EIA: “Electricity Industry in Transition”
Eric Gebhardt, Chief Innovation Officer, GE Power

Washington, DC | June 2018
By 2026, RENEWABLES will represent 40% of global installed generation capacity.*

EXPONENTIAL GROWTH of connected devices & smart sensors

GROWING PENETRATION of Distributed Energy Resources

ELECTRIFICATION OF ENERGY-INTENSIVE USES

IMPACT
- Growing share of renewables an increasing challenge to the traditional power system model

IMPACT
- Real time decision making becomes possible ... new software solutions open breakthrough optimization

IMPACT
- End users become active actors of the power system ('pro-sumer') ... growing grid complexity

IMPACT
- Step increase in electricity consumption ... accelerating Decentralization
Evolving Electricity Network

GENERATION
- Thermal [Hybrid]
- Wind [Hybrid]
- Solar [Hybrid]
- Hydro [& PSP]

TRANSMISSION
- Hybrid Gas Turbine
- Electrification
- Storage

DISTRIBUTION

BEHIND THE INTERCONNECT
- Storage
- Solar
- EVs
- CHP
- Microgrid
- Storage and Solar

END-TO-END DIGITAL THREAD

Electricity Price (¢/kWh):
- **WHOLESALE**
 - US: 3¢-6¢
- **COMMERCIAL**
 - NE: 15¢
- **RETAIL**
 - Germany: 30¢
 - Hawaii: 24¢
 - CA: 15¢

Enabling system benefits: lower cost, lower emissions, higher reliability, more resilient
Microgrids and Distributed Energy

ALWAYS-ON, FAIL-SAFE ELECTRICITY SUPPLY

INCREASES RELIABILITY of the local power system
INTEGRATES RENEWABLES to reduce energy cost & CO₂ emissions
SEAMLESS TRANSITION between grid connected & islanded mode
Philadelphia Navy Yard microgrid

Grid Modernization

- Smart meters, communications, microgrid management & DERMS
- Optimize consumption efficiency & environmental footprint

On-site Generation

- 10 MW substation with PECO tie-ins
- 6 MW natural gas peak shaver/back up power
- 1 MW on-site solar generation

Customer Benefits

- Enable local load growth in congested area without expanding city infrastructure
- ↓ Capex
- ↑ Resilience
- ↑ Local Capacity
- Economic Development
- ↓ Opex
GE’S RESERVOIR STORAGE UNIT . . . Up to 4MWh Capacity

Enhanced to reduce installation cost and shorten project schedule

- **Up to 15% Extended Battery Life**
 - Utilizing proprietary blade protection units

- **Up to 50% Reduced Construction Time**
 - With factory built & tested solution

- **Improve Safety** by reducing fault current by **Up to 5x**

- **Enable up to 50% More Solar Energy Sales**
 - With enhanced PV to inverter loading ratio
TYPICAL RESERVOIR APPLICATIONS

Integrated Hybrid Solution Applications

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Solar</th>
<th>Wind</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic Inertia: Compensate losses of grid inertia caused by high renewable penetration.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Regulation: Provide fast regulation of grid frequency to balance supply and demand.</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Firming: Prevent undesirable short-duration effects from rapid fluctuations in solar generation due to intermittency and weather conditions.</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Improved Operations: Optimize thermal generation fleet operation and costs.</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Contingency Reserve: Provide fast ramp-rate to meet grid requirement for online dispatch within a short delay of operating reserve.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Curtailment Avoidance: Avoid wind output curtailment at certain times, preventing loss of energy production.</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Dispatchable: Control solar generation at request of power grid operators or according to market needs.</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Standalone Applications</td>
<td>Generation</td>
<td>Transmission</td>
<td>Distribution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Voltage Regulation: Compensate anomalies or disturbances (e.g., voltage magnitude, harmonics, etc.) by sending reactive energy into system.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Frequency Response: Provide fast regulation of grid frequency to balance supply and demand.</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Frequency Regulation: Provide regulation of grid frequency to balance supply and demand based on signals sent by the grid operator.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable Integration: Balance the local excesses or deficits of renewable generation caused by rapid weather fluctuations.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Black Start: Energize part of the generation asset without outside assistance after a blackout.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back-Up: Store energy to maintain service continuity and grid resilience in the event of an outage.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Peak Management: Reduce grid capacity needs during peak periods with local storage.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shifting: Buy or produce electricity at low price (off-peak) to store and sell at peak price.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Capacity: Store renewable energy production for peak and base load consumption.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
OPTIMIZING
GENERATION FLEETS

GE's SOLUTION

Gas Turbine + Energy Storage + Digital Controls

INCREASED UTILIZATION:

50 MW of greenhouse gas-free peaking energy for local contingency
25 MW of high speed frequency regulation for improved response
-8/+5 MVAR Voltage support & primary frequency response when offline
INTEGRATED SYSTEM OPTIMIZATION

REDUCED SYSTEM COSTS & EMISSIONS:

REDUCED THERMAL STRESS on turbine for extended asset life
ZERO FUEL & EMISSIONS on turbine for extended asset life

Reduce costs by optimizing the use of existing generation sources and enabling contingency (spinning) reserve without fuel-burn

2017 Innovation of the Year!
Conclusions

The power grid is becoming increasingly diverse

Energy Storage + Distributed Energy can support grid

Existing assets will be important facilitator of system change

New business models & market structures are critical