Efficiency and Intensity in the AEO 2010

Session 9
Energy Efficiency: Measuring Gains and Quantifying Opportunities

April 7, 2010 2010 Energy Conference Washington, DC

Steve Wade, Economist

Overview

 What are the sources of efficiency in the AEO 2010?

 What is the contribution of energy efficiency to projected U.S. energy intensity?

 How do AEO scenarios relate to technical potential?

Sources of efficiency

Technology

- Stock turnover
- Progress and learning

Mandates

- CAFÉ, efficiency standards (NAECA, EPACT), building codes...
- Renewable fuel standards

Incentives

- Tax credits, loan guarantees, grants, ...
 - Energy efficiency and renewables ACESA, ARRA (stimulus bill) ...
 - Investment tax credits
 - Production tax credits for renewable generation
- Voluntary programs like Energy Star, Rebuild America

Key Concepts

- Energy Efficiency
 - Primary energy consumption per energy services provided
 - Driven by technology improvements
- Energy Intensity
 - Primary energy consumption per real GDP
 - Efficiency + structural changes
- Carbon Intensity
 - Carbon emissions per real GDP
 - Efficiency + structural changes + decarbonization

Decomposition of carbon intensity

De-carbonization: 2035 Carbon/Energy ratio is 95% of its 2008 value in Reference case

Examples of structural changes

Conservation

Changes in energy use that reduce consumption by reducing services provided

Buildings

- Migration to moderate climates
- Housing type shifts / commercial building mix

Industry

- Shifts to less energy-intensive industries
- Growth of service sector relative to industry

Transportation

- Vehicle type shifts (cars, mini-vans, SUVs, and light trucks)
- Urbanization, shifts to mass transit, biking / walking...

Structural drivers grow slower than GDP

	CAGR: 2008 - 2035
Macroeconomic	
Real Gross Domestic Product	2.4%
Population	0.9%
NEMS Sectoral Drivers	
Buildings	
Households	1.0%
Commercial Floorspace	1.3%
Industrial (Real Value Shipments)	
Non-Manufacuring	0.9%
Energy Intensive Manufacturing	0.8%
Non-Energy Intensive Manufact	turing 1.8%
Transportation	
Light Duty Vehicle-Miles Travele	ed 1.7%
Freight Truck Vehicle-Miles Tra	veled 1.7%
Air Seat Miles	1.3%
Rail Ton-Miles	0.8%

Contribution of technology improvements

- Low technology integrated case
 - No future technology advances
 - Equipment and shells limited to what was available in 2009
 - Equipment stocks improve through turnover
- Reference case
 - Future technology improvements
 - Equipment purchases calibrated to observed behavior
- High technology integrated case
 - Advanced equipment available earlier at lower cost
 - Purchases based on reduced discount rates
 - Building shells get more efficient than Reference

Note: All cases have same stock turnover rate

No aggressive retrofitting

Energy efficiency and intensity across technology cases

Primary Energy Consumption difference from Reference Case, 2035

2009 Technology = 2.4 quad Btu increase High Technology = 5.7 quad Btu decrease

Source: EIA, National Energy Modeling System runs ltrkiten.d020510a, AEO2010r.d111809a, and htrkiten.d020510a.

Approaching technology potential: buildings best case

- Buildings case only
 - Residential and commercial sectors
 - Not integrated with other modules
- Best technology case
 - Equipment costs ignored
 - Only the most efficient technologies are allowed
 - Shells even better than High technology case
- Reference assumptions on stock turnover
 - No aggressive retrofitting

Buildings delivered energy use per square foot

Percent reduction of 2009 value in 2035

Source: EIA, National Energy Modeling System runs Itrkiten.d020510a, AEO2010r.d111809a, htrkiten.d020510a, and bldbest.d012010a.

Approaching technical potential: buildings best case

- Best case still not maximum technical potential
- Long-lived, rapidly advancing technologies do not fully penetrate by 2035
 - LED lighting
 - Geothermal heat pumps
 - Miscellaneous buildings equipment
 - Building shells
- Technical Potential
 - Post-2035 intensity could ultimately fall to 43 percent lower than 2009 (from 38 percent in 2035)

For more information

- EIA, Annual Energy Outlook 2010, DOE/EIA-0383(2010) (Washington, DC, forthcoming), www.eia.doe.gov/oiaf/aeo/index.html
- EIA, An Updated Annual Energy Outlook 2009 Reference Case Reflecting Provisions of the American Recovery and Reinvestment Act and Recent Changes in the Economic Outlook, SR/OIAF/2009-03 (Washington, DC, April 2009), www.eia.doe.gov/oiaf/servicerpt/stimulus/index.html
- Wade, S.H., Measuring Changes in Energy Efficiency for the AEO 2002, www.eia.doe.gov/oiaf/analysispaper/efficiency/index.html

Thank you

Steve Wade Steven.Wade@eia.gov 202-586-1678

U.S. Energy Information

Administration

www.eia.gov

