

EIA Energy Conference June 26-27, 2017 Washington Hilton – Washington, DC

Max Pyziur Energy Policy Research Foundation, Inc. Washington, DC 20007

EPERENC Est. 1944 RESEARCH FOUNDATION INC.

About EPRINC

- Founded in 1944
- Not-for-profit organization
- Studies the intersection of energy, economics, public policy & regulations, and trade
- Provides independent and technical analyses for distribution to the public
- Funded largely by the private sector, foundations and U.S. government
- Supports USG projects, e.g. Quadrennial Energy Review, DoD strategic outlook
- www.eprinc.org

Presentation Outline

- Recent Events CAFE (Corporate Average Fuel Economy) Standards
- CAFE Standards, Inception to the Present
- History of Automotive Technology: [Displacement, Horsepower, Compression Ratio] vs. AKI Octane
- History of Automotive Technology: Fuel Delivery, Engine Size, Incremental Improvements, Computerization
- A Case Study: Bullitt's Ford Mustang 1968, 1978, 2017
- A Convergence of themes: Octane & CAFE at the crossroads: more refinery-sourced octane? more fuel ethanol? more [P/H]EVs in order to comply with CAFE?

Recent Dates - 1 - CAFE Standards

- On July 19, 2016 EPA, NHTSA, and CARB jointly released the draft <u>Technical Assessment Review (TAR)</u>, one month late, with a sixmonth comment period. It formed the basis for the determination of GHG and CAFÉ Standards for Model Years (MY) 2022-2025.
- On November 30, 2016, one month ahead of deadline, EPA issues its <u>Proposed Determination</u> deeming that the GHG portion of the CAFE standards as proposed in July 2016 remain appropriate, and that a rulemaking to change them is not warranted.
- On January 12, 2017, EPA issued its <u>Final Determination</u> to maintain the GHG portion of the CAFE Standards.

Recent Dates - 2 – Why Is This Controversial?

- The original <u>Proposed Determination</u> date was set for the middle of 2017, not November 2016.
- The original <u>Final Determination</u> date was set for April 2018, giving automobile manufacturers the necessary time to fully review assessments well in advance of planning and manufacturing for Model Year 2022 to 2025.
- Only EPA, participated in the January 2017 <u>Final Determination</u>; NHTSA and CARB did not.
- So ...
- On March 15, 2017, EPA and NHTSA jointly announced that EPA intends to reconsider its January 2017 <u>Final Determination.</u>

A.G. SCHNEIDERMAN – LEADING COALITION OF 13 AGS – PROMISES LEGAL FIGHT IF TRUMP ADMINISTRATION MOVES TO ROLL BACK KEY VEHICLE EMISSION STANDARDS

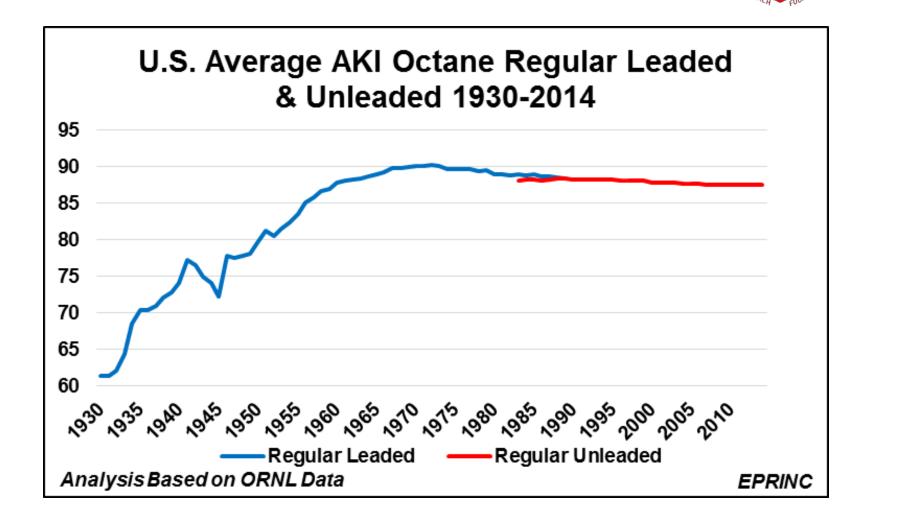
Air Pollution Standards Targeted By Trump EPA Would Slash Carbon Emissions By The Equivalent Of 422 Million Cars, While Improving Fuel Economy – Resulting In \$1,650 Net Savings For Each Consumer

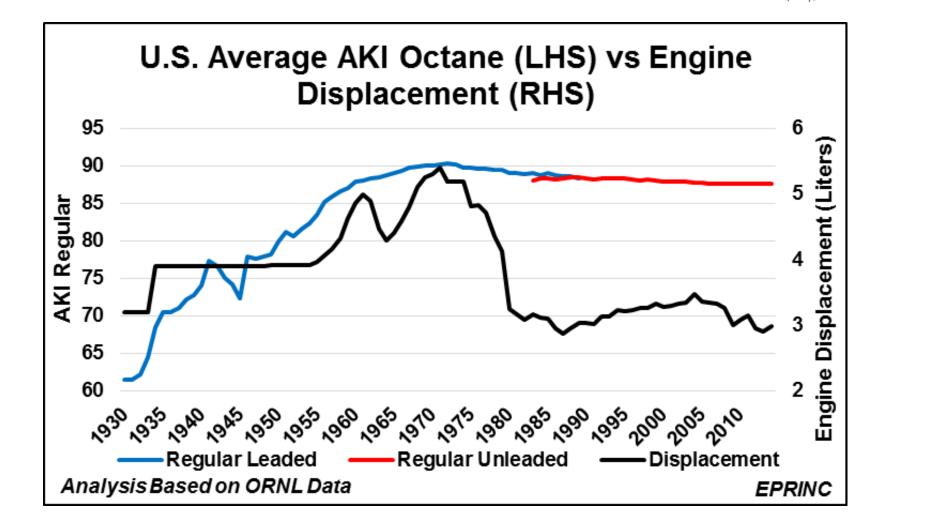
Coalition Warns EPA Administrator Pruitt To Expect "Vigorous" Legal Challenge If Agency Seeks To Weaken Pollution Standards For Cars And Light Duty Trucks

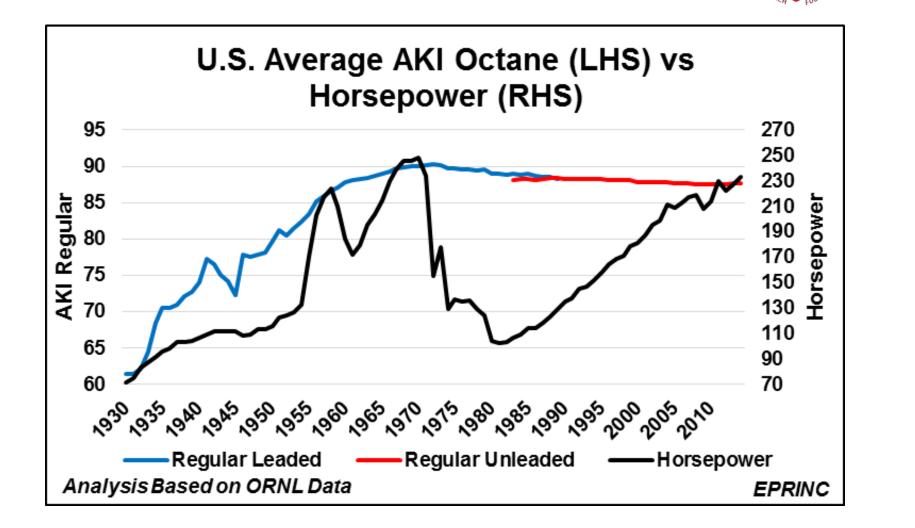
AG Schneiderman: We Stand Ready To Aggressively Challenge President Trump's Dangerous Anti-Environmental Agenda In Court

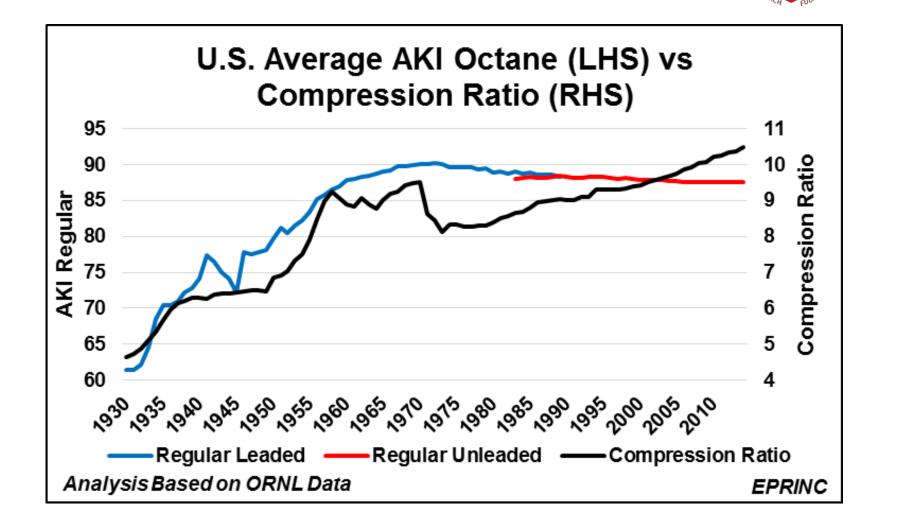
NEW YORK – New York Attorney General Eric T. Schneiderman, leading a coalition of 13 Attorneys General and the PA Department of Environmental Protection, today warned the Trump Administration that any effort to roll back key vehicle emission standards would be met by a "vigorous" court challenge. In a letter to Environmental Protection Agency (EPA) Administrator Scott Pruitt, the coalition makes clear that it will take legal action if the EPA attempts to weaken air pollution standards set for passenger cars and light-duty trucks for model years 2022 to 2025.

"Reducing pollution from cars and trucks is vital to New Yorkers' and all Americans' health and environment, as we protect the clean air we've worked so hard to achieve and fight climate change," **New York Attorney General Eric Schneiderman** said. "Any effort to roll back these affordable, achievable, and common-sense vehicle emission standards would be both irrational and irresponsible. We stand ready to vigorously and aggressively challenge President Trump's dangerous anti-environmental agenda in court – as we already have successfully done."

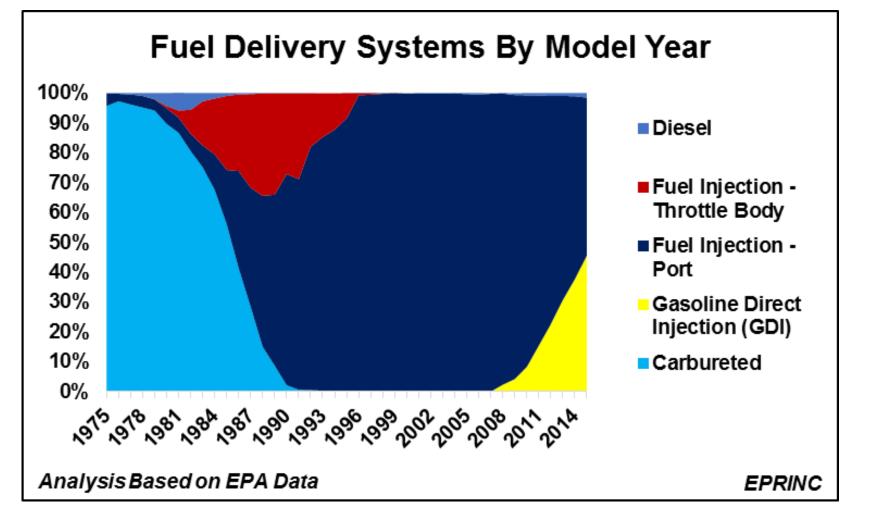

CAFE Standards, History to the Present - 1

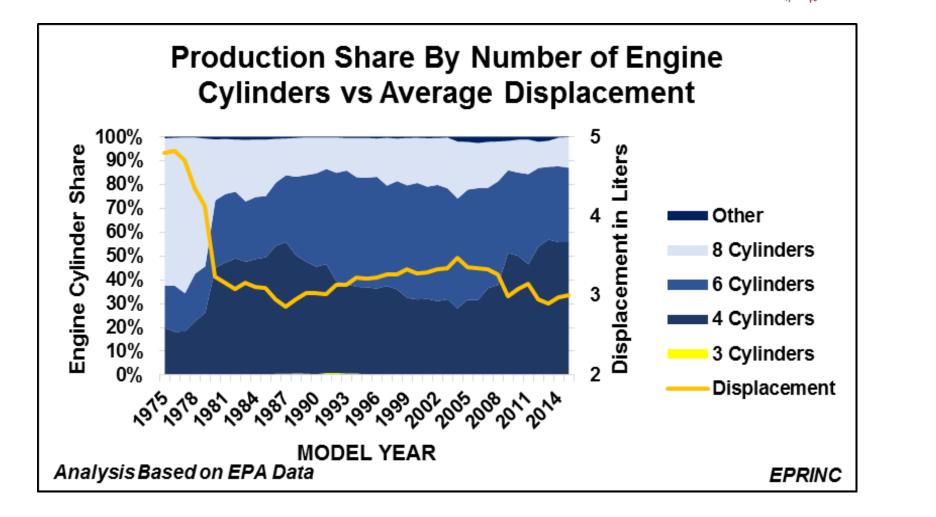

- CAFE in its original form ...
 - Introduced through the 1975 Energy Protection and Conservation Act (EPCA);
 - In reaction to the 1973 Arab Oil Embargo that cut supplies and raised prices;
 - Sought to reduce fuel consumption through the regulation of fuel-efficiency motor vehicle standards rather than a consumption tax;
 - Administered by the National Highway Traffic Safety Administration (NHTSA) (one agency, not three).

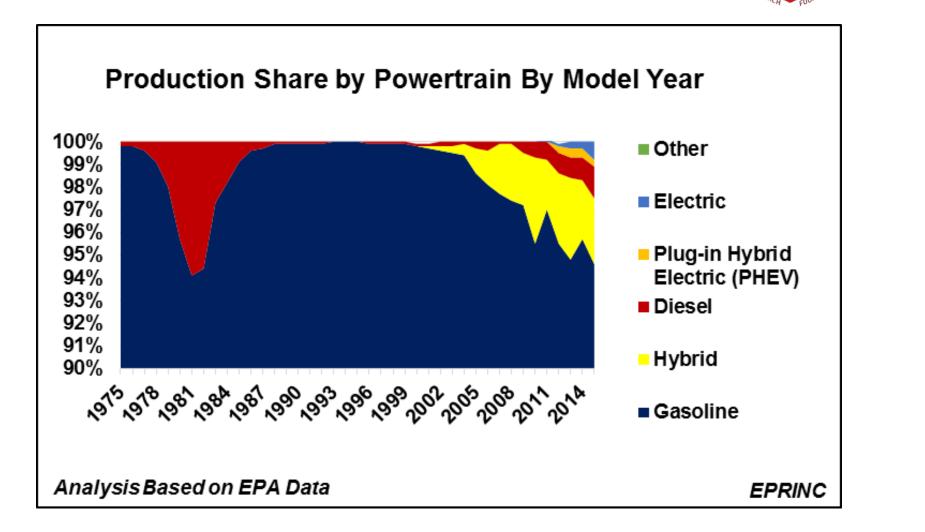



CAFE Standards, History to the Present - 2

- In September 2004, CARB (California Air Resources Board) formulated GHG standards for motor vehicles to begin in MY 2009.
- On April 2, 2007, U.S. Supreme Court decided Mass. vs EPA; this ruling effectively required EPA to regulate CO2.
- On May 19, 2009, the CAFÉ "One National Program" was established setting both fuel-efficiency and GHG standards administered together by NHTSA, EPA, and CARB.
 - Phase 1 for Model Years 2012 to 2016
 - Phase 2 for Model Years 2017 to 2025
 - Phase 2 required the TAR in June 2016 and <u>Final Determination</u> in April 2018 for MY 2022 to 2025 for reassessment.

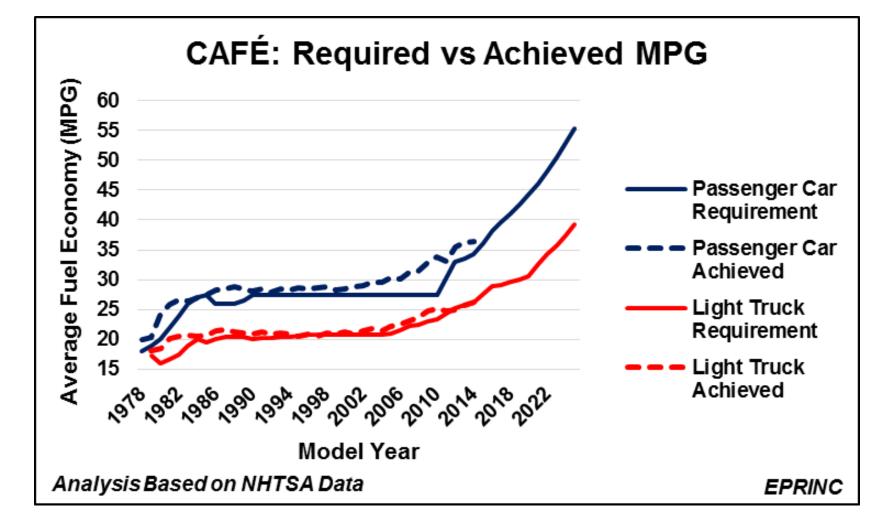


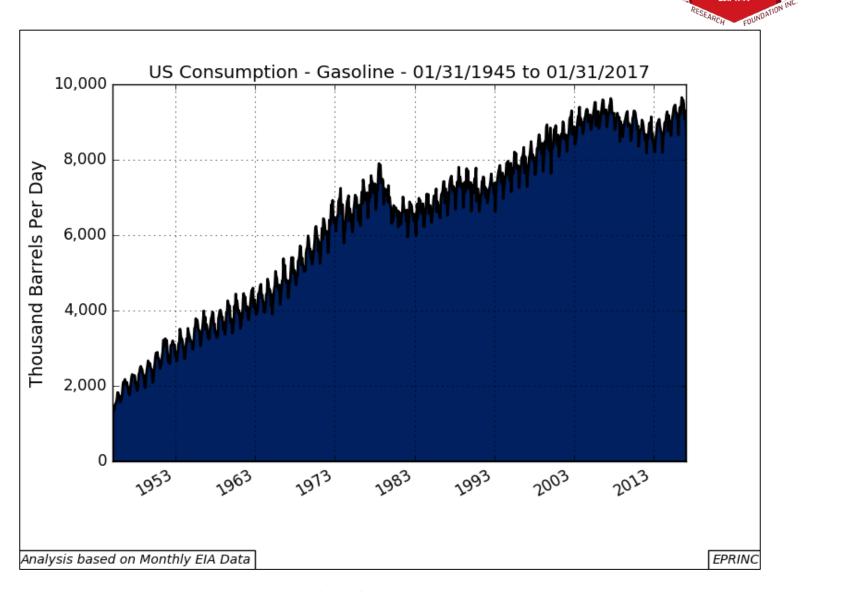


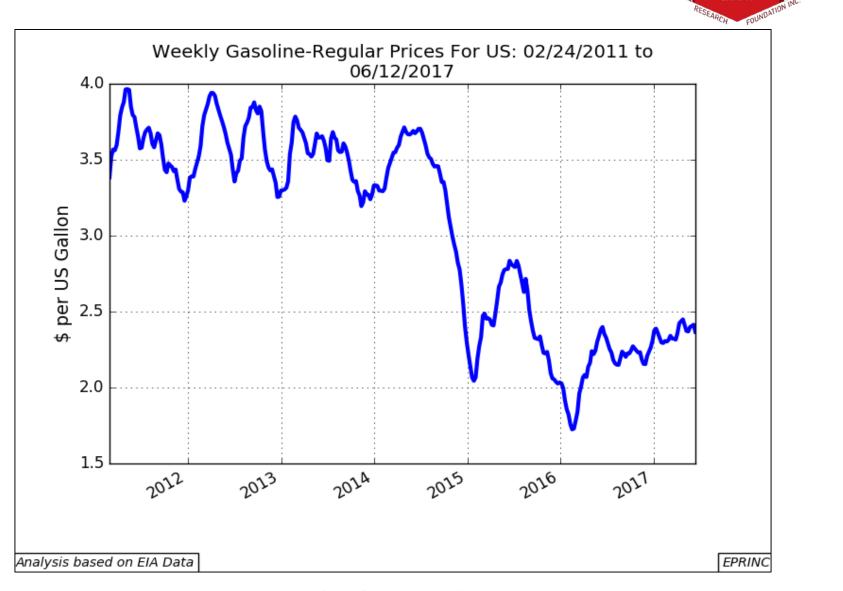


Engine Technologies Compliance Costs For Fuel Economy, Horsepower Increase, GHG Mitigation							
Low-friction lubricants &	\$0 - \$168						
Engine Friction Reduction							
Valve & Cylin	der						
Variable Valve Timing (VVT)	\$60 - \$210						
Cylinder Deactivation	\$200 - \$210						
Variable Valve Lift & Timing (VVLT)	\$245 - \$1260						
Fuel Delivery							
Gasoline Direct Injection (GDI)	\$120 - \$750						
Optimised for E20-E30	\$145 - \$750						
TurboCharge+Downsize	\$720 - \$750						
	Transmission						
Increase in gearing	\$40 - \$150						
Hybrid & Electric Technologies							
Power-Split Hybrid (like Prius)	\$3,754						
Plug-in Hybrid	\$4500 - \$6750						
Full electric vehicle	\$12,000 - \$15,000						
Analysis and Estimate based on EPA & NAP Data	EPRINC						

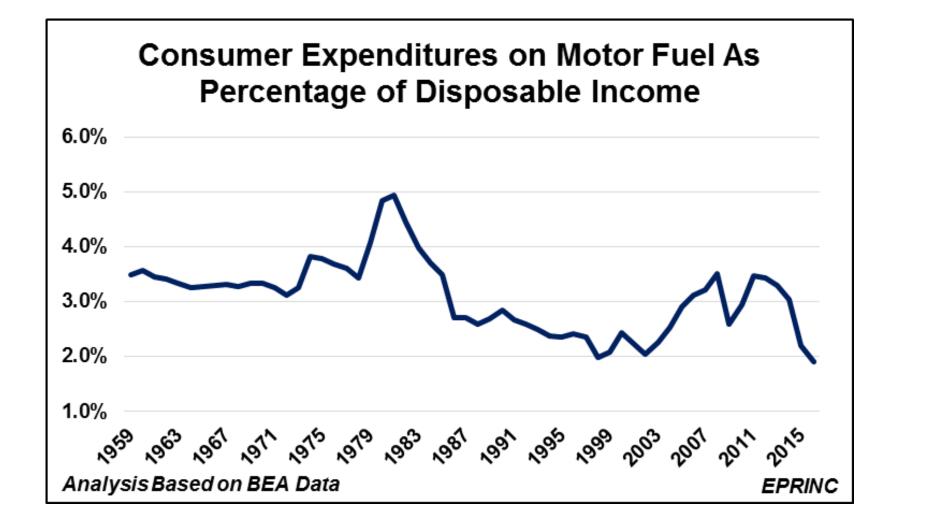
L

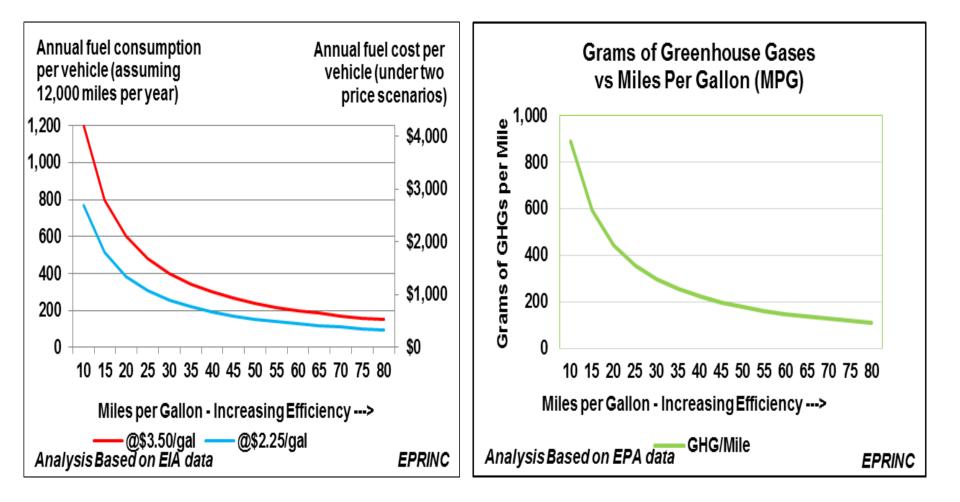



Ford Mustang								
Fran	Frank Bullitt's 1968 Mustang vs 1978, 2017 GTs							
Model	390 V8 GT Fastback	3dr Hatchback	GT	V6				
Displacement	6.4L / 390ci	5.0L / 302ci	5.0L / 305ci	3.7L / 225ci				
Fuel System	4bbl Carb	2bbl Carb	Fuel Injection	GDI				
Compression Ratio	10.5 to 1	8.0 to 1	11.0 to 1	10.5 to 1				
Power	325hp	134hp	435	300				
Analysis based on Mu		EPRINC						

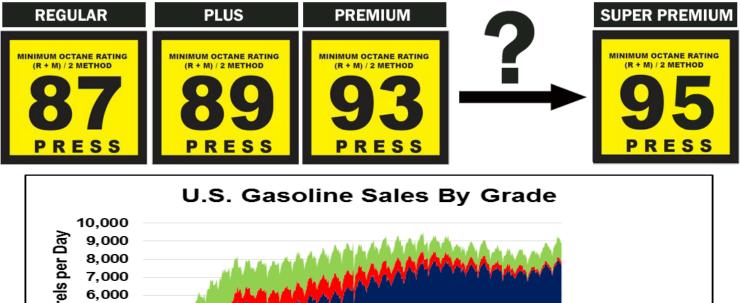

EPRINC Est. 1944

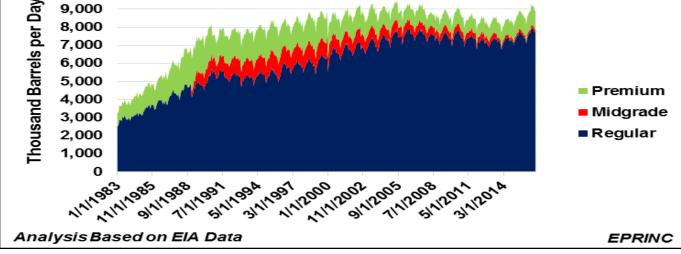
RESEARCH FOUND


糜



Est. 1944


- More Octane
 - Refining Processes
 - Ethanol
- More [P/H] EVs (Electric Vehicles)



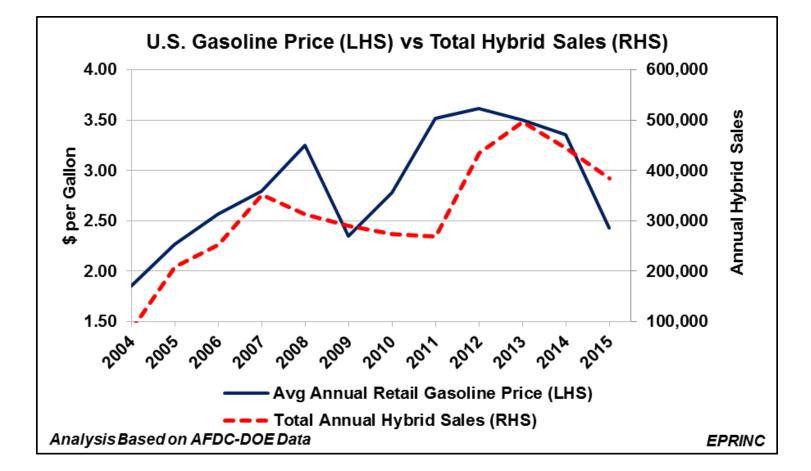
- Refining Processes requiring more Octane-Producing capacity.
 - Note Blake Eskew & Tom Kloza's cost & pricing assessments; also IHS OPIS will be having its Octane Summit in the fall.
- EPRINC's Estimate on Additional Reforming Capacity (taken from EPRINC's yet-to-be-published Octane Paper):
- - \$8,250 per barrel capital costs.
- - \$4.87 per barrel || \$0.12 per gallon operating costs.

REGULAR	PLUS	PREMIUM	SUPER PREMIUM
MINIMUM OCTANE RATING (R + M) / 2 METHOD B 7 B 7 B R E S S	MINIMUM OCTANE RATING (R + M) / 2 METHOD BBBB BBBB BBBBB BBBBBBBBBBBBBBBBBBBB	MINIMUM OCTANE RATING (R + M) / 2 METHOD 993 980 980 980 980 980 980 980 980 980 980	MINIMUM OCTANE RATING (R + M) / 2 METHOD 995 95 97 97 97 97 97 97 97 97 97 97 97 97 97

Corn Ethanol Acreage						
			Total US			
	Alcohol for fuel	Total US Corn	Corn Crop –	%tage of		
	use - MM	Crop – MM	Harvested	bushels for		
	Bushels	Bushels	MM Acres	ethanol		
2008	3,709	12,043	79	30.8%		
2009	4,591	13,067	79	35.1%		
2010	5,019	12,425	81	40.4%		
2011	5,000	12,314	84	40.6%		
2012	4,641	10,755	87	43.2%		
2013	5,134	13,829	87	37.1%		
2014	5,200	14,216	83	36.6%		
2015	5,206	13,601	81	38.3%		
2016	5,275	15,057	87	35.0%		
ysis bas		EPRINC				

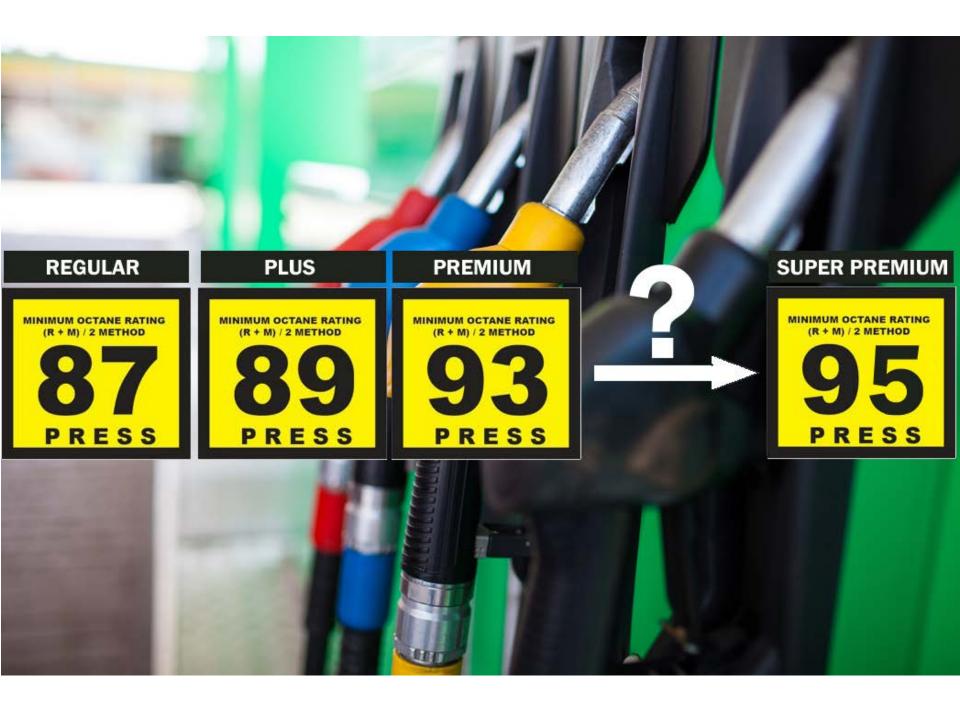
emitte lucem et veritatem

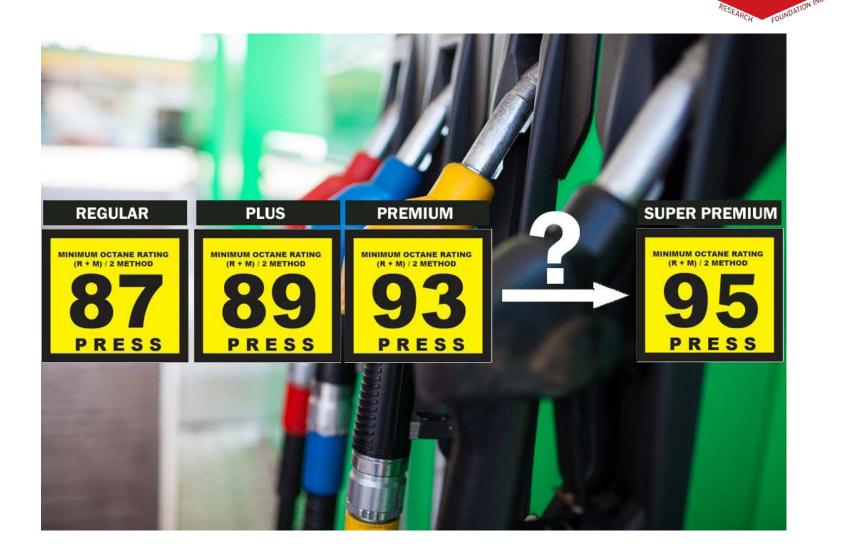
© Copyright 2013 Energy Policy Research Foundation, Inc. 1031 31st Street, NW Washington, DC 20007 > 202.944.3339 > eprinc.org


SEARCH

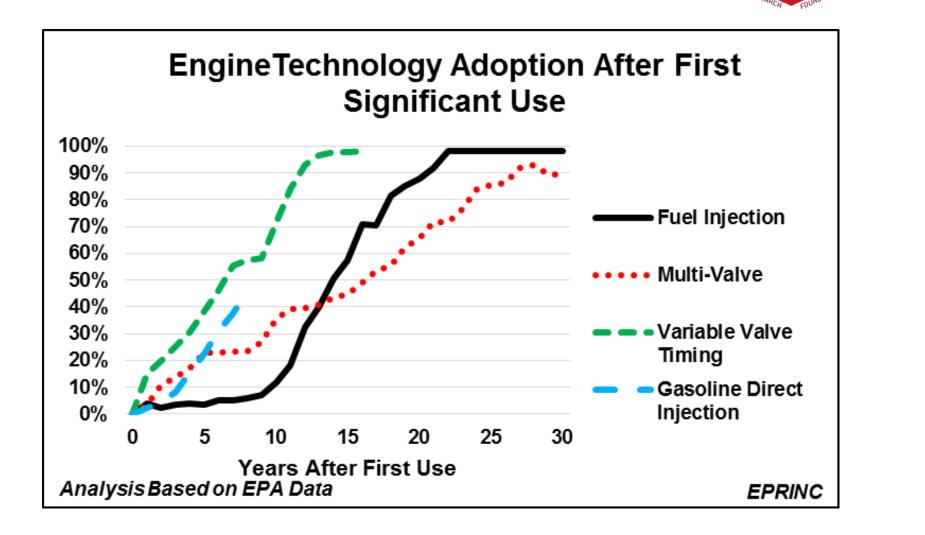
FOU

Hypothetical Composition of MY 2025 Fleet								
	Qualifying							
	Vehicles	Target						
	(millions) MPG							
	17.5	54.5						
Non-EVs	16.5	51.7						
EVs (Tesla)	100.0							
Non-EVs	15.5	48.6						
EVs (Tesla)	2	100.0						
Analysis based on AFDC EPRINC								




Conclusions and Thank you

- Any path towards MY2022-2025 CAFE Compliance presents considerable costs.
- These costs increase in a low-price transportation fuels environment that is set to continue for an extended period of time.
- Higher octane fuels will have higher production costs whether the octane is sourced from either refinery processes or corn ethanol, or both.
- Alternatively, more hybrid/plugIn electric vehicles cost more than equivalent gasoline-powered ones, and multiple automobile production lines balkanize manufacturing.
- Given that justification for the new CAFE standards relies substantially on a calculation of economic benefits to consumers from fuel savings, perhaps the Final Determination should consider some modest adjustment to the program's requirements to reduce costs so that they are closer to benefits.


Extra Slides After This

糜

Est. 1944

Source	Blending Component	RON*	MON*	AKI (R+M)/2 R	VP, psi	Aromatics, vol%	Benzene, vol%	Sulfur, ppmw	Heating Value BTU/ga (net
<u>Refinin</u>	g: Distillation								
	Light St Run								
	Naphtha	63.7	61.2	62.4	10.8	2.2	0.73	325	101,55
Refining	<u>g: Conversion</u>								
	Full Range								
	Reformate	97.3	86.7	92.0	3.2	61.1	1.17	9	112,87
	Mid Cut								
	Reformate	109.3	100.4	104.9	1.0	94.2	0.00	10	104,14
	Heavy								
	Reformate	104.3	92.4	98.4	0.3	93.8	0.00	8	116,23
	FCC Naphtha	92.6	82.1	87.4	4.6	35.9	1.23	522	111,70
	Light Alkylate	93.2	91.2	92.2	4.6	0.5	0.00	15	106,55
	C6 Isomerate	78.6	80.5	79.5	8.0	1.6	0.00	10	101,63
<u>Ox</u>	<u>ygenates</u>								
	Ethanol	132.0	106.0	119.0	11.0	0	0	<5	76,33
	MTBE	118.0	101.0	109.5	9.0	0	0	<5	93,54
	ETBE	118.0	102.0	110.0	4.0	0	0	<5	96,72
	TAME	111.0	98.0	104.5	1.5	0	0	<5	100,48
<u>Metall</u>	<u>ic Additives</u> TEL-Lead	10,000.0	13,000.0	11,500.0	11.0	0	0	<5	N/
llustratior	numbers - RON an. based on EIA, I			sarily beha	ve linearly	y when blende	ed. These val	ues are pro	ovided for

Г

Gasoline Blending With Five Refinery FeedStocks & Ethanol = E20								
Blendstock	Blend vol%	RON*	MON*	AKI (R+M)/2	RVP, PSI	Aromatics, vol%	Heating Value, BTU/gal (net)	
Light St Run	VOI /0	Non		(1111)/2		VOI /0		
Naphtha	5%	63.7	61.2	62.4	10.8	2.2	101,550	
Full Range							- ,	
Reformate	36%	97.3	86.7	92.0	3.2	61.1	112,879	
FCC Naphtha	20%	92.6	82.1	87.4	4.6	35.9	111,706	
Light							,	
Alkylate	18%	93.2	91.2	92.2	4.6	0.5	106,554	
C6 Isomerate	1%	78.6	80.5	79.5	8.0	1.6	101,639	
Ethanol	20%	132.0	106.0	119.0	11.0	0.0	76,330	
Volume								
Average	100%	100.8	89.1	95.0	5.7	29.6	103,562	
Blending								
* Octane numbers - RON & MON do not necessarily behave linearly when blended. These						nese		
values are provided for illustration.								
Analysis based		and				F		
lowa State-CAI					EPRINC			