Global Climate Goals and Developing Country Electrification

Steven Rose

2017 Energy Information Agency Energy Conference
June 27, 2017
Potential Regional Emissions Constraints

- Baseline
- NDC only
- NDC +
- NDC ++
- Level 1
- Level 2
- Level 3

Even leveling off non-trivial

Rose et al. (2017)
Global Emissions & Temperature Implications

Global Emissions

Peaking global emissions requires more than NDCs, and more than developed countries

Baseline

US/EU/OG20/China

NDC only

NDC +

NDC ++

Adding India & OD

NDC ++ w/ Level 1

NDC ++ w/ Level 2

NDC ++ w/ Level 3

Global Temperature

• Reduction in warming risk for all policy pathways
• For a chance at < 2°C, significant mid-century abatement needed

Shading reflects some of the uncertainty in the climate response to emissions (shown for only a few scenarios)

Rose et al. (2017)
Global Emissions & Temperature Implications

Global Emissions

- Baseline
- US/EU/OG20/China
 - NDC only
 - NDC +
 - NDC ++
- Adding India & OD
 - NDC ++ w/ Level 1
 - NDC ++ w/ Level 2
 - NDC ++ w/ Level 3

For pursuing a medium likelihood of < 2°C, precipitous drop in global emissions post-2030

Global Temperature

Shading reflects some of the uncertainty in the climate response to emissions (shown for only a few scenarios)

Rose et al. (2017)

© 2017 Electric Power Research Institute, Inc. All rights reserved.
Potential Regional Emissions Constraints

- Baseline
- NDC only
- NDC +
- NDC ++
- Level 1
- Level 2
- Level 3

Billion tonnes CO$_2$e/year

2000 2020 2040 2060 2100
USA EU Other G20 China India Other Developing

Rose et al. (2017)
Potential Regional Emissions Constraints

For a medium likelihood of < 2°C, dramatic immediate regional and mid-century emissions reductions

[Graph showing potential regional emissions constraints for different regions and scenarios]
Regional Electricity Supply Transformation by 2050

- Decarbonization and growth in electricity supply can be consistent
- Fossil non-existent in 2°C case

Rose et al. (2017)
Costs Increase with Stringency at an Increasing Rate

(% loss in present value per capita consumption through 2100)

Table 2 Regional cost, global welfare losses, and maximum global mean temperature by climate policy

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Reductions in discounted average per capita consumption through 2100 (%)</th>
<th>Global welfare loss (%)</th>
<th>Max °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USA</td>
<td>EU</td>
<td>Other G20</td>
</tr>
<tr>
<td>S2: NDC only</td>
<td>Base</td>
<td>0.2%</td>
<td>0.3%</td>
</tr>
<tr>
<td>S3: NDC +</td>
<td>Base</td>
<td>0.3%</td>
<td>0.4%</td>
</tr>
<tr>
<td>S4: NDC ++</td>
<td>Base</td>
<td>0.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>S5: NDC ++</td>
<td>Level 1</td>
<td>0.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>S6: NDC ++</td>
<td>Level 2</td>
<td>0.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>S7: NDC ++</td>
<td>Level 3</td>
<td>0.5%</td>
<td>0.8%</td>
</tr>
<tr>
<td>S8: 2 °C post-2030</td>
<td>2.1%</td>
<td>2.2%</td>
<td>5.2%</td>
</tr>
</tbody>
</table>

Negative values imply benefits. Max temperature results first for climate outcomes with 3°C equilibrium climate sensitivity, and then, in parentheses, outcomes with 1.5°C to 4.5°C sensitivity.

Rose et al. (2017)
Various Factors Shape Regional Electrification

- **Policy**
 - Stringency
 - Design

- **Technology**
 - Electricity generation options
 - End-use technologies – electric and non-electric availability and efficiency

- **Investment environment**

- **Other**
 - Preferences – demand for services
 - Fuel markets

- **Net electrification response a function of the above**
 - Determining electricity prices, price elasticity, and electricity demand
Electrification and Climate Policy Stringency

With emissions constraints, potentially larger cost-effective role for electricity (greater consumption & dependence)

However, extremely aggressive policies imply larger dependence with less system growth
Electrification and Low-Carbon Electricity Supply Options

e.g., CCS unavailable (fossil and bioenergy)

Without CCS, lower electricity consumption & dependence.
(Also, no solution for most stringent policy)
Electrification and Policy Design
e.g., emissions tax vs. low-carbon generation subsidy

Change in International (Non-US) Final Energy Consumption in 2020 by Sector and Fuel (relative to baseline) with $20/tCO₂eq

Subsidy increasing electricity, but…

Change in International (Non-US) Electricity Generation from Reference in 2020

…increasing fossil and low-carbon generation

A separate issue: sector specific policies can preclude cost-effective cross-sector mitigation (e.g., electrification)

Rose et al. (forthcoming), Calvin et al (2015)
Electrification and End-Use (Technologies and Demand)

SECTORS / ACTIVITIES
- Transportation
 - Cars and Light Trucks
 - Bus and Passenger Rail
 - Aviation (domestic)
 - Aviation (international)
 - Light Commercial Trucks
 - Heavy Trucks
 - Freight Rail (non-energy)
 - Shipping (domestic)
 - Shipping (international)
 - Military
 - Fuel Transport (rail)
 - Pipeline
- Buildings
 - Space Cooling
 - Space Heating
 - Water Heating
 - Clothes Dryers
 - Cooking
 - Lighting
 - Other Appliances
 - Electronics
 - Ventilation
 - Other Building
- Industry
 - Agriculture
 - Construction
 - Mining (non-energy)
 - Non-Building Commercial
 - Water Services
 - Bulk Chemicals
 - Iron and Steel
 - Paper/Pulp/Wood
 - Food
 - Cement
 - Other Manufacturing
 - Refining
 - Upstream Energy Extraction

END-USES
- ICEV
- PHEV
- EV
- FCV
- Autonomous Vehicles
- Central A/C
- Window A/C
- Air-Source Heat Pump
- Ground-Source Heat Pump
- Electric Furnace/Resistance
- Gas Furnace
- Oil/LPG Furnace
- Wood Furnace/Stove

TECHNOLOGIES
- Boilers
- Co-gen Boilers
- Process Heat
- Motor Drive
- Feedstocks
- Facilities
- Off-Road Transport
Electrification and Investment Risks

Country and technology risks (some institutional) represent uncertainty and additional costs.

For EV/HEV

- Country
- Technology
- Overall

For T&D Grid Expansion

- Country
- Technology
- Overall

Rose et al. (forthcoming)
Electrification and Investment Risks

Relative investment risk will be important.

Risks for electricity supply and demand.

Rose et al. (forthcoming)
Concluding Thoughts

- Limiting global warming to 2°C implies stringent emissions constraints for developing and developed countries

- Potentially large cost-effective role for electrification in developing country decarbonization

- Potential synergies with development goals (decarbonization & electricity growth)

- Electrification’s decarbonization contribution, and the societal cost, will be defined by policy, technology (energy supply and demand), and institutions (and more)

- Valuing economy-wide emissions important for realizing cost-effective decarbonization electrification
Thank you!

Steven Rose
srose@epri.com
Resources

Cost Comparisons of Different U.S. Climate Policy Architectures

Regulations found to be more costly than market-based approaches due to their partial coverage.

Weyant et al. (2014)

Cumulative Emissions Reductions (GtCO₂)

Scenario (Color):
- 80% Cap & Trade
- 50% Cap & Trade
- Flat Cap & Trade
- CES + No New Coal
- RPS + No New Coal
- CAFE
- CAFE & RPS + No New Coal
- Cap & Regulations