& - ${ }^{33} 12$ \& ${ }^{0.6}$ \& | 33 |
| :--- |
| 289 |
| 8. | \& 3.3

\times
\times \& $\begin{array}{r}0.5 \\ \hline 109 \\ \hline 1\end{array}$ \& 3.3
30.9 \\
\hline 3313 \& Auminina and Aluminum \& 0.0 \& 2.9 \& 0.0 \& ${ }_{3}{ }^{10.8}$ \& ${ }_{21.6}$ \& 0.0 \& 3.3 \& 18.5 \& 0.0 \& 3.3 \& 30.4
17.1 \& 12.1
10.0 \& ${ }_{4.8}^{7.6}$ \& ${ }_{18}^{28,}$ \& ${ }^{\text {x }}$ \& ${ }_{0}^{109}$ \& \\
\hline 31314 \& Secondary smeting and Alloyng of Aluminum \& 0.0 \& \times \& \times \& 0.1 \& 0.1 \& \times \& 0.1 \& 0.1 \& x \& 0.1 \& 0.1 \& \times \& 0.1 \& 0.1 \& \times \& 0.1 \& 0.1 \\
\hline 3331315 \& Aluminum sheet, Plate and foils \& 0.0 \& \& \times \& 3.6 \& 21.4 \& \times \& 5.2 \& 21.4 \& \times \& 3.6 \& 21.4 \& - \& 4.2 \& 21.4 \& \times \& 3.6 \& 21.4 \\
\hline ${ }^{331318}$ \& \& 0.0 \& ${ }^{10.0}$ \& - \& 7.8 \& 36.8 \& \times \& 6.4 \& 35.2 \& \times \& 6.6 \& 30.6 \& 10.0 \& 10.6 \& 26.0 \& \times \& 12 \& \\
\hline 3314 \& Nonferrous Meats, except Auminum \& 0.0 \& ${ }^{12,3}$ \& 10.4 \& 5.2 \& 33.2 \& 13.8 \& 6.8 \& 32.4 \& \times \& 6.8 \& 30.5 \& 10.4 \& 6.7 \& 32.4 \& \times \& 5.1 \& 33.8 \\
\hline -31410 \& Nonferrous Meatal (except Aluminum) Smelting and Refefing \& 0.0 \& 37.4 \& ${ }^{-}$ \& ${ }^{4.0}$ \& 37.4 \& 374 \& 4.8 \& 37.4 \& ${ }^{\text {x }}$ \& 4.5 \& 37.4 \& ${ }^{\text {x }}$ \& 4.0 \& 374 \& ${ }^{\times}$ \& 4.0 \& 37.4 \\
\hline ${ }_{3}^{3315}$ \& FFoundies \& -0.0 \& 19.2 \& $\stackrel{79}{-3}$ \& $\begin{array}{r}3.9 \\ 15.0 \\ \hline\end{array}$ \& ${ }_{66.0}^{28.9}$ \& ${ }^{438}$ \& 3.5
151

1 \& | 30.2 |
| :--- |
| 628 |
| 68 | \& $\stackrel{\text { x }}{ }$ \& 3.5

151
15 \& ${ }_{6}^{27.7}$ \& ${ }^{17} \times$ \& 3.8
155
15 \& ${ }_{4}^{25.6}$ \& x
\times
\times \& 35
350

150 \& | 30.7 |
| :--- |
| 660 | \\

\hline $\begin{array}{r}331511 \\ \hline 331523\end{array}$ \& Nonferrous Meatiolie-Casting fundaries \& \bigcirc \& - \& ${ }^{x}$ \& 15.8
1.8 \& ${ }_{\substack{6 \\ 27.5}}^{6.5}$ \& ${ }^{\text {x }}$ \& 15.1

1.9 \& ${ }^{625.7}$ \& ${ }^{\mathrm{x}}$ \& | 151 |
| :---: |
| 1.9 | \& ${ }_{25,7}^{61.5}$ \& ${ }^{\times}$ \& 15.5

1.8 \& ${ }^{23,7}$ \& x \& 15.0
1.8 \& 66.0
27.5 \\
\hline -311524 \& Aluminum fuondries, except Diec.asting \& 0.0 \& 79 \& 79 \& 2.1 \& 14.0 \& \times \& 1.9 \& 15.4 \& \times \& 25 \& 15.1 \& \times \& 1.9 \& 15.4 \& \times \& 2.0 \& 14.1 \\
\hline ${ }_{3}^{332}$ \& Fabircated Meal Products \& \bigcirc \& 75.0

8.3 \& ${ }_{87}{ }^{\text {x }}$ \& 29 \& \begin{tabular}{l}
152 \\
169 \\
162 \\
\hline

 \& ${ }^{\mathrm{x}} \mathrm{x}$ \&

3.0 \\
3. \\
\hline
\end{tabular} \& 149 \& - \& 28

28

28 \& $\begin{array}{r}15.6 \\ 177 \\ \hline 18\end{array}$ \& | 750 |
| :--- |
| 891 |
| 8. | \& ${ }_{3}^{31}$ \& ${ }^{14.1}$ \& - \& 27 \& \\

\hline ${ }_{334} 338$ \& Maihinery ${ }^{\text {Compuere and fectronic Products }}$ \& ${ }_{0} 0.0$ \& - 813 \& $\frac{879}{\times}$ \& ${ }_{4.2}^{2.7}$ \& ${ }_{26.2}^{16.9}$ \& $\frac{41}{8}$ \& 2.5
4.0 \& ${ }^{18,2}$ \& ${ }_{\text {x }}{ }^{\text {x }}$ \& - 25 \& ${ }_{25.8}^{17.7}$ \& 89.1

20.1 \& 2.4 ${ }_{4}{ }^{27}$ \& ${ }_{24.6}^{16.8}$ \& 58.6 \& | 2.4 |
| :--- |
| 4.2 | \& \\

\hline ${ }^{334113}$ \& Seniconductors and Related Devices \& 0.0 \& 20.1 \& ${ }_{x}$ \& 5.7 \& 36.0 \& \times \& 5.6 \& 37.4 \& x \& 5.6 \& ${ }^{27.4}$ \& 20.1 \& 9.0 \& 36.7 \& \times \& 5.6 \& 37.4 \\
\hline 335 \& Electrical Equip, Applianees and Components \& 0.0 \& \& \times \& ${ }_{7}^{7.0}$ \& 27.6 \& ${ }^{\text {x }}$ \& 6.5 \& 28.9 \& ${ }^{\text {x }}$ \& 7.0 \& 27.0 \& ${ }^{x}$ \& 7.0 \& 22.6 \& \times \& 65 \& ${ }^{285}$ \\
\hline ${ }_{336611}^{3311}$ \& Transonation Equipment \& ${ }_{0}^{0.0}$ \& ${ }^{47.0}$ \& 66.6
0.0 \& 5.0
0.0 \& $\begin{array}{r}22.8 \\ 0.0 \\ \hline\end{array}$ \& ${ }^{119}$ \& 5.1
0.0 \& 21.9
0.0 \& $\stackrel{0.0}{\times}$ \& 5.0
0.0 \& 22.3
0.0 \& 50.0
\times
\times \& 5.0
0.0 \& 22,5
0.0 \& $\frac{\mathrm{x}}{\times}$ \& \& \\
\hline 336112 \& Light Tuckis and Utilitr venicies \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& , \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& x \& 0.0 \& 0.0 \\

\hline ${ }_{3}^{33646411}$ \& Aerospace Productand Parts \& .0.0 \& 49.9 \& \& ${ }^{6.6}$ \& | 36.5 |
| :---: |
| 599 | \& 11.9 \& 70

168 \& | 32.0 |
| :--- |
| 8.0 |
| 60 | \& - \& 6.8

6.69 \& | 33.2 |
| :--- |
| 59 |
| 9.9 | \& ${ }_{7}^{73.1}$ \& ${ }_{7}^{768}$ \& 30.5 \& ${ }^{\text {x }}$ \& ¢ $\begin{aligned} & 6.6 \\ & 168\end{aligned}$ \& \\

\hline ${ }_{337}^{33641}$ \& $\frac{\text { Arcrate }}{\text { Furiture and Reliated Products }}$ \& ${ }_{0}^{0.0}$ \& $\stackrel{\times}{36.8}$ \& ${ }_{43.8}^{\text {x }}$ \& ${ }_{4.0}^{16.9}$ \& ${ }_{29,9}^{59.9}$ \& $\stackrel{\times}{\times}$ \& 16.8
4.4 \& ${ }^{61.0}$ \& ${ }_{\text {x }} \times$ \& $\stackrel{169}{4.4}$ \& ${ }_{23,9}$ \& $\stackrel{\mathrm{x}}{\mathrm{x}}$ \& \& 610
201 \& 558 \& \& \\
\hline 339 \& Miscellaneous \& 0.0 \& 77.9 \& 87.3 \& \& \& \& \& \& \& 3.8 \& \& \& \& 18.8 \& \& 3.5 \& \\
\hline \& -roal \& 0.0 \& 15, \& ${ }_{19} 89$ \& 1.V \& ${ }_{3.2}$ \& 27. \& ${ }_{\text {Pr }}$ \& ${ }_{5}^{18.1}$ \& 44.1 \& ${ }_{\text {Hex }}$ \& ${ }_{3.0}$ \& ${ }_{4}$ \& ${ }_{1.1}$ \& ${ }_{8}^{18.9}$ \& ${ }_{2 i, 0}$ \& ${ }_{\text {ju }}$ \& \\

\hline \multicolumn{19}{|l|}{\multirow[t]{10}{*}{| (a) The Bureau of the Census classifies establishments using the 2012 North American Industry Classification System (NAICS). |
| :--- |
| (b) The 'Establishments' column includes those units which reported any of the five listed cogeneration technologies in use anytime in 2014, plus those units where usage of |
| (c) This count includes only those establishments that reported any of the five listed cogeneration technologies in use anytime in 2014. |
| (d) This count includes only those establishments that reported this cogeneration technology in use anytime in 2014. |
| (e) This includes establishments that have the equipment but are currently not in use as well as those establishments that do not have or never have had the equipment during * Estimate less than 0.5 |
| $W=$ Withheld to avoid disclosing data for individual establishments. |
| $\mathrm{Q}=$ Withheld because Relative Standard Error is greater than 50 percent. |
| $\mathrm{NA}=$ Not available. |
| $\mathrm{X}=$ Not defined because RSE corresponds to a value of zero. |
| - Estimation is not applicable. |
| Notes: Totals may not equal sum of components because of independent rounding. |
| Source: U.S. Energy Information Administration, Office of Energy Consumption and Efficiency Statistics, Form ElA-846, '2014 Manufacturing Energy Consumption Survey.' |}} \\

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline
\end{tabular}

