Buildings, Energy and Behavior: Sapiens Happens

Kurt Roth, Ph.D. EIA Conference June 26, 2017

© Fraunhofer USA 2015

IMPACT OF BEHAVIOR ON BUILDING ENERGY CONSUMPTION

© Fraunhofer USA 2015

Sources: Urban et al. (20130, Sachs et al. (2012).

Sources: Urban et al. (20130, Sachs et al. (2012).

Sources: Urban et al. (20130, Sachs et al. (2012).

Air Temperature °F

Sources: Urban et al. (20130, Sachs et al. (2012).

Simulated Heating Energy

Simulated Heating Energy

Average Setpoint Temperature °F

Source: Urban et al. (2013)

Behaviors happens in the context of technology!

Example: Programmable thermostats & Energy Saving

Energy savings due to programmable thermostats:

- Programmable thermostats save energy
 - 6% and 3.6% savings in a billing analysis of 7,000 and 25,000 households, respectively
 - 9% savings in a survey of 2,300 respondents
- Programmable thermostats **do not** save energy
 - No significant savings in billing and survey analysis of 299 households
 - No savings and/or some increases

Sources: RLW Analytics (2007), Michaud et al. (2009), Tachibana (2009), Nevius & Pigg (1999), Cross & Judd (1996), Conner (2001), Parker 2000)

Fraunhofer DOE-Building America Project: Field Evaluation of Programmable Thermostats

- Conventional Wisdom: Thermostat usability likely responsibility for inconsistent PT savings
- Our reaction: Sounds good what happens in homes??

Project approach:

- Recruited multifamily building with 90 households
- Randomly installed high usability and basic thermostats
- Installed non-intrusive sensors to monitor temperatures and HVAC activity throughout winter
- Analyzed data to evaluate thermostat use

Image Source: Honeywell

Findings:

Negligible use of nighttime setback in both groups

- **Comfort trumps energy:** average 72°F at night
- Suggests high usability alone is not sufficient for savings

Why???

Sources: Sachs et al. (2012), Fogg (2009).

Thermostat behavior change: ability is NOT enough!

NEW DATA SOURCES = NEW OPPORTUNITIES

New data sources can be used to reduce building energy consumption by shaping different types of behavior:

1. Operational behaviors

2. Purchasing behaviors

3. Installer behaviors

Operational Behaviors and communicating thermostats: Temperature set-point optimization and occupant feedback

- People-centric control give them comfort when they want it, and optimize HVAC operation around that
- Nudge people toward more efficient set point schedules

Image Source: Nest.

Customize based on heating setpoint preferences

Customize based on setback depth when away

Purchasing Behaviors and communicating thermostats: Remote home energy assessments

									Current		Wind	Cool	Heat	
		System	System	Calendar	Program	Cool Set	Heat Set	Current	Humidity	Outdoor	Speed	Stage 1	Stage 1	
Date	Time	Setting	Mode	Event	Mode	Temp (F)	Temp (F)	Temp (F)	(%RH)	Temp (F)	(km/h)	(sec)	(sec)	Fan (sec)
3/29/2016	0:00:00	auto	heatOff		Sleep	82	63	70	39	43.8	16	0	0	0
3/29/2016	0:05:00	auto	heatOff		Sleep	82	63	69.9	39	43.8	16	0	0	0
3/29/2016	0:10:00	auto	heatOff		Sleep	82	63	69.8	40	43.8	16	0	0	0
3/29/2016	0:15:00	auto	heatOff		Sleep	82	63	69.8	40	43.8	16	0	0	0
3/29/2016	0:20:00	auto	heatOff		Sleep	82	63	69.8	40	43.8	16	0	0	0
3/29/2016	0:25:00	auto	heatOff		Sleep	82	63	69.7	40	43.8	16	0	0	0
3/29/2016	0:30:00	auto	heatOff		Sleep	82	63	69.6	40	42.7	22	0	0	0
3/29/2016	0:35:00	auto	heatOff		Sleep	82	63	69.4	40	42.7	22	0	0	0
3/29/2016	0:40:00	auto	heatOff		Sleep	82	63	69.3	40	42.7	22	0	0	0
3/29/2016	0:45:00	auto	heatOff		Sleep	82	63	69.1	40	42.7	22	0	0	0
3/29/2016	0:50:00	auto	heatOff		Sleep	82	63	69	40	42.7	22	0	0	0
3/29/2016	0:55:00	auto	heatOff		Sleep	82	63	68.9	40	42.7	22	0	0	0
3/29/2016	1:00:00	auto	heatOff		Sleep	82	63	68.9	40	42.7	22	0	0	0
3/29/2016	1:05:00	auto	heatOff		Sleep	82	63	68.8	40	42.7	22	0	0	0
3/29/2016	1:10:00	auto	heatOff		Sleep	82	63	68.7	40	42.7	22	0	0	0
3/29/2016	1:15:00	auto	heatOff		Sleep	82	63	68.6	40	42.7	22	0	0	0
3/29/2016	1:20:00	auto	heatOff		Sleep	82	63	68.6	40	42.7	22	0	0	0
3/29/2016	1:25:00	auto	heatOff		Sleep	82	63	68.5	40	42.7	22	0	0	0
3/29/2016	1:30:00	auto	heatOff		Sleep	82	63	68.5	40	42.6	19	0	0	0
3/29/2016	1:35:00	auto	heatOff		Sleep	82	63	68.4	40	42.6	19	0	0	0
3/29/2016	1:40:00	auto	heatOff		Sleep	82	63	68.4	40	42.6	19	0	0	0
3/29/2016	1:45:00	auto	heatOff		Sleep	82	63	68.3	40	42.6	19	0	0	0
3/29/2016	1:50:00	auto	heatOff		Sleep	82	63	68.2	40	42.6	19	0	0	0
3/29/2016	1:55:00	auto	heatOff		Sleep	82	63	68.2	41	42.6	19	0	0	0
3/29/2016	2:00:00	auto	heatOff		Sleep	82	63	68.1	41	42.6	19	0	0	0

Source: Roth and Zeifman (2017).

Fraunhofer DOE-Building America project developing algorithms using CT data to model home thermal response ...

Source: Roth and Zeifman (2017).

Ultimately enabling:

- Identify household-specific retrofit opportunities
- Calculate household-specific energy savings potentials
- Provide targeted energy efficiency offerings to households
- Increase uptake of EE retrofits

By insulating your home, you can reduce your heating bill by **\$183** per year ...

Image Source: S. Edwards-Musa.

Installation Behaviors and communicating thermostats: Remote performance monitoring

For homeowners:

- Are expected retrofit savings being achieved?
- If not, why??
 - Poor retrofit implementation?
 - Operational fault?
 - Increased comfort?
- For utility EE programs:
 - Deliver for customers
 - Enable early identification of systematic problems, e.g., condensing boiler supply water temperature reset schedules
 - Potential for customer engagement

Use home electric interval (e.g., hourly) data to:

- Identify and target homes that are good candidates for EE and DR programs
- Identify and target homes for energy efficiency or demand response programs
- Perform remote EM&V
- Diagnose or predict HVAC faults

Image Source: Itron.

Example: Analysis of West Coast utility residential behavioral EE and DR pilot

Fraunhofer hypothesis:

- Likelihood to participate in EE and DR programs reflects energy-related attitudes and beliefs
- Energy-related attitudes affect energyrelated behaviors
- Energy-related behaviors impact electricity consumption pattern

Thus: Households likely to participate have similar electricity consumption patterns

Sources: Zeifman (2014, 2015)

Field Data Description

- Pool 1: Smart meter data on ~5,600 households that enrolled in the Program (out of 470,000 eligible households, or 1.2%)
- Pool 2: Smart meter data on ~32,000 households resided just outside the eligible area (still same city and microclimate zone)
 - Hourly electricity consumption for ~18 months (1 year before the Program) of each household
 - Zip code of each household
- Pool 1 seems to be similar to Pool 2
 - Socio-economic data do not differ significantly (US Census by zip code)
 - Average hourly electricity consumptions do not differ significantly

Sources: Zeifman (2014, 2015)

Approach: Applied nonlinear machine learning (NML) algorithms

- Black box system: inputs -> NML algorithm -> output
 - Input: Year's worth of hourly electricity consumption data
 - Output: Binary (likely to enroll / unlikely to enroll)
- Algorithm cannot tell what visible signal/household features correlate with enrollment propensity, just whether a household is more or less likely to enroll.

Algorithm Testing

- Classify a random sample of 2,000 enrolled households and 2,000 not enrolled households not used for training
- Repeat the process of training and testing using random samples (multiple cross-validation)
- Random chance = 50% prediction accuracy.

Samples used	Enrolled households	Not enrolled households
Training samples	92.4±1.1 %	91.7±1.3 %
Testing samples	91.2±1.1 %	90.5±1.4 %

Algorithm predicted what households would enroll with an accuracy ~five times greater than chance Sources: Zeifman (2014, 2015)

NEED: Common Data Sharing Frameworks

In short, Sapiens happens!

Contact

Kurt Roth

Director

Building Energy Systems

kroth@cse.fraunhofer.org

