The Automotive Industry to 2025 (and beyond)

Chris Atkinson, Sc.D.
Program Director
Advanced Research Projects Agency-Energy

2016 EIA Energy Conference
July 11, 2016
ARPA-E Mission

Catalyze the development of transformational, high-impact energy technologies

Reduce Energy-Related Emissions

Reduce Energy Imports

Improve Energy Efficiency

Ensure the U.S. maintains a lead in the development and deployment of advanced technologies
Evolution of ARPA-E

- **2007**: Published “Rising Above the Gathering Storm”
- **2009**: American Recovery & Reinvestment Act Signed
- **2010**: America COMPETES Act Signed
- **2011**: Programs To Date: 7
- **2012**: Programs To Date: 12
- **2013**: Programs To Date: 16
- **2014**: Programs To Date: 20
- **2015**: Programs To Date: 23
- **2016**: Anticipated 500+

Awards Announced
- **2007**: 1
- **2009**: 37
- **2010**: 7
- **2011**: 12
- **2012**: 16
- **2013**: 20
- **2014**: 23
- **2015**: 32
- **2016**: 39

Funding
- **2009**: $400 Million (Recovery Act)
- **2010**: $180 Million (FY2011)
- **2011**: $275 Million (FY2012)
- **2012**: $251 Million (FY2013)
- **2013**: $280 Million (FY2014)
- **2014**: $280 Million (FY2015)
- **2015**: $280 Million (FY2015)
- **2016**: $291 Million (FY2016)
Focused Program Portfolio

<table>
<thead>
<tr>
<th>ELECTRICITY GENERATION</th>
<th>ELECTRICAL GRID & STORAGE</th>
<th>EFFICIENCY & EMISSIONS</th>
<th>TRANSPORTATION & STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPACT</td>
<td>GENI</td>
<td>ADEPT</td>
<td>BEEST</td>
</tr>
<tr>
<td>SOLAR ADEPT</td>
<td>HEATS</td>
<td>BEETIT</td>
<td>AMPED</td>
</tr>
<tr>
<td>FOCUS</td>
<td>GENSETS</td>
<td>REBELS</td>
<td>ELECTROFUELS</td>
</tr>
<tr>
<td>REBELS</td>
<td>CHARGES</td>
<td>GENSETS</td>
<td>PETRO</td>
</tr>
<tr>
<td>GENSES</td>
<td>NODERS</td>
<td>GRID DATA</td>
<td>MOVE</td>
</tr>
<tr>
<td>GENSES</td>
<td>NODES</td>
<td>MOSAIC</td>
<td>REMOTE</td>
</tr>
<tr>
<td>GENSES</td>
<td>GRID DATA</td>
<td>TRANSNET</td>
<td>TERRA</td>
</tr>
<tr>
<td>GENSES</td>
<td>SHIELD</td>
<td>ENLITENED</td>
<td>REFUEL</td>
</tr>
</tbody>
</table>

|--------------|-----------|------|------|

Image credits:
- ELECTRICITY GENERATION: IMPACT, SOLAR ADEPT
- ELECTRICAL GRID & STORAGE: GENI, GENSES
- EFFICIENCY & EMISSIONS: ADEPT, BEETIT
- TRANSPORTATION & STORAGE: BEEST, AMPED, ELECTROFUELS, PETRO, MOVE, REMOTE, TERRA

Images and logos courtesy of ARPA-E.
Energy Consumed by Transportation

Light-, medium and heavy-duty vehicles consume ~11 million barrels per day oil equivalent, totaling 81% of transportation sector energy consumption, or ~23% of the US primary energy usage.
3 Significant Trends in Automotive Transportation
Trend 1 – Fuel Economy

› Future **fuel economy** of the **light-duty** vehicle fleet will be required to be significantly higher than today (54.5 mpg CAFE by 2025).

Fuel efficiency improvements will be achieved by vehicle light-weighting, reducing aerodynamic drag and tire rolling losses, engine downsizing, boosting, improved transmissions, increased electrification, hybridization, waste energy recovery, and reductions in friction and parasitic losses.

› **Heavy-duty** fuel economy regulated by EPA/NHTSA Phase 2 GHG rules.
Trend 2 – Vehicle Connectivity

- Future vehicles will utilize greater levels of **connectivity** – V2V, V2I, V2X – this trend is driven primarily by road traffic **safety** considerations.
Connected Vehicles – V2V, V2I, V2X.

DENSO, 2015
Trend 3 – Vehicle Automation

- Future vehicles will display greater levels of automation – from L0 (no automation) to L1 & L2 advanced driver assistance systems (ADAS) to L3 automation (automated operation with a driver present) and L4 (full automation – no driver required).
HD fleet annual fuel consumption (predominantly diesel fuel)

Annual HD fleet fuel consumption [gal/year] =
 fleet size [vehicles] x average VMT [miles/year] / average fuel economy [mpg]

- Subtract effect of biofuels (minimal)
- Reductions due to FE improvements (significant, 50% reduction possible)
- Reduction due to freight efficiency improvement (significant)
- VMT changes due to economic activity (varies with industrial, agricultural and retail activity) and intermodal shifts
- Increases due to fleet size increase (small)
- Reductions due to EV, PHEV, FCEV contributions (minimal)
LD fleet annual fuel consumption (predominantly gasoline)

A first order approach (actually a naïve engineer’s view):

Annual LD fleet fuel consumption [gal/year] =
 fleet size [vehicles] x average VMT [miles/year] / average fuel economy [mpg]

 - Subtract effect of biofuel addition (due to RFS)
 - Reductions due to FE improvements, including HEVs (significant)
 - Changes due to fleet mix variations (significant)
 - VMT changes due to economic activity (varies – now significant)
 - Increases due to fleet size increase (small)
 - Reductions due to EV, PHEV, FCEV contributions (currently small)
US Light-Duty Vehicle Sales

Climb to the Top
Annual U.S. light-vehicle sales

20 million vehicles

2015
17.5m

Source: Autodata
THE WALL STREET JOURNAL.
US Light-Duty Vehicle Sales – 2015

- US passenger car and light truck sales are a strong function of
 - **Household income** (steady – mean $72,641, median $51,939).
 - **Unemployment rates** (actually workforce participation) (down to 5.4% average across 2015).
 - **Interest rates** (steady and low – prime rate in 2015 was 3.50%).
 - **Fuel prices** (below $2.00/gal – average in 2015 $2.40/gal).
- 57% of sales are now pickup trucks, SUVs, crossovers and minivans.
- **Record** 2015 sales for Audi (202k), BMW (346k), Jeep (865k), Honda (1,409k), Hyundai (762k), Land Rover (71k), Kia (626k), Mercedes Benz (373k), Nissan (1,351k), Porsche (52k) and Subaru (583k).
- Average LD vehicle age is now **11.4 years** (Polk).

Sources: EIA, Polk, US Census, Automotive News.
Vehicle Ownership and Economics

- Average vehicle purchase price $34,428 (Dec. 2015) (NADA).
- Average loan term 67 months (30% of all loans are 74-84 months) at $482/month with $28,936 financed (Experian).
- Average vehicle miles traveled (VMT) per year is now 12,700 (per vehicle) and 9,500 (per capita) (NHTSA).
- Car total cost of ownership is on average around $0.60/mile (vehicle cost, financing, insurance, fuel cost).
- Total VMT is 3.1T miles (NHTSA).

The road transportation industry is a $3.0T per year business in the US alone!

Sources: NHTSA, NADA, Experian.
Light-Duty Vehicles – Meeting CAFE in 2025

- OEMs will meet 2025 standards through a combination of technology and fleet mix, adjusting sales of BEVs, PHEVs, HEVs, (FCVs), diesel and conventional cars and light trucks.
- They will also pursue ‘extra credits’ and ….

[Remember:
Monroney sticker fuel economy ≠ CAFE ≠ Real world fuel efficiency (calculated from fuel use and VMT)]
Light-Duty Vehicles – Meeting CAFE in 2025

• OEMs will meet 2025 standards through a combination of technology and fleet mix, adjusting sales of BEVs, PHEVs, HEVs, (FCVs), diesel and conventional cars and light trucks.

• Beyond 2025………?

• And what about the effect of connectivity and automated vehicle operation? This is not reflected in regulations.
Fleet-Averaged Light-Duty Fuel Economy – Sales Weighted (UMTRI)
Sales figures and market share of EVs/PHEVs, Q3 2014 to Q2 2015

<table>
<thead>
<tr>
<th>Country</th>
<th>Sales of EVs/PHEVs [items]</th>
<th>EV/PHEV share of total sales [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>119,424</td>
<td>0.71</td>
</tr>
<tr>
<td>Japan</td>
<td>24,422</td>
<td>0.48</td>
</tr>
<tr>
<td>China</td>
<td>92,471</td>
<td>0.39</td>
</tr>
<tr>
<td>France</td>
<td>21,537</td>
<td>1.16</td>
</tr>
<tr>
<td>Germany</td>
<td>17,108</td>
<td>0.55</td>
</tr>
<tr>
<td>Korea</td>
<td>2,073</td>
<td>0.13</td>
</tr>
<tr>
<td>Italy</td>
<td>2,329</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Source: fka; Roland Berger
Vehicle Safety

- **Road safety** – 32,675 fatalities in 2014 (1.07 per 100M VMT) with 2.31 million injuries in 6.06 million crashes (1.65 million with injuries, or 53 crashes with injury per 100M VMT).
- Has relied to date on **passive safety** – expensive and costly in weight.
- New **active safety** mechanisms – ACC and AEB through radar.
- **Vehicle connectivity** will allow for further advances in safety – DSRC (dedicated short range communications) will broadcast the actions of all vehicles in a 150m radius.
- The effect of **automated vehicles**?

Sources: NHTSA, industry.
Advanced Driver Assistance Systems (L1-L2)

- ACC – adaptive cruise control (accelerator, brake).
- LKA – lane keeping assist (steering).
- FCW – forward collision warning.
- Parking assistance/pilot.
- Alerts – blind spot assist, cross-traffic alerts, rear-view cameras.

- Semi-autonomous (MB, Volvo, Subaru, Infiniti, Nissan, Honda, …) and now essentially autonomous (Tesla Autopilot [L3] and Google car [L4])
L4 Vehicles will demonstrate far higher energy efficiency

- Intrinsically safe vehicles “won’t crash”.
- Significant reductions in vehicle mass possible due to reduction in safety equipment required.
- Large weight de-compounding effects, also allowing for the use of lighter materials – CF, plastics, light metals?
- Opportunity for xEVs? Reduced energy storage requirements for same vehicle range.
- Automated vehicles will have more/less opportunity for recharging?

Chris Atkinson, Program Director ARPA-E
Connectivity and Automation

- Facilitates collaborative vehicle behavior (requires V2V communication)
 - Platooning, congestion mitigation, CACC
- Facilitates interaction with infrastructure (requires V2I communication)
 - SPaT – signal phase and timing
 - Eco-approach and departure
- Facilitates congestion mitigation (requires V2X, cellular, satellite communication)
 - Eco-routing
The 10 Rules of Driving

1. **Keep right**, keep to the road, avoid on-coming traffic and stay centered within the driving lane.
2. Travel at the minimum of {the speed limit; the prevailing traffic speed; an appropriately **safe speed** dictated by road conditions, traffic and environmental conditions}.
3. **Stop** when required by traffic signals, traffic signs, traffic officers, stationary traffic ahead or obstacles or debris in the road.
4. Maintain a **safe following distance** (and do not follow too closely or run into vehicles ahead).
5. Come to a **stop, stand or park** only when safe and appropriate to do so and in a manner that will not impede traffic.
6. **Adjust speed and merge** in turn into traffic with suitable clearance at ramps, stops and merges.
7. **Take turns** at unregulated stops or merges.
8. **Avoid obstacles** (stationary and moving) with sufficient clearance to allow for directional changes (pedestrians, other road users, animals, debris, road repairs etc.)
9. **Pass only where safe** and do not obstruct or impede other (oncoming) traffic.
10. **Drive defensively** and predictively, and not selfishly (use common sense, be alert, be predictive and not merely reactive).
Fully Automated Driving – requires 100 million LOC?

Fully automated driving requires the following:

- Mapping ("refer") – refer to pre-developed 3D maps of fixed features, together with overlays of temporary or moving obstacles for navigation.
- Machine vision ("see") – inputs from multiple sensors including vision, radar, LIDAR, acoustics/ultrasonics to sense proximity, localization, displacement and velocity of vehicles, obstacles, roadway etc.
- Sensor and data fusion ("recognize") – fuse inputs and data from machine vision and mapping (on and off-board) to create a comprehensive visual ‘map’.
- Connectivity ("integrate") – access additional information or data from off-board the vehicle and to coordinate with other vehicles (V2V, V2X).
- Decision making ("think") – computational capability and advanced decision-making (not just rule-based).
- AI ("decide") – artificial intelligence (of which ‘deep learning’ is a part) allows for learning and adaptation.
- Automation ("respond") – control the vehicle in a safe and predictable fashion.

Requires the 99.9999th percentile safety solution (currently at the 99th percentile?)
Future Potential with Vehicle Autonomy?

Figure 2.6
Range of Potential Fuel Economy Improvements for Conventional, Hybrid, and Autonomous Cars

SOURCES: Analysis using data from NRC, 2013a; Folsom, 2012.

Source: Autonomous Vehicle Technology – A Guide for Policymakers – Anderson et al., RAND Corporation, 2014
Overall Energy Impacts Analysis

A few more comments on operations related impacts...

Positive Energy Outcomes

- Enabling electrification
- Lightweighting & powertrain/vehicle size optimization
- Full cycle smoothing
- Significant potential driving efficiency benefits
- Higher occupancy
- Less hunting for parking
- Efficient routing
- Efficient driving
- Platooning

Negative Energy Outcomes

- More travel
- Faster travel
- Travel by underserved

Fuel Intensity	Energy Intensity	Use Intensity

The Automotive Industry

- Is a very mature, conservative industry dominated by
 - Regulation (safety),
 - Regulation (emissions [optional] and now fuel efficiency),
 - Customer preferences,
 - While meeting strict cost and price constraints.
- To date regulation, incumbency and cost has protected the industry from extreme disruption.
- Industry has always been alert to ‘head-on’ threats
- But now there are a new generation of disrupters –
 cf. Tesla, Apple, Google, Uber, ...

Will electrification, connectivity and automated operation, and new models of ownership and usage facilitate or accelerate the disruption of the industry?
The Disrupters

- Have incredibly deep pockets –
 - Apple has $220B in cash, which dwarfs the market capitalization of Ford ($54B), GM ($50B), VW ($63B), Tesla ($31B) and is greater than Toyota ($164B).
 - Uber (private) has a $50B value – greater than FedEx.
 - Bear in mind that the traditional automotive industry operates on very thin margins, and is the “world’s greatest destroyer of capital”.

- Traditional barriers to entry:
 - Regulation – Silicon Valley has never acknowledged regulation as a barrier to doing business.
 - Capital – Apple alone has 10x the capital required to succeed.
 - Engineering – not an issue with less complex powertrains (although the battery? Hence Tesla’s Gigafactory).

- SV operates on its own time scales (~1-2 years vs. 6-10 years of the automotive industry).
- Tremendous market pull for high technology products.
Requirements for commercial success

Any new powertrain technology should be comparable to or better than the baseline in:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Power density (or energy density including the fuel/energy storage capacity)⇒ Customer acceptance</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Fuel economy (over real-world dynamic driving)⇒ Regulation</td>
</tr>
<tr>
<td></td>
<td>Energy efficiency</td>
</tr>
<tr>
<td>Emissions</td>
<td>Regulated criteria pollutants (and now CO$_2$)⇒ Regulation</td>
</tr>
<tr>
<td>Cost</td>
<td>Total cost of ownership (including capex and energy cost)</td>
</tr>
<tr>
<td>Reliability</td>
<td>Mean time between failures, maintainability</td>
</tr>
<tr>
<td>Utility</td>
<td>Acceleration, driveability, NVH, cold or off-cycle operation, ease of use, transparency to the user, and acceptable range</td>
</tr>
<tr>
<td>Fuel acceptability</td>
<td>Use a readily available fuel or energy source.</td>
</tr>
</tbody>
</table>
Huge Foundational Shifts in the Automotive Industry

Old Model

- Vehicle hardware as the differentiating factor
- Complex powertrain
- Long development cycles
- Human operator, stand-alone
- Single vehicle with a single user
- Owner is driver and user
- OEMs are foremost
- Tightly controlled supply chain
- “One sale, once”
- OEM profitability required or at least desired

Chris Atkinson, Program Director ARPA-E
Huge Foundational Shifts in the Automotive Industry

Old Model
- Vehicle hardware as the differentiating factor
- Complex powertrain
- Long development cycles
- Human operator, stand-alone
- Single vehicle with a single user
- Owner is driver and user
- OEMs are foremost
- Tightly controlled supply chain
- “One sale, once”
- OEM profitability required or at least desired

New Paradigm
- Software as the differentiating factor
- Simplified powertrain – electric?
- Short development cycles
- Automated operation, connected
- New models of usage – ridesharing
- New models of ownership
- Suppliers now hold the keys
- Electronics, electrics & batteries
- New models of monetization
- No requirement for immediate profitability
But be wary of non-linear thinking

- **Vehicle ownership** – there is no clear threat to the traditional model. Millennials have merely delayed purchases for several reasons (city dwellers, high debt loads, disinterest) but as soon as they move to the suburbs….

- **Vehicle purchase** – leasing and other new models will emerge.

- **Vehicle usage** – ride-sharing versus car sharing.

- **Disruption** – Uber has disrupted the taxi industry (at $1.50 to $2.00 per mile), but not the passenger car industry (with total cost of ownership at $0.60 per mile).

- **Economics** – vehicles are currently bought, sold, paid for and operated on a VMT basis. If total VMT does not decrease, it is not at all clear that sales will drop, or usage change significantly.

- **Fuel consumption** – future vehicles will be significantly more fuel efficient than today, with no other changes in regulation or economics.
The Future Vehicle Industry Landscape

- OEMs – e.g. GM, Ford, BMW….
- Ride-sharing companies – e.g. Uber, Lyft, GETT, Didi….
- “Mobility as a Service” providers.
- New ‘dark horses’.

And so now we have
 - GM investing in Lyft (OEM+RS).
 - Uber looking to develop automated vehicles (RS=OEM).
 - Apple looking to develop an EV (‘Project Titan’) (new OEM).
 - Google developing automated vehicles (CAV OEM+mapping).
 - Ford Smart Mobility (OEM=RS).

Just for a start…..
The Future of the OEMs

BMW – Harald Krueger, CEO – March 16, 2016

"The iNext will cover all aspects relevant in the future: autonomous driving, digital connectivity, intelligent lightweight construction, a trendsetting interior and the next generation of electro-mobility."

‣ VW will become a “new mobility company”
‣ Ford will become a “new mobility company”
‣ Toyota Research Institute - $1B for robotics research
‣ New alliances
 – DeepDrive – machine learning and AI – Ford, Toyota, VW, Nvidia, Qualcomm, Panasonic at UC Berkeley
 An enormous amount of activity……
The Probable Pathway to 2025 and Beyond

- **Vehicle powertrain technology** – more electrification, hybridization, downsizing, waste energy recovery, 48V systems?
- **Vehicle structures** – vehicle downsizing, weight reduction, more use of light-weight materials.
- **Vehicle ownership** – how will the 84 month ownership cycle be reconciled with 1-2 year product cycles?
- **Ride-sharing, car-sharing** – new ownership and usage models.
- **OEMs** – the center of gravity of the high-technology components of the vehicle has shifted to suppliers both old (Bosch, DENSO, Continental, Delphi) and new (Mobileye, Cruise Automation).
- **ADAS** systems will proliferate, leading to L3 automation (such as the Tesla Autopilot) being essentially standard (L3 is a suite of technologies).
- **L4 automation** requires or facilitates new vehicle architectures (electrification?) but will probably be slow in penetrating the full market.
- **Regulations?**
- **The implication for energy usage** – energy usage in the LD fleet will almost certainly be reduced by 2025. After that timeframe, it is not clear.
Welcome to the Future.

Chris Atkinson, Sc.D.
Program Director, ARPA-E

chris.atkinson@hq.doe.gov
ARPA-E Recruitment Opportunities

ARPA-E is currently hiring new Program Directors

What makes an ideal candidate?

Roles, Responsibilities, and Attributes

<table>
<thead>
<tr>
<th>Program Development</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>› Perform technical deep dive to solicit input from multiple stakeholders in the R&D community</td>
<td></td>
</tr>
<tr>
<td>› Present & defend program concept in climate of constructive criticism</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active Project Management</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>› Actively manage portfolio projects from merit reviews through project completion</td>
<td></td>
</tr>
<tr>
<td>› Extensive “hands-on” work with awardees</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thought leadership</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>› Represents ARPA-E as a thought leader in the program area</td>
<td></td>
</tr>
</tbody>
</table>

R&D experience; intellectual integrity & flexibility; technical breadth; commitment to energy; communication skills; leadership; and team management

Confidence, but not arrogance

If you are interested in applying or learning more, please contact a current ARPA-E Program Director or email arpa-e-jobs@hq.doe.gov
<table>
<thead>
<tr>
<th>Model</th>
<th>2015 Sales</th>
<th>2014 Sales</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audi A7</td>
<td>7721</td>
<td>8133</td>
<td>-5.07%</td>
</tr>
<tr>
<td>Audi A8</td>
<td>4990</td>
<td>5904</td>
<td>-15.48%</td>
</tr>
<tr>
<td>BMW 6-Series</td>
<td>8146</td>
<td>8647</td>
<td>-5.79%</td>
</tr>
<tr>
<td>BMW 7-Series</td>
<td>9292</td>
<td>9744</td>
<td>-4.64%</td>
</tr>
<tr>
<td>Jaguar XJ</td>
<td>3611</td>
<td>4329</td>
<td>-16.59%</td>
</tr>
<tr>
<td>Lexus LS</td>
<td>7165</td>
<td>8559</td>
<td>-16.29%</td>
</tr>
<tr>
<td>Mercedes-Benz CLS-Class</td>
<td>6152</td>
<td>6981</td>
<td>-11.88%</td>
</tr>
<tr>
<td>Mercedes-Benz S-Class</td>
<td>21934</td>
<td>25276</td>
<td>-13.22%</td>
</tr>
<tr>
<td>Porsche Panamera</td>
<td>4985</td>
<td>5740</td>
<td>-13.15%</td>
</tr>
<tr>
<td>Tesla Model S</td>
<td>26566</td>
<td>18480</td>
<td>43.76%</td>
</tr>
<tr>
<td>Total</td>
<td>100562</td>
<td>101793</td>
<td>-1.21%</td>
</tr>
</tbody>
</table>
Consider the Tesla Model S compared to the Mercedes Benz S-Class:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Compared to Mercedes S-Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>1x</td>
</tr>
<tr>
<td>Regulation</td>
<td>0.5x</td>
</tr>
<tr>
<td>Emissions</td>
<td>0x (really?)</td>
</tr>
<tr>
<td>Engineering Effort</td>
<td>0.5x</td>
</tr>
<tr>
<td>Reliability</td>
<td>0.5x</td>
</tr>
<tr>
<td>Utility</td>
<td>Performance 2x</td>
</tr>
<tr>
<td></td>
<td>Range 0.5x</td>
</tr>
<tr>
<td></td>
<td>Refueling Rate 0.01x</td>
</tr>
<tr>
<td>Economics</td>
<td>Price 1x, Sales 1x, Profitability 0x</td>
</tr>
</tbody>
</table>

The Tesla Model S should never have been a success. Evidence of a significant shift in consumer expectations – or just a function of the vehicle class (a rarefied atmosphere)? Model X and Model 3 sales will tell.

Chris Atkinson, Program Director ARPA-E