Research and Development of Occupant-Centered Building Control Schemes: An Energy Policy Perspective

Marina Sofos, Ph.D. June 26, 2017 Marina.sofos@ee.doe.gov

Energy Efficiency & ENERGY **Renewable Energy**

U.S. DEPARTMENT OF

Outline

- Introduction to Building Technologies Office
- Challenges for Occupant-Centered R&D
- Occupant-Centered Building Control Scheme Opportunities
- Recent DOE Activity
- Conclusions

Goal

Develop cost-effective technologies capable of reducing a building's energy use per square foot by 45% by 2030, relevant to 2010

Strategy

- Identify high-impact technologies with Scout, a building energy efficiency impact analysis tool
- Fund R&D through competitive solicitations (open to everyone) and direct funding to the DOE National Labs

Technology Areas

How Does BTO Evaluate Technologies?

Scout: A platform for energy efficiency impact analysis

- Estimates the national impacts of energy conservation measures (ECMs)
- Impacts examined include primary energy, CO₂ emissions, and operating costs
- Provides common analysis approach across multiple technologies/perspectives

Scout estimates long-term energy/CO₂ reduction potentials of U.S. building efficiency measures

Scout (under development) on Github: <u>https://github.com/trynthink/scout</u>

1. Defining Occupant-Centered Measures

2. Obtaining Supporting Data

3. Communicating Outputs

kWh \$/occupant Net Present Value % energy savings % uncomfortable work performance Predicted Mean Vote EUI

Challenge: Defining Occupant-Centered Measures

Challenge: Communicating Outputs

Indoor Environmental Quality

Quantifying non-energy benefits

Individual or group-level

Design Objectives are Common Across all Building Types

- Low-cost installation and integration –
- Scalable across building types
- Interoperable plug-and-play
- Easy-to-use
- Low maintenance
- High accuracy

Achieve all six simultaneously!

Priority Area	Sector	Metric ¹	2020 Goal	2025 Goal
Occupant-centered sensors and controls	Commercial	Primary Energy Savings	15% (HVAC); 15% (Lighting)	20% (HVAC); 30% (Lighting)
		Installed Cost Premium	\$39/occupant	\$61/occupant
	Residential	Primary Energy	15% (HVAC);	20% (HVAC);
		Savings	15% (Lighting)	30% (Lighting)
		Installed Cost Premium	\$68/occupant	\$95/occupant

Occupancy Counts & Thermal Comfort Preferences in Controls

Summary

- Depth-based sensing technology utilized to perform finegrained occupancy estimation in an area with little training and non-invasive setting that works in even in a completely dark environment.
- Design, implement, and evaluate a human-in-the-loop sensing and control system for energy efficiency of HVAC and lighting systems, which takes into account occupant comfort.

Anticipated Results

- Comfort model integration with human-in-the-loop control and embedded prototype development.
- Hardware prototype that is low-energy consuming and has average accuracy above 97%.
- Context aware human-in-the-loop controller that can switch between different modes depending on occupancy context and weather condition.

Impact

 Reduce significant energy waste (i.e. target 20% energy savings) by accurately estimating occupants in an area to overcome current HVAC systems operation which assumes maximum occupancy in each room.

Placement of a Kinect at a ceiling, Kinect for Xbox One, Embedded computer Odroid-XU4

Head detection by multilevel scanning

Head verification

Shoulder verification

Occupancy estimation of two weeks at a Bosch office

Hierarchical, Occupancy-Responsive Model Predictive Control

United

Approach:

- **Develop** hierarchical, occupancy-responsive model predictive control software (MPC) framework
- **Demonstrate** multiple buildings sites, showcase robustness and verify performance improvements
- Distribute open-source for industry adoption and research collaboration

Distinctive Characteristics:

- Data-driven model identification reduces model setup, calibration, and maintenance effort.
- Hierarchical MPC enables occupant input and feedback at different levels.
- Modeling and optimization methods solves faster than conventional method (Wetter et al 2015).
- **Occupant integration** *detects* occupant presence (Jia and Spanos 2017) and predict behavior (IEA EBC Annex 66).
- **Open-source software standards** *facilitate* collaboration, scaling, and longevity.

Controls

ERKELEY

Reducing plug-load electricity footprint of residential buildings

Feedback on residential consumption has been shown effective in modifying consumption behavior but jury is still out on what type of feedback works best on what demographic

... so what if:

- Feedback could be personalized to improve effectiveness (above and beyond the current ~30% benchmark)
- Feedback could include appliance level info (stove, Window AC, etc.) to squeeze out additional effectiveness reported in previous pilot studies
- The overall system could be low-cost, non-intrusive, and designed for maximum customer engagement
- The feedback would encourage not only overall reduction in electricity consumption but also load shifting to consider regional grid constraints, e.g. in order to facilitate more renewables
- Financial and environmental benefits could be quantified for each tenant
- ... as well as aggregated for building operators or local municipalities to show overall value (net of equipment cost) and payback times
- A public database were available of hundreds of electricity consumption patterns in multi-family housing, covering multiple years, and including appliance level information

Overarching idea: Bringing smart building and grid resilience capabilities to the residential sector

OLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Conclusions

- BTO evaluates investments in developing high-performance, costeffective technologies based on their resulting energy savings
- Challenges remain in defining occupant-centered measures, obtaining supporting data, and communicating outputs
- Low-cost, human-in-the-loop solutions for occupant-centered building control schemes show promise for significant energy savings

This Community is Key to Advancements in Occupant-Centered Building Control Schemes!

Thank you!

marina.sofos@ee.doe.gov

