

# Capital Cost and Performance Characteristics for Utility-Scale Electric Power Generating Technologies

January 2024



Independent Statistics and Analysis U.S. Energy Information Administration www.eia.gov U.S. Department of Energy Washington, DC 20585

The U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this report do not represent those of DOE or any other federal agencies.

# **Capital Cost and Performance Characteristics for Utility-Scale Electric Power Generating Technologies**

To accurately reflect the changing cost of new electric power generators in the *Annual Energy Outlook 2025* (AEO2025), EIA commissioned Sargent & Lundy (S&L) to evaluate the overnight capital cost and performance characteristics for 19 electric generator types. The following report represents S&L's findings.

EIA accepted the following report in fulfillment of contract number 89303023-REI000091. All views expressed in this report are solely those of the contractor and acceptance of the report in fulfillment of contractual obligations does not imply agreement with nor endorsement of its findings. Responsibility for accuracy of the information contained in this report lies with the contractor. Although EIA intends to use this report to inform the updating of EIA's Electricity Market Module in the National Energy Model System (NEMS), EIA is not obligated to modify any of its models or data in accordance with the findings of this report.

## Contacts

This report, *Capital Cost and Performance Characteristics for Utility-Scale Electric Power Generating Technologies*, was prepared under the general guidance of Angelina LaRose, Assistant Administrator for Energy Analysis; Jim Diefenderfer, Director of the Office of Long-Term Energy Modeling; and Chris Namovicz (202-586-7120), Team Lead of the Electricity, Coal, and Renewables Modeling Team. Technical information concerning the content of the report also may be obtained from Richard Bowers at 202-586-8586 or Nina Vincent at 202-586-8501.

### Introduction

The current projected cost and performance characteristics of new electric generating capacity are critical inputs into the development of energy projections and analyses. The construction and operating costs, along with the performance characteristics, of new generating plants play an important role in determining the mix of capacity additions that will serve future demand for electricity. These parameters also help to determine how new capacity competes against existing capacity and how electric generators will respond to imposed environmental controls on conventional pollutants or any limitations on greenhouse gas emissions.

Consistent with EIA's practice of developing periodic assessments, EIA commissioned an external consultant to develop up-to-date cost and performance estimates for utility-scale electric generating plants for AEO2025. This report is the fifth such report EIA has commissioned since 2010. As with the prior studies, this information allows EIA to compare the costs of different electric generating technologies on a standardized basis and is a key input enhancement to the NEMS.

This report contains cost and performance estimates developed by Sargent & Lundy for 19 reference technology cases for different types of electric generators. To develop the characteristics of each reference technology case, Sargent and Lundy considered the specification of representative plant sizes and configurations and major equipment components, including emission controls, based on current information from similar facilities recently constructed, under development, or proposed for commercial development in the United States and abroad. In each successive study that EIA contracted, the evolution of technology, environmental requirements, and generator preferences influenced the attributes associated with the reference generating technology. Where these characteristics remain substantially similar between the study conducted for AEO2020 and the study conducted for AEO2025, reference technology case costs are comparable and are labeled "updated"; where these characteristics differ significantly between the two studies, the reference technology costs are reported as "new" (Findings).

To produce its overnight capital cost estimates, Sargent & Lundy assumed that the power plant developer or owner will hire an engineering, procurement, and construction (EPC) contractor for turnkey construction of the project. These costs represent the total cost a developer would expect to incur during the construction of a project, excluding financing costs. The specific overnight costs for each type of facility are divided into:

- Civil and structural material and installation cost covering all material and associated labor for civil and structural tasks
- Mechanical equipment supply and installation cost including all mechanical equipment and associated labor for mechanical tasks
- Electrical, instrumentation, controls supply, and installation cost including all costs for transformers, switchgear, control systems, wiring, instrumentation, and raceways.

• Project indirect costs including engineering, construction management, as well as startup and commissioning. The fees include contractor overhead costs, fees, and profit.

Sargent & Lundy estimated labor, maintenance, minor repairs, and general and administrative (G&A) costs based on multiple sources including actual projects, vendor publications, and internal resources. Variable operations and maintenance costs, such as ammonia, water, and miscellaneous chemicals and consumables, are directly proportional to the electricity generated. Fuel costs were estimated for reference unit types using representative fuel specifications for coal, natural gas, and biomass.

### **Findings**

Table 1 summarizes updated cost estimates for reference case utility—scale generating technologies specifically two powered by coal, five by natural gas, three by solar energy and by wind, two by uranium, and one each by hydroelectric, biomass, geothermal, and battery storage. EIA does not model all these generating plant types but included them in the study to present consistent cost and performance information for a broad range of generating technologies and to aid in the evaluation for potential inclusion of new or different technologies or technology configurations in future analyses. The specific technologies represented in the NEMS model for AEO2025 that use the cost data from this report are identified in the last column of Table 1.

Table 2 provides a comparison of updated overnight cost estimates for technologies substantially similar to those developed for the 2019 report. To facilitate comparisons, the costs are expressed in 2023 dollars.

### Impact of location on power plant capital costs

The estimates provided in this report are representative of a generic facility located in a region without any special issues that would alter its cost. However, the cost of building power plants in different regions of the United States can vary significantly. Sargent & Lundy estimated capital cost adjustment factors to account for technology deployment at various U.S. locations using published labor rates for each location to create a wage rate factor for each location against the base rate (the *30 City Average*). The location factors were then improved by adding a regional labor productivity factor. To reflect these costs in EIA's modeling, these adjustments were aggregated to represent the 25 Electricity Market Module regions. EIA also assumes that the development of certain technologies is not feasible in given regions for geographic, logistical, or regulatory reasons. The regional cost adjustments for the reference technologies are summarized in Table 3.

### **Summary**

Although the estimates provided by Sargent & Lundy for this report are key inputs for EIA electric market projections, they are not the sole driver of electric generation capacity expansion decisions. The evolution of the electricity mix in each of the 25 regions modeled

in AEO2025 is sensitive to many factors, including the projected evolution of capital costs over the modeling horizon, projected fuel costs, the characteristic of wholesale power markets (regulated or competitive), the existing generation mix, additional costs associated with environmental controls, and future electricity demand. Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies

**Prepared for** 



U.S. Energy Information Administration and Z Federal

Prepared by Sargent & Lundy

Report SL-018001 Final – Rev A December 6, 2023 Project 14987.001



55 East Monroe Street Chicago, IL 60603-5780 USA 312-269-2000 www.sargentlundy.com

## LEGAL NOTICE

This deliverable was prepared by Sargent & Lundy, L.L.C. (S&L) under contract with Z Federal (Client) expressly for the sole use of the U.S. Energy Information Administration in accordance with the contract agreement between S&L and Client. This deliverable was prepared using the degree of skill and care ordinarily exercised by engineers practicing under similar circumstances. Client acknowledges: (1) S&L prepared this deliverable subject to the particular scope limitations, budgetary and time constraints, and business objectives of Client; (2) information and data provided by others, including Client, may not have been independently verified by S&L; and (3) the information and data contained in this deliverable are time-sensitive and changes in the data, applicable codes, standards, and acceptable engineering practices may invalidate the findings of this deliverable. Any use or reliance upon this deliverable by third parties shall be at their sole risk.



Sargent & Lundy is one of the longest-standing full-service architect engineering firms in the world. Founded in 1891, the firm is a global leader in power and energy with expertise in grid modernization, renewable energy, energy storage, nuclear power, fossil fuels, carbon capture, and hydrogen. Sargent & Lundy delivers comprehensive project services – from consulting, design, and implementation to construction management, commissioning, and operations/maintenance – with an emphasis on quality and safety. The firm serves public and private sector clients in the power and energy, gas distribution, industrial, and government sectors.

55 East Monroe Street • Chicago, IL 60603-5780 USA • 312-269-2000



## **VERSION LOG**

| Version       | Issue Date       | Sections Modified                   |
|---------------|------------------|-------------------------------------|
| Draft A       | August 11, 2023  | Initial Issue                       |
| Interim Final | October 2, 2023  | All                                 |
| Final         | November 6, 2023 | Issued for Final                    |
| Final - Rev A | December 6, 2023 | Sections 17.1.1, 17.3, 18.1.1, 18.3 |



# TABLE OF CONTENTS

| INTRODUCTION                                                          | I       |
|-----------------------------------------------------------------------|---------|
| INTRODUCTION                                                          | I       |
| COST AND PERFORMANCE OF TECHNOLOGIES                                  | I       |
| COST AND PERFORMANCE ESTIMATES SUMMARY                                | II      |
| BASIS OF ESTIMATES                                                    | V       |
| BASE FUEL SELECTION                                                   | V       |
| ENVIRONMENTAL COMPLIANCE BASIS                                        | VI      |
| COMBUSTION TURBINE CAPACITY ADJUSTMENTS                               | VII     |
| CAPITAL COST ESTIMATING                                               | VII     |
| LOCATIONAL ADJUSTMENTS                                                | IX      |
| ENVIRONMENTAL LOCATION FACTORS                                        | X       |
| ADDITIONAL LOCATION FACTOR CONSIDERATIONS                             | XI      |
| OPERATING AND MAINTENANCE COST ESTIMATING                             | XII     |
| FIXED OPERATIONS AND MAINTENANCE                                      | XII     |
| VARIABLE OPERATIONS AND MAINTENANCE                                   | XIII    |
| INFLATION REDUCTION ACT CONSIDERATIONS                                | XIV     |
| CARBON CAPTURE TECHNOLOGIES                                           |         |
| NUCLEAR TECHNOLOGIES                                                  | XV      |
| CLEAN ENERGY PRODUCTION AND INVESTMENT TAX CREDITS                    |         |
| LABOR REQUIREMENTS                                                    | XVI     |
| DOMESTIC CONTENT REQUIREMENTS                                         | XVII    |
| SOLAR PHOTOVOLTAIC SUPPLY CHAINS                                      | XVIII   |
| WIND ENERGY SUPPLY CHAINS                                             | XIX     |
| ENERGY STORAGE SUPPLY CHAINS                                          |         |
| ENERGY COMMUNITY REQUIREMENTS                                         | XX      |
| CASE 1. ULTRA-SUPERCRITICAL COAL PLANT WITHOUT CARBON CAPTURE, 650 MW | / NET 1 |
| 1.1. CASE DESCRIPTION                                                 |         |
| 1.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                               | 2       |
| 1.1.2. ELECTRICAL AND CONTROL SYSTEMS                                 | 4       |
| 1.1.3. OFFSITE REQUIREMENTS                                           | 4       |
| 1.2. CAPITAL COST ESTIMATE                                            | 4       |
| 1.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                         | 7       |
| 1.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                          | 8       |

| CASE 2. ULTRA-SUPERCRITICAL COAL PLANT WITH 95% CARBON CAPTURE, 650 MW NET      | . 10            |
|---------------------------------------------------------------------------------|-----------------|
| 2.1. CASE DESCRIPTION                                                           | . 10            |
| 2.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                                         | . 10            |
| 2.1.2. ELECTRICAL AND CONTROL SYSTEMS                                           | . 13            |
| 2.1.3. OFFSITE REQUIREMENTS                                                     | . 13            |
| 2.2. CAPITAL COST ESTIMATE                                                      | . 14            |
| 2.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                                   | . 16            |
| 2.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                                    | . 17            |
| CASE 3. COMBUSTION TURBINE - SIMPLE CYCLE PLANT, 4 X AERODERIVATIVE, 211 MW NET | <sup>.</sup> 19 |
| 3.1. CASE DESCRIPTION                                                           | . 19            |
| 3.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                                         | . 19            |
| 3.1.2. ELECTRICAL AND CONTROL SYSTEMS                                           | . 20            |
| 3.1.3. OFFSITE REQUIREMENTS                                                     |                 |
| 3.2. CAPITAL COST ESTIMATE                                                      | . 20            |
| 3.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                                   | . 22            |
| 3.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                                    | . 23            |
| CASE 4. COMBUSTION TURBINE - SIMPLE CYCLE PLANT, H CLASS, 419 MW NET            | . 25            |
| 4.1. CASE DESCRIPTION                                                           | . 25            |
| 4.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                                         | . 25            |
| 4.1.2. ELECTRICAL AND CONTROL SYSTEMS                                           | . 26            |
| 4.1.3. OFFSITE REQUIREMENTS                                                     | . 26            |
| 4.2. CAPITAL COST ESTIMATE                                                      | . 26            |
| 4.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                                   | . 28            |
| 4.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                                    | . 29            |
| CASE 5. COMBINED-CYCLE PLANT, H CLASS, 1227 MW NET                              | . 31            |
| 5.1. CASE DESCRIPTION                                                           | . 31            |
| 5.1.1. MECHANICAL EQUIPMENT AND SYSTEM                                          | . 31            |
| 5.1.2. ELECTRICAL AND CONTROL SYSTEMS                                           | . 33            |
| 5.1.3. OFFSITE REQUIREMENTS                                                     | . 33            |
| 5.2. CAPITAL COST ESTIMATE                                                      | . 33            |
| 5.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                                   | . 35            |
| 5.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                                    |                 |
| CASE 6. COMBINED-CYCLE PLANT, H CLASS, SINGLE SHAFT, 627 MW NET                 | . 38            |
| 6.1. CASE DESCRIPTION                                                           |                 |
| 6.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                                         | . 38            |
| 6.1.2. ELECTRICAL AND CONTROL SYSTEMS                                           | . 40            |

| 6.1.3. OFFSITE REQUIREMENTS                                                 | 40           |
|-----------------------------------------------------------------------------|--------------|
| 6.2. CAPITAL COST ESTIMATE                                                  | 41           |
| 6.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                               | 43           |
| 6.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                                | 44           |
| CASE 7. COMBINED-CYCLE PLANT, H CLASS, SINGLE SHAFT, WITH 95% CARBON CAPTUR | E, 543       |
| MW NET                                                                      | 45           |
| 7.1. CASE DESCRIPTION                                                       | 45           |
| 7.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                                     | 45           |
| 7.1.2. 95% CO <sub>2</sub> CAPTURE                                          | 46           |
| 7.1.3. ELECTRICAL AND CONTROL SYSTEMS                                       | 46           |
| 7.1.4. OFFSITE REQUIREMENTS                                                 | 47           |
| 7.2. CAPITAL COST ESTIMATES                                                 | 47           |
| 7.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                               | 50           |
| 7.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                                | 51           |
| CASE 8. WOODY BIOMASS PLANT, WITH 95% CARBON CAPTURE, 50 MW NET             | 52           |
| 8.1. CASE DESCRIPTION                                                       | 52           |
| 8.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                                     |              |
| 8.1.2. 95% CO <sub>2</sub> CAPTURE                                          | 55           |
| 8.1.3. ELECTRICAL AND CONTROL SYSTEMS                                       | 55           |
| 8.1.4. OFFSITE REQUIREMENTS                                                 | 55           |
| 8.2. CAPITAL COST ESTIMATE                                                  | 56           |
| 8.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                               | 58           |
| 8.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                                | 59           |
| CASE 9. ADVANCED NUCLEAR PLANT (BROWNFIELD), 2 X AP1000 UNITS, 2156 MW NET  | 61           |
| 9.1. CASE DESCRIPTION                                                       | 61           |
| 9.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                                     | 61           |
| 9.1.2. ELECTRICAL AND CONTROL SYSTEMS                                       | 62           |
| 9.1.3. OFFSITE REQUIREMENTS                                                 | 62           |
| 9.2. CAPITAL COST ESTIMATE                                                  | 62           |
| 9.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                               | 64           |
| 9.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                                | 65           |
| CASE 10. SMALL MODULAR REACTOR NUCLEAR POWER PLANT, 6 X 80 MW UNITS, 480 MV | <b>V NET</b> |
| 66                                                                          |              |
| 10.1. CASE DESCRIPTION                                                      | 66           |
| 10.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                                    | 66           |

| 10.1.1. | MECHANICAL EQUIPMENT AND SYSTEMS | 6 |
|---------|----------------------------------|---|
| 10.1.2. | ELECTRICAL AND CONTROL SYSTEMS   | 7 |

| 10.1.3. OFFSITE REQUIREMENTS                                          | 67 |
|-----------------------------------------------------------------------|----|
| 10.2. CAPITAL COST ESTIMATE                                           | 67 |
| 10.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                        | 69 |
| 10.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                         | 70 |
| CASE 11. GEOTHERMAL PLANT, 50 MW NET                                  | 71 |
| 11.1. CASE DESCRIPTION                                                | 71 |
| 11.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                              | 72 |
| 11.1.2. ELECTRICAL AND CONTROL SYSTEMS                                | 72 |
| 11.1.3. OFFSITE REQUIREMENTS                                          | 73 |
| 11.2. CAPITAL COST ESTIMATE                                           | 73 |
| 11.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                        | 75 |
| 11.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                         |    |
| CASE 12. HYDROELECTRIC PLANT, 100 MW NET                              | 76 |
| 12.1. CASE DESCRIPTION                                                |    |
| 12.2. CAPITAL COST ESTIMATE                                           | 78 |
| 12.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                        | 80 |
| 12.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                         | 80 |
| CASE 13. ONSHORE WIND, LARGE PLANT FOOTPRINT, 200 MW NET              | 81 |
| 13.1. CASE DESCRIPTION                                                | 81 |
| 13.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                              | 81 |
| 13.1.2 ELECTRICAL AND CONTROL SYSTEMS                                 |    |
| 13.1.3 OFFSITE REQUIREMENTS                                           | 81 |
| 13.2. CAPITAL COST ESTIMATE                                           | 82 |
| 13.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                        | 83 |
| 13.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                         | 84 |
| CASE 14. ONSHORE WIND, REPOWERING/RETROFIT, 150 MW NET                | 85 |
| 14.1. CASE DESCRIPTION                                                | 85 |
| 14.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                              | 86 |
| 14.1.2. ELECTRICAL AND CONTROL SYSTEMS                                | 86 |
| 14.1.3. OFFSITE REQUIREMENTS                                          | 86 |
| 14.2. CAPITAL COST ESTIMATE                                           | 86 |
| 14.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                        | 88 |
| 14.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                         | 89 |
| CASE 15. OFFSHORE WIND: FIXED-BOTTOM MONOPILE FOUNDATIONS, 900 MW NET | 90 |
| 15.1. CASE DESCRIPTION                                                | 90 |
| 15.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                              | 90 |

| 15.1.2 ELECTRICAL AND CONTROL SYSTEMS                             |         |
|-------------------------------------------------------------------|---------|
| 15.1.3 OFFSITE REQUIREMENTS                                       |         |
| 15.2. CAPITAL COST ESTIMATE                                       | 91      |
| 15.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                    | 92      |
| 15.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                     | 93      |
| CASE 16. SOLAR PHOTOVOLTAIC WITH SINGLE AXIS TRACKING, 150 MWAC   | 94      |
| 16.1. CASE DESCRIPTION                                            | 94      |
| 16.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                          |         |
| 16.1.2. ELECTRICAL AND CONTROL SYSTEMS                            |         |
| 16.1.3. OFFSITE REQUIREMENTS                                      |         |
| 16.2. CAPITAL COST ESTIMATE                                       | 97      |
| 16.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                    |         |
| 16.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                     | 100     |
| CASE 17. SOLAR PHOTOVOLTAIC WITH SINGLE AXIS TRACKING, AC-COUPLED | BATTERY |
| ENERGY STORAGE, 150 MWAC   200 MWH                                | 101     |
| 17.1. CASE DESCRIPTION                                            | 101     |
| 17.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                          | 101     |
| 17.1.2. ELECTRICAL AND CONTROL SYSTEMS                            | 102     |
| 17.1.3. OFFSITE REQUIREMENTS                                      |         |
| 17.2. CAPITAL COST ESTIMATE                                       |         |
| 17.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                    |         |
| 17.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                     |         |
| CASE 18. SOLAR PHOTOVOLTAIC WITH SINGLE AXIS TRACKING, DC-COUPLED |         |
| ENERGY STORAGE, 150 MWAC   200 MWH                                |         |
| 18.1. CASE DESCRIPTION                                            |         |
| 18.1.1. MECHANICAL EQUIPMENT AND SYSTEMS                          | 107     |
| 18.1.2. ELECTRICAL AND CONTROL SYSTEMS                            |         |
| 18.1.3. OFFSITE REQUIREMENTS                                      |         |
| 18.2. CAPITAL COST ESTIMATE                                       |         |
| 18.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                    | 111     |
| 18.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                     |         |
| CASE 19. BATTERY ENERGY STORAGE SYSTEM, 150 MW   600 MWH          | 113     |
| 19.1. CASE DESCRIPTION                                            | 113     |
| 19.2. CAPITAL COST ESTIMATE                                       | 115     |
| 19.3. OPERATIONS AND MAINTENANCE COST ESTIMATE                    | 117     |
| 19.4. ENVIRONMENTAL AND EMISSIONS INFORMATION                     | 118     |

# FIGURES AND TABLES

| FIGURE 1 — SUMMARY OF INVESTMENT TAX CREDITS AND PRODUCTION TAX CREDITS OVEF       | R          |
|------------------------------------------------------------------------------------|------------|
| TIME                                                                               | ۲V         |
| FIGURE 2 — THE SOLAR PHOTOVOLTAICS SUPPLY CHAIN                                    | VIII       |
| FIGURE 3 — DOMESTIC MANUFACTURING CONTENT FOR ONSHORE WIND POWER IN 2020 $\lambda$ | κIX        |
| FIGURE 4 — MAP OF CENSUS TRACTS ELIGIBLE FOR ENERGY COMMUNITY BONUS                | <b>X</b> I |
| FIGURE 1-1 — USC COAL BOILER – FLOW DIAGRAM                                        | 2          |
| FIGURE 2-1 — CARBON CAPTURE FLOW DIAGRAM                                           | 12         |
| FIGURE 3-1 — CASE 3 CONFIGURATION                                                  | 19         |
| FIGURE 4-1 — CASE 4 CONFIGURATION                                                  | 25         |
| FIGURE 5-1 — CASE 5 CONFIGURATION                                                  | 32         |
| FIGURE 6-1 — CASE 6 CONFIGURATION – SIMPLIFIED SKETCH                              | 40         |
| FIGURE 8-1 — TYPICAL BFB BIOMASS BOILER ARRANGEMENT                                | 54         |
| FIGURE 11-1 — GEOTHERMAL PLANT CONFIGURATIONS FOR HYDROTHERMAL RESERVOIRS          | 71         |
| FIGURE 12-1 — DAM OF A HYDROELECTRIC POWER PLANT                                   | 76         |
| FIGURE 12-2 — STORAGE-TYPE HYDROELECTRIC POWER PLANT                               | 77         |
| FIGURE 12-3 — TYPICAL HYDROELECTRIC POWER TURBINE HALL                             | 78         |
| FIGURE 14-1 — WIND REPOWER COMPONENT LAYOUT                                        | 85         |
| FIGURE 16-1 — SOLAR PV PROJECT                                                     | 94         |
| FIGURE 16-2 — SINGLE-AXIS TRACKING                                                 | 96         |
| FIGURE 17-1 — AC-COUPLED SOLAR PV AND BATTERY STORAGE1                             | 02         |
| FIGURE 18-1 — DC-COUPLED SOLAR PV AND BATTERY STORAGE                              | 08         |
| FIGURE 19-1 — UTILITY-SCALE LITHIUM-ION BATTERIES1                                 | 14         |
| FIGURE 19-2 — STANDALONE BESS FLOW DIAGRAM1                                        | 14         |

| TABLE 1-1 — LIST OF REFERENCE TECHNOLOGIES                                     | I     |
|--------------------------------------------------------------------------------|-------|
| TABLE 1-2 — COST & PERFORMANCE SUMMARY TABLE                                   | . 111 |
| TABLE 1-3 — REFERENCE COAL SPECIFICATION                                       | V     |
| TABLE 1-4 — REFERENCE NATURAL GAS SPECIFICATION                                | V     |
| TABLE 1-5 — REFERENCE WOOD BIOMASS SPECIFICATION                               | .VI   |
| TABLE 1-6 — UNITED STATES' AND CHINA'S EXISTING AND UNDER DEVELOPMENT SHARES O | ١F    |
| GLOBAL LITHIUM-ION BATTERY SUBCOMPONENT CAPACITY                               | xx    |
| TABLE 1-1 — CASE 1 CAPITAL COST ESTIMATE                                       | 5     |
| TABLE 1-2 — CASE 1 OPERATIONAL COST ESTIMATE                                   | 8     |

| TABLE 1-3 — CASE 1 EMISSION RATES                                   | 9  |
|---------------------------------------------------------------------|----|
| TABLE 2-1 — CASE 2 CAPITAL COST ESTIMATE                            | 15 |
| TABLE 2-2 — CASE 2 OPERATIONAL COST ESTIMATE                        | 17 |
| TABLE 2-3 — CASE 2 EMISSION RATES                                   | 18 |
| TABLE 3-1 — CASE 3 CAPITAL COST ESTIMATE                            | 21 |
| TABLE 3-2 — CASE 3 O&M COST ESTIMATE                                | 23 |
| TABLE 3-3 — CASE 3 EMISSIONS                                        | 24 |
| TABLE 4-1 — CASE 4 CAPITAL COST ESTIMATE                            | 27 |
| TABLE 4-2 — CASE 4 O&M COST ESTIMATE                                | 29 |
| TABLE 4-3 — CASE 4 EMISSIONS                                        | 30 |
| TABLE 5-1 — CASE 5 CAPITAL COST ESTIMATE                            | 34 |
| TABLE 5-2 — CASE 5 O&M COSTS                                        | 36 |
| TABLE 5-3 — CASE 5 EMISSIONS                                        | 37 |
| TABLE 6-1 — CASE 6 CAPITAL COST ESTIMATE                            | 41 |
| TABLE 6-2 — CASE 6 O&M COST                                         | 44 |
| TABLE 6-3 — CASE 6 EMISSIONS                                        | 44 |
| TABLE 7-1 — CASE 7 CAPITAL COST ESTIMATE                            | 48 |
| TABLE 7-2 — CASE 7 O&M COST ESTIMATES                               | 51 |
| TABLE 7-3 — CASE 7 EMISSIONS                                        | 51 |
| TABLE 8-1 — CASE 8 CAPITAL COST ESTIMATE                            | 56 |
| TABLE 8-2 — CASE 8 OPERATIONAL COST ESTIMATE                        | 59 |
| TABLE 8-3 — CASE 8 EMISSION RATES                                   | 60 |
| TABLE 9-1 — CASE 9 CAPITAL COST ESTIMATE                            | 63 |
| TABLE 9-2 CASE 9 OPERATIONAL COST ESTIMATE                          | 65 |
| TABLE 10-1 — CASE 10 CAPITAL COST ESTIMATE                          | 67 |
| TABLE 10-2 — CASE 10 OPERATIONAL COST ESTIMATE                      | 70 |
| TABLE 11-1 — CASE 11 CAPITAL COST ESTIMATE                          | 73 |
| TABLE 11-2 — CASE 11 OPERATING AND MAINTENANCE (O&M) COST ESTIMATES | 75 |
| TABLE 12-1 — CASE 12 CAPITAL COST ESTIMATES                         | 78 |
| TABLE 12-2 — CASE 12 OPERATING AND MAINTENANCE (O&M) COST ESTIMATES | 80 |
| TABLE 13-1 — CASE 13 CAPITAL COST ESTIMATE                          | 82 |
| TABLE 13-2 — CASE 13 O&M COST ESTIMATE                              | 84 |
| TABLE 14-1 — CASE 14 CAPITAL COST ESTIMATE                          | 87 |
| TABLE 14-2 — CASE 14 O&M COST ESTIMATE                              | 88 |
| TABLE 15-1 — CASE 15 CAPITAL COST ESTIMATE                          | 91 |
| TABLE 15-2 — CASE 15 O&M COST ESTIMATE                              | 93 |

| TABLE 16-1 — CASE 16 CAPITAL COST ESTIMATE | 00    |
|--------------------------------------------|-------|
|                                            |       |
| TABLE 16-2 — CASE 16 O&M COST ESTIMATE     | . 100 |
| TABLE 17-1 — CASE 17 CAPITAL COST ESTIMATE | . 103 |
| TABLE 17-2 — CASE 17 O&M COST ESTIMATE     | . 106 |
| TABLE 18-1 — CASE 18 CAPITAL COST ESTIMATE | . 109 |
| TABLE 18-2 — CASE 18 O&M COST ESTIMATE     | . 111 |
| TABLE 19-1 — CASE 19 CAPITAL COST ESTIMATE | . 115 |
| TABLE 19-2 — CASE 19 O&M COST ESTIMATE     | . 118 |

### APPENDICES

APPENDIX A. LABOR LOCATION-BASED COST ADJUSTMENTS APPENDIX B. COMBUSTION TURBINE CAPACITY ADJUSTMENTS



# ACRONYMS AND ABBREVIATIONS

| Acronym/Abbreviation | Definition/Clarification                     |
|----------------------|----------------------------------------------|
| AC                   | Alternating Current                          |
| ACC                  | Air-Cooled Condenser                         |
| ASCE                 | American Society of Civil Engineers          |
| BESS                 | Battery Energy Storage System                |
| BFB                  | Bubbling Fluidized Bed                       |
| BOP                  | Balance-of-Plant                             |
| Btu/kWh              | British Thermal Units Per Kilowatthour       |
| Btu/lb               | British Thermal Unit Per Pound               |
| Btu/scf              | British Thermal Unit Per Standard Cubic Foot |
| CC                   | Combined-Cycle                               |
| CCS                  | Carbon Capture and Sequestration             |
| CFR                  | Code of Federal Regulations                  |
| CO <sub>2</sub>      | Carbon Dioxide                               |
| COD                  | Commercial Operation Date                    |
| СТ                   | Combustion Turbine                           |
| DAC                  | Direct Air Capture                           |
| DC                   | Direct Current                               |
| DCS                  | Distributed Control System                   |
| EGS                  | Enhanced Geothermal System                   |
| EIA                  | Energy Information Administration            |
| EOH                  | Equivalent Operating Hours                   |
| EPC                  | Engineering, Procurement, and Construction   |
| FGD                  | Flue Gas Desulfurization                     |
| G&A                  | General and Administrative                   |
| GSU                  | Generator Step-Up Transformer                |
| HHV                  | Higher Heating Value                         |
| HRSG                 | Heat Recovery Steam Generator                |
| Hz                   | Hertz                                        |

| Acronym/Abbreviation | Definition/Clarification                     |  |
|----------------------|----------------------------------------------|--|
| I&C                  | Instrumentation and Controls                 |  |
| IBC                  | International Building Code                  |  |
| IRA                  | Inflation Reduction Act                      |  |
| ITC                  | Investment Tax Credit                        |  |
| kV                   | Kilovolts                                    |  |
| kW                   | Kilowatt                                     |  |
| kWh                  | Kilowatt-hour                                |  |
| lb/MMBtu             | Pounds Per One Million British Thermal Units |  |
| LNB                  | Low Nitrogen Oxide Burner                    |  |
| MCC                  | Motor Control Center                         |  |
| MVA                  | Megavolt-Ampere                              |  |
| MW                   | Megawatt                                     |  |
| MWAC                 | Megawatt Alternating Current                 |  |
| MWh                  | Megawatt-hour                                |  |
| NOx                  | Nitrogen Oxide                               |  |
| O&M                  | Operating and Maintenance                    |  |
| OFA                  | Overfire Air                                 |  |
| PCS                  | Power Conditioning System                    |  |
| PTC                  | Production Tax Credit                        |  |
| psia                 | Pounds Per Square Inch Absolute              |  |
| PV                   | Photovoltaic                                 |  |
| RH                   | Relative Humidity                            |  |
| SCADA                | Supervisory Control and Data Acquisition     |  |
| SCR                  | Selective Catalytic Reduction                |  |
| SO <sub>2</sub>      | Sulfur Dioxide                               |  |
| STG                  | Steam Turbine Generator                      |  |
| USC                  | Ultra-Supercritical                          |  |
| USD                  | United States Dollar                         |  |
| USDA                 | U.S. Department of Agriculture               |  |

| Acronym/Abbreviation | Definition/Clarification       |
|----------------------|--------------------------------|
| WESP                 | Wet Electrostatic Precipitator |
| WFGD                 | Wet Flue Gas Desulfurization   |
| WTG                  | Wind Turbine Generator         |
| ZLD                  | Zero Liquid Discharge          |



# INTRODUCTION

#### INTRODUCTION

The U.S. Energy Information Administration (EIA) retained Z Federal and Sargent & Lundy to conduct a study of the cost and performance of new utility-scale electric power generating technologies. This report contains Sargent & Lundy's cost and performance estimates for 19 different reference technology cases. The EIA will use these estimates to improve the EIA's Electricity Market Module's ability to represent the changing landscape of electricity generation. With this update, the EIA's improved Electricity Market Module will better represent capital and non-fuel operating costs of generating technologies being installed or under consideration for capacity expansion. The Electricity Market Module is a submodule within the EIA's National Energy Modeling System, a computer-based energy supply modeling system used for the EIA's *Annual Energy Outlook* and other analyses.

Sargent & Lundy developed the characteristics of the power generating technologies in this study based on information about similar facilities recently built or under development in the United States and abroad. Developing the characteristics of each generating technology included the specification of representative plant sizes, configurations, major equipment, and emission controls. Sargent & Lundy's cost assessment included the estimation of overnight capital costs, construction lead times, contingencies, and fixed and variable operating costs. We also estimated the net plant capacity, net plant heat rates, and controlled emission rates, as applicable for each technology studied. We performed our assessments with consistent estimating methodologies across all generating technologies.

#### COST AND PERFORMANCE OF TECHNOLOGIES

Table 1-1 lists all the power generating technologies that we assessed in this study.

| Case<br>No. | Technology                                                            | Description                                |  |
|-------------|-----------------------------------------------------------------------|--------------------------------------------|--|
| 1           | Ultra-Supercritical (USC) Coal without Carbon Capture –<br>Greenfield | 1 x 735 MW Gross, 650 MW Net               |  |
| 2           | USC Coal 95% Carbon Capture                                           | 1 x 819 MW Gross, 650 MW Net               |  |
| 3           | Aeroderivative Combustion Turbines (CTs) – Simple Cycle               | 4 x 54 MW Gross Aeroderivative, 211 MW Net |  |
| 4           | CTs – Simple Cycle                                                    | 1 x H-Class Simple Cycle, 419 MW Net       |  |
| 5           | Combined-Cycle (CC) 2x2x1                                             | 2 x 1 H Class CC, 1227 MW Net              |  |
| 6           | CC 1x1x1, Single Shaft                                                | 1 x 1 H Class CC, 627 MW Net               |  |
| 7           | CC 1x1x1, Single Shaft, with 95% Carbon Capture                       | 1 x 1 H Class CC, 543 MW Net               |  |

#### Table 1-1 — List of Reference Technologies



| Case<br>No. | Technology                                                        | Description                                           |
|-------------|-------------------------------------------------------------------|-------------------------------------------------------|
| 8           | Biomass Plant with 95% Carbon Capture                             | 1 x Bubbling Fluidized Bed (BFB), 50 MW Net           |
| 9           | Advanced Nuclear (Brownfield)                                     | 2 x AP1000, 2156 MW Net                               |
| 10          | Small Modular Reactor Nuclear Power Plant                         | 6 x 80-MW Small Modular Reactor, 480 MW<br>Net        |
| 11          | Geothermal                                                        | Binary Cycle, 50 MW Net                               |
| 12          | Hydroelectric Power Plant                                         | New Stream Reach Development, 100 MW Net              |
| 13          | Onshore Wind – Large Plant Footprint: Great Plains<br>Region      | 200 MW   2.8-MW Wind Turbine Generator (WTG)          |
| 14          | Onshore Wind – Repowering/Retrofit                                | 150 MW   1.5-1.62 MW WTG                              |
| 15          | Fixed-bottom Offshore Wind: Monopile Foundations                  | 900 MW   15 MW WTG                                    |
| 16          | Solar Photovoltaic (PV) with Single-Axis Tracking                 | 150 MW <sub>AC</sub>                                  |
| 17          | Solar PV with Single-Axis Tracking and AC-Coupled Battery Storage | 150 MW <sub>AC</sub> Solar<br>50 MW   200 MWh Storage |
| 18          | Solar PV with Single-Axis Tracking and DC-Coupled Battery Storage | 150 MW <sub>AC</sub> Solar<br>50 MW   200 MWh Storage |
| 19          | Battery Energy Storage System (BESS)                              | Lithium Ion, 150 MW   600 MWh                         |

As part of the technology assessment, we reviewed recent market trends for the reference technologies using publicly available sources and in-house data. We also used our extensive background in power plant design and experience in performing similar cost and performance assessments. Using a combination of public and internal information sources, we identified the representative costs and performance for the reference technologies.

#### **COST AND PERFORMANCE ESTIMATES SUMMARY**

Table 1-2 summarizes all technologies examined, including overnight capital cost information, fixed operating and maintenance (O&M) costs, and variable non-fuel O&M costs as well as emissions estimates for new installations (in pounds per one million British thermal units [lb/MMBtu]).



| Case<br>No. | Technology                                                      | Description                        | Net<br>Nominal<br>Capacity<br>(kW) | Net<br>Nominal<br>Heat Rate<br>(Btu/kWh) | Capital Cost<br>(\$/kW) | Fixed O&M<br>Cost<br>(\$/kW-year) | Variable<br>O&M Cost<br>(\$/MWh)      | Nitrogen<br>Oxide<br>(NOx)<br>(Ib/MMBtu) | Sulfur<br>Dioxide<br>(SO <sub>2</sub> )<br>(Ib/MMBtu) | Carbon<br>Dioxide<br>(CO <sub>2</sub> )<br>(Ib/MMBtu) |
|-------------|-----------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------------|-------------------------|-----------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 1           | USC Coal without Carbon<br>Capture – Greenfield                 | 1 x 735 MW<br>Gross                | 650                                | 8,638                                    | \$4,103                 | \$61.60                           | \$6.40                                | 0.06                                     | 0.09                                                  | 206                                                   |
| 2           | USC Coal 95% Carbon<br>Capture                                  | 1 x 819 MW<br>Gross                | 650                                | 12,293                                   | \$7,346                 | \$86.70                           | \$13.73                               | 0.06                                     | 0.09                                                  | 10.3                                                  |
| 3           | Aeroderivative CTs –<br>Simple Cycle                            | 4 x 54 MW Gross                    | 211                                | 9,447                                    | \$1,606                 | \$9.56                            | \$5.70                                | 0.0075                                   | 0.00                                                  | 117                                                   |
| 4           | CTs – Simple Cycle                                              | 1 x H-Class                        | 419                                | 9,142                                    | \$836                   | \$6.87                            | \$1.24/<br>MWh,<br>\$23,100/<br>Start | 0.0075                                   | 0.00                                                  | 117                                                   |
| 5           | CC 2x2x1                                                        | 2 x 1 H Class                      | 1,227                              | 6,266                                    | \$868                   | \$12.12                           | \$3.41                                | 0.0075                                   | 0.00                                                  | 117                                                   |
| 6           | CC 1x1x1, Single Shaft                                          | 1 x 1 H Class SS                   | 627                                | 6,226                                    | \$921                   | \$15.51                           | \$3.33                                | 0.0075                                   | 0.00                                                  | 117                                                   |
| 7           | CC 1x1x1, Single Shaft,<br>with 95% Carbon Capture              | 1 x 1 H Class SS                   | 543                                | 7,239                                    | \$2,365                 | \$24.78                           | \$5.05                                | 0.0075                                   | 0.00                                                  | 6                                                     |
| 8           | Biomass Plant with 95%<br>Carbon Capture                        | 1 x BFB                            | 50                                 | 19,965                                   | \$12,631                | \$261.18                          | \$9.65                                | 0.08                                     | <0.03                                                 | 10.3                                                  |
| 9           | Advanced Nuclear<br>(Brownfield)                                | 2 x AP1000                         | 2,156                              | 10,608                                   | \$7,861                 | \$156.20                          | \$2.52                                | 0                                        | 0                                                     | 0                                                     |
| 10          | Small Modular Reactor<br>Nuclear Power Plant                    | 6 x 80 MW Small<br>Modular Reactor | 480                                | 10,046                                   | \$8,936                 | \$121.99                          | \$3.19                                | 0                                        | 0                                                     | 0                                                     |
| 11          | Geothermal                                                      | Binary Cycle                       | 50                                 | N/A                                      | \$3,963                 | \$150.60                          | \$0.00                                | 0                                        | 0                                                     | 0                                                     |
| 12          | Hydroelectric Power Plant                                       | New Stream<br>Reach<br>Development | 100                                | N/A                                      | \$7,073                 | \$33.54                           | \$0.00                                | 0                                        | 0                                                     | 0                                                     |
| 13          | Onshore Wind – Large<br>Plant Footprint: Great<br>Plains Region | 200 MW   2.8 MW<br>WTG             | 200                                | N/A                                      | \$1,489                 | \$33.06                           | \$0.00                                | 0                                        | 0                                                     | 0                                                     |
| 14          | Onshore Wind –<br>Repowering/Retrofit                           | 150 MW   1.5 -<br>1.62 MW WTG      | 150                                | N/A                                      | \$1,386                 | \$38.55                           | \$0.00                                | 0                                        | 0                                                     | 0                                                     |

| Case<br>No. | Technology                                                              | Description                                              | Net<br>Nominal<br>Capacity<br>(kW) | Net<br>Nominal<br>Heat Rate<br>(Btu/kWh) | Capital Cost<br>(\$/kW) | Fixed O&M<br>Cost<br>(\$/kW-year) | Variable<br>O&M Cost<br>(\$/MWh) | Nitrogen<br>Oxide<br>(NOx)<br>(Ib/MMBtu) | Sulfur<br>Dioxide<br>(SO <sub>2</sub> )<br>(Ib/MMBtu) | Carbon<br>Dioxide<br>(CO <sub>2</sub> )<br>(Ib/MMBtu) |
|-------------|-------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------|------------------------------------------|-------------------------|-----------------------------------|----------------------------------|------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 15          | Fixed-bottom Offshore<br>Wind: Monopile<br>Foundations                  | 900 MW   15 MW<br>WTG                                    | 900                                | N/A                                      | \$3,689                 | \$154.00                          | \$0.00                           | 0                                        | 0                                                     | 0                                                     |
| 16          | Solar PV with Single-Axis<br>Tracking                                   | 150 MW <sub>AC</sub>                                     | 150                                | N/A                                      | \$1,502                 | \$20.23                           | \$0.00                           | 0                                        | 0                                                     | 0                                                     |
| 17          | Solar PV with Single-Axis<br>Tracking and AC-Coupled<br>Battery Storage | 150 MW <sub>AC</sub> Solar<br>50 MW   200<br>MWh Storage | 150                                | N/A                                      | \$2,175                 | \$38.39                           | \$0.00                           | 0                                        | 0                                                     | 0                                                     |
| 18          | Solar PV with Single-Axis<br>Tracking and DC-Coupled<br>Battery Storage | 150 MW <sub>AC</sub> Solar<br>50 MW   200<br>MWh Storage | 150                                | N/A                                      | \$2,561                 | \$39.24                           | \$0.00                           | 0                                        | 0                                                     | 0                                                     |
| 19          | BESS                                                                    | Lithium Ion, 150<br>MW   600 MWh                         | 150                                | N/A                                      | \$1,744,<br>(\$436/kWh) | \$40.00                           | \$0.00                           | 0                                        | 0                                                     | 0                                                     |

### **BASIS OF ESTIMATES**

#### **BASE FUEL SELECTION**

We used the following fuel specifications as a basis for the cost estimates. Table 1-3, Table 1-4, and Table 1-5 represent typical fuel specifications for coal, natural gas, and wood biomass, respectively.

| Rank                          | Bituminous  |  |  |  |  |
|-------------------------------|-------------|--|--|--|--|
| Proximate Analysis (weight %) |             |  |  |  |  |
| Fuel Parameter                | As Received |  |  |  |  |
| Moisture                      | 11.2        |  |  |  |  |
| Ash                           | 9.7         |  |  |  |  |
| Carbon                        | 63.75       |  |  |  |  |
| Oxygen                        | 6.88        |  |  |  |  |
| Hydrogen                      | 4.5         |  |  |  |  |
| Sulfur                        | 2.51        |  |  |  |  |
| Nitrogen                      | 1.25        |  |  |  |  |
| Chlorine                      | 0.29        |  |  |  |  |
| HHV, Btu/lb                   | 11,631      |  |  |  |  |
| Fixed Carbon/Volatile Matter  | 1.2         |  |  |  |  |

#### Table 1-3 — Reference Coal Specification

HHV = Higher heating value; Btu/lb = British thermal unit per pound

#### Table 1-4 — Reference Natural Gas Specification

| Compone        | nt                             | Volume Percentage |        |  |
|----------------|--------------------------------|-------------------|--------|--|
| Methane        | CH <sub>4</sub>                | 93                | .9     |  |
| Ethane         | C <sub>2</sub> H <sub>6</sub>  | 3.                | 2      |  |
| Propane        | $C_3H_8$                       | 0.                | 7      |  |
| n-Butane       | C <sub>4</sub> H <sub>10</sub> | 0.4               |        |  |
| Carbon Dioxide | CO <sub>2</sub>                | 1                 |        |  |
| Nitrogen       | N <sub>2</sub>                 | 0.8               |        |  |
| Total          |                                | 10                | 0      |  |
|                |                                | LHV               | HHV    |  |
| Btu/lb         |                                | 20,552            | 22,793 |  |
| Btu/scf        |                                | 939 1,040         |        |  |

LHV = Lower heating value; Btu/scf = British thermal unit per standard cubic foot

| Туре        | Woodchips |
|-------------|-----------|
| Component   | Weight %  |
| Moisture    | 20–50     |
| Ash         | 0.1–0.7   |
| Carbon      | 32        |
| Sulfur      | 0.01      |
| Oxygen      | 28        |
| Hydrogen    | 3.8       |
| Nitrogen    | 0.1–0.3   |
| HHV, Btu/lb | 5400–6200 |

#### Table 1-5 — Reference Wood Biomass Specification

#### **ENVIRONMENTAL COMPLIANCE BASIS**

Our technology assessments selected include the best available (emissions) control technology for sulfur dioxide (SO<sub>2</sub>), nitrogen oxide (NO<sub>x</sub>), particulate matter, mercury, and carbon dioxide (CO<sub>2</sub>), where applicable. Best available control technology guidelines are covered by the United States' Clean Air Act Title I, which promotes air quality, ozone protection, and emission limitations. The level of emission controls is based on the following best available control technology guidelines:

- Total source emissions
- Regional environmental impact
- Energy consumption
- Economic costs

Best available control technology is not the most restrictive pollution control standard since it still includes a cost-benefit analysis for technology use. Specific technologies chosen for estimation are further described in their respective cases.

The CO<sub>2</sub> capture systems are commonly referred to as carbon capture and sequestration (CCS) systems; however, for the cost estimates provided in this report, no sequestration costs (CO<sub>2</sub> transportation or storage) have been included. The CO<sub>2</sub> captured is assumed compressed to supercritical conditions and injected into a pipeline terminated at the fence line of the facility. For this report, the terms "CO<sub>2</sub> capture" and "carbon capture" are used interchangeably.

Sargent & Lundy VI

#### **COMBUSTION TURBINE CAPACITY ADJUSTMENTS**

Appendix B includes CT capacity adjustments.

Adjustments for local ambient conditions were made for power plants using CTs. Since CTs produce power proportional to mass flow and ambient air temperature, relative humidity, and elevation affect air density, these conditions also affect CT performance. These conditions affect CT performance in the following ways:

- Temperature affects air density in an inversely proportional relationship. Higher ambient temperature lowers the density of the inlet air which reduces the mass flow through the CT and the consequent power output. Inlet cooling technology on a CT can increase the air density and recover lost performance.
- Relative humidity affects air density in an inversely proportional relationship as components of water vapor are less dense than air. Higher relative humidity lowers density and mass flow through the CT which reduces the power output. For plants with wet cooling (evaporative coolers, wet cooling towers, etc.), relative humidity and temperature determine the effectiveness of that equipment as well. Cooling technologies that depend on evaporation are most effective when the temperature is high and the relative humidity low.
- Elevation affects air pressure and density in an inversely proportional relationship. Ambient air density was calculated in this study by using the air pressure related to site elevation above sea level. This gives the average impact of air pressure on performance, ignoring the short-term effects of weather.

Temperatures and relative humidity used in the Appendix B adjustment table are based on annual averages for the locations specified. An adjustment factor for the various technologies were compared across locations on a consistent basis.

#### **CAPITAL COST ESTIMATING**

Sargent & Lundy used a top-down capital cost estimating methodology derived from parametric evaluations of costs from actual or planned projects with similar scope and configurations to the generating technology considered. We have used both publicly available information and internal sources to establish the representative costs and appropriate scaling parameters. In some cases, we have use used portions of more detailed cost estimates to adjust the parametric factors.

The capital cost estimates represent a complete power plant facility on a generic site at a non-specific location in the United States. The basis of the capital costs is defined as all costs to engineer, procure, construct, and commission all equipment within the plant facility fence line, as well as interconnections to electrical transmission and fuel distribution networks, as applicable. As described in the following section, we have also estimated location adjustments to help establish the cost impacts to project implementation

in more specific areas or regions within the United States. Capital costs account for all costs incurred during construction of the power plant before the commercial operation date (COD). The capital costs are divided between the engineering, procurement, and construction (EPC) contractor and owner's costs. Sargent & Lundy assumes that the power plant developer or owner will hire an EPC contractor for turnkey construction of the project. Unless noted otherwise, the estimates assume that the EPC contractor cost will include procurement of equipment, materials, and all construction labor associated with the project. The capital costs provided are overnight capital costs in 2023 price levels. Overnight capital costs represent the total cost a developer would expect to incur during the construction of a project, excluding financing costs. The capital cost breakdowns for the EPC contractor are as follows:

- Direct Costs: EPC direct costs are broken down in formats applicable to the reference technology. In some cases, the cost breakdown includes major scope work packages that are inclusive of equipment, materials, and direct labor costs. Other cases have equipment and material procurement costs separated from the construction labor.
  - Major Work Scope Costs: Costs for major project scopes of work such as "Civil/Structural/Architectural" or "Nuclear Island" include the equipment, materials, and construction labor associated with scope described.
  - Equipment and Material Costs: For some cases, the costs for the primary generation technologies are listed explicitly (for example, solar PV "Module Supply," "WTG Procurement and Supply," etc.), or grouped into balance-of-plant (BOP) equipment line items such as "Racking, Tracker and BOP Equipment Supply." Where no other descriptors are present, "Other Equipment" generally refers to ancillary equipment, such as pumps, tanks, motor control centers, condensers, cooling towers, switchgear, transformers, and any other major inside-the-fence process equipment required for the complete facility. "Materials" include all construction materials associated with the EPC scope of work and consumables during construction. Equipment and material costs are intended to be the delivered costs inclusive of purchase price, duties, and freight, (but excluding any sales tax) and are clarified with additional descriptors and notes, as needed.
  - Construction Labor Costs: Construction labor costs are intended to represent the fully burdened cost of labor to the EPC contractor for the project construction activities. Construction labor costs may be listed for individual activities as "installation" costs, included with the equipment/material costs where the description includes "supply and installation," or aggregated as "construction labor" for all labor directly attributed to onsite civil/structural work and erection/installation of the equipment included in the EPC contractor's scope.
- Indirect Costs: Indirect costs include engineering, procurement, project services, construction management, field engineering, start-up, and commissioning services provided by the EPC contractor.
- EPC Fee and Contingency: The EPC fee is included to represent the premium applied by the EPC contractor for profit and management of subcontracts within their scope. EPC contingency includes costs for the "known unknowns" that are not defined explicitly but would be expected to be managed

by the EPC contractor while delivering a fully functional generation facility. Contingencies are added because experience has shown that such costs are likely, and expected, to be incurred even though they cannot be explicitly determined at the time the estimate is prepared. The percentages used to calculate these values are generally representative of the degrees of uncertainty, risk, and complexity of the generation and any environmental control technologies. These percentages are listed in the cost tables and represent values generally accepted within their respective markets.

Owner's costs represent costs to the owner that would typically be incurred outside the scope of the EPC contract. These primarily consist of costs incurred to develop and manage the project as well as land and utility interconnection costs.

- Owner's Services: The owner's services include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's participation in start-up and commissioning.
- Land: project land requirements are based on typical land requirements for each technology with per-acreage costs based on a survey of vacant land listings zoned for industrial use within the United States. For certain technologies, land is assumed to be leased and those costs are included in the operations and maintenance costs instead.
- Electrical Interconnection: Transmission costs are based on a one-mile transmission line (unless otherwise stated) with voltage ranging from 115 kilovolts (kV) to 500 kV depending on the unit capacity. We have also assumed that no substation upgrades would be required for the electrical interconnections.
- Gas Interconnection: Natural gas interconnection and metering costs are generic and based on nominal one-mile gas pipeline laterals. Per-mile costs are assumed based on historical costs for pipeline laterals serving similar generation facilities. Owner's Contingency: An owner's contingency is also included to account for undefined project scope and pricing uncertainty within owner's cost components. Like the EPC contingency, the levels of owner's contingencies differ from case to case, and do so for many of the same reasons, including project uncertainty, risk, and complexity.

#### **Locational Adjustments**

We estimated the capital costs adjustment factors account for technology implementation at various locations in the United States. Appendix A provides locational adjustment factors.

Craft labor rates for each location were developed from the publication *RS Means Labor Rates for the Construction Industry*, 2023 edition. Costs were added to cover social security, workmen's compensation, and federal and state unemployment insurance. The resulting burdened craft rates were used to develop typical crew rates applicable to the task performed. For each technology, up to 26 different crews were used to determine the average wage rate for each location. For several technologies, relevant internal Sargent & Lundy estimates were used to further refine the average wage rate by using the weighted average based on the crew composition for the specific technology.

Sargent & Lundy used a "30 City Average" based on *RS Means Labor Rates for the Construction Industry* to establish the base location for all the technologies. We measured the wage rate factor for each location against the base rate (the "30 City Average"). The location factors were then improved by adding the regional labor productivity factor; these factors are based on the publication *Compass International Global Construction Costs Yearbook*, 2022 edition. Even though *Compass International Global Construction Costs Yearbook*, 2022 edition. Even though *Compass International Global Construction Costs Yearbook*, provides productivity factors for some of the major metro areas in the United States, the productivity factors on the state level were mostly used to represent the typical construction locations of plants for each of the technologies. The final location factor was measured against average productivity factor, which is based on the same 30 cities that are included in the "30 City Average" wage rate.

#### **Environmental Location Factors**

Capital cost adjustment factors have also been estimated to account for environmental conditions at various locations in the United States. These environmental location factors, however, do not account for any state or local jurisdictional amendments or requirements that modify the national design codes and standards (for example: American Society of Civil Engineers [ASCE], International Building Code, etc.). Soil Site Class D for stiff soils was assumed; geotechnical investigation is required to account for site-specific soil conditions that will need to be considered during detailed design. Risk Category II was assumed for all power generating technologies. Each environmental factor was baselined, and the geometric mean was used to determine the combined environmental location factor that accounts for the wind, seismic, snow, and tsunami effects, as applicable. To distribute the environmental location factor to the material costs for the civil, mechanical, electrical, carbon capture, and other works for each of the 19 cases, the factor was proportioned based on the assumed effect environmental loading would have on the works. In other words, the concrete foundations support most of the design loading; therefore, the percentage of the environmental loading factor that was distributed to the civil works was typically the highest. The distribution of the environmental loading factor was based on typical general arrangements of major equipment, buildings, and balance of plant for each of the 19 cases.

The environmental location factor for wind is based on ASCE 7-16, and it is based on velocity pressure for enclosed, rigid buildings with flat roofs, which is the most widely used building configuration at power generating stations. The baseline was the approximate average velocity pressure for the location data set; therefore, the factor was reduced for locations lower than the average and increased for locations above the average.

Sargent & Lundy X

The environmental location factor for seismic is based on the "Seismic Design" category, which is determined based on site-specific coefficients<sup>1</sup> and the calculated mapped spectral response or design spectral acceleration. The baseline was Seismic Design Category B; therefore, the factor was reduced for Seismic Design Category A and increased for Seismic Design Category C and D. None of the locations selected were Seismic Design Category E or F due in part to the assumed soil Site Class D.

The environmental location factor for snow loading is based on an importance factor of 1.00. The ground snow load was determined using the ASCE 7-16 Hazard Tool; however, the value for Boise, Idaho, was based on data from ASCE 7-10 because data from ASCE 7-16 was unavailable. The ground snow load for case study areas assumed 50 pounds per square foot. The baseline was the approximate average ground snow load for the location data set; therefore, the factor was reduced for locations lower than the average and increased for locations above the average.

The environmental location factor for tsunami loading is based on ASCE 7-16 methodology and an article published by *The Seattle Times* regarding the cost implications of incorporating tsunami-resistant features into the first building designed using the methodology. The environmental location factor included tsunami effects for one location: Seattle, Washington.

#### **Additional Location Factor Considerations**

Base costs for the thermal power cases were determined assuming no significant constraints with respect to available water resources, wastewater discharge requirements, and ambient temperature extremes. In areas where these constraints are expected to add significantly to the installed equipment, we applied location adjustments to the capital costs. To account for locations with limited water resources, such as California, the southwest, and the mountain west regions, air-cooled condensers (ACCs) are used in lieu of mechanical draft cooling towers. In regions where wastewater loads to rivers and reservoirs are becoming increasingly restricted, zero liquid discharge (ZLD) equipment is added. ZLD wastewater treatment equipment is assumed to include reverse osmosis, evaporation/crystallization, and fractional electrode ionization. To reduce the loading for the ZLD systems, it is assumed that cases where ZLD is applied will also have equipment in place to reduce wastewater such as ACCs or cooling tower blowdown treatment systems.

To account for ambient temperature extremes, costs for boiler enclosures have been included as part of the location factors in areas where ambient temperatures will be below freezing for significant periods of

<sup>&</sup>lt;sup>1</sup> Determined using the web interface on <u>https://seismicmaps.org/</u>. The Structural Engineers Association of California and California's Office of Statewide Health Planning and Development developed this web interface that uses the opensource code provided by the United States Geological Survey to retrieve the seismic design data. This website does not perform any calculations to the table values.

Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies

time. Costs for boiler enclosures are applied to the coal-fired cases and the biomass cases, but not to the CC heat recovery steam generators (HRSGs), which are assumed to open in all regions. It is assumed that the steam turbine generator (STG) equipment will be enclosed for all cases in all locations.

#### **OPERATING AND MAINTENANCE COST ESTIMATING**

Once a plant enters commercial operation, the plant owners incur ongoing costs for the operation and maintenance (O&M) of the facility. These costs are categorized into fixed O&M costs which are incurred each year independent of the facility dispatch, and variable O&M costs which vary with the hours of operation. Operations and maintenance costs presented in this report do not include the costs for fuel or fuel procurement activities.

#### **Fixed Operations and Maintenance**

Fixed O&M costs include costs directly related to the generation technology and facility design which do not vary with dispatch. These typically include labor, materials, contract services for routine O&M, general and administrative (G&A) costs. Costs were estimated based on a variety of sources including actual projects, vendor publications, and Sargent & Lundy's internal resources. Property taxes and insurance would also typically be considered fixed O&M but are excluded from our estimates.

Where sufficient data was available, fixed O&M cost breakouts are provided in \$/year annual costs with brief descriptors of the cost components. Typical fixed O&M costs include:

- Routine Labor
- Materials and Contract Services
- Administrative and General Expenses

Routine labor includes the regular maintenance of the equipment as recommended by the equipment manufacturers. This includes maintenance of pumps, compressors, transformers, instruments, controls, and valves. The power plant's typical design is such that routine labor activities do not require a plant outage.

Materials and contract services include the materials associated with the routine labor as well as contracted services such as those covered under a long-term service agreement, which has recurring monthly payments.

Sargent & Lundy XII

General and administrative expenses are operation expenses, which include leases, management salaries, and office utilities.

These annual costs are combined in the fixed O&M subtotal and levelized by dividing by the net kW capacity of the facility to deliver values in \$/kW-year. For the geothermal, hydro, wind, solar, and battery energy storage cases, all O&M costs are treated as fixed costs.

#### **Variable Operations and Maintenance**

Variable O&M costs are costs that vary based on the amount of electrical generation at the power plant. These expenses may include water consumption, waste and wastewater discharge, chemicals such as selective catalytic reduction ammonia, and consumables including lubricants and calibration gas. Because these costs are generation dependent, the values are levelized by the cost per unit of energy generation and presented in \$/MWh.



### INFLATION REDUCTION ACT CONSIDERATIONS

The Inflation Reduction Act (IRA), signed into law in August of 2022, introduced a comprehensive set of tax credits, grants, and loan programs aimed at financing and expediting the deployment of clean energy technologies. The capital and operating cost estimates included in this report do not account for investment tax credits, production tax credits, or any other tax credit incentives that may be applicable to the reference technology. These credits would, however, represent critical components of the financial considerations for several of the cases presented herein. For this reason, a brief discussion of some of the available credits and their qualification requirements is included below.

#### **CARBON CAPTURE TECHNOLOGIES**

Carbon capture technologies may be eligible for several incentives under the IRA, including the Energy Infrastructure Reinvestment Financing, and USDA Assistance for Rural Electric Cooperatives; but the most impactful feature pertaining to carbon capture is the extension and expansion of the Internal Revenue Code's (IRC) 45Q tax credit for Credit for Carbon Oxide Sequestration. The IRA extends the preexisting 45Q tax credit availability timeline, adds an enhanced credit for direct air capture (DAC), and lowers the carbon capture threshold requirements for certain facilities to benefit from the credit. Facilities meeting prevailing wage and registered apprenticeship requirements can qualify for bonus credits as well.

The base credit amount is \$17 per metric ton of carbon dioxide captured and sequestered or \$12 per metric ton for carbon dioxide that is injected for enhanced oil recovery or utilized. Those amounts are \$36 and \$26, respectively, for direct air capture facilities. Recipients may qualify for bonus credits worth 5 times these amounts if the facilities meet the IRA's prevailing wage and registered apprenticeship requirements.

Facilities claiming the 45Q credit must be constructed in the U.S. before January 1, 2023, and must capture the necessary minimum annual volumes of CO<sub>2</sub> as determined by the type of facility:

- 1,000 metric tons of CO<sub>2</sub> per year for DAC facilities
- 18,750 metric tons for electricity generating facilities (with carbon capture capacity of 75% of baseline CO<sub>2</sub> production)

Sargent & Lundy XIV

• 12,500 metric tons for other facilities

The 45Q credits may be claimed for 12 years after an eligible facility is placed in service.

#### **NUCLEAR TECHNOLOGIES**

Nuclear power generators are also eligible for several credits, most notably, the IRC section 45J credit for the production of electricity from advanced nuclear power facilities. This credit was originally enacted by section 1306 of the Energy Policy Act of 2005, offering 1.8 cents per kWh of energy produced and sold by qualifying advanced nuclear facilities – with certain caps and limitations – which were placed in service before January 1, 2021. The IRA does not modify the 45J credit but adds an alternative Zero-Emission Nuclear Power Production Credit in the IRC section 45U. This credit applies to existing nuclear power plants which at time of enactment, are not eligible for the 45J credit. The base credit amount is 0.3 cents per kWh and will be inflation adjusted after 2024. The credit amount phases down depending on the amount of energy produced and the gross receipts of the nuclear power facility.

The 45U credit will be made available for electricity produced at qualifying facilities and sold after December 31, 2023, and in tax years beginning after that date, expiring in 2032. 45U recipients may qualify for bonus credits worth five times the base credit amount if the facility meets the IRA's prevailing wage requirements.

#### **CLEAN ENERGY PRODUCTION AND INVESTMENT TAX CREDITS**

The Clean Energy Production and Investment Tax Credits ("PTC" and "ITC") extended in the IRA offer financial relief to qualifying entities by offsetting a portion of the costs associated with implementing or operating renewable energy technologies. These two credit structures, more commonly known by their Internal Revenue Code sections 45Y (PTC) and 48E (ITC) reduce a renewable energy developer's federal tax liability in the following ways:

- The investment tax credit is a tax credit that reduces the federal income tax liability for a percentage of the cost of a qualifying renewable energy system that is installed during the tax year.
- The production tax credit is a per kilowatt-hour (kWh) tax credit for electricity generated by qualifying technologies for the first 10 years of a system's operation. It reduces the federal income tax liability and is adjusted annually for inflation.

These IRA tax credits may be applied to a diverse range of renewable energy technologies including wind, solar, bioenergy, geothermal, small irrigation, landfill and trash, hydropower, fuel cells, and several more. Under the IRA, eligible renewable energy projects may qualify for various bonus credits that further increase the tax incentives. Criteria for these bonus credits include labor requirements, energy community requirements, and domestic content requirements. These additional qualifications aim to promote fair wages, support impacted communities, and foster domestic energy independence. A summary of these credits, their values, and their phase-out schedules is presented in Figure 1.

Sargent & Lundy XV

## Figure 1 — Summary of Investment Tax Credits and Production Tax Credits Over Time

|                     |                                                                                |                                                                                                               | Start of Construction |                    |        |                    |                                                                            |                                                                              |                                                                             |
|---------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|--------|--------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                     |                                                                                |                                                                                                               | 2006<br>to<br>2019    | 2020<br>to<br>2021 | 2022   | 2023<br>to<br>2033 | The later of 2034<br>(or two years after<br>applicable year <sup>a</sup> ) | The later of 2035<br>(or three years after<br>applicable year <sup>a</sup> ) | The later of 2036<br>(or four years after<br>applicable year <sup>a</sup> ) |
|                     | Full rate<br>(if project<br>meets labor<br>requirements <sup>b</sup> )         | Base Credit                                                                                                   | 30%                   | 26%                | 30%    | 30%                | 22.5%                                                                      | 15%                                                                          | 0%                                                                          |
|                     |                                                                                | Domestic Content<br>Bonus                                                                                     |                       |                    |        | 10%                | 7.5%                                                                       | 5%                                                                           | 0%                                                                          |
|                     |                                                                                | Energy Community<br>Bonus                                                                                     |                       |                    |        | 10%                | 7.5%                                                                       | 5%                                                                           | 0%                                                                          |
|                     | Base rate<br>(if project does<br>not meet labor<br>requirements <sup>b</sup> ) | Base Credit                                                                                                   | 30%                   | 26%                | 6%     | 6%                 | 4.5%                                                                       | 3%                                                                           | 0%                                                                          |
| ІТС                 |                                                                                | Domestic Content<br>Bonus                                                                                     |                       |                    |        | 2%                 | 1.5%                                                                       | 1%                                                                           | 0%                                                                          |
|                     |                                                                                | Energy Community<br>Bonus                                                                                     |                       |                    |        | 2%                 | 1.5%                                                                       | 1%                                                                           | 0%                                                                          |
|                     | Low-Income bonus<br>(1.8 GW/yr cap)                                            | <5 MW projects in<br>LMI communities or<br>Indian land                                                        |                       |                    |        | 10%                | 10%                                                                        | 10%                                                                          | 10%                                                                         |
|                     |                                                                                | Qualified low-income<br>residential building<br>project / Qualified<br>low-income economic<br>benefit project |                       |                    |        | 20%                | 20%                                                                        | 20%                                                                          | 20%                                                                         |
|                     | tts <sup>b</sup> )                                                             | Base Credit                                                                                                   |                       |                    | 2.75¢  | 2.75 ¢             | 2.0 ¢                                                                      | 1.3 ¢                                                                        | 0.0 ¢                                                                       |
|                     | Full rate<br>(if project<br>meets labor<br>requirements <sup>b</sup> )         | Domestic Content<br>Bonus                                                                                     |                       |                    |        | 0.3 ¢              | 0.2 ¢                                                                      | 0.1 ¢                                                                        | 0.0 ¢                                                                       |
| PTC for<br>10 years |                                                                                | Energy Community<br>Bonus                                                                                     |                       |                    |        | 0.3¢               | 0.2 ¢                                                                      | 0.1 ¢                                                                        | 0.0 ¢                                                                       |
| (\$2022)            | does<br>abor<br>nts <sup>b</sup> )                                             | Base Credit                                                                                                   |                       |                    | 0.55 ¢ | 0.55 ¢             | 0.4 ¢                                                                      | 0.3¢                                                                         | 0.0 ¢                                                                       |
|                     | Base rate<br>(if project does<br>not meet labor<br>requirements <sup>b</sup> ) | Domestic Content<br>Bonus                                                                                     |                       |                    |        | 0.1¢               | 0.0 ¢                                                                      | 0.0 ¢                                                                        | 0.0¢                                                                        |
|                     | (if pr<br>not i<br>requi                                                       | Energy Community<br>Bonus                                                                                     |                       |                    |        | 0.1¢               | 0.0 ¢                                                                      | 0.1 ¢                                                                        | 0.0 ¢                                                                       |

a "Applicable year" is defined as the later of (i) 2032 or (ii) the year the Treasury Secretary determines that there has been a 75% or more reduction in annual greenhouse gas emissions from the production of electricity in the United States as compared to the calendar year 2022. b "Labor requirements" entail certain prevailing wage and apprenticeship conditions being met.

#### **Source:** https://www.energy.gov/eere/solar/federal-solar-tax-credits-businesses

Additional discussion of the qualification requirements for prevailing wage labor, domestic content, and energy community bonus credits is included in the subsections below.

#### LABOR REQUIREMENTS

To meet the labor requirements under the IRA, all wages for construction, alteration, and repair—for the first 5 years of the project for the investment tax credit and the first 10 years of the project for the production tax credit—must be paid at the prevailing rates of that location. Additionally, a certain percentage of the

total construction labor hours for a project must be performed by an apprentice. Qualifying projects must meet the following minimum percentages of apprentice labor:

- 0% for projects beginning construction in 2022
- 12.5% for projects beginning construction in 2023
- 15% for projects beginning construction after 2023

If the prevailing wage or apprenticeship requirements were not originally satisfied, a project may still obtain the bonus credit by paying the affected employees the difference in wages plus interest and paying a \$5000 fee to the United States Department of Labor for each impacted individual. The apprenticeship requirements also can be satisfied if a good faith effort was made to comply or if a penalty is paid to the United States Department of the Treasury in the amount of \$50/hour of noncompliance.

#### **DOMESTIC CONTENT REQUIREMENTS**

The domestic content requirements under the IRA aim to support and strengthen United States based production industries by incentivizing the use of domestically sourced materials and components in renewable energy products. To qualify for the domestic content bonus, all structural steel or iron products used in the project must be produced in the United States and a "required percentage" of the total costs of manufactured products (including components) of the facility need to be mined, produced, or manufactured in the United States. The minimum required percentage of manufactured products for bonus qualification is as follows:

- 40% for all projects beginning construction before 2025
- 45% for projects beginning construction in 2025
- 50% for projects beginning construction in 2026
- 55% for projects beginning construction after 2026

The percentage is calculated by dividing the cost of all domestically manufactured products and components by the total cost of all manufactured products.

Executive Order 14017 "America's Supply Chains," directed the Secretary of Energy to submit a report on supply chains for the energy sector industrial base. In response, the U.S. Department of Energy (DOE) prepared and issued a series of deep dive assessments of supply chains for eleven different technology sectors. These assessments illustrate the limited domestic production capacity available for many renewable technologies from raw material and feedstock processing to finished product manufacturing and assembly. A brief summary of their findings for solar photovoltaics, wind, and energy storage technologies is included in the subsections below.

#### **Solar Photovoltaic Supply Chains**

In the United States, two primary types of solar PV modules dominate the market: crystalline silicon (c-Si) modules, constituting approximately 84%, and cadmium telluride (CdTe) modules, making up the remaining 16%. Both these module types require mounting structures, commonly referred to as racking, for mechanical support, which can either track the sun's movement (tracking) or remain fixed at a specific angle (fixed tilt). PV modules produce direct current (DC) output, typically converted into alternating current (AC) through an inverter. However, they can also be used directly to charge nearby battery energy storage in "DC-coupled" configurations. A breakdown of key components within the solar PV supply chain is illustrated in Figure 2.



Figure 2 — The Solar Photovoltaics Supply Chain

Source: US Department of Energy. "Solar Photovoltaics Supply Chain." Image. Energy.Gov. February 24, 2022. https://www.energy.gov/sites/default/files/2022-02/Solar%20Energy%20Supply%20Chain%20Report%20-%20Final.pdf

The supply chain for crystalline silicon (c-Si) modules begins with the refinement of high-purity polycrystalline silicon, commonly referred to as polysilicon. This essential component's raw material is metallurgical-grade silicon (MGS), also known as silicon metal, which is derived from high-grade quartz. Approximately 12% of the global MGS production is dedicated to the production of high-purity polysilicon for the solar industry. Polysilicon undergoes a melting process to cultivate monocrystalline silicon ingots which are subsequently sliced into thin silicon wafers. These wafers are then processed to create the solar cells that are interconnected and enclosed between layers of glass and plastic, forming the c-Si modules. A significant proportion of silicon wafer production, approximately 97%, is concentrated in China, with these wafers being exported to manufacturing facilities worldwide, including the United States. Nearly three-quarters of the silicon solar cells integrated into modules installed in the United States are manufactured by Chinese subsidiaries located in just three Southeast Asian countries: Vietnam, Malaysia, and Thailand. Despite announced plans for domestic manufacturing facilities, the United States presently lacks active production capacity for c-Si ingots, wafers, or cells.

The United States does possess domestic production capacity for thin-film Cadmium Telluride (CdTe) modules, a technology that does not rely on materials sourced from Chinese companies. The 16% of PV installations in the United States utilizing CdTe modules were exclusively supplied by a single American

company. This U.S.-based company is responsible for producing roughly one-third of these CdTe modules within the United States, contributing to the diversification of the country's solar module manufacturing supply chain.

### Wind Energy Supply Chains

Wind power plants are composed of five primary components: towers, rotors/blades, nacelle/drivetrain, foundations, and grid interconnection equipment. Domestic content is readily available for larger components of land-based wind plants, such as towers, nacelles, and blades (Figure 3), though domestic content in blades has declined in recent years. For offshore wind technologies there was no domestic supply chain capacity in 2021, apart from some manufacturing of applicable electrical equipment and cabling. However, several manufacturers have announced their intent to begin production at U.S. facilities in the coming years. The domestic supply chain in 2020 was capable of producing10-15 GW/year for each primary land-based turbine component (towers, blades, and nacelles) (Wiser et al. 2021). BloombergNEF estimated that a typical onshore wind project in the U.S. sources 57% of its components (by dollar value) domestically (Goldie-Scot, Zindler, and Wang 2021).

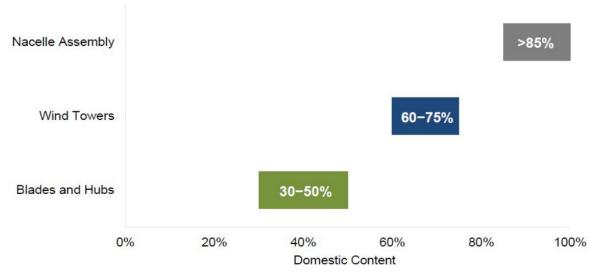



Figure 3 — Domestic Manufacturing Content for Onshore Wind Power in 2020

Source: Lawrence Berkeley National Laboratory Analysis

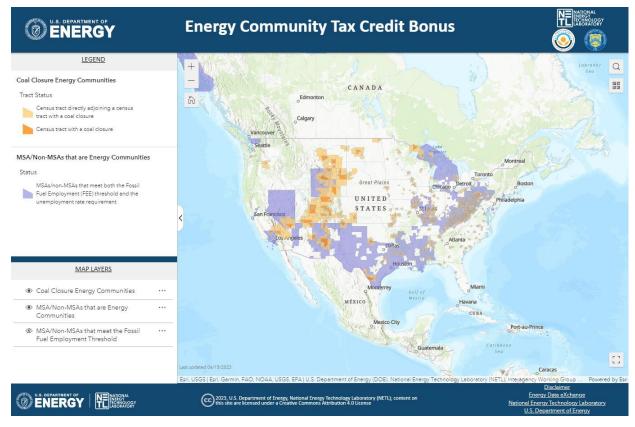
# **Energy Storage Supply Chains**

There are five major components of a lithium-ion battery: anode, cathode, electrolyte salts, electrolyte solutions, and separators. China has a dominant market presence in terms of both current and planned capacity for all subcomponents. The United States has less than 10% of global capacity for any

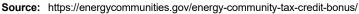
subcomponent and has very little, if any, capacity planned or under construction. The markets for lithiumion batteries, are evolving quickly, primarily in the transportation sector. New facilities are announced almost weekly, and data from government sources such as those in China, often lag announcements from industry by several months. Table 3 summarizes the subcomponent market positions of the U.S. and China as of 2021.

| Table 1-6 — United States' and China's Existing and Under Development Shares of |
|---------------------------------------------------------------------------------|
| Global Lithium-Ion Battery Subcomponent Capacity                                |

|                   | 2021  |       | Under Development |       |
|-------------------|-------|-------|-------------------|-------|
| Battery Component | U.S.  | China | U.S.              | China |
| Cathode           | 0.70% | 63%   | 0%                | 84%   |
| Anode Materials   | 0.60% | 84%   | 0%                | 91%   |
| Separator         | 3%    | 66%   | 0%                | 76%   |
| Electrolyte       | 7%    | 69%   | 2%                | 75%   |


Source: BloombergNEF (2021)

Future estimates change often due to new policies related to decarbonization and country-level competitiveness. These figures thus indicate overall industry dominance of China over the United States across the battery component supply chain rather than absolute market size.


#### **ENERGY COMMUNITY REQUIREMENTS**

The energy community requirements set forth by the IRA encourage the development of new energy projects in economically distressed or traditional energy communities. Energy communities include areas that (i) a coal mine or coal-fired power plant has closed or (ii) have been economically reliant on the extraction, processing, transport, or storage of coal, oil, or natural gas but now face higher-than-average unemployment. The DOE maintains an interactive map of metropolitan statistical areas and non-metropolitan statistical areas that qualify for the energy community bonus under the present definition.





# Figure 4 — Map of Census Tracts Eligible for Energy Community Bonus





# CASE 1. ULTRA-SUPERCRITICAL COALPLANT WITHOUTCARBON CAPTURE,650 MW NET

### **1.1. CASE DESCRIPTION**

This case comprises a greenfield coal-fired power plant with a nominal net capacity of 650 megawatts (MW) with a single steam generator and steam turbine with coal storage and handling systems, balance-of-plant (BOP) systems, and emissions control systems; there are no carbon dioxide (CO<sub>2</sub>) capture systems in this case.

This case employs a modified Rankine cycle, referred to as an ultra-supercritical (USC) thermal cycle, which is characterized by the operation at supercritical pressures; approximately 3750 psia (pounds per square inch absolute) and at steam temperatures above 1100°F (degrees Fahrenheit). This increase in steam pressure and temperature provides more energy per pound of fuel able to be converted to shaft power in the steam turbine.

The USC steam cycles are a significant improvement from the more common subcritical cycles. Therefore, USC technology represents the most efficient steam cycle configuration currently available. These higher efficiency boilers and turbines require less coal and subsequently produce less greenhouse gases and lower emissions. Throughout the past two decades, many USC coal power plants have been placed in operation, although most of these facilities have been constructed in outside of the United States. The AEP John Turk Plant, commissioned in 2012, is the only USC power facility constructed in the United States. Figure 1-1 represents a flow diagram of a generic USC coal facility.



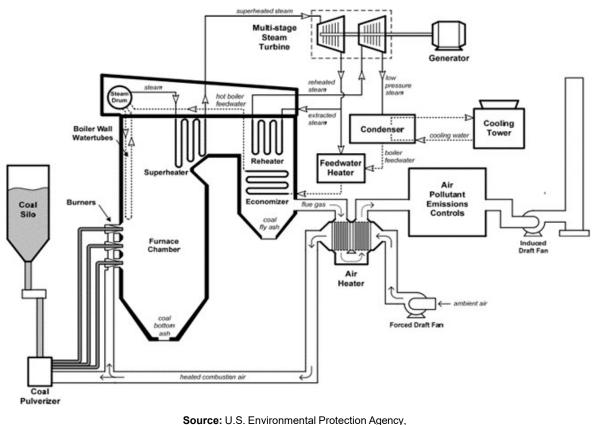



Figure 1-1 — USC Coal Boiler – Flow Diagram

Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from Coal-Fired Electric Generating Units PDF Accessed from EPA.gov, https://www.epa.gov/sites/production/files/2015-12/documents/electricgeneration.pdf

The base configuration used for the cost estimate is a single unit station constructed on a greenfield site of approximately 400 acres with rail access for coal deliveries. The facility has a nominal net generating capacity of 650 MW and is assumed to fire a high sulfur bituminous coal (approximately 4 MMBtu/hour SO<sub>2</sub>) with fuel moisture at 11% to 13% by weight and ash at 9% to 10%. Mechanical draft cooling towers are used for cycle cooling, and the water utilized for cycle cooling and steam cycle makeup is provided by an assumed adjacent freshwater reservoir or river.

#### **1.1.1. Mechanical Equipment and Systems**

#### 1.1.1.1. USC Steam Cycle

The steam turbine is a tandem compound reheat machine consisting of a high-pressure turbine, an intermediate-pressure turbine, and two double-flow low-pressure turbines with horizontal casing splits. The USC thermal cycle comprises eight feedwater heaters. The eighth heater is supplied with extraction steam from the high-pressure turbine. This heater configuration is commonly referred to as a "HARP" system, which is "Heater Above Reheat Point" of the turbine steam flow path. Boiler feedwater is supplied to the

cycle with a single steam driven boiler feedwater pump. with the turbine exhaust directed to the lowpressure condenser. Steam leaves the boiler to a high-pressure steam turbine designed for the USC pressures and temperatures. Steam leaving the high-pressure turbine is reheated in the boiler and directed to the intermediate-pressure turbine. The low-pressure turbine sections are twin dual flow turbines. The condensers are multi-flow units, one per each dual flow low-pressure turbine, operated at 2.0 inches of mercury absolute. The plant cooling system uses mechanical draft cooling towers with a circulated water temperature rise of 20°F.

The plant performance estimate is based on ambient conditions of 59°F, 60% relative humidity, and sea level elevation. The boiler efficiency is assumed to be 87.5%. The gross plant output is estimated to be 735 MW with a net output of 650 MW. The net heat rate is estimated to be 8638 Btu/kWh (British thermal unit per kilowatt-hour) based on the higher heating value (HHV) of the fuel and the net electrical output.

#### **1.1.1.2. Steam Generator**

For the base case design, the single steam generator is designed for an outdoor location. The steam generator is a USC, pulverized-coal-fired type, balanced draft, once-through unit equipped with superheater, reheater, economizer, and regenerative air heaters. All materials of construction are selected to withstand the pressures and temperatures associated with the USC conditions and are in accordance with Section 1 of the ASME Boiler Pressure Vessel Code. The boiler is fired with pulverized bituminous coal through six pulverizers. The boiler-firing system consists of low-nitrogen oxide (NO<sub>X</sub>) burners (LNBs) and overfire air (OFA). A submerged flight conveyor system is used for bottom ash removal. An economizer preheats the feedwater prior to entering the boiler water walls. Combustion air is preheated with two parallel trisector air preheaters. Combustion air is delivered to the boiler by two forced draft fans and two primary air fans. Two axial induced draft fans are used to transfer combustion gases through a baghouse, wet flue gas desulfurization (WFGD) system, wet electrostatic precipitator (WESP), and wet chimney.

#### 1.1.1.3. Water Treatment

The facility's water treatment plant consists of pretreatment and demineralization. All raw water entering the facility is first sent to the pretreatment system, which mainly consists of two redundant clarifiers where chemicals are added for disinfection and suspended solids removal. The pretreatment system includes lime addition. The lime addition allows for the partial removal of hardness and alkalinity from the raw water, if required. After pretreatment, the water is sent to a storage tank and then directed to the service and firewater users. A demineralizer system is used to provide steam cycle makeup water of sufficient quality for the once-through system. All wastewater from the demineralizer system is either recycled to the WFGD system or sent to the wastewater neutralization and discharge system.



### **1.1.1.4. Material Handling**

The coal handling system includes rail car unloading, reclaim systems, a dual coal conveyor system, transfer towers, and coal crushers. The fly ash handling system includes equipment to remove ash from the boiler, economizer, air heater, and baghouse. Fly ash is collected dry and conveyed to a storage silo. Fly ash is collected from the storage by truck for offsite disposal.

### **1.1.2. Electrical and Control Systems**

The USC facility generator is rated at approximately 780 megavolt-ampere (MVA) with an output of 24 kilovolts (kV) and is connected via generator circuit breakers to a generator step-up transformer (GSU). The GSU increases the voltage from the generator voltage level to the transmission system high-voltage level. The electrical system includes auxiliary transformers and reserve auxiliary transformers. The facility and most of the subsystems are controlled using a central distributed control system (DCS).

## **1.1.3. Offsite Requirements**

Coal is delivered to the facility by rail. The maximum daily coal rate for the facility is approximately 4600 tons per day. The number of rail cars to support this facility is estimated at approximately 330 rail cars per week.

The site is assumed to be located adjacent to a river or reservoir that can be permitted to supply a sufficient quantity of cooling water. The total volume of water consumption for cooling tower makeup, cycle makeup, and other demands is estimated to be approximately 7000 gallons per minute. Wastewater is sent to the adjacent waterway from one or more outfalls from a water treatment pond or wastewater treatment system.

The facility is assumed to start up on natural gas; therefore, the site is connected to a gas distribution system. Natural gas interconnection costs are based on a new lateral connected to existing gas pipeline.

The electrical interconnection costs are based on a one-mile distance from the facility switchyard to the terminal point on an existing utility substation. For the purposes of this estimate, any costs associated with expansion of the substation is excluded.

#### **1.2. CAPITAL COST ESTIMATE**

Table 1-1 summarizes the cost components for this case. The basis of the estimate assumes that the site is constructed in a United States region that has good access to lower-cost construction labor and has reasonable access to water resources, coal, natural gas, and existing utility transmission substations or existing transmission lines. The geographic location is assumed to be characterized by seismic, wind, and

other loading criteria that do not add significantly to the capital costs. An outdoor installation is assumed meaning that the boiler building is not enclosed—and no special systems are required to prevent freezing or to account for structural snow loading.

To determine the capital costs adjustments in other United States regions where the assumptions listed above are not applicable, location factors have been calculated to account for variations in labor wage rates and access to construction labor, labor productivity, water and wastewater resource constraints, wind and seismic criteria, and other environmental criteria.

To account for locations where water resources are limited, such as California, the southwest and the mountain west regions, ACCs are used in lieu of mechanical draft cooling towers. In regions where wastewater loads to rivers and reservoirs are becoming increasingly restricted, zero liquid discharge (ZLD) equipment is added. ZLD wastewater treatment equipment is assumed to include reverse osmosis, evaporation/crystallization, and fractional electrode ionization. To reduce the loading for the ZLD systems, it is assumed that cases where ZLD is applied will also have equipment in place, such as ACCs or cooling tower blowdown treatment systems, to reduce wastewater.

To account for ambient temperature extremes, costs for boiler enclosures have been included as part of the location factors in areas where ambient temperatures will be below freezing for significant periods of time. It is assumed that the steam turbine generator (STG) equipment will be enclosed in all locations.

| Case 1<br>EIA – Capital Cost Estimates – 2023 \$ USD                                      |                                   |           |  |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------|-----------|--|--|--|
| 650 MW Net       Configuration     USC Coal without Carbon Capture       1 x 735 MW Gross |                                   |           |  |  |  |
| Combustion Emissions Controls                                                             | Low NOx Burn                      | ers / OFA |  |  |  |
| Post-Combustion Emissions Controls Selective Catalytic Reduction (SCR) / Bagho<br>WESP    |                                   | , .       |  |  |  |
| Fuel Type                                                                                 | High Sulfur Bituminous            |           |  |  |  |
| Units                                                                                     |                                   |           |  |  |  |
| Plant Characteristics                                                                     |                                   |           |  |  |  |
| Net Plant Capacity (60°F, 60% RH)                                                         | MW                                | 650       |  |  |  |
| Heat Rate, HHV Basis                                                                      | Btu/kWh                           | 8638      |  |  |  |
| Capital Cost Assumptions                                                                  |                                   |           |  |  |  |
| Engineering, Procurement, and Construction (EPC)<br>Contracting Fee                       | % of Direct and Indirect<br>Costs | 10%       |  |  |  |
| EPC Contingency                                                                           | % of EPC Costs                    | 10%       |  |  |  |
| Owner's Services                                                                          | % of EPC Costs                    | 7%        |  |  |  |
| Owner's Contingency                                                                       | % of Owner's Costs                | 12%       |  |  |  |

# Table 1-1 — Case 1 Capital Cost Estimate

| Case 1<br>EIA – Capital Cost Estimates – 2023 \$ USD         |                                                                   |                             |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------|--|--|--|
| Configuration                                                | 650 MW Net<br>USC Coal without Carbon Capture<br>1 x 735 MW Gross |                             |  |  |  |
| Combustion Emissions Controls                                |                                                                   | Burners / OFA               |  |  |  |
| Post-Combustion Emissions Controls                           |                                                                   | n (SCR) / Baghouse / WFGD / |  |  |  |
| Fuel Type                                                    | WESP<br>High Sulfur Bituminous                                    |                             |  |  |  |
|                                                              | Units                                                             |                             |  |  |  |
| Estimated Land Requirement                                   | acres                                                             | 400                         |  |  |  |
| Estimated Land Cost                                          | \$/acre                                                           | 24,000                      |  |  |  |
| Interconnection Costs                                        |                                                                   |                             |  |  |  |
| Electrical Transmission Interconnection Costs                |                                                                   |                             |  |  |  |
| Transmission Line Cost                                       | \$/mile                                                           | 3,040,000                   |  |  |  |
| Miles                                                        | miles                                                             | 1.00                        |  |  |  |
| Substation Expansion Cost                                    | \$                                                                | 0                           |  |  |  |
| Gas Interconnection Costs                                    |                                                                   |                             |  |  |  |
| Pipeline Cost                                                | \$/mile                                                           | 2,900,000                   |  |  |  |
| Miles                                                        | miles                                                             | 0.50                        |  |  |  |
| Metering Station                                             | \$                                                                | 1,900,000                   |  |  |  |
| Typical Project Timelines                                    |                                                                   |                             |  |  |  |
| Development, Permitting, Engineering                         | months                                                            | 24                          |  |  |  |
| Plant Construction Time                                      | months                                                            | 36                          |  |  |  |
| Total Lead Time Before Commercial Operation Date             | months                                                            | 60                          |  |  |  |
| (COD)<br>Operating Life                                      | years                                                             | 40                          |  |  |  |
| EPC Cost Components (Note 1)                                 | ,                                                                 |                             |  |  |  |
| Civil/Structural/Architectural - Equipment and<br>Materials  | \$                                                                | 139,293,000                 |  |  |  |
| Boiler Plant - Equipment and Materials                       | \$                                                                | 395,674,000                 |  |  |  |
| Turbine Plant - Equipment and Materials                      | \$                                                                | 124,949,000                 |  |  |  |
| Main and Auxiliary Power System - Equipment and<br>Materials | \$                                                                | 41,759,000                  |  |  |  |
| Balance of Plant and I&C - Equipment and Materials           | \$                                                                | 272,534,000                 |  |  |  |
| Substation and Switchyard Costs                              | \$                                                                | 23,254,000                  |  |  |  |
| Construction Labor Costs                                     | \$                                                                | 783,122,000                 |  |  |  |
| Indirect Costs                                               | \$                                                                | 249,366,000                 |  |  |  |
| EPC Fee                                                      | \$                                                                | 202,995,000                 |  |  |  |
| EPC Contingency                                              | \$                                                                | 223,295,000                 |  |  |  |
| EPC Subtotal                                                 | \$                                                                | 2,456,241,000               |  |  |  |
| Owner's Cost Components (Note 2)                             |                                                                   |                             |  |  |  |
| Owner's Services                                             | \$                                                                | 171,937,000                 |  |  |  |
| Land                                                         | \$                                                                | 9,600,000                   |  |  |  |



| Case 1<br>EIA – Capital Cost Estimates – 2023 \$ USD                                                            |                                                                                             |                        |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|--|--|
| Configuration                                                                                                   | 650 MW Net<br>USC Coal without Carbon Capture<br>1 x 735 MW Gross                           |                        |  |  |
| Combustion Emissions Controls                                                                                   | Low NOx Burr                                                                                | iers / OFA             |  |  |
| Post-Combustion Emissions Controls                                                                              | st-Combustion Emissions Controls Selective Catalytic Reduction (SCR) / Baghouse / WFGD WESP |                        |  |  |
| Fuel Type                                                                                                       | High Sulfur Bi                                                                              | High Sulfur Bituminous |  |  |
|                                                                                                                 | Units                                                                                       |                        |  |  |
| Electrical Interconnection                                                                                      | \$                                                                                          | 3,040,000              |  |  |
| Gas Interconnection                                                                                             | \$                                                                                          | 3,350,000              |  |  |
| Owner's Contingency                                                                                             | \$                                                                                          | 22,551,000             |  |  |
| Owner's Cost Subtotal                                                                                           | <b>Owner's Cost Subtotal</b> \$ 210,478,000                                                 |                        |  |  |
| Total Capital Cost                                                                                              | \$                                                                                          | 2,666,719,000          |  |  |
|                                                                                                                 | \$/kW net                                                                                   | 4,103                  |  |  |
| Capital Cost Notes                                                                                              |                                                                                             |                        |  |  |
| 1 Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the |                                                                                             |                        |  |  |

1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include construction equipment, cranes and vehicles, project management, engineering, construction management, start-up, and commissioning. EPC fees are applied to the sum of direct and indirect costs.

2. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs.

#### **1.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

The operating and maintenance (O&M) costs for the USC coal-fired power generation facility are summarized in Table 1-2. The fixed costs cover the O&M labor, materials, and contracted maintenance services, and general and administrative (G&A). Major overhauls for the facility are generally based on a three-year/six-year basis, depending on the equipment. Major steam turbine maintenance work is generally performed on a five to six-year cycle. Shorter outages—such as changing out SCR catalyst—are generally performed on a three-year cycle.

Non-fuel variable costs for this technology case include flue gas desulfurization (FGD) reagent costs, SCR catalyst replacement costs, ammonia costs, SCR reagent costs, water treatment costs, wastewater treatment costs, fly ash and bottom ash disposal costs, bag replacement for the fabric filters, and FGD waste disposal costs.



| Case 1<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                                                                      |                                       |                     |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|--|--|--|
| 650 MW Net, USC Coal wit                                                                                              | · · · · · · · · · · · · · · · · · · · |                     |  |  |  |
| Fixed O&M – Plant (Note 1)                                                                                            | Units                                 | Value               |  |  |  |
| Labor                                                                                                                 | \$/year                               | 19,403,000          |  |  |  |
| Materials and Contract Services                                                                                       | \$/year                               | 15,788,000          |  |  |  |
| Administrative and General                                                                                            | \$/year                               | 4,851,000           |  |  |  |
| Cultated Fixed COM                                                                                                    | \$/year                               | 40,042,000          |  |  |  |
| Subtotal Fixed O&M                                                                                                    | \$/kW-year                            | 61.60               |  |  |  |
| Variable O&M (Note 2)                                                                                                 | \$/MWh                                | 6.40                |  |  |  |
| O&M Cost Notes                                                                                                        |                                       |                     |  |  |  |
| 1. Fixed O&M costs include labor, materials and contracted s taxes and insurance.                                     | ervices, and G&A costs. O&M c         | osts exclude prope  |  |  |  |
| 2. Variable O&M costs include catalyst replacement, ammoni<br>FGD waste disposal, and water discharge treatment cost. | a, activated carbon, limestone, v     | water, ash disposal |  |  |  |

Table 1-2 — Case 1 Operational Cost Estimate

The post-combustion environmental controls for this technology case include an SCR NO<sub>X</sub> system with aqueous ammonia as the reagent, a fabric-filter baghouse ash collection system with pulse jet cleaning, and a limestone-based forced-oxidation WFGD for the removal of SO<sub>2</sub> and sulfur trioxide. A WESP is included to mitigate sulfuric acid emissions. The flue gas pressure drops incurred from these backend controls have been accounted for in the induced draft fan sizing and the resultant auxiliary power demands in addition to the auxiliary power demands for the emissions control systems themselves.

For this case, no CO<sub>2</sub> emissions controls are assumed to be applicable. Refer to Case 2 for the implementation of a 95% carbon capture system to the USC coal power generation facility.

# **1.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**

The emissions for the major criteria pollutants are summarized in Table 1-3. The NO<sub>X</sub> emissions assume that the in-furnace controls such as LNB, OFA, and SCR systems are employed to control emissions to 0.06 lb/MMBtu. The WFGD system is assumed to be capable of 98% reduction of SO<sub>2</sub> from an inlet loading of 4.3 lb/MMBtu to an emission rate of 0.09 lb/MMBtu. The CO<sub>2</sub> emissions estimate is derived from 40 CFR, Subpart C, Table C-1, as 206 lb/MMBtu.



| Case 1<br>EIA – Emissions Rates                                                     |                           |               |  |  |
|-------------------------------------------------------------------------------------|---------------------------|---------------|--|--|
|                                                                                     | al without Carbon Capture |               |  |  |
| Predicted Emissions Rates (Note 1)                                                  | Units                     | Value         |  |  |
| NOx                                                                                 | lb/MMBtu                  | 0.06 (Note 2) |  |  |
| SO <sub>2</sub>                                                                     | lb/MMBtu                  | 0.09 (Note 3) |  |  |
| CO <sub>2</sub>                                                                     | lb/MMBtu                  | 206 (Note 4)  |  |  |
| Emissions Control Notes                                                             |                           |               |  |  |
| 1. High sulfur bituminous coal, 4 lb/MMBtu SO <sub>2</sub> coal                     |                           |               |  |  |
| 2. NOx removal using LNBs with OFA, and SCR                                         |                           |               |  |  |
| 3. SO <sub>2</sub> removal by forced-oxidation, limestone-based WFGD; 98% reduction |                           |               |  |  |
| 4. Per 40 CFR 98, Subpart C, Table C-1                                              |                           |               |  |  |

## Table 1-3 — Case 1 Emission Rates

The post-combustion environmental controls for this technology case include an SCR NO<sub>x</sub> system with aqueous ammonia as the reagent, a fabric-filter baghouse ash collection system with pulse jet cleaning, and a limestone-based forced-oxidation WFGD for the removal of SO<sub>2</sub> and sulfur trioxide. A WESP is included to mitigate sulfuric acid emissions. The flue gas pressure drops incurred from these backend controls have been accounted for in the induced draft fan sizing and the resultant auxiliary power demands in addition to the auxiliary power demands for the emissions control systems themselves.

For this case, no CO<sub>2</sub> emissions controls are assumed to be applicable. Refer to Case 2 for the implementation of a 95% carbon capture system to the USC coal power generation facility.



# CASE 2. ULTRA-SUPERCRITICAL COALPLANT WITH 95% CARBON CAPTURE, 650 MW NET

#### **2.1. CASE DESCRIPTION**

This case comprises a coal-fired power plant with a nominal net capacity of 650 MW with a single steam generator and steam turbine with coal storage and handling systems, balance-of-plant (BOP) systems, emissions control systems, and a 95% CO<sub>2</sub> capture system. This case is similar to the plant description provided in Case 1; however, this case employs a 95% CO<sub>2</sub> capture system for the entire flue gas stream, which requires an increased boiler size and higher heat input to account for the low-pressure steam extraction and larger auxiliary loads required for the CO<sub>2</sub> capture technology employed.

The steam cycle is generally similar to that of the ultra-supercritical USC case, Case 1. As with Case 1, the base configuration utilized for the cost estimate is a single-unit station constructed on a greenfield site with rail access for coal deliveries. The estimated land requirement for this facility is of approximately 430 acres to account for the carbon capture equipment.

The facility has a nominal net generating capacity of 650 MW and is assumed to fire a high sulfur bituminous coal (approximately 4 MMBtu/hour SO<sub>2</sub>) with fuel moisture at 11% to 13% by weight and ash at 9% to 10%. The gross plant output is estimated to be 819 MW to account for the additional parasitic and auxiliary loads due to the implementation of the  $CO_2$  capture system. Mechanical draft cooling towers are used for cycle cooling, and the water used for cycle cooling and steam cycle makeup is provided by an assumed adjacent freshwater reservoir or river.

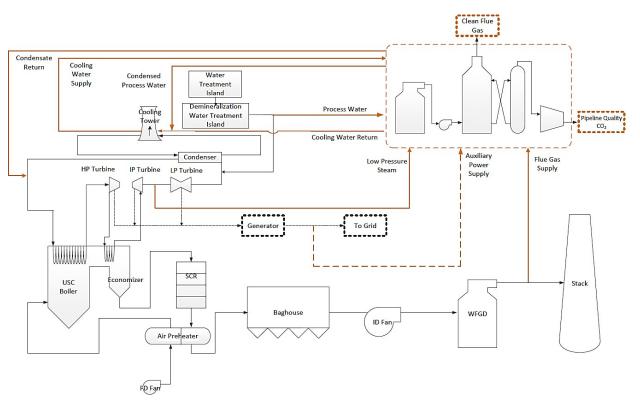
#### 2.1.1. Mechanical Equipment And Systems

Refer to Case 1 for a description of the major mechanical equipment and systems associated with the USC power generation facility. This section provides a description of the major equipment and systems for the CO<sub>2</sub> capture plant used as the basis for the capital and operating and maintenance (O&M) cost estimates.

#### 2.1.1.1. General CO<sub>2</sub> Capture Description

The most commercially available  $CO_2$  capture technology for coal-fired power plants is amine-based scrubbing technology. This technology requires an absorption column to absorb the  $CO_2$  from the flue gas and a stripping column to regenerate the solvent and release the  $CO_2$ . Amine-based solvents are used in the absorption column and require periodic makeup streams and waste solvent reclamation. Steam is used to break the bond between the  $CO_2$  and solvent.  $CO_2$  leaves the stripper with moisture prior to being dehydrated and compressed. The product  $CO_2$  is pipeline quality at 99.5% purity and approximately 2215

psia. The amine-based solvent systems are typically designed for 95% CO<sub>2</sub> capture in the absorption column.


## 2.1.1.2. CO<sub>2</sub> Capture Systems

This case assumes full integration of the CO<sub>2</sub> capture facility with the boiler/turbine system design. The CO<sub>2</sub> capture technology uses various utilities to operate, including low-quality steam and auxiliary power. Steam can be extracted between the intermediate pressure and low-pressure turbine sections that will provide the least amount of capacity derate while maintaining the necessary energy to drive the CO<sub>2</sub> capture system. Extracting steam prior to the low-pressure turbine section requires additional fuel to be fired to account for the lost generation potential. As such, the boiler, turbine, and associated systems would be required to be made larger to maintain the same net power production. Additionally, the CO<sub>2</sub> capture facility and BOP associated with the CO<sub>2</sub> capture system requires a significant amount of auxiliary power to drive the mechanical equipment. Most of the power consumption is used to drive the CO<sub>2</sub> compressors to produce pipeline quality CO<sub>2</sub> at approximately 2215 psia. The increase in auxiliary power consumption due to the CO<sub>2</sub> facility usage will require a larger turbine throughput to produce the added output. Overall, CO<sub>2</sub> capture system integration can account for approximately 60% of the total full load auxiliary power demand.

Other utilities that are integrated with the base plant are demineralized water and cooling water. Demineralized water is used to maintain a water balance within the amine process or in the solvent regeneration stages. The demineralized water consumption rate for the CO<sub>2</sub> capture facility is typically minor in comparison with base-plant utilization rates. As such, the demineralized water is expected to be fed from the base facility. This cost is accounted for in the O&M estimate only. Conversely, cooling water demands for the carbon capture process is significant. CO<sub>2</sub> capture systems require circulating cooling water rates similar to that of the condensers. As such, the cooling system, in this case evaporative cooling towers, are required to be expanded to account for the large amount of additional heat rejection. This cost is accounted for in the cooling tower size also requires a higher cooling tower blowdown rate that needs to be treated at the wastewater treatment system. This cost is reflected in the capital and O&M estimates.

Commercial amine-based CO<sub>2</sub> capture technology requires a quencher to be located upstream of the CO<sub>2</sub> absorber vessel. The quencher cools the flue gas to optimize the kinetics and efficiency of the CO<sub>2</sub> absorption process via the amine-based solvent. During the quenching process, a significant amount of flue gas moisture condenses into the vessel and requires a significant amount of blowdown to maintain the level in the vessel. This blowdown quality is not good enough to reuse in the absorber system for water balance, but it is an acceptable quality to either reuse in the cooling towers or wet flue gas desulfurization (WFGD) for makeup water. Due to the reuse, it does not require additional O&M costs.

A generic flow diagram for post-combustion carbon capture system is provided in Figure 2-1. The termination of the process of the  $CO_2$  capture facility is the new emissions point, which is a small stack at the top of the  $CO_2$  absorber vessel. For this configuration, a typical free-standing chimney is not required. Additionally, the compressed product  $CO_2$  is the other boundary limit. This estimate does not include pipeline costs to transport the  $CO_2$  to a sequestration or utilization site.





#### 2.1.1.3. 95% CO<sub>2</sub> Capture

For the case where a new USC coal-fired facility is required to provide 95% CO<sub>2</sub> reduction, the full flue gas path must be treated. As referenced previously, 95% capture is the typical design limit for CO<sub>2</sub> reduction in the absorber. Therefore, 100% of the plant's flue gas would need to be treated to provide 95% reduction efficiency. In this scenario, a significant amount of steam and auxiliary power is required to drive the large CO<sub>2</sub> capture system, ultimately increasing the size of the boiler to generate the additional steam and power required to maintain a net power output of 650 MW. As the boiler gets larger, more flue gas must be treated. As such, it is an iterative process to determine the new boiler size necessary to treat 100% of the flue gas from a new USC coal-fired boiler.

Source: Author © Sargent & Lundy, L.L.C

## 2.1.1.4. Plant Performance

For this case, all the flue gas is discharged from the carbon capture system, so no additional wet chimney is included in the capital cost estimate.

The plant performance estimate is based on ambient conditions of  $59^{\circ}$ F,  $60^{\circ}$  relative humidity, sea level elevation, and  $95^{\circ}$  CO<sub>2</sub> capture. Approximately 2,238,000 lb/hr of low-pressure steam is required for the CO<sub>2</sub> system. The boiler efficiency is assumed to be 87.5%, and the estimated gross size of the boiler is 1013 MW, which is approximately 40% larger than the case without carbon capture (Case 1). The generator gross output is approximately 819 MW. The estimated total auxiliary load for the plant is 169 MW, with 106 MW required for the for the CO<sub>2</sub> system. The net heat rate is estimated to be 12,293 Btu/kWh based on the higher heating value (HHV) of the fuel and the net electrical output.

#### **2.1.2. Electrical and Control Systems**

The electrical equipment includes the turbine generator, which is connected via generator circuit breakers to a generator step-up transformer (GSU). The GSU increases the voltage from the generator voltage level to the transmission system high-voltage level. The electrical system is essentially similar to the USC case without carbon capture (Case 1); however, there are additional electrical transformers and switchgear for the CO<sub>2</sub> capture systems. The electrical system includes auxiliary transformers and reserve auxiliary transformers. The facility and most of the subsystems are controlled using a central distributed control system (DCS).

#### 2.1.3. Offsite Requirements

Coal is delivered to the facility by rail. The maximum daily coal rate for the facility is approximately 6500 tons per day. The number of rail cars to support this facility is estimated at approximately 460 rail cars per week.

The site is assumed to be located adjacent to a river or reservoir that can be permitted to supply a sufficient quantity of cooling water. The total volume of water required for cooling tower makeup, cycle makeup, and cooling for the CO<sub>2</sub> system is estimated to be approximately 17,500 gallons per minute. Wastewater is sent to the adjacent waterway from one or more outfalls from a water treatment pond or wastewater treatment system.

The  $CO_2$  captured will need to be sequestered in a geologic formation or used for enhanced oil recovery. The viability of this technology case will be driven, to a large extent, by the proximity of the facility to the appropriate geologic formations. The costs presented herein do not account for equipment, piping, or structures associated with  $CO_2$  sequestration.



The facility is assumed to start up on natural gas. Therefore, the site is connected to a gas distribution system. Natural gas interconnection costs are based on a new lateral connected to existing gas pipeline.

The electrical interconnection costs are based on a one-mile distance from the facility switchyard to the terminal point on an existing utility substation. For the purposes of this estimate, the cost associated with the expansion of the substation is excluded.

## **2.2. CAPITAL COST ESTIMATE**

Table 2-1 summarizes the cost components for this case. The basis of the estimate assumes that the site is constructed in a United States region that has good access to lower-cost construction labor and has reasonable access to water resources, coal, natural gas, and existing utility transmission substations or existing transmission lines. The geographic location is assumed to be characterized by seismic, wind, and other loading criteria that do not add significantly to the capital costs. An outdoor installation is assumed, meaning that the boiler building is not enclosed, and no special systems are required to prevent freezing or to account for structural snow loading.

To determine the capital costs adjustments in other United States regions where the assumptions listed above are not applicable, location factors have been calculated to account for variations in labor wage rates and access to construction labor, labor productivity, water and wastewater resource constraints, wind and seismic criteria, and other environmental criteria.

To account for locations where water resources are limited, such as California, the southwest and the mountain west regions, air-cooled condensers (ACCs) are used in lieu of mechanical draft cooling towers. In regions where wastewater loads to rivers and reservoirs are becoming increasingly restricted, ZLD equipment is added. ZLD wastewater treatment equipment is assumed to include reverse osmosis, evaporation/crystallization, and fractional electrode ionization. To reduce the loading for the ZLD systems, it is assumed that cases where ZLD is applied will also have equipment in place, such as ACCs or cooling tower blowdown treatment systems, to reduce wastewater.

To account for ambient temperature extremes, costs for boiler enclosures have been included as part of the location factors in areas where ambient temperatures will be below freezing for significant periods of time. It is assumed that the steam turbine generator (STG) equipment will be enclosed in all locations.



| Ca                                                                  | se 2                                                                                                                   |             |  |  |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| EIA – Capital Cost Estimates – 2023 \$ USD                          |                                                                                                                        |             |  |  |  |  |
| Configuration                                                       | 650 MW Net<br>USC Coal<br>95% Carbon Capture System<br>1 x 819 MW Gross                                                |             |  |  |  |  |
| Combustion Emissions Controls                                       | Low NOx Burners (LNBs)                                                                                                 |             |  |  |  |  |
| Post-Combustion Emissions Controls                                  | Selective Catalytic Reduction (SCR) / Baghouse/<br>WFGD / WESP / Amine-Based Carbon Capture and<br>Sequestration (CCS) |             |  |  |  |  |
| Fuel Type                                                           | High Sulfur Bit                                                                                                        | uminous     |  |  |  |  |
|                                                                     | Units                                                                                                                  |             |  |  |  |  |
| Plant Characteristics                                               |                                                                                                                        |             |  |  |  |  |
| Net Plant Capacity (60°F, 60% RH)                                   | MW                                                                                                                     | 650         |  |  |  |  |
| Heat Rate, HHV Basis                                                | Btu/kWh                                                                                                                | 12,293      |  |  |  |  |
| Capital Cost Assumptions                                            |                                                                                                                        |             |  |  |  |  |
| Engineering, Procurement, and Construction (EPC)<br>Contracting Fee | % of Direct and Indirect<br>Costs                                                                                      | 10%         |  |  |  |  |
| EPC Contingency                                                     | % of EPC Costs                                                                                                         | 12%         |  |  |  |  |
| Owner's Services                                                    | % of EPC Costs                                                                                                         | 7%          |  |  |  |  |
| Owner's Contingency                                                 | % of Owner's Costs                                                                                                     | 12%         |  |  |  |  |
| Estimated Land Requirement                                          | acres                                                                                                                  | 430         |  |  |  |  |
| Estimated Land Cost                                                 | \$/acre                                                                                                                | 23,000      |  |  |  |  |
| Interconnection Costs                                               |                                                                                                                        |             |  |  |  |  |
| Electrical Transmission Interconnection Costs                       |                                                                                                                        |             |  |  |  |  |
| Transmission Line Cost                                              | \$/mile                                                                                                                | 3,040,000   |  |  |  |  |
| Miles                                                               | miles                                                                                                                  | 1.00        |  |  |  |  |
| Substation Expansion Cost                                           | \$                                                                                                                     | 0           |  |  |  |  |
| Gas Interconnection Costs                                           |                                                                                                                        |             |  |  |  |  |
| Pipeline Cost                                                       | \$/mile                                                                                                                | 2,900,000   |  |  |  |  |
| Miles                                                               | miles                                                                                                                  | 0.50        |  |  |  |  |
| Metering Station                                                    | \$                                                                                                                     | 1,900,000   |  |  |  |  |
| Typical Project Timelines                                           |                                                                                                                        |             |  |  |  |  |
| Development, Permitting, Engineering                                | months                                                                                                                 | 30          |  |  |  |  |
| Plant Construction Time                                             | months                                                                                                                 | 44          |  |  |  |  |
| Total Lead Time Before Commercial Operation Date (COD)              | months                                                                                                                 | 74          |  |  |  |  |
| Operating Life                                                      | years                                                                                                                  | 40          |  |  |  |  |
| EPC Cost Components (Note 1)                                        |                                                                                                                        |             |  |  |  |  |
| Civil/Structural/Architectural - Equipment and Materials            | \$                                                                                                                     | 174,284,000 |  |  |  |  |
| Boiler Plant - Equipment and Materials                              | \$                                                                                                                     | 434,360,000 |  |  |  |  |
| Turbine Plant - Equipment and Materials                             | \$                                                                                                                     | 158,270,000 |  |  |  |  |
| Main and Auxiliary Power System - Equipment and<br>Materials        | \$                                                                                                                     | 55,194,000  |  |  |  |  |



| Case 2<br>EIA – Capital Cost Estimates – 2023 \$ USD     |                                                                                                                        |               |  |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| Configuration                                            | 650 MW Net<br>USC Coal<br>95% Carbon Capture System<br>1 x 819 MW Gross                                                |               |  |  |  |
| Combustion Emissions Controls                            | Low NOx Burners (LNB                                                                                                   |               |  |  |  |
| Post-Combustion Emissions Controls                       | Selective Catalytic Reduction (SCR) / Baghouse/<br>WFGD / WESP / Amine-Based Carbon Capture and<br>Sequestration (CCS) |               |  |  |  |
| Fuel Type                                                | High Sulfur I                                                                                                          | Bituminous    |  |  |  |
|                                                          | Units                                                                                                                  |               |  |  |  |
| Balance of Plant and I&C - Equipment and Materials       | \$                                                                                                                     | 283,960,000   |  |  |  |
| Substation and Switchyard Costs                          | \$                                                                                                                     | 23,254,000    |  |  |  |
| Carbon Capture System Plant – Equipment and<br>Materials | \$                                                                                                                     | 615,388,000   |  |  |  |
| Construction Labor Costs                                 | \$                                                                                                                     | 1,562,601,000 |  |  |  |
| Indirect Costs                                           | \$                                                                                                                     | 272,942,000   |  |  |  |
| EPC Fee                                                  | \$                                                                                                                     | 358,025,000   |  |  |  |
| EPC Contingency                                          | \$                                                                                                                     | 472,593,000   |  |  |  |
| EPC Subtotal                                             | \$                                                                                                                     | 4,410,871,000 |  |  |  |
| Owner's Cost Components (Note 2)                         |                                                                                                                        |               |  |  |  |
| Owner's Services                                         | \$                                                                                                                     | 308,761,000   |  |  |  |
| Land                                                     | \$                                                                                                                     | 9,890,000     |  |  |  |
| Electrical Interconnection                               | \$                                                                                                                     | 3,040,000     |  |  |  |
| Gas Interconnection                                      | \$                                                                                                                     | 3,350,000     |  |  |  |
| Owner's Contingency                                      | \$                                                                                                                     | 39,005,000    |  |  |  |
| Owner's Cost Subtotal                                    | \$                                                                                                                     | 364,046,000   |  |  |  |
| Total Capital Cost                                       | \$                                                                                                                     | 4,774,917,000 |  |  |  |
|                                                          | \$/kW net                                                                                                              | 7,346         |  |  |  |

#### **Capital Cost Notes**

1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include engineering, construction management, start-up, and commissioning. EPC fees are applied to the sum of direct and indirect costs.

2. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs.

# 2.3. OPERATIONS AND MAINTENANCE COST ESTIMATE

The O&M costs for the USC coal-fired power generation facility with 95% carbon capture are summarized in Table 2-2. The fixed costs cover the O&M labor, materials and contract services, and general and administrative (G&A). Major overhauls for the facility are generally based on a three-year/six-year basis depending on the equipment. Major steam turbine maintenance work is generally performed on a five to

six-year cycle. Shorter outages, such as changing out the SCR catalyst, are generally performed on a threeyear cycle. It is assumed that the carbon capture equipment would have major overhauls on a three-year cycle, but there is not a sufficient operating base to confidently predict the required frequency of major maintenance. The carbon capture equipment will require additional O&M labor. It is assumed that some form of service agreement would be needed for the compressors, absorbers, strippers, and other specialized equipment.

Non-fuel variable costs for this technology case include glue gas desulfurization (FGD) reagent costs, SCR catalyst replacement costs, ammonia, SCR reagent costs, water treatment costs, wastewater treatment costs, fly ash and bottom ash disposal costs, bag replacement for the fabric filters, FGD waste disposal costs, and solvent makeup. For the CO<sub>2</sub> capture system, variable costs include solvent makeup and disposal costs—usually offsite disposal—as the spent solvent may be considered hazardous waste; additional wastewater treatment costs (predominantly cooling tower blowdown treatment); and additional demineralized makeup water costs.

| Case 2<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD |                |            |  |  |  |
|--------------------------------------------------|----------------|------------|--|--|--|
| 650 MW Net, USC Coal with 95%                    | Carbon Capture |            |  |  |  |
| Fixed O&M – Plant (Note 1)                       | Units          | Value      |  |  |  |
| Labor                                            | \$/year        | 27,313,000 |  |  |  |
| Materials and Contract Services                  | \$/year        | 23,173,000 |  |  |  |
| Administrative and General                       | \$/year        | 5,872,000  |  |  |  |
|                                                  | \$/year        | 56,358,000 |  |  |  |
| Subtotal Fixed O&M                               | \$/kW-year     | 86.70      |  |  |  |
| Variable O&M (Note 2) \$/MWh 13.73               |                |            |  |  |  |
| O&M Cost Notes                                   |                |            |  |  |  |

# Table 2-2 — Case 2 Operational Cost Estimate

1. Fixed O&M costs include labor, materials and contracted services, and G&A costs. O&M costs exclude property taxes and insurance.

2. Variable O&M costs include catalyst replacement, ammonia, limestone, water, ash disposal, FGD waste disposal, solvent and water costs for the CCS, and water discharge treatment cost.

#### 2.4. ENVIRONMENTAL AND EMISSIONS INFORMATION

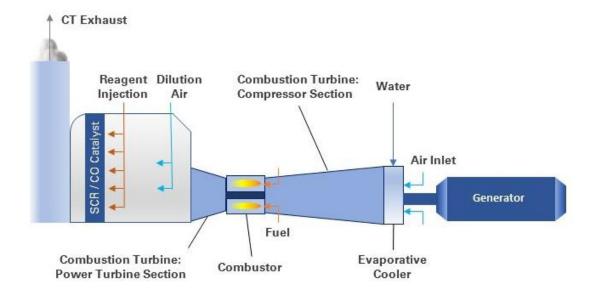
The emissions for the major criteria pollutants are summarized in Table 2-3. The NO<sub>X</sub> emissions assume that the in-furnace controls, such as LNB, OFA, and SCR systems, are employed to control emissions to 0.06 lb/MMBtu. The WFGD system is assumed to be capable of 98% reduction of SO<sub>2</sub> from an inlet loading of 4.3 lb/MMBtu to an emission rate of 0.09 lb/MMBtu. The CO<sub>2</sub> emissions estimate is based on a 95%

reduction in base emissions, which are derived from 40 CFR, Subpart C, Table C-1 as 206 lb/MMBtu, giving a  $CO_2$  emission rate of 10.3 lb/MMBtu.

| Case 2<br>EIA – Emissions Rates                                                                                                                                                                                                     |          |               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|--|
| 650 MW Net, USC Coal with 95% Carbon Capture                                                                                                                                                                                        |          |               |  |
| Predicted Emissions Rates (Note 1)                                                                                                                                                                                                  | Units    | Value         |  |
| NOx                                                                                                                                                                                                                                 | lb/MMBtu | 0.06 (Note 2) |  |
| SO <sub>2</sub>                                                                                                                                                                                                                     | lb/MMBtu | 0.09 (Note 3) |  |
| CO <sub>2</sub>                                                                                                                                                                                                                     | lb/MMBtu | 10.3 (Note 4) |  |
| Emissions Control Notes                                                                                                                                                                                                             |          |               |  |
| 1. High sulfur bituminous coal, 4 lb/MMBtu SO <sub>2</sub> Coal                                                                                                                                                                     |          |               |  |
| 2. NOx removal using LNBs with OFA, and SCR                                                                                                                                                                                         |          |               |  |
| <ol> <li>SO<sub>2</sub> removal by forced-oxidation, limestone-based WFGD; 98% Reduction</li> <li>Per 40 CFR 98, Subpart. C, Table C-1 in conjunction with 95% reduction of emissions through the carbon capture system.</li> </ol> |          |               |  |

# Table 2-3 — Case 2 Emission Rates




# CASE 3. COMBUSTION TURBINE - SIMPLE CYCLE PLANT, 4 X AERODERIVATIVE, 211 MW NET

#### **3.1. CASE DESCRIPTION**

This case is comprised of four identical aeroderivative combustion turbines (CTs) in a simple-cycle configuration. It is based on the use of natural gas as fuel, although dual-fuel capability is provided. Output power voltage is stepped up for transmission to the external grid through an onsite switchyard.

#### **3.1.1. Mechanical Equipment and Systems**

Case 3 is comprised of four of aeroderivative dual-fuel CTs in a simple-cycle configuration, with a nominal output of approximately 54 MW gross per turbine. After deducting internal auxiliary power demand, the net output of the plant is approximately 211 MW. Each CT's inlet air duct has an evaporative cooler to reduce the inlet air temperature in warmer seasons to increase the CT output. Each CT is also equipped with burners designed to reduce the CT's emission of NO<sub>X</sub>. Included in Case 3 are selective catalytic reduction (SCR) units for further reduction of NO<sub>X</sub> emissions and CO catalysts for further reduction of CO emissions. Refer to Figure 3-1 for a diagram of the CT systems.





Note: Only one CT shown. All CTs has the same configuration. Source: Author © Sargent & Lundy, L.L.C.

Aeroderivative CTs differ from industrial frame CTs in that aeroderivative CTs have been adapted from an existing aircraft engine design for stationary power generation applications. Consequently, compared to

industrial frame CTs of the same MW output, aeroderivative CTs are lighter weight, have a smaller size footprint, and have more advanced materials of construction. Additionally, aeroderivative CTs generally operate at higher pressure ratios, have faster start-up times, faster ramp rates, and higher efficiencies compared to industrial frame CTs.

#### **3.1.2. Electrical and Control Systems**

Case 3 includes one 60-hertz (Hz) electric generator per CT with an approximate rating of 54 MVA and output voltage of 13.8 kV. The generator output power is converted to a higher voltage by generator stepup transformers (GSUs) for transmission to the external grid transmitted via an onsite switchyard.

The simple-cycle facility is controlled by a control system provided by the CT manufacturer, supplemented by controls for the balance-of-plant (BOP) systems (for example, water supply to evaporative coolers, and fuel supply).

#### **3.1.3. Offsite Requirements**

Offsite provisions in Case 3 include the following:

- Fuel Gas Supply: A half-mile-long pipeline and a dedicated metering station.
- High-Voltage Transmission Line: A one-mile-long transmission line.
- Water Supply for Evaporative Cooler and Miscellaneous Uses: It is assumed that the water supply source, such as a municipal water system, is near the power plant site and the interconnection for water is at the plant's site boundary. Blowdown waste from the evaporative cooler is sent to an approved discharge location after appropriate treatment of the wastewater, and the wastewater interconnection's location is assumed at the power plant's site boundary.

#### **3.2. CAPITAL COST ESTIMATE**

Table 3-1 summarizes the cost components for this case. This estimate is based on an engineering, procurement, and construction (EPC) contracting approach.

In addition to EPC contract costs, the capital cost estimate in Table 3-1 covers owner's costs. Owner's costs include owner's services, which include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs. The estimate is presented as an overnight cost in 2023 dollars and thus excludes allowance for funds used during construction or interest during construction. In addition to the cost of external systems noted above (for example, fuel gas supply and transmission line), an estimated amount is included for the cost of land.

| Table 3-1 — Case 3 Capital Cost Esti |
|--------------------------------------|
|--------------------------------------|

| Case 3<br>EIA – Capital Cost Estimates – 2023 \$ USD   |                                 |                                                      |  |
|--------------------------------------------------------|---------------------------------|------------------------------------------------------|--|
| Configuration                                          |                                 | <b>CT – Simple Cycle</b><br>4 x Aeroderivative Class |  |
| Combustion Emissions Controls                          |                                 | Dry Low Emissions Combustor                          |  |
| Post-Combustion Emissions Controls                     |                                 | SCR Catalyst, CO Catalyst                            |  |
| Fuel Type                                              |                                 | Natural Gas / No. 2 Backup<br>4 x 54 MW rating       |  |
|                                                        | Units                           |                                                      |  |
| Plant Characteristics                                  |                                 |                                                      |  |
| Net Plant Capacity (60°F, 60% RH)                      | MW                              | 211                                                  |  |
| Heat Rate, Higher Heating Value (HHV) Basis            | Btu/kWh                         | 9447                                                 |  |
| Capital Cost Assumptions                               |                                 |                                                      |  |
| EPC Contracting Fee                                    | % of Direct &<br>Indirect Costs | 9%                                                   |  |
| EPC Contingency                                        | % of EPC Costs                  | 10%                                                  |  |
| Owner's Services                                       | % of Project<br>Costs           | 12%                                                  |  |
| Owner's Contingency                                    | % of Owner's<br>Costs           | 8%                                                   |  |
| Estimated Land Requirement                             | acres                           | 20                                                   |  |
| Estimated Land Cost                                    | \$/acre                         | 62,000                                               |  |
| Interconnection Costs                                  |                                 |                                                      |  |
| Electrical Transmission Interconnection Costs          |                                 |                                                      |  |
| Transmission Line Cost                                 | \$/mile                         | 2,412,000                                            |  |
| Miles                                                  | miles                           | 1.00                                                 |  |
| Substation Expansion                                   | \$                              | 0                                                    |  |
| Gas Interconnection Costs                              |                                 |                                                      |  |
| Pipeline Cost                                          | \$/mile                         | 3,500,000                                            |  |
| Miles                                                  | miles                           | 0.50                                                 |  |
| Metering Station                                       | \$                              | 2,200,000                                            |  |
| Typical Project Timelines                              |                                 |                                                      |  |
| Development, Permitting, Engineering                   | months                          | 18                                                   |  |
| Plant Construction Time                                | months                          | 22                                                   |  |
| Total Lead Time Before Commercial Operation Date (COD) | months                          | 40                                                   |  |
| Operating Life                                         | years                           | 40                                                   |  |
| EPC Cost Components (Note 1)                           |                                 |                                                      |  |
| Major Owner-Furnished Equipment (Note 2)               | \$                              | 155,900,000                                          |  |
| Other Equipment (Note 3)                               | \$                              | 22,800,000                                           |  |
| Construction Labor (Note 4)                            | \$                              | 35,500,000                                           |  |
| Indirect Costs (Note 5)                                | \$                              | 19,278,000                                           |  |



| Case 3<br>EIA – Capital Cost Estimates – 2023 \$ USD             |           |                                                          |  |
|------------------------------------------------------------------|-----------|----------------------------------------------------------|--|
| Configuration                                                    |           | CT – Simple Cycle                                        |  |
|                                                                  |           | 4 x Aeroderivative Class                                 |  |
| Combustion Emissions Controls Post-Combustion Emissions Controls |           | Dry Low Emissions Combustor<br>SCR Catalyst, CO Catalyst |  |
|                                                                  |           | Natural Gas / No. 2 Backup                               |  |
| Fuel Type                                                        |           | 4 x 54 MW rating                                         |  |
|                                                                  | Units     |                                                          |  |
| Materials (Note 6)                                               | \$        | 10,722,000                                               |  |
| EPC Fee                                                          | \$        | 21,978,000                                               |  |
| EPC Contingency                                                  | \$        | 26,618,000                                               |  |
| EPC Subtotal                                                     | \$        | 292,796,000                                              |  |
| Owner's Cost Components (Note 7)                                 |           |                                                          |  |
| Owner's Services                                                 | \$        | 35,136,000                                               |  |
| Land                                                             | \$        | 1,240,000                                                |  |
| Electrical Interconnection                                       | \$        | 2,412,000                                                |  |
| Gas Interconnection                                              | \$        | 3,950,000                                                |  |
| Owner's Contingency                                              | \$        | 3,419,000                                                |  |
| Owner's Subtotal                                                 | \$        | 46,157,000                                               |  |
| Total Capital Cost                                               | \$        | 338,953,000                                              |  |
|                                                                  | \$/kW net | 1,606                                                    |  |
|                                                                  |           |                                                          |  |

#### **Capital Cost Notes**

1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. EPC fees are applied to the sum of direct and indirect costs.

2. Major owner-furnished equipment includes CTs, SCRs, and CO catalysts.

- 3. Other equipment includes pumps, tanks, MCCs, switchgear, transformers, and any other major inside-the-fence process equipment required for the complete facility (excluding major owner-furnished equipment).
- 4. Construction labor costs are directly attributed to onsite civil/structural work and erection/installation of the equipment included in the EPC's scope.

5. Indirect costs are attributed to engineering, procurement, project services, construction management, field engineering, start-up, and commissioning services.

6. Materials include all construction materials associated with the EPC scope of work, material freight costs, and consumables during construction.

7. Owner's services include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs.

#### **3.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

Table 3-2 shows operating and maintenance (O&M) costs. Fixed O&M costs include staff and administrative costs, supplies, and minor routine maintenance. (Not included are property taxes and insurance.) Fixed costs also include the fixed payment portion of a long-term service agreement for the CTs.



Variable O&M costs include consumable commodities, such as water, lubricants, and chemicals. Also included is the average annual cost of the planned maintenance events for the CTs over the long-term maintenance cycle, based on the number of equivalent operating hours (EOH) the CT has run. A significant overhaul is typically performed for this type of CT every 30,000 EOH, and a major overhaul is performed every 60,000 EOH. CTs generally have two criteria to schedule overhauls: number of equivalent starts and number of EOH. The aeroderivative CTs in Case 3 always use an EOH-driven maintenance overhaul schedule regardless of the operating profile. (Refer to Case 4 for a starts-based overhaul schedule.) An additional advantage of an aeroderivative CTs is that, depending on the long-term service agreement terms, sections of the CT can be changed out with replacement assemblies, reducing the outage time of major overhauls to less than one week (compared to more than a two-week outage for industrial frame CTs).

## Table 3-2 — Case 3 O&M Cost Estimate

| Case 3<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                                                                                                                                                                                                                                                                                                                                                              |            |                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|--|
| CT – Simple Cycle                                                                                                                                                                                                                                                                                                                                                                                             |            |                 |  |
| Fixed O&M – Plant (Note 1)                                                                                                                                                                                                                                                                                                                                                                                    | Units      | Value           |  |
| Subtotal Fixed O&M                                                                                                                                                                                                                                                                                                                                                                                            | \$/kW-year | 9.56 \$/kW-year |  |
| Variable O&M (Note 2)                                                                                                                                                                                                                                                                                                                                                                                         | \$/MWh     | 5.70 \$/MWh     |  |
| O&M Cost Notes                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |  |
| <ol> <li>Fixed O&amp;M costs include labor, materials and contracted services, and general and administrative (G&amp;A) costs.<br/>O&amp;M costs exclude property taxes and insurance.</li> <li>Variable O&amp;M costs include water and water discharge treatment cost. These include turbine major<br/>maintenance activities which are based on an operating hours-dependent maintenance cycle.</li> </ol> |            |                 |  |

#### **3.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**

For the Case 3 simple-cycle configuration, SCR and CO catalysts are included to reduce emissions of  $NO_X$  and CO below the emission levels in the CT exhaust gas. Table 3-3 indicates predicted  $NO_X$ ,  $SO_2$ , and  $CO_2$  emissions assuming natural gas firing.



| Table 3-3 - | – Case 3 | Emissions |
|-------------|----------|-----------|
|-------------|----------|-----------|

| Case 3<br>EIA – Emissions Rates                                        |          |        |  |
|------------------------------------------------------------------------|----------|--------|--|
| CT – Simple Cycle                                                      |          |        |  |
| Predicted Emissions Rates (Note 1)                                     | Units    | Value  |  |
| NOx                                                                    | lb/MMBtu | 0.0075 |  |
| SO <sub>2</sub>                                                        | lb/MMBtu | 0.00   |  |
| CO <sub>2</sub>                                                        | lb/MMBtu | 117    |  |
| Emissions Control Notes                                                |          |        |  |
| 1. Natural gas fuel, emissions controlled with SCR, no water injection |          |        |  |



25

Sargent & Lundy

# CASE 4. COMBUSTION TURBINE - SIMPLE CYCLE PLANT, H CLASS, 419 MW NET

#### 4.1. CASE DESCRIPTION

This case is comprised of one industrial frame Model H combustion turbine (CT) in simple-cycle configuration. It is based on natural gas firing of the CT, although dual-fuel capability is provided. Output power voltage is stepped up for transmission to the external grid through an onsite switchyard.

#### 4.1.1. Mechanical Equipment and Systems

Case 4 is comprised of one industrial frame Model H dual-fuel CT in simple-cycle configuration with a nominal output of approximately 430 MW gross. After deducting internal auxiliary power demand, the net output of the plant is approximately 419 MW. The inlet air duct for the CT is equipped with an evaporative cooler to reduce the inlet air temperature in warmer seasons to increase the CT output. The CT is also equipped with burners designed to reduce the CT's emission of NO<sub>x</sub>. Included in the Case 4 configuration is a selective catalytic reduction (SCR) unit for further reduction of NO<sub>x</sub> emissions and a CO catalyst for further reduction of CO emissions. Figure 4-1 shows a diagram of the CT systems.

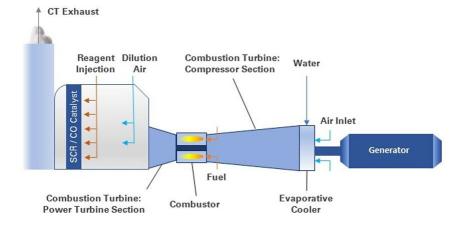



Figure 4-1 — Case 4 Configuration

Frame CTs differ from aeroderivative CTs in that the industrial frame CT's performance characteristics generally are more conducive to improved performance in combined-cycle (CC) applications; that is, industrial frame CTs have a greater amount of exhaust energy to produce steam for the CC's steam turbine

Source: Author © Sargent & Lundy, L.L.C.

portion of the plant. Industrial frame CT sizes, over 400 MW in 60-Hz models, far exceed the maximum aeroderivative size, and on a \$/kW basis, industrial frame turbines are less costly.

### 4.1.2. Electrical and Control Systems

Case 4 includes one 60-Hz CT electric generator with an approximate rating of 430 MVA and output voltage of 13.8 kV. The generator output power is converted to a higher voltage by generator step-up transformers (GSUs) for transmission to the external grid, transmitted through an onsite facility switchyard.

The simple-cycle facility is controlled by a control system provided by the CT manufacturer, supplemented by controls for the balance-of-plant (BOP) systems (for example, water supply to evaporative coolers, and fuel supply).

## **4.1.3. Offsite Requirements**

Offsite provisions in Case 4 include the following:

- Fuel Gas Supply: A half-mile-long pipeline and a dedicated metering station.
- High-Voltage Transmission Line: A one-mile-long transmission line.
- Water Supply for Evaporative Cooler and Miscellaneous Uses: It is assumed that the water supply source, such as a municipal water system, is near the power plant site and the interconnection for water is at the plant's site boundary. Blowdown waste from the evaporative cooler is sent to an approved discharge location after appropriate treatment of the wastewater, and the wastewater interconnection is assumed at the power plant's site boundary.

#### 4.2. CAPITAL COST ESTIMATE

Table 4-1 summarizes the cost components for this case. This estimate is based on an engineering, procurement, and construction (EPC) contracting approach.

In addition to EPC contract costs, the capital cost estimate in Table 4-1 covers owner's costs. Owner's costs include owner's services which include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs. The estimate is presented as an overnight cost in 2023 dollars and thus excludes allowance for funds used during construction or interest during construction. In addition to the cost of external systems noted above (for example, fuel gas supply), an estimated amount is included for the cost of land.

Sargent & Lundy <sup>26</sup>

| Case 4<br>EIA – Capital Cost Estimates – 2023 \$ USD      |                                   |                                                 |  |
|-----------------------------------------------------------|-----------------------------------|-------------------------------------------------|--|
| Configuration                                             |                                   | <b>CT – Simple Cycle</b><br>H-Class             |  |
| Combustion Emissions Controls                             |                                   | Dry Low Emissions<br>Combustor                  |  |
| Post-Combustion Emissions Controls                        |                                   | SCR Catalyst, CO Catalyst                       |  |
| Fuel Type                                                 |                                   | Natural Gas / No. 2 Backup<br>1 x 430 MW rating |  |
|                                                           | Units                             |                                                 |  |
| Plant Characteristics                                     |                                   |                                                 |  |
| Net Plant Capacity (60°F, 60% RH)                         | MW                                | 419                                             |  |
| Heat Rate, Higher Heating Value (HHV) Basis               | Btu/kWh                           | 9142                                            |  |
| Capital Cost Assumptions                                  |                                   |                                                 |  |
| EPC Contracting Fee                                       | % of Direct and<br>Indirect Costs | 9%                                              |  |
| EPC Contingency                                           | % of EPC Costs                    | 10%                                             |  |
| Owner's Services                                          | % of Project Costs                | 12%                                             |  |
| Owner's Contingency                                       | % of Owner's Costs                | 8%                                              |  |
| Estimated Land Requirement                                | acres                             | 20                                              |  |
| Estimated Land Cost                                       | \$/acre                           | 62,000                                          |  |
| Interconnection Costs                                     |                                   |                                                 |  |
| Electrical Transmission Interconnection Costs             |                                   |                                                 |  |
| Transmission Line Cost                                    | \$/mile                           | 3,040,000                                       |  |
| Miles                                                     | miles                             | 1.00                                            |  |
| Substation Expansion                                      | \$                                | 0                                               |  |
| Gas Interconnection Costs                                 |                                   |                                                 |  |
| Pipeline Cost                                             | \$/mile                           | 4,800,000                                       |  |
| Miles                                                     | miles                             | 0.50                                            |  |
| Metering Station                                          | \$                                | 2,800,000                                       |  |
| Typical Project Timelines                                 |                                   |                                                 |  |
| Development, Permitting, Engineering                      | months                            | 18                                              |  |
| Plant Construction Time                                   | months                            | 22                                              |  |
| Total Lead Time Before Commercial<br>Operation Date (COD) | months                            | 40                                              |  |
| Operating Life                                            | years                             | 40                                              |  |
| EPC Cost Components (Note 1)                              |                                   |                                                 |  |
| Major Owner-Furnished Equipment (Note 2)                  | \$                                | 132,800,000                                     |  |
| Other Equipment (Note 3)                                  | \$                                | 30,800,000                                      |  |
| Construction Labor (Note 4)                               | \$                                | 57,600,000                                      |  |
| Indirect Costs (Note 5)                                   | \$                                | 19,908,000                                      |  |



| Case 4<br>EIA – Capital Cost Estimates – 2023 \$ USD |           |                                                             |  |
|------------------------------------------------------|-----------|-------------------------------------------------------------|--|
| Configuration                                        |           | CT – Simple Cycle                                           |  |
| -                                                    |           | H-Class                                                     |  |
| Combustion Emissions Controls                        |           | Dry Low Emissions<br>Combustor<br>SCR Catalyst, CO Catalyst |  |
| Post-Combustion Emissions Controls                   |           |                                                             |  |
| Fuel Type                                            |           | Natural Gas / No. 2 Backup                                  |  |
|                                                      |           | 1 x 430 MW rating                                           |  |
|                                                      | Units     |                                                             |  |
| Materials (Note 6)                                   | \$        | 9,816,000                                                   |  |
| EPC Fee                                              | \$        | 22,583,000                                                  |  |
| EPC Contingency                                      | \$        | 27,351,000                                                  |  |
| EPC Subtotal \$                                      |           | 300,858,000                                                 |  |
| Owner's Cost Components (Note 7)                     |           |                                                             |  |
| Owner's Services                                     | \$        | 36,103,000                                                  |  |
| Land                                                 | \$        | 1,240,000                                                   |  |
| Electrical Interconnection                           | \$        | 3,040,000                                                   |  |
| Gas Interconnection                                  | \$        | 5,200,000                                                   |  |
| Owner's Contingency                                  | \$        | 3,647,000                                                   |  |
| Owner's Subtotal                                     | \$        | 49,230,000                                                  |  |
| Total Capital Cost                                   | \$        | 350,088,000                                                 |  |
|                                                      | \$/kW net | 835.5                                                       |  |
|                                                      |           |                                                             |  |

#### Capital Cost Notes

1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. EPC fees are applied to the sum of direct and indirect costs.

- 2. Major owner-furnished equipment includes CTs, SCRs, and CO catalysts.
- 3. Other equipment includes pumps, tanks, MCCs, switchgear, transformers, and any other major inside-the-fence process equipment required for the complete facility (excluding major owner-furnished equipment).
- 4. Construction labor costs are directly attributed to onsite civil/structural work and erection/installation of the equipment included in the EPC's scope.

5. Indirect costs are attributed to engineering, procurement, project services, construction management, field engineering, start-up, and commissioning services.

6. Materials include all construction materials associated with the EPC scope of work, material freight costs, and consumables during construction.

7. Owner's services include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs.

#### 4.3. OPERATIONS AND MAINTENANCE COST ESTIMATE

Operating and maintenance (O&M) costs are indicated in Table 4-2. Fixed O&M costs include staff and administrative costs, supplies, and minor routine maintenance. (Not included are property taxes and insurance.) Fixed costs also include the fixed payment portion of a long-term service agreement for the CT.



Variable O&M costs include consumable commodities, such as water, lubricants, and chemicals. Also included is the average annual cost of the planned maintenance events for the CT over the long-term maintenance cycle. Planned maintenance costs for the CT in a given year are based on the number of equivalent starts the CT has accumulated. A hot path gas inspection is performed for this type of CT every 900 equivalent starts, and a major inspection is performed every 1800 equivalent starts. CTs generally have two criteria to schedule overhauls: number of equivalent starts or number of equivalent operating hours [EOH], whichever occurs first. In Case 4, it is assumed the operating profile results in a starts-driven maintenance overhaul schedule. (Refer to Case 3 for an EOH-based overhaul schedule.) In Table 4-2, the cost per start is broken out from the variable O&M costs that cover the consumables.

| Case 4<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                                                                                                                                                                                                                                                                                         |                                                                            |                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|--|
| CT – Simple Cycle                                                                                                                                                                                                                                                                                                                        |                                                                            |                  |  |
| Fixed O&M – Plant (Note 1)                                                                                                                                                                                                                                                                                                               | Units                                                                      | Value            |  |
| Subtotal Fixed O&M                                                                                                                                                                                                                                                                                                                       | \$/kW-year                                                                 | 6.87 \$/kW-year  |  |
| Variable O&M                                                                                                                                                                                                                                                                                                                             |                                                                            |                  |  |
| Consumables (Note 2)                                                                                                                                                                                                                                                                                                                     | \$/MWh                                                                     | 1.24 \$/MWh      |  |
| CT Major Maintenance (Note 2)                                                                                                                                                                                                                                                                                                            | \$/Start                                                                   | 23,100           |  |
| O&M Cost Notes                                                                                                                                                                                                                                                                                                                           |                                                                            |                  |  |
| <ol> <li>Fixed O&amp;M costs include labor, materials and contracted<br/>O&amp;M costs exclude property taxes and insurance.</li> <li>Variable O&amp;M consumables costs include water, water of<br/>addition to the consumables costs, add CT major maintenan<br/>dependent maintenance cycle, with cost per start indicated</li> </ol> | lischarge treatment cost, etc. base<br>ance variable costs, which are base | ed on \$/MWh. In |  |

# Table 4-2 — Case 4 O&M Cost Estimate

# 4.4. ENVIRONMENTAL AND EMISSIONS INFORMATION

For the Case 4 simple-cycle configuration, SCR and CO catalysts are included to reduce emissions of NO<sub>X</sub> and CO below the emission levels in the CT exhaust gas. Table 4-3 indicates predicted NO<sub>X</sub>, SO<sub>2</sub>, and CO<sub>2</sub> emissions assuming natural gas firing.



| Case 4<br>EIA – Emissions Rates<br>CT – Simple Cycle |                    |        |
|------------------------------------------------------|--------------------|--------|
|                                                      |                    |        |
| NOx                                                  | lb/MMBtu           | 0.0075 |
| SO <sub>2</sub>                                      | lb/MMBtu           | 0.00   |
| CO <sub>2</sub>                                      | lb/MMBtu           | 117    |
| Emissions Control Notes                              |                    |        |
| 1. Natural gas fuel, emissions controlled with SCR,  | no water injection |        |



# CASE 5. COMBINED-CYCLE PLANT, H CLASS, 1227 MW NET

## 5.1. CASE DESCRIPTION

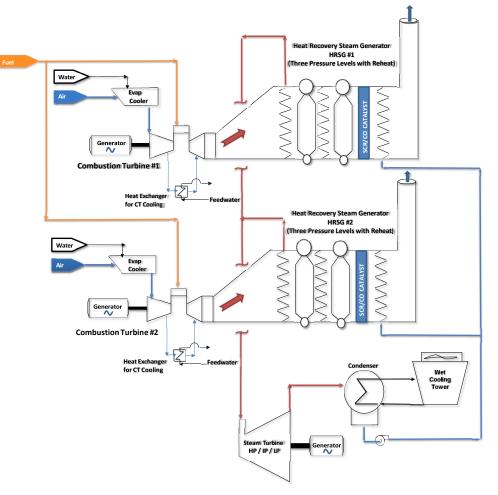
This case is comprised of one block of a combined-cycle (CC) power generation unit in a 2x2x1 configuration. The plant includes two industrial frame Model H "advanced technology" combustion turbines (CTs) and one steam turbine generator (STG). Case 5 is based on natural gas firing of the CTs, although dual-fuel capability is provided. Main plant cooling is accomplished with a wet cooling tower system. Output power voltage is stepped up for transmission to the external grid through an onsite switchyard.

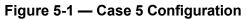
### 5.1.1. Mechanical Equipment and System

Case 5 is comprised of a pair of Model H, dual-fuel CTs in a 2x2x1 CC configuration (two CTs, two heat recovery steam generators [HRSGs], and one steam turbine). Each CT generates approximately 436 MW gross; the STG generates approximately 393 MW gross. After deducting internal auxiliary power demand, the net output of the plant is 1227 MW. Refer to Figure 5-1 for a diagram of the Case 5 configuration.

Each CT's inlet air duct has an evaporative cooler to reduce the inlet air temperature in warmer seasons to increase the CT and plant output. Each CT is also equipped with burners designed to reduce  $NO_X$  emissions. Included in the Case 5 configuration are selective catalytic reduction (SCR) units for further  $NO_X$  emissions reduction and CO catalysts for further CO emissions reduction.

The CTs are Model H industrial frame-type CTs with an advanced technology design, since they incorporate the following features:


- High firing temperatures (~2900°F)
- Advanced materials of construction
- Advanced thermal barrier coatings
- Additional cooling of CT assemblies (depending on the CT model, additional cooling applies to the CT rotor, turbine section vanes, and the combustor). Refer to Figure 5-1, which depicts a dedicated additional cooler for the CT assemblies in Case 5.


The high-firing temperature and additional features listed above result in increased MW output and efficiency of the CT as well as in the CC plant.

Hot exhaust gas from each CT is directed to a HRSG, with one HRSG per CT. Steam generated in the HRSGs is directed to the STG. HRSGs may be optionally equipped with additional supplemental firing,

however, this feature is not included in Case 5. (Supplemental HRSG firing, while increasing the MW output of the STG, reduces plant efficiency.)

A wet cooling tower system provides plant cooling for Case 5. A wet cooling tower is preferred over the alternative air-cooled condensers (ACC) approach since plant performance is better (that is, greater MW output and higher efficiency) and capital cost is generally lower. However, ACCs are often selected in areas where the supply of makeup water needed for a wet cooling tower is scarce or expensive, such as in desert areas in the southwestern United States.





Source: Author © Sargent & Lundy, L.L.C.



## **5.1.2. Electrical and Control Systems**

Case 5 includes one 60-Hz electric generator per CT with an approximate rating of 436 MVA and output voltage of 13.8 kV. The STG includes one 60-Hz electric generator with an approximate 393 MVA rating. The output power from the three generators is converted to a higher voltage by generator step-up transformers (GSUs) for transmission to the external grid, transmitted through an onsite facility switchyard.

The CC facility is controlled by a central distributed control system (DCS), which is linked to a CT control system provided by the CT manufacturer. This DCS includes controls for the steam cycle systems and equipment as well as balance-of-plant (BOP) systems and equipment (for example, water systems, fuel systems, and main cooling systems).

## **5.1.3. Offsite Requirements**

Offsite provisions Case 5 include the following:

- Fuel Gas Supply: A half-mile-long pipeline and a dedicated metering station.
- High-Voltage Transmission Line: A one-mile-long transmission line.
- Water Supply for Cooling Tower, Evaporative Coolers, Makeup to Steam Cycle, and Miscellaneous Uses: It is assumed that the water supply source is near the power plant site and the interconnection for water is at the plant's site boundary. Blowdown waste from the cooling tower and other areas of the plant is sent to an approved discharge location after appropriate treatment of the wastewater, and the wastewater interconnection is assumed to be located at the power plant's site boundary.

## **5.2. CAPITAL COST ESTIMATE**

Table 5-1 summarizes the cost components for this case. This estimate is based on an engineering, procurement, and construction (EPC) contracting approach.

In addition to EPC contract costs, the capital cost estimate in Table 5-1 covers owner's costs. Owner's costs include owner's services which include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs. The estimate is presented as an overnight cost in 2023 dollars and thus excludes allowance for funds used during construction or interest during construction. In addition to the cost of external systems noted above (for example, fuel gas supply and transmission line), an estimated amount is included for the cost of land.



## Table 5-1 — Case 5 Capital Cost Estimate

| Case 5<br>EIA – Capital Cost Estimates – 2023 \$ USD  |                                   |                            |  |  |
|-------------------------------------------------------|-----------------------------------|----------------------------|--|--|
| Configuration                                         |                                   | CC 2x2x1<br>H-Class        |  |  |
| Combustion Emissions Controls                         |                                   | Dry Low NOx combustor      |  |  |
| Post-Combustion Emissions Controls                    |                                   | SCR Catalyst, CO Catalyst  |  |  |
| Fuel Type                                             |                                   | Natural gas / No. 2 Backup |  |  |
| Post Firing                                           |                                   | No Post Firing             |  |  |
|                                                       | Units                             | 5                          |  |  |
| Plant Characteristics                                 |                                   |                            |  |  |
| Net Plant Capacity (60°F, 60% RH)                     | MW                                | 1227                       |  |  |
| Net Plant Heat Rate, Higher Heating Value (HHV) Basis | Btu/kWh                           | 6266                       |  |  |
| Capital Cost Assumptions                              |                                   |                            |  |  |
| EPC Contracting Fee                                   | % of Direct and<br>Indirect Costs | 10%                        |  |  |
| EPC Contingency                                       | % of EPC Costs                    | 11%                        |  |  |
| Owner's Services                                      | % of Project Costs                | 9%                         |  |  |
| Owner's Contingency                                   | % of Owner's Costs                | 7%                         |  |  |
| Estimated Land Requirement                            | acres                             | 30                         |  |  |
| Estimated Land Cost                                   | \$/acre                           | 54,000                     |  |  |
| Interconnection Costs                                 |                                   |                            |  |  |
| Electrical Transmission Interconnection Costs         |                                   |                            |  |  |
| Transmission Line Cost                                | \$/mile                           | 3,040,000                  |  |  |
| Miles                                                 | miles                             | 1.00                       |  |  |
| Substation Expansion                                  | \$                                | 0                          |  |  |
| Gas Interconnection Costs                             |                                   |                            |  |  |
| Pipeline Cost                                         | \$/mile                           | 6,000,000                  |  |  |
| Miles                                                 | miles                             | 0.50                       |  |  |
| Metering Station                                      | \$                                | 3,400,000                  |  |  |
| Typical Project Timelines                             |                                   |                            |  |  |
| Development, Permitting, Engineering                  | months                            | 18                         |  |  |
| Plant Construction Time                               | months                            | 24                         |  |  |
| Total Lead Time Before Commercial                     | months                            | 42                         |  |  |
| Operation Date (COD)<br>Operating Life                | years                             | 40                         |  |  |
| EPC Cost Components (Note 1)                          | youro                             |                            |  |  |
| Major Owner-Furnished Equipment (Note 2)              | \$                                | 319,400,000                |  |  |
| Other Equipment (Note 3)                              | \$                                | 119,700,000                |  |  |
| Construction Labor (Note 4)                           | \$                                | 200,000,000                |  |  |
| Indirect Costs (Note 5)                               | \$                                | 63,910,000                 |  |  |

| Case 5<br>EIA – Capital Cost Estimates – 2023 \$ USD |           |                                                    |  |
|------------------------------------------------------|-----------|----------------------------------------------------|--|
| Configuration                                        |           | CC 2x2x1<br>H-Class                                |  |
| Combustion Emissions Controls                        |           |                                                    |  |
| Post-Combustion Emissions Controls                   |           | Dry Low NOx combustor<br>SCR Catalyst, CO Catalyst |  |
| Fuel Type                                            |           | Natural gas / No. 2 Backup                         |  |
| Post Firing                                          |           | No Post Firing                                     |  |
|                                                      | Units     |                                                    |  |
| Materials (Note 6)                                   | \$        | 83,429,000                                         |  |
| EPC Fee                                              | \$        | 78,644,000                                         |  |
| EPC Contingency                                      | \$        | 95,159,000                                         |  |
| EPC Subtotal                                         | \$        | 960,242,000                                        |  |
| Owner's Cost Components (Note 7)                     |           |                                                    |  |
| Owner's Services                                     | \$        | 86,422,000                                         |  |
| Land                                                 | \$        | 1,620,000                                          |  |
| Electrical Interconnection                           | \$        | 3,040,000                                          |  |
| Gas Interconnection                                  | \$        | 6,400,000                                          |  |
| Owner's Contingency                                  | \$        | 6,824,000                                          |  |
| Owner's Subtotal                                     | \$        | 104,306,000                                        |  |
| Total Capital Cost                                   | \$        | 1,064,548,000                                      |  |
|                                                      | \$/kW net | 867.6                                              |  |

#### Capital Cost Notes

1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. EPC fees are applied to the sum of direct and indirect costs.

2. Major owner-furnished equipment includes CTs, HRSG, SCRs, CO catalysts, and steam turbines.

3. Other equipment includes pumps, tanks, MCCs, condensers, cooling towers, switchgear, transformers, and any other major inside-the-fence process equipment required for the complete facility (excluding major owner-furnished equipment).

4. Construction labor costs are directly attributed to onsite civil/structural work and erection/installation of the equipment included in the EPC's scope.

5. Indirect costs are attributed to engineering, procurement, project services, construction management, field engineering, start-up, and commissioning services.

6. Materials include all construction materials associated with the EPC scope of work, material freight costs, and consumables during construction.

7. Owner's services include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs.

#### **5.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

Table 5-2 indicates operating and maintenance (O&M) costs. Fixed O&M costs include staff and administrative costs, supplies, and minor routine maintenance. (Not included are property taxes and insurance.) Fixed costs also include the fixed payment portion of a long-term service agreement for the



CTs. Additional O&M costs for firm gas transportation service are not included as the facility has dual-fuel capability.

Variable O&M costs include consumable commodities, such as water, lubricants, and chemicals. It also includes the periodic costs to change out the SCR and CO catalysts. The variable O&M costs also include the average annual cost of the planned maintenance events for the CTs and the STG over the long-term maintenance cycle. Planned maintenance costs for the CTs in a given year are based on the number of equivalent operating hours (EOH) the CT has run. A hot path gas inspection is performed for this type of CT every 900 equivalent starts, and a major inspection is performed every 1800 equivalent starts. (CTs generally have two criteria to schedule overhauls: number of equivalent starts and number of EOH. Case 5 assumes the operating profile results in an EOH-driven maintenance overhaul schedule. Refer to Case 4 for a starts-based overhaul schedule.)

## Table 5-2 — Case 5 O&M Costs

| Case 5<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                                                                                                                                                                                                                                                                                                                                                               |            |                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|--|--|
| CC 2x2x1                                                                                                                                                                                                                                                                                                                                                                                                       |            |                  |  |  |
| Fixed O&M – Plant (Note 1)                                                                                                                                                                                                                                                                                                                                                                                     | Units      | Value            |  |  |
| Subtotal Fixed O&M                                                                                                                                                                                                                                                                                                                                                                                             | \$/kW-year | 12.12 \$/kW-year |  |  |
| Variable O&M (Note 2)         \$/MWh         3.41 \$/MWh                                                                                                                                                                                                                                                                                                                                                       |            |                  |  |  |
| O&M Cost Notes                                                                                                                                                                                                                                                                                                                                                                                                 |            |                  |  |  |
| <ol> <li>Fixed O&amp;M costs include labor, materials and contracted services, and general and administrative (G&amp;A) costs.</li> <li>O&amp;M costs exclude property taxes and insurance.</li> <li>Variable O&amp;M costs include water and water discharge treatment cost. These include turbine major maintenance activities which are based on an operating hours-dependent maintenance cycle.</li> </ol> |            |                  |  |  |

## 5.4. ENVIRONMENTAL AND EMISSIONS INFORMATION

For the Case 5 CC configuration, NO<sub>x</sub> emissions from the HRSG stacks when firing gas are indicated in Table 5-3. SCRs and CO catalysts are included in the HRSGs to reduce HRSG stack emissions of NO<sub>x</sub> and CO below the emission levels in the CT exhaust gas.



## Table 5-3 — Case 5 Emissions

| Case 5<br>EIA – Emissions Rates         |            |                 |  |
|-----------------------------------------|------------|-----------------|--|
| CC 2x2                                  | <b>k</b> 1 |                 |  |
| Predicted Emissions Rates (Note 1)      | Units      | Value           |  |
| NOx                                     | lb/MMBtu   | 0.0075 (Note 1) |  |
| SO <sub>2</sub>                         | lb/MMBtu   | 0.00            |  |
| CO <sub>2</sub>                         | lb/MMBtu   | 117             |  |
| Emissions Control Notes                 |            |                 |  |
| 1. Natural gas, SCR, no water injection |            |                 |  |



38

Sargent & Lundy

# CASE 6. COMBINED-CYCLE PLANT, H CLASS, SINGLE SHAFT, 627 MWNET

## **6.1. CASE DESCRIPTION**

This case is comprised of one block of a combined-cycle (CC) power generation unit. The plant includes one industrial frame Model HL derived from an H-Class technology combustion turbine (CT), one steam turbine generator (STG), and one electric generator that is common to the CT and the STG. Case 6 is based on natural gas firing of the CT, although dual-fuel capability is provided. Main plant cooling is accomplished with a wet cooling tower system. Output power voltage is stepped up for transmission to the external grid through an onsite switchyard.

## 6.1.1. Mechanical Equipment and Systems

Case 6 is comprised of one Model HL dual-fuel CT in a 1x1x1 single-shaft CC configuration. The CT generates approximately 453 MW gross and the STG generates 192 MW gross. After deducting internal auxiliary power demand, the net output of the plant is approximately 627 MW.

Case 6 layout differs from Case 5 in that Case 6 is a single-shaft CC plant. That is, the Case 5 CT, STG, and electric generator all share one horizontal shaft. Therefore, it has a more compact footprint than a plant like Case 5, where the CTs and STG have separate shafts and generators. Refer to Figure 6-1 for a simplified sketch of a single-shaft CT/steam turbine/generator unit. Generally, there are no major performance advantages of a single-shaft CC unit. Instead, the advantages are in costs; that is, in the case of a 1x1x1 CC configuration, the single-shaft unit will have only one electric generator whereas a multiple shaft 1x1x1 CC configuration will have two generators. Also, the smaller footprint of the single-shaft unit will lessen balance-of-plant (BOP) costs, such as foundations, piping, and cabling costs.

The inlet air duct for the CT is equipped with an evaporative cooler to reduce the inlet air temperature in warmer seasons to increase the CT and plant output. The CT is also equipped with burners designed to reduce the CT's emission of NO<sub>x</sub>. Included in the Case 6 configuration is a selective catalytic reduction (SCR) unit for further reduction of NO<sub>x</sub> emissions and a CO catalyst for further reduction of CO emissions.

The CT is categorized as derived from H Class industrial frame-type CT with an advanced technology design since it incorporates in the design the following features:

- High-firing temperatures (~2900°F)
- Advanced materials of construction

- Advanced thermal barrier coatings
- Additional cooling of CT assemblies (depending on the CT model, additional cooling applies to the CT rotor, turbine section vanes, and the combustor). The high-firing temperature and additional features listed above result in an increase in MW output and efficiency of the CT as well as in the CC plant.

In addition, the HL class industrial frame-type CT utilizes a modular design approach and is designed for operational flexibility.

Hot exhaust gas from the CT is directed to a heat recovery steam generator (HRSG). Steam generated in the HRSG is directed to the STG. An HRSG may be optionally equipped with additional supplemental firing to boost steam turbine output, but this feature is not included in Case 6. (Supplemental HRSG firing, while increasing the MW output of the STG, reduces plant efficiency.)

Plant cooling for Case 6 is provided by a wet cooling tower system. Generally, a wet cooling tower is preferred over the alternative air-cooled condensers (ACC) approach since plant performance is better (that is, greater MW output and higher efficiency) with a wet tower and capital cost is generally lower. However, ACCs are often selected in areas where the supply of makeup water needed for a wet cooling tower is scarce, expensive, or difficult to permit such as in desert areas in the southwestern United States.



40

Sargent & Lundy

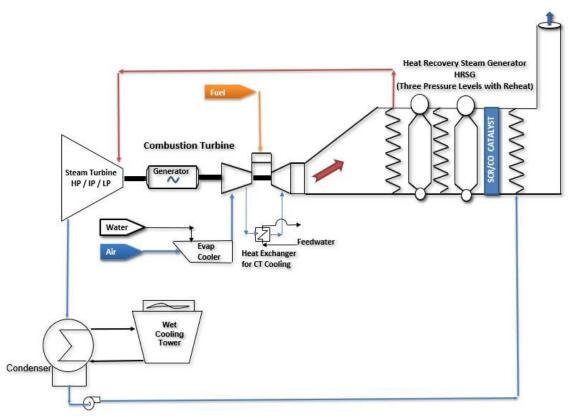
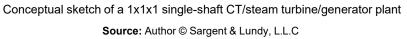




Figure 6-1 — Case 6 Configuration – Simplified Sketch



## **6.1.2. Electrical and Control Systems**

Case 6 includes one 60-Hz electric generator for both the CT and steam turbine, with an approximate rating of 453 MVA and output voltage of 13.8 kV. The output power from the generator is converted to a higher voltage by a generator step-up transformer (GSU) for transmission to the external grid, transmitted through an onsite facility switchyard.

The CC facility is controlled by a central distributed control system (DCS), which is linked to a CT control system provided by the CT manufacturer. The DCS system includes controls for the steam cycle systems and equipment as well as the BOP systems and equipment (for example, water systems, fuel systems, and main cooling systems).

## 6.1.3. Offsite Requirements

Offsite provisions in Case 6 include the following:

• Fuel Gas Supply: A half-mile-long pipeline and a dedicated metering station.

- High-Voltage Transmission Line: A one-mile-long transmission line.
- Water Supply for Cooling Tower, Evaporative Coolers, Makeup to Steam Cycle, and Miscellaneous Uses: It is assumed that the water supply source is near the power plant site and the interconnection for water is at the plant's site boundary. Blowdown waste from the cooling tower and other areas of the plant is sent to an approved discharge location after appropriate treatment of the wastewater, and the wastewater interconnection is assumed to be located at the power plant's site boundary.

## **6.2. CAPITAL COST ESTIMATE**

Table 6-1 summarizes the cost components for this case. The capital cost estimate is based on an engineering, procurement, and construction (EPC) contracting approach.

In addition to EPC contract costs, the capital cost estimate in Table 6-1 covers owner's costs. Owner's costs include owner's services which include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs. The estimate is presented as an overnight cost in 2023 dollars and thus excludes allowance for funds used during construction or interest during construction. In addition to the cost of external systems noted above (for example, fuel gas supply and transmission line), an estimated amount is included for the cost of land.

| Case 6<br>EIA – Capital Cost Estimates – 2023 \$ USD |                                   |                                   |  |
|------------------------------------------------------|-----------------------------------|-----------------------------------|--|
| Configuration                                        |                                   | CC 1x1x1, Single Shaft<br>H Class |  |
| Combustion Emissions Controls                        |                                   | Dry Low Emissions<br>Combustor    |  |
| Post-Combustion Emissions Controls                   |                                   | SCR Catalyst, CO Catalyst         |  |
| Fuel Type                                            |                                   | Natural Gas / No. 2 Backup        |  |
| Post Firing                                          |                                   | No Post Firing                    |  |
|                                                      | Units                             |                                   |  |
| Plant Characteristics                                |                                   |                                   |  |
| Net Plant Capacity (60°F, 60% RH)                    | MW                                | 627                               |  |
| Heat Rate, Higher Heating Value (HHV) Basis          | Btu/kWh                           | 6226                              |  |
| Capital Cost Assumptions                             |                                   |                                   |  |
| EPC Contracting Fee                                  | % of Direct and<br>Indirect Costs | 10%                               |  |
| EPC Contingency                                      | % of EPC Costs                    | 11%                               |  |
| Owner's Services                                     | % of Project Costs                | 9%                                |  |
| Owner's Contingency                                  | % of Owner's Costs                | 7%                                |  |

## Table 6-1 — Case 6 Capital Cost Estimate

| Case 6<br>EIA – Capital Cost Estimates – 2023 \$ USD   |         |                                   |  |
|--------------------------------------------------------|---------|-----------------------------------|--|
| Configuration                                          |         | CC 1x1x1, Single Shaft<br>H Class |  |
| Combustion Emissions Controls                          |         | Dry Low Emissions<br>Combustor    |  |
| Post-Combustion Emissions Controls                     |         | SCR Catalyst, CO Catalyst         |  |
| Fuel Type                                              |         | Natural Gas / No. 2 Backup        |  |
| Post Firing                                            |         | No Post Firing                    |  |
|                                                        | Units   |                                   |  |
| Estimated Land Requirement                             | acres   | 30                                |  |
| Estimated Land Cost                                    | \$/acre | 54,000                            |  |
| Interconnection Costs                                  |         |                                   |  |
| Electrical Transmission Interconnection Costs          |         |                                   |  |
| Transmission Line Cost                                 | \$/mile | 3,040,000                         |  |
| Miles                                                  | miles   | 1.00                              |  |
| Substation Expansion                                   | \$      | 0                                 |  |
| Gas Interconnection Costs                              |         |                                   |  |
| Pipeline Cost                                          | \$/mile | 4,800,000                         |  |
| Miles                                                  | miles   | 0.50                              |  |
| Metering Station                                       | \$      | 2,800,000                         |  |
| Typical Project Timelines                              |         |                                   |  |
| Development, Permitting, Engineering                   | months  | 18                                |  |
| Plant Construction Time                                | months  | 22                                |  |
| Total Lead Time Before Commercial Operation Date (COD) | months  | 40                                |  |
| Operating Life                                         | years   | 40                                |  |
| EPC Cost Components (Note 1)                           |         |                                   |  |
| Major Owner-Furnished Equipment (Note 2)               | \$      | 158,000,000                       |  |
| Other Equipment (Note 3)                               | \$      | 80,400,000                        |  |
| Construction Labor (Note 4)                            | \$      | 105,400,000                       |  |
| Indirect Costs (Note 5)                                | \$      | 34,380,000                        |  |
| Materials (Note 6)                                     | \$      | 45,296,000                        |  |
| EPC Fee                                                | \$      | 42,348,000                        |  |
| EPC Contingency                                        | \$      | 51,241,000                        |  |
| EPC Subtotal                                           | \$      | 517,065,000                       |  |
| Owner's Cost Components (Note 7)                       |         |                                   |  |
| Owner's Services                                       | \$      | 46,536,000                        |  |
| Land                                                   | \$      | 1,620,000                         |  |
| Electrical Interconnection                             | \$      | 3,040,000                         |  |
| Gas Interconnection                                    | \$      | 5,200,000                         |  |



## Case 6 EIA – Capital Cost Estimates – 2023 \$ USD

|                                    |           | •                                 |
|------------------------------------|-----------|-----------------------------------|
| Configuration                      |           | CC 1x1x1, Single Shaft<br>H Class |
| Combustion Emissions Controls      |           | Dry Low Emissions<br>Combustor    |
| Post-Combustion Emissions Controls |           | SCR Catalyst, CO Catalyst         |
| Fuel Type                          |           | Natural Gas / No. 2 Backup        |
| Post Firing                        |           | No Post Firing                    |
|                                    | Units     |                                   |
| Owner's Contingency                | \$        | 3,948,000                         |
| Owner's Subtotal                   | \$        | 60,344,000                        |
| Total Capital Cost                 | \$        | 577,409,000                       |
|                                    | \$/kW net | 920.9                             |

#### **Capital Cost Notes**

1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. EPC fees are applied to the sum of direct and indirect costs.

2. Major owner-furnished equipment includes CTs, HRSG, SCRs, CO catalysts, and steam turbines.

3. Other equipment includes pumps, tanks, MCCs, condensers, cooling towers, switchgear, transformers, and any other major inside-the-fence process equipment required for the complete facility (excluding the major owner-furnished equipment).

4. Construction labor costs are directly attributed to onsite civil/structural work and erection/installation of the equipment included in the EPC's scope.

5. Indirect costs are attributed to engineering, procurement, project services, construction management, field engineering, start-up, and commissioning services.

6. Materials include all construction materials associated with the EPC scope of work, material freight costs, and consumables during construction.

7. Owner's services include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs.

## **6.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

Operating and maintenance (O&M) costs are indicated in Table 6-2. Fixed O&M costs include staff and administrative costs, supplies, and minor routine maintenance. (Not included are property taxes and insurance.) Fixed costs also include the fixed payment portion of a long-term service agreement for the CT.

Variable O&M costs include consumable commodities, such as water, lubricants, and chemicals and periodic costs to change out the SCR and CO catalysts. The variable O&M costs also include the average annual cost of the planned maintenance events for the CT and the STG over the long-term maintenance cycle. Planned maintenance costs for the CT in a given year are based on the number of equivalent operating hours (EOH) the CT has run. A hot gas path inspection is typically performed for this type of CT every 25,000 EOH, and a major inspection is performed every 66,400 EOH. (CTs generally have two criteria to schedule overhauls: number of equivalent starts and number of EOH. In Case 6, it is assumed the

operating profile results in an EOH-driven maintenance overhaul schedule. Refer to Case 4 for a startsbased overhaul schedule.)

## Table 6-2 — Case 6 O&M Cost

| Case 6<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                                                                                                                                                                                                                                                                                                                                                               |            |                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|--|--|
| Combined-Cycle 1x1x1, Single Shaft                                                                                                                                                                                                                                                                                                                                                                             |            |                  |  |  |
| Fixed O&M – Plant (Note 1)                                                                                                                                                                                                                                                                                                                                                                                     | Units      | Value            |  |  |
| Subtotal Fixed O&M                                                                                                                                                                                                                                                                                                                                                                                             | \$/kW-year | 15.51 \$/kW-year |  |  |
| Variable O&M (Note 2)                                                                                                                                                                                                                                                                                                                                                                                          | \$/MWh     | 3.33 \$/MWh      |  |  |
| O&M Cost Notes                                                                                                                                                                                                                                                                                                                                                                                                 |            |                  |  |  |
| <ol> <li>Fixed O&amp;M costs include labor, materials and contracted services, and general and administrative (G&amp;A) costs.</li> <li>O&amp;M costs exclude property taxes and insurance.</li> <li>Variable O&amp;M costs include water and water discharge treatment cost. These include turbine major maintenance activities which are based on an operating hours-dependent maintenance cycle.</li> </ol> |            |                  |  |  |

## 6.4. ENVIRONMENTAL AND EMISSIONS INFORMATION

For the Case 6 CC configuration, NO<sub>x</sub> emissions from the HRSG stack when firing gas are indicated in Table 6-3. An SCR and a CO catalyst are included in the HRSG to reduce HRSG stack emissions of NO<sub>x</sub> and CO below the emission levels in the CT exhaust gas.

## Table 6-3 — Case 6 Emissions

| Case 6<br>EIA – Emissions Rates         |          |                 |
|-----------------------------------------|----------|-----------------|
| Combined-Cycle 1x1x1, Single Shaft      |          |                 |
| Predicted Emissions Rates (Note 1)      | Units    | Value           |
| NOx                                     | lb/MMBtu | 0.0075 (Note 1) |
| SO <sub>2</sub>                         | lb/MMBtu | 0.00            |
| CO <sub>2</sub>                         | lb/MMBtu | 117             |
| Emissions Control Notes                 |          |                 |
| 1. Natural gas, SCR, no water injection |          |                 |



# CASE 7. COMBINED-CYCLE PLANT, H CLASS, SINGLE SHAFT, WITH 95% CARBON CAPTURE, 543 MW NET

## 7.1. CASE DESCRIPTION

This case includes one block of a combined-cycle (CC) power generation unit in a 1x1x1 single-shaft configuration. The plant includes one industrial frame Model HL derived from H-Class combustion-turbine (CT) technology, one steam turbine generator (STG), and one electric generator that is common to the CT and the STG. Case 7 is based on natural gas firing of the CT, although dual-fuel capability is provided. Main plant cooling is accomplished with a wet cooling tower system. Output power voltage is stepped up for transmission to the external grid through an onsite switchyard.

In addition, a system is included to remove and capture 95% of the CO<sub>2</sub> in the CT exhaust gas.

Refer to Case 6 for a description the power generation systems since Case 7 is the same in this regard.

### 7.1.1. Mechanical Equipment and Systems

This technology case adds a 95% CO<sub>2</sub> capture system to an industrial frame Siemens Energy Model SGT6-9000HL dual-fuel CTs in a 1x1x1 single-shaft CC configuration. The nominal output of the CC plant unit without carbon capture is 627 MW gross. The major power cycle equipment and configurations are described in Case 6. The CO<sub>2</sub> capture systems are commonly referred to as carbon capture and sequestration (CCS) systems; however, for cost estimates provided in this report, no sequestration costs have been included. For this case, the CO<sub>2</sub> captured is assumed to be compressed to supercritical conditions and injected into a pipeline that terminates at the facility's fence line. For this report, the terms "CO<sub>2</sub> capture" and "carbon capture" are used interchangeably.

As with the technology of Case 6, the base configuration used for the cost estimate is a single CC unit power generation plant station constructed on a greenfield site of approximately 30 acres. Case 7 CC unit power generation plant station constructed with a 95% CC system on a greenfield site increase to approximately 60 acres or required land. A wet mechanical draft cooling tower is used for plant cycle cooling and the makeup water used for cycle cooling and steam cycle makeup is provided by an adjacent fresh water source, reservoir, or river.

Sargent & Lundy 45

## 7.1.2. 95% CO<sub>2</sub> Capture

For Case 7, to obtain 95% CO<sub>2</sub> removal from the flue gas generated from the CT, the full flue gas path must be treated. The flue gas generated from natural gas-fired CT combustion results in a much lower CO<sub>2</sub> concentration in the flue gas than flue gas from a coal-fired facility. As such, the flue gas absorber and quencher would be much larger in scale on a per ton of CO<sub>2</sub> treated basis than with a coal facility. The stripper and compression system, however, would scale directly with the mass rate of CO<sub>2</sub> captured.

In this scenario, it is not practical to increase the CT size or STG size to account for the steam extraction and added auxiliary power required by the CO<sub>2</sub> capture system. The net power output in the CO<sub>2</sub> capture case is significantly less than Case 6.

The flue gas path differs from the base case (Case 6) in that 100% of the gas is directed to the carbon capture system located downstream of the preheater section of the heat recovery steam generator (HRSG). The selective catalytic reduction (SCR) and CO catalysts would operate the same and the flue gas mass flows would be the same. Rather than exiting a stack, the flue gases would be ducted to a set of booster fans that would feed the CO<sub>2</sub> absorber column. The total gross power generated from the CT is approximately the same as Case 6 with no carbon capture.

Steam for the CO<sub>2</sub> stripper is to be extracted from the intermediate-pressure turbine to low-pressure turbine crossover line; however, the steam must be attemporated to meet the requirements of the carbon capture system. The total process steam flow required for the carbon capture system is approximately 571,514 pounds per hour. As a result of the steam extraction, the gross STG generation outlet decreases from approximately 192 MW to 151 MW.

The total auxiliary power required by the plant is approximately 61 MW, of which approximately 44 MW is used by the carbon capture system. The net output decreases from the base case (Case 6) from 627 MW to 543 MW. The net plant heat rate for the 95% carbon capture case is 7,239 Btu/kWh, higher heating value (HHV) basis (compared to 6,226 Btu/kWh, HHV basis, for Case 6).

## 7.1.3. Electrical and Control Systems

The electrical and controls systems for this case are similar in scope to Case 6's electrical system; however, the auxiliary power system supplies a much larger amount of medium voltage load for the 95% carbon capture case.

The CC facility and the CO<sub>2</sub> capture plant are controlled by a central distributed control system (DCS), which is linked to a CT control system provided by the CT manufacturer. It includes controls for the steam



cycle systems and equipment as well as the balance-of-plant (BOP) systems and equipment (for example, water systems, fuel systems, main cooling systems).

## 7.1.4. Offsite Requirements

Offsite provisions in Case 7 include the following:

- Fuel Gas Supply: A half-mile-long pipeline and a dedicated metering station.
- High-Voltage Transmission Line: A is a one-mile-long transmission line.
- Water Supply for Cooling Tower, Evaporative Coolers, Makeup to Steam Cycle, and Miscellaneous Uses: It is assumed that the water supply source is near the power plant site and the interconnection for water is at the plant's site boundary. The volume of water needed for this 95% carbon capture case is significantly higher than for the base CC case (Case 6). Blowdown waste from the cooling tower and other areas of the plant is sent to an approved discharge location after appropriate treatment of the wastewater, and the wastewater interconnection is assumed to be located at the power plant's site boundary.

## **7.2. CAPITAL COST ESTIMATES**

Table 7-1 summarizes the cost components for this case. The capital cost estimate is based on an engineering, procurement, and construction (EPC) contracting approach.

In addition to EPC contract costs, the capital cost estimate in Table 7-1 covers owner's costs. Owner's costs include owner's services which include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs, and land acquisition costs. The estimate is presented as an overnight cost in 2023 dollars and thus excludes allowance for funds used during construction or interest during construction. In addition to the cost of external systems noted above (for example, fuel gas supply and transmission line), an estimated amount is included for the cost of land.



| Table 7-1 — Case 7 Capital Cost Estimate | Table 7-1 – | - Case 7 | Capital | Cost Estimate |
|------------------------------------------|-------------|----------|---------|---------------|
|------------------------------------------|-------------|----------|---------|---------------|

| Case 7<br>EIA – Capital Cost Estimates – 2023 \$ USD   |                                   |                                                    |  |
|--------------------------------------------------------|-----------------------------------|----------------------------------------------------|--|
| Configuration                                          |                                   | CC 1x1x1, Single Shaft,<br>with 95% Carbon Capture |  |
| Combustion Emissions Controls                          |                                   | H-Class<br>Dry Low Emissions<br>Combustor          |  |
| Post-Combustion Emissions Controls                     |                                   | SCR Catalyst, CO Catalyst                          |  |
| Fuel Type                                              |                                   | Natural gas / No. 2 Backup                         |  |
| Post Firing                                            |                                   | No Post Firing                                     |  |
|                                                        | Units                             |                                                    |  |
| Plant Characteristics                                  |                                   |                                                    |  |
| Net Plant Capacity (60°F, 60% RH)                      | MW                                | 543                                                |  |
| Heat Rate, HHV Basis                                   | Btu/kWh                           | 7239                                               |  |
| Capital Cost Assumptions                               |                                   |                                                    |  |
| EPC Contracting Fee                                    | % of Direct and<br>Indirect Costs | 10%                                                |  |
| EPC Contingency                                        | % of EPC Costs                    | 12%                                                |  |
| Owner's Services                                       | % of Project Costs                | 9%                                                 |  |
| Owner's Contingency                                    | % of Owner's<br>Costs             | 7%                                                 |  |
| Estimated Land Requirement                             | acres                             | 60                                                 |  |
| Estimated Land Cost                                    | \$/acre                           | 44,000                                             |  |
| Interconnection Costs                                  |                                   |                                                    |  |
| Electrical Transmission Interconnection Costs          |                                   |                                                    |  |
| Transmission Line Cost                                 | \$/mile                           | 3,040,000                                          |  |
| Miles                                                  | miles                             | 1.00                                               |  |
| Substation Expansion                                   | \$                                | 0                                                  |  |
| Gas Interconnection Costs                              |                                   |                                                    |  |
| Pipeline Cost                                          | \$/mile                           | 4,800,000                                          |  |
| Miles                                                  | miles                             | 0.50                                               |  |
| Metering Station                                       | \$                                | 2,800,000                                          |  |
| Typical Project Timelines                              |                                   |                                                    |  |
| Development, Permitting, Engineering                   | months                            | 24                                                 |  |
| Plant Construction Time                                | months                            | 30                                                 |  |
| Total Lead Time Before Commercial Operation Date (COD) | months                            | 54                                                 |  |
| Operating Life                                         | years                             | 40                                                 |  |
| EPC Cost Components (Note 1)                           |                                   |                                                    |  |
| CC: Major Owner-Furnished Equipment (Note 2)           | \$                                | 158,000,000                                        |  |
| CC: Other Equipment (Note 3)                           | \$                                | 80,400,000                                         |  |



| Case 7<br>EIA – Capital Cost Estimates – 2023 \$ USD |           |                                                               |  |
|------------------------------------------------------|-----------|---------------------------------------------------------------|--|
| Configuration                                        |           | CC 1x1x1, Single Shaft,<br>with 95% Carbon Capture<br>H-Class |  |
| Combustion Emissions Controls                        |           | Dry Low Emissions<br>Combustor                                |  |
| Post-Combustion Emissions Controls                   |           | SCR Catalyst, CO Catalyst                                     |  |
| Fuel Type                                            |           | Natural gas / No. 2 Backup                                    |  |
| Post Firing                                          |           | No Post Firing                                                |  |
|                                                      | Units     | , i i i i i i i i i i i i i i i i i i i                       |  |
| CC: Construction Labor (Note 4)                      | \$        | 105,400,000                                                   |  |
| CC: Indirect Costs (Note 5)                          | \$        | 34,380,000                                                    |  |
| CC: Materials (Note 6)                               | \$        | 45,296,000                                                    |  |
| Carbon Capture: Equipment and Materials              | \$        | 251,424,000                                                   |  |
| Carbon Capture: System Labor                         | \$        | 267,469,000                                                   |  |
| EPC Fee                                              | \$        | 94,237,000                                                    |  |
| EPC Contingency                                      | \$        | 124,393,000                                                   |  |
| EPC Subtotal                                         | \$        | 1,160,999,000                                                 |  |
| Owner's Cost Components (Note 7)                     |           |                                                               |  |
| Owner's Services                                     | \$        | 104,490,000                                                   |  |
| Land                                                 | \$        | 2,640,000                                                     |  |
| Electrical Interconnection                           | \$        | 3,040,000                                                     |  |
| Gas Interconnection                                  | \$        | 5,200,000                                                     |  |
| Owner's Contingency                                  | \$        | 8,076,000                                                     |  |
| Owner's Subtotal                                     | \$        | 123,446,000                                                   |  |
| Total Capital Cost                                   | \$        | 1,284,445,000                                                 |  |
|                                                      | \$/kW net | 2,365                                                         |  |

#### **Capital Cost Notes**

1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. EPC fees are applied to the sum of direct and indirect costs.

2. CC: major owner-furnished equipment for the CC Unit includes CT, HRSG, SCRs, CO catalyst, and steam turbine.

3. CC: other equipment includes pumps, tanks, MCCs, condensers, cooling towers, switchgear, transformers, and any other major inside-the-fence process equipment required for the complete facility (excluding the major owner furnished equipment).

4. CC: construction labor costs are directly attributed to onsite civil/structural work and erection/installation of the equipment included in the EPC's scope.

5. CC: indirect costs are attributed to engineering, procurement, project services, construction management, field engineering, start-up, and commissioning services.

6. CC: materials include all construction materials associated with the EPC scope of work, material freight costs, and consumables during construction.



50

Sargent & Lundy

## Case 7 EIA – Capital Cost Estimates – 2023 \$ USD

| Configuration                      | CC 1x1x1, Single Shaft,<br>with 95% Carbon Capture |
|------------------------------------|----------------------------------------------------|
|                                    | H-Class                                            |
| Combustion Emissions Controls      | Dry Low Emissions<br>Combustor                     |
| Post-Combustion Emissions Controls | SCR Catalyst, CO Catalyst                          |
| Fuel Type                          | Natural gas / No. 2 Backup                         |
| Post Firing                        | No Post Firing                                     |
| Units                              |                                                    |

7. Owner's services include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs (if applicable), and land acquisition costs.

## 7.3. OPERATIONS AND MAINTENANCE COST ESTIMATE

Operation and maintenance costs are indicated in Table 7-2. Fixed operating and maintenance (O&M) costs include staff and administrative costs, supplies, and minor routine maintenance. (Not included are property taxes and insurance.) Fixed costs also include the fixed payment portion of a long-term service agreement for the CT and carbon capture system equipment.

Variable O&M costs include consumable commodities such as water, lubricants, chemicals, solvent makeup, and periodic costs to change out the SCR and CO catalysts. The variable O&M costs also include the average annual cost of the planned maintenance events for the CT and the STG over the long-term maintenance cycle. Planned maintenance costs for the CT in a given year are based on the number of equivalent operating hours (EOH) the CT has run. A hot gas path inspection is typically performed for this type of CT every 25,000 EOH, and a major inspection is performed every 66,400 EOH. (CTs generally have two criteria to schedule overhauls: number of equivalent starts and number of EOH. In Case 7, it is assumed the operating profile results in an EOH-driven maintenance overhaul schedule. Refer to Case 4 for a start-based overhaul schedule.) Planned major outage work on the STG is scheduled less frequently than the CT; it is typically planned for every six to eight years.

For the CO<sub>2</sub> capture system, variable costs include solvent makeup and disposal costs (usually offsite disposal; the spent solvent may be considered hazardous waste), additional wastewater treatment costs (predominantly CT blowdown treatment), and additional demineralized makeup water costs.

## Table 7-2 — Case 7 O&M Cost Estimates

| Case 7                                           |                                    |                                 |  |
|--------------------------------------------------|------------------------------------|---------------------------------|--|
| EIA – O&M Costs – 2023 \$ USD                    |                                    |                                 |  |
| CC 1x1x1, Single Shaft, with 95% Carbon Capture  |                                    |                                 |  |
| Fixed O&M – Plant (Note 1) Units Value           |                                    |                                 |  |
| Subtotal Fixed O&M                               | \$/kW-year                         | 24.78 \$/kW-year                |  |
| Variable O&M (Note 2)                            | \$/MWh                             | 5.05 \$/MWh                     |  |
| O&M Cost Notes                                   |                                    |                                 |  |
| 1. Fixed O&M costs include labor, materials, and | d contracted services, and general | and administrative (G&A) costs. |  |

O&M costs exclude property taxes and insurance.

2. Variable O&M costs include water and water discharge treatment cost. These include turbine major

maintenance activities which are based on an operating hours-dependent maintenance cycle.

## 7.4. ENVIRONMENTAL AND EMISSIONS INFORMATION

For the Case 7 CC configuration with 95% carbon capture, NO<sub>X</sub> emissions from the plant when firing gas are indicated in Table 7-3. An SCR and a CO catalyst are included in the HRSG to further reduce plant emissions of NO<sub>X</sub> and CO below the emissions levels in the CT exhaust gas. The CO<sub>2</sub> in the CT exhaust gas is reduced by 95% for Case 7.

| Table 7 | 7-3 — | Case 7 | Emissions |
|---------|-------|--------|-----------|
|---------|-------|--------|-----------|

| Case 7<br>EIA – Emissions Rates                 |          |                 |
|-------------------------------------------------|----------|-----------------|
| CC 1x1x1, Single Shaft, with 95% Carbon Capture |          |                 |
| Predicted Emissions Rates (Note 1)              | Units    | Value           |
| NOx                                             | lb/MMBtu | 0.0075 (Note 1) |
| SO <sub>2</sub>                                 | lb/MMBtu | 0.00            |
| CO <sub>2</sub>                                 | lb/MMBtu | 6               |
| Emissions Control Notes                         |          |                 |
| 1. Natural gas, SCR, CCS, no water injection    |          |                 |



# CASE 8. WOODY BIOMASS PLANT, WITH 95% CARBON CAPTURE, 50 MWNET

## **8.1. CASE DESCRIPTION**

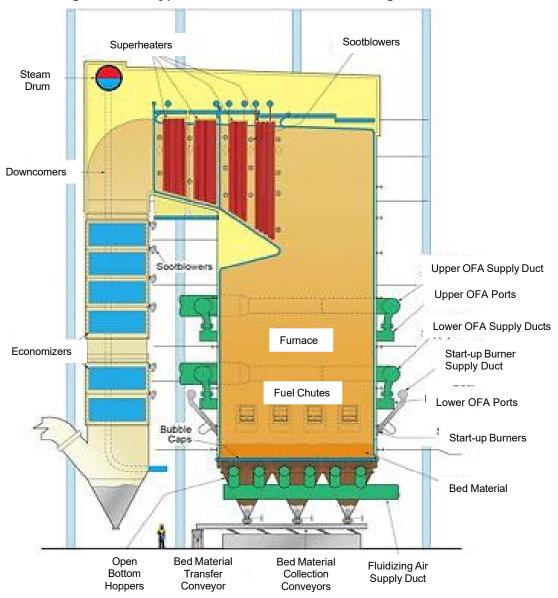
This case comprises a greenfield biomass-fired power generation facility with a net capacity of 50 MW with a single steam generator and condensing steam turbine with biomass storage and handling systems, balance-of-plant (BOP) systems, in-furnace and post-combustion emissions control systems, and a 95% CO<sub>2</sub> capture system. The CO<sub>2</sub> capture systems are commonly referred to as carbon capture and sequestration (CCS) systems; however, for the cost estimates provided in this report, no sequestration costs have been included. For this case, the CO<sub>2</sub> captured is assumed to be compressed to supercritical conditions and injected into a pipeline terminated at the fence line of the facility. For this report, the terms "CO<sub>2</sub> capture" and "carbon capture" are used interchangeably.

The facility is designed to receive, store, and burn wood chips with moisture content between 20% and 50%. The technology used is a bubbling fluidized bed (BFB) boiler with bed material consisting of sand, crushed limestone, or ash. The facility does not include equipment to further process or dry the fuel prior to combustion. The fuel storage area is assumed to be uncovered. The facility does not have a connection to a natural gas supply and is designed to start up on diesel fuel only. The emission controls are used to limit NO<sub>x</sub> and particulate matter, while SO<sub>2</sub> emissions are not controlled.

#### 8.1.1. Mechanical Equipment and Systems

The core technology for this case is a BFB boiler designed to combust wood chips. The boiler is a natural circulation balanced-draft, non-reheat cycle. For this size range, the boiler is assumed to be a top-supported design arranged in a similar manner as shown in Figure 8-1. The BFB furnace consists of horizontally arranged air distribution nozzles in the lower portion of the furnace that introduces air or recirculated flue gas to a bed of sand, ash, or other non-combustible material such as crushed limestone. The balanced-draft boiler consists of water-wall tubes that are refractory lined in the bed area. Air flow is forced upward through the bed material at velocities just beyond the point of fluidization where voids or bubbles start to form within the bed. The bed material is maintained typically at a range of temperatures between 1400°F to 1600°F, depending on the moisture content of the fuel. Diesel oil-fired start-up burners are used to heat the bed material prior to the introduction of fuel. The biomass fuel is fed through chutes located in the lower furnace. Depending on the moisture content of the fuel, flue gases can be mixed with the fluidized air to control the bed heat release rate to levels that prevent the formation of agglomerated ash. Overfire air (OFA) is used to complete combustion of the fuel and to control the emissions of NOx.

The steam cycle includes a condensing steam turbine and turbine auxiliaries, condensate pumps, lowpressure and high-pressure feedwater heaters, boiler feed pumps, economizers, furnace water walls, steam drum, and primary and secondary superheaters. Boiler feed pumps and condensate pumps are provided in a 2x100% sizing basis. The steam conditions at the turbine are assumed to be 1500 psig at 950°F. Cycle cooling is provided by a mechanical draft cooling tower.


The air and flue gas systems include primary and secondary air fans, flue gas recirculation fans, a single tubular air heater, induced draft fans and the associated duct work, and dampers. The fans are assumed to be provided on a 2x50% basis. A material handling is provided to convey the wood chips to the fuel surge bins that direct the fuel to multiple feeders. The BOP equipment includes sootblowers, a water treatment system and demineralized water storage tanks, a fire protection and detection system, a diesel oil storage and transfer system, a compressed air system, an aqueous ammonia storage system and feed pumps, an ash handling and storage system, and a continuous emissions monitoring system.

NO<sub>x</sub> emissions are controlled in-furnace using OFA and with a high dust selective catalytic reduction (SCR) system, SO<sub>2</sub> emissions from wood firing are inherently low and therefore are uncontrolled. Particulate matter is controlled using a pulse jet fabric filter baghouse.



54

Sargent & Lundy





Babcock & Wilcox Top-Supported BFB Boiler

Source: Babcock & Wilcox, *BFB-boiler-top-supported*, ND. Digital Image. Reprinted with permission from Babcock & Wilcox. Retrieved from Babcock.com, <u>https://www.babcock.com/products/bubbling-fluidized-bed-boilers</u>

The plant performance estimates for woodchip fired BFB boilers are highly dependent on fuel moisture. Generally, BFB boiler efficiencies range from 75% to 80%. The estimated net heat rate firing wood chips is 19,965 Btu/kWh for this system based on the higher heating value (HHV) of the fuel.

## 8.1.2. 95% CO<sub>2</sub> Capture

For Case 8, to obtain 95%  $CO_2$  removal from the flue gas generated from the biomass plant, the full flue gas path must be treated. The flue gas generated from biomass combustion results in a similar  $CO_2$  concentration in the flue gas as compared to the flue gas from a coal-fired facility. As such, the  $CO_2$  capture system would scale directly with the mass rate of  $CO_2$  captured.

In this scenario, it is not practical to increase the biomass plant size to account for the steam extraction and added auxiliary power required by the CO<sub>2</sub> capture system.

100% of the gas is directed to the  $CO_2$  capture system located downstream of the pulse jet fabric filter baghouse. Rather than exiting a stack, the flue gases would be ducted to a set of booster fans that would feed the  $CO_2$  absorber column.

Steam for the CO<sub>2</sub> stripper is to be extracted from the intermediate-pressure turbine to low-pressure turbine crossover line; however, the steam must be attemperated to meet the requirements of the CO<sub>2</sub> capture system. The total process steam flow required for the carbon capture system is approximately 77 pounds per hour.

The total auxiliary power required by the plant is approximately 15.5 MW, of which 9 MW is used by the CO<sub>2</sub> capture system. This reduces the plant's 65.5 MW (gross) steam turbine generator to 50 MW of net output. The net plant heat rate for the 95% carbon capture case is 19,965 Btu/kWh, HHV basis.

## 8.1.3. Electrical and Control Systems

The electrical system for this case includes the turbine generator which is connected via generator circuit breakers to a generator step-up transformer (GSU). The GSU increases the voltage from the generator voltages level to the transmission system high-voltage level. The facility and most of the sub-systems are controlled using a central distributed control system (DCS). Some systems are controlled using programmable logic controllers, and these systems include the sootblower system, the fuel handling system, and the ash handling system.

## **8.1.4. Offsite Requirements**

The facility is constructed on a greenfield site of approximately 100 acres. Wood chips are delivered to the facility by truck and rail. The maximum daily rate for wood chips for the facility is approximately 1750 tons per day.



Water for steam cycle makeup and cooling tower makeup is assumed to be sourced from onsite wells. Wastewater generated from the water treatment systems and the cooling tower blow down is sent to the adjacent waterway from one or more outfalls from a water treatment pond or wastewater treatment system.

The electrical interconnection costs are based on a one-mile distance from the facility switchyard to the terminal point on an existing utility substation. For the purposes of this estimate, the cost associated with the expansion of the substation is excluded.

## 8.2. CAPITAL COST ESTIMATE

Table 8-1 below summarizes the cost components for this case. The basis of the estimate assumes that the site is constructed in a United States region that has good access to lower cost construction labor and has reasonable access to either well water or water resources, locally sourced wood chips, and existing utility transmission substations or existing transmission lines. The geographic location is assumed to be characterized by seismic, wind, and other loading criteria that do not add significantly to the capital costs. An outdoor installation is assumed, meaning that the boiler building is not enclosed. No special systems are needed to prevent freezing or to account for snow loads on structures.

| Case 8<br>EIA – Capital Cost Estimates – 2023 \$ USD                |                                                     |         |
|---------------------------------------------------------------------|-----------------------------------------------------|---------|
| Configuration                                                       | 50 MW Biomas<br>Bubbling Fluidi<br>95% Carbon Captu | zed Bed |
| Combustion Emissions Controls                                       | OFA                                                 |         |
| Post-Combustion Emissions Controls                                  | SCR / Baghouse / Amir                               |         |
| Fuel Type                                                           | Woodchip                                            | OS      |
|                                                                     | Units                                               |         |
| Plant Characteristics                                               |                                                     |         |
| Net Plant Capacity (60°F, 60% RH)                                   | MW                                                  | 50      |
| Heat Rate, HHV Basis                                                | Btu/kWh                                             | 19,965  |
| Capital Cost Assumptions                                            |                                                     |         |
| Engineering, Procurement, and Construction (EPC)<br>Contracting Fee | % of Direct and Indirect<br>Costs                   | 10%     |
| EPC Contingency                                                     | % of EPC Costs                                      | 12%     |
| Owner's Services                                                    | % of EPC Costs                                      | 7%      |
| Owner's Contingency                                                 | % of Owner's Costs                                  | 12%     |
| Estimated Land Requirement                                          | acres                                               | 100     |
| Estimated Land Cost                                                 | \$/acre                                             | 37,000  |
| Interconnection Costs                                               |                                                     |         |
| Electrical Transmission Interconnection Costs                       |                                                     |         |

## Table 8-1 — Case 8 Capital Cost Estimate



| Case 8<br>EIA – Capital Cost Estimates – 2023 \$ USD     |                                                                                   |                 |
|----------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|
| Configuration                                            | 50 MW Biomass Plant<br>Bubbling Fluidized Bed<br>95% Carbon Capture System<br>OFA |                 |
| Combustion Emissions Controls                            |                                                                                   |                 |
| Post-Combustion Emissions Controls                       |                                                                                   | Amine-Based CCS |
| Fuel Type                                                |                                                                                   | dchips          |
|                                                          | Units                                                                             |                 |
| Transmission Line Cost                                   | \$/mile                                                                           | 2,076,000       |
| Miles                                                    | miles                                                                             | 1.00            |
| Substation Expansion Cost                                | \$                                                                                | 0               |
| Typical Project Timelines                                |                                                                                   |                 |
| Development, Permitting, Engineering                     | months                                                                            | 24              |
| Plant Construction Time                                  | months                                                                            | 40              |
| Total Lead Time Before Commercial Operation Date (COD)   | months                                                                            | 64              |
| Operating Life                                           | years                                                                             | 40              |
| EPC Cost Components (Note 1)                             |                                                                                   |                 |
| Civil/Structural/Architectural - Equipment and Materials | \$                                                                                | 19,621,000      |
| Boiler Plant - Equipment and Materials                   | \$                                                                                | 44,217,000      |
| Turbine Plant - Equipment and Materials                  | \$                                                                                | 10,330,000      |
| Main and Aux Power System - Equipment and<br>Materials   | \$                                                                                | 3,801,000       |
| Balance of Plant and I&C - Equipment and Materials       | \$                                                                                | 4,326,000       |
| Substation and Switchyard Costs                          | \$                                                                                | 29,405,000      |
| Carbon Capture System Plant – Equipment and<br>Materials | \$                                                                                | 134,825,000     |
| Construction Labor Costs                                 | \$                                                                                | 181,190,000     |
| Indirect Costs                                           | \$                                                                                | 42,772,000      |
| EPC Fee                                                  | \$                                                                                | 47,049,000      |
| EPC Contingency                                          | \$                                                                                | 62,104,000      |
| EPC Subtotal                                             | \$                                                                                | 579,640,000     |
| Owner's Cost Components (Note 2)                         |                                                                                   |                 |
| Owner's Services                                         | \$                                                                                | 40,575,000      |
| Land                                                     | \$                                                                                | 3,700,000       |
| Electrical Interconnection                               | \$                                                                                | 2,076,000       |
| Gas Interconnection                                      | \$                                                                                | 0               |
| Owner's Contingency                                      | \$                                                                                | 5,562,000       |
| Owner's Cost Subtotal                                    | \$                                                                                | 51,913,000      |
| Total Capital Cost                                       | \$                                                                                | 631,553,000     |
|                                                          | \$/kW net                                                                         | 12,631          |
| Capital Cost Notes                                       |                                                                                   |                 |



| Case 8<br>EIA – Capital Cost Estimates – 2023 \$ USD                                                                                                                                                                                                                                                                                           |                                                                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Configuration                                                                                                                                                                                                                                                                                                                                  | 50 MW Biomass Plant<br>Bubbling Fluidized Bed<br>95% Carbon Capture System |  |
| Combustion Emissions Controls                                                                                                                                                                                                                                                                                                                  | OFA                                                                        |  |
| Post-Combustion Emissions Controls                                                                                                                                                                                                                                                                                                             | SCR / Baghouse / Amine-Based CCS                                           |  |
| Fuel Type                                                                                                                                                                                                                                                                                                                                      | Woodchips                                                                  |  |
| Units                                                                                                                                                                                                                                                                                                                                          |                                                                            |  |
| 1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include engineering, construction management, start-up, and commissioning. EPC fees are applied to the sum of direct and indirect |                                                                            |  |

costs. 2. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, and land acquisition costs.

### 8.3. OPERATIONS AND MAINTENANCE COST ESTIMATE

The operating and maintenance (O&M) costs for the 50 MW biomass wood-fired generation facility are summarized in Table 8-2. The fixed costs cover the O&M labor, contracted maintenance services and materials, and general and administrative (G&A). Major overhauls for the facility are generally based on a three-year basis for boiler equipment and firing equipment and a six-year basis for the steam turbine. Shorter outages (for example, change out SCR catalyst) are generally performed on a two-year cycle.

Non-fuel variable costs for this case include SCR catalyst replacement costs, SCR reagent costs, water treatment costs, wastewater treatment costs, fly ash and bottom ash disposal costs, bag replacement for the fabric filters, bed material makeup, and water and solvent costs for the CO<sub>2</sub> capture system.



| Case 8<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                               |                                |                        |
|--------------------------------------------------------------------------------|--------------------------------|------------------------|
| 50 MW BFB Biomass Plan                                                         | t with 95% Carbon Capture      |                        |
| Fixed O&M – Plant (Note 1)                                                     | Units                          | Value                  |
| Labor                                                                          | \$/year                        | 7,957,000              |
| Materials and Contract Services                                                | \$/year                        | 3,266,000              |
| Administrative and General                                                     | \$/year                        | 1,836,000              |
|                                                                                | \$/year                        | 13,059,000             |
| Subtotal Fixed O&M                                                             | \$/kW-year                     | 261.18 \$/kW-year      |
| Variable O&M (Note 2)                                                          | \$/MWh                         | 9.65 \$/MWh            |
| O&M Cost Notes                                                                 |                                |                        |
| 1. Fixed O&M costs include labor, materials and contracte taxes and insurance. | d services, and G&A costs. O&M | costs exclude property |

Table 8-2 — Case 8 Operational Cost Estimate

2. Variable O&M costs include catalyst replacement, ammonia, water, ash disposal, solvent and water costs for the CCS, and water discharge treatment cost.

## 8.4. ENVIRONMENTAL AND EMISSIONS INFORMATION

The emissions for the major criteria pollutants are summarized below in Table 8-3. The NO<sub>x</sub> emissions assume that the in-furnace controls such as low NOx burners (LNBs), OFA, and SCR systems are employed to control emissions to 0.08 lb/MMBtu. The SO<sub>2</sub> emissions from wood fired combustion are assumed to be negligible and are uncontrolled. The CO<sub>2</sub> emissions estimate is based on a 95% reduction in base emissions, through the implementation of the CO<sub>2</sub> capture system. The base CO<sub>2</sub> emission rate is derived from 40 CFR, Subpart C, Table C-1; as 206 lb/MMBtu; therefore, giving a net CO<sub>2</sub> emission rate of 10.3 lb/MMBtu.



|                                                       | se 8<br>sions Rates        |                |
|-------------------------------------------------------|----------------------------|----------------|
| 50 MW, BFB Biomass Pla                                | nt with 95% Carbon Capture |                |
| Predicted Emissions Rates (Note 1)                    | Units                      | Value          |
| NOx                                                   | lb/MMBtu                   | 0.08 (Note 2)  |
| SO <sub>2</sub>                                       | lb/MMBtu                   | <0.03 (Note 3) |
| PM                                                    | lb/MMBtu                   | 0.03 (Note 4)  |
| CO <sub>2</sub>                                       | lb/MMBtu                   | 10.3 (Note 5)  |
| Emissions Control Notes                               |                            |                |
| 1. Wood fuel – 20% to 50% fuel moisture               |                            |                |
| 2. NOx removal using OFA, and SCR                     |                            |                |
| 3. SO <sub>2</sub> is assumed negligible in wood fuel |                            |                |
| 4. Controlled using pulse jet fabric filter           |                            |                |
| 5. Per 40 CFR 98, Subpart. C, Table C-1               |                            |                |

## Table 8-3 — Case 8 Emission Rates



# CASE 9. ADVANCED NUCLEAR PLANT (BROWNFIELD), 2 X AP1000 UNITS, 2156 MW NET

## 9.1. CASE DESCRIPTION

The case is based on the AP1000 ("AP" stands for "Advanced Passive"), which is an improvement of AP600. The AP1000 is a pressurized water reactor nuclear plant designed by Westinghouse. The first AP1000 unit came online in China's Sanmen Nuclear Power Station in June 2018. Two new AP1000 units have been constructed at the Vogtle Electric Generating Station in Burke County Georgia. Vogtle Unit 3 began commercial operation in July of 2023, and Vogtle Unit 4 began the process to load fuel into the reactor core in August of 2023. These represent the only newly constructed nuclear units in the United States in more than three decades. We assume the plant for this case is constructed on a brownfield site as it is likely for current U.S. operators to take advantage of their existing nuclear plant sites as in the case of Vogtle Units 3 and 4. This assumption considers several efficiencies in zoning, permitting, and regulatory activities, which would otherwise add to the cost and extend the development schedule if a new greenfield nuclear facility were being considered.

## 9.1.1. Mechanical Equipment and Systems

The AP1000 improves on previous nuclear designs by simplifying the design to decrease the number of components including piping, wiring, and valves. The AP1000 design is also standardized as much as possible to reduce engineering and procurement costs. The AP1000 component reductions from previous designs are approximately:

- 50% fewer valves
- 35% fewer pumps
- 80% less pipe
- 45% less seismic building volume
- 85% less cable

The AP1000 design uses an improved passive nuclear safety system that requires no operator intervention or external power to remove heat for up to 72 hours.

The AP1000 uses a traditional steam cycle similar to other generating facilities such as coal or combinedcycle (CC) units. The primary difference is that the AP1000 uses enriched uranium as fuel instead of coal or gas as the heat source to generate steam. The fission reaction of enriched uranium releases large amounts of energy in the form of heat and radiation inside the pressurized water reactor. The AP1000 uses a two-loop system in which the heat generated by the fuel is released into the surrounding pressurized reactor cooling water. The pressurization allows the cooling water to absorb the released heat without boiling. The reactor cooling water then flows through a steam generator where it rejects heat into the secondary loop, producing steam that turns a steam turbine for electrical generation.

## 9.1.2. Electrical and Control Systems

The advanced nuclear facility has one steam turbine electric generator for each reactor. Each generator is a 60-Hz machine rated at approximately 1,250 MVA with an output voltage of 24 kV. The steam turbine electric generator is connected through a generator circuit breaker to a generator step-up transformer (GSU). The GSU is connected between two circuit breakers in the high-voltage bus in the facility switchyard through a disconnect switch. The GSU increases the voltage from the electric generator from 24 kV to interconnected transmission system high voltage.

The advanced nuclear facility is controlled using a distributed control system (DCS). The DCS provides centralized control of the facility by integrating the control systems provided with the reactor, steam turbine, and associated electric generator and the control of balance-of-plant (BOP) systems and equipment.

## 9.1.3. Offsite Requirements

Water for the power plant is obtained from a nearby river or lake. The facility uses a water treatment system to produce the high-quality process water required as well as service water and potable water. The electrical interconnection from the power plant onsite switchyard is connected to the transmission line through a nearby substation.

## 9.2. CAPITAL COST ESTIMATE

Table 9-1 summarizes the cost components for this case. The overnight capital cost estimate was compared to actual construction costs documented for various reactor types in multiple countries found in Table 8.2 of the IEA 2020 Projected Costs of Generating Electricity Report. The capital cost breakdown for the various reactor types was not provided in the report, nor were the construction completion dates, but construction of all reference projects commenced ten or more years ago. Therefore, these values (escalated to 2023 \$ USD), their mean and collective standard deviation were used as benchmarks to validate the capital cost estimate we determined.



| Case 9<br>EIA – Capital Cost Estimates – 2023 \$ USD                |                                   |                                                |
|---------------------------------------------------------------------|-----------------------------------|------------------------------------------------|
| Configuration                                                       |                                   | Advanced Nuclear<br>(Brownfield)<br>2 x AP1000 |
|                                                                     | Units                             |                                                |
| Plant Characteristics                                               |                                   |                                                |
| Net Plant Capacity (60°F, 60% RH)                                   | MW                                | 2156                                           |
| Net Plant Heat Rate                                                 | Btu/kWh                           | 10608                                          |
| Capital Cost Assumptions                                            |                                   |                                                |
| Engineering, Procurement, and Construction (EPC)<br>Contracting Fee | % of Direct and Indirect<br>Costs | 10%                                            |
| EPC Contingency                                                     | % of EPC Costs                    | 12%                                            |
| Owner's Services                                                    | % of EPC Costs                    | 20%                                            |
| Owner's Contingency                                                 | % of Owner's Costs                | 12%                                            |
| Estimated Land Requirement                                          | acres                             | 60                                             |
| Estimated Land Cost                                                 | \$/acre                           | 44,000                                         |
| Interconnection Costs                                               |                                   |                                                |
| Electrical Transmission Line Costs                                  |                                   |                                                |
| Transmission Line Cost                                              | \$/mile                           | 3,040,000                                      |
| Miles                                                               | miles                             | 1.00                                           |
| Substation Expansion                                                | \$                                | 0                                              |
| Gas Interconnection Costs                                           |                                   |                                                |
| Pipeline Cost                                                       | \$/mile                           | 0                                              |
| Miles                                                               | miles                             | 0.00                                           |
| Metering Station                                                    | \$                                | 0                                              |
| Typical Project Timelines                                           |                                   |                                                |
| Development, Permitting, Engineering                                | months                            | 32                                             |
| Plant Construction Time                                             | months                            | 52                                             |
| Total Lead Time Before Commercial Operation Date (COD)              | months                            | 84                                             |
| Operating Life                                                      | years                             | 40                                             |
| EPC Cost Components (Note 1)                                        |                                   |                                                |
| Civil/Structural/Architectural                                      | \$                                | 2,098,819,000                                  |
| Nuclear Island                                                      | \$                                | 3,086,499,000                                  |
| Conventional Island                                                 | \$                                | 1,728,440,000                                  |
| Balance of Plant                                                    | \$                                | 1,975,360,000                                  |
| Indirect Costs                                                      | \$                                | 2,345,739,000                                  |
| EPC Fee                                                             | \$                                | 1,123,486,000                                  |
| EPC Contingency                                                     | \$                                | 1,483,001,000                                  |
| EPC Subtotal                                                        | \$                                | 13,841,344,000                                 |
| Owner's Cost Components (Note 2)                                    |                                   |                                                |
| Owner's Services                                                    | \$                                | 2,768,269,000                                  |
| Land                                                                | \$                                | 2,640,000                                      |
| Electrical Interconnection                                          | \$                                | 3,040,000                                      |
| Gas Interconnection                                                 | \$                                | 0                                              |
| Owner's Contingency                                                 | \$                                | 332,874,000                                    |
| Owner's Cost Subtotal                                               | \$                                | 3,106,823,000                                  |



| Case 9<br>EIA – Capital Cost Estimates – 2023 \$ USD                                                                                           |           |                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------|
| Configuration                                                                                                                                  |           | Advanced Nuclear<br>(Brownfield)<br>2 x AP1000 |
|                                                                                                                                                | Units     |                                                |
| Total Capital Cost                                                                                                                             | \$        | 16,948,167,000                                 |
|                                                                                                                                                | \$/kW net | 7,861                                          |
| Capital Cost Notes                                                                                                                             |           |                                                |
| 1. Costs based on EPC contracting approach. Direct costs include ec<br>civil/structural, mechanical, and electrical/I&C components of the faci |           |                                                |

civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include distributable material and labor costs, cranes, scaffolding, engineering, construction management, start-up and commissioning, and contractor overhead. EPC fees are applied to the sum of direct and indirect costs.

2. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs (if applicable), and land acquisition costs.

As a consideration for the interconnection costs, the transmission line for the nuclear facility is expected to operate at a high voltage to be capable of exporting the large capacity of baseload power.

## 9.3. OPERATIONS AND MAINTENANCE COST ESTIMATE

The operating and maintenance (O&M) cost estimates for nuclear power were informed by the Nuclear Energy Institute's (NEI) *Nuclear Costs in Context* (NEI 2022) which summarizes operating and maintenance data collected by the EUCG from operating nuclear power generation facilities. The NEI report is the most comprehensive source of cost data that is publicly available for both merchant and regulated nuclear power plants in the United States. Non-fuel reported costs were separated between fixed and variable components and escalated to 2023 dollars using Handy Whitman's Total Nuclear Production Plant index.



## Table 9-2 — Case 9 Operational Cost Estimate

| Case 9<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD<br>Advanced Nuclear (Brownfield) |                                              |                           |
|-----------------------------------------------------------------------------------|----------------------------------------------|---------------------------|
|                                                                                   |                                              |                           |
| Subtotal Fixed O&M                                                                | \$/kW-year                                   | 156.20 \$/kW-year         |
| Variable O&M (Note 2)                                                             | \$/MWh                                       | 2.52 \$/MWh               |
| O&M Cost Notes                                                                    |                                              |                           |
| 1. Fixed O&M costs include labor, materials and contrinsurance.                   | racted services, and G&A costs. O&M costs ex | xclude property taxes and |
| 2. Variable O&M costs include water, water discharge                              | treatment cost, chemicals, and consumables.  | Fuel is not included.     |

## 9.4. ENVIRONMENTAL AND EMISSIONS INFORMATION

Nuclear power plants do not produce regulated environmental air emissions. While other environmental compliance requirements may apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>x</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu.



66

Sargent & Lundy

# CASE 10. SMALL MODULAR REACTOR NUCLEAR POWER PLANT, 6 X 80 MW UNITS, 480 MW NET

## **10.1. CASE DESCRIPTION**

Small modular reactors (SMRs) are a class of advanced nuclear reactors that are typically sized to deliver 300 MW(e) or less per unit. Besides this distinction in size which is about one third the capacity of traditional nuclear power stations, SMRs are designed with modular building blocks which allow key systems and components to be factory-assembled and shipped to site for improved quality control and a more streamlined installation.

This case is based on 6 small reactor modules. Each module has a net capacity of 80 MW for a net plant capacity of 480 MW. The SMR case is not based on a particular OEM but rather is a representative SMR plant.

### **10.1.1. Mechanical Equipment and Systems**

The mechanical systems are similar to those of an advanced nuclear power plant. Each reactor module is comprised of a nuclear core and steam generator within a reactor vessel, which is enclosed within a containment vessel in a vertical orientation. The nuclear core is located at the base of the module with the steam generator located in the upper half of the module. Feedwater enters and steam exits through the top of the vessel towards the steam turbine. The entire containment vessel sits within a water-filled pool that provides cooling and passive protection in a loss of power event. All 6 reactor modules sit within the same water-filled pool housed within a common reactor building.

Each SMR module uses a pressurized water reactor design to achieve a high level of safety and reduce the number of components required. To improve on licensing and construction times, each reactor is prefabricated at the OEM's facility and shipped to site for assembly. The compact integral design allows each reactor to be shipped by rail, truck, or barge.

Each module has a dedicated balance-of-plant (BOP) system for power generation. Steam from the reactor module is pumped through a steam turbine connected to a generator for electrical generation. Each BOP system is fully independent, containing a steam turbine and all necessary pumps, tanks, heat exchangers, electrical equipment, and controls for operation. This allows for independent operation of each reactor module. The independent operation of each reactor module allows for greater efficiencies at lower operating loads when dispatched capacity is reduced.

Additionally, the modular design of the reactors allows for refueling and maintenance of the individual reactors without requiring an outage of the entire facility. An extra reactor bay is included in the pool housed within the reactor building. This extra bay allows for removal of individual reactors for maintenance without impacting the remaining reactors.

#### **10.1.2. Electrical and Control Systems**

Each SMR has its own generator, which is a 60-Hz machine rated at approximately 80 MVA with an output voltage of 13.8 kV. The steam turbine electric generator is connected through a generator circuit breaker to a generator step-up transformer (GSU) that is in turn connected between two circuit breakers in the high-voltage bus in the facility switchyard through a disconnect switch. The GSU increases the voltage from the electric generator from 13.8 kV to interconnected transmission system high voltage.

The SMR facility is controlled using a distributed control system (DCS). The DCS provides centralized control of the facility by integrating the control systems provided with the reactor, steam turbine, and associated electric generator and the control of BOP systems and equipment.

#### **10.1.3. Offsite Requirements**

Water for all processes at the SMR nuclear power plant is obtained from a nearby river or lake. The SMR power plant uses a water treatment system to produce the high-quality process water required as well as service and potable water. The electrical interconnection from the SMR nuclear power plant onsite switchyard is connected to the transmission line through a nearby substation.

#### **10.2. CAPITAL COST ESTIMATE**

Table 10-1 summarizes the cost components for this case.

| Case 10<br>EIA – Capital Cost Estimates – 2023 \$ USD                  |                                   |                                                                                 |  |  |
|------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------|--|--|
| Configuration                                                          |                                   | Small Modular Reactor Nuclear<br>Power Plant<br>6 x 80 MW Small Modular Reactor |  |  |
|                                                                        | Units                             |                                                                                 |  |  |
| Plant Characteristics                                                  |                                   |                                                                                 |  |  |
| Net Plant Capacity (60°F, 60% RH)                                      | MW                                | 480                                                                             |  |  |
| Net Plant Heat Rate                                                    | Btu/kWh                           | 10046                                                                           |  |  |
| Capital Cost Assumptions                                               | Capital Cost Assumptions          |                                                                                 |  |  |
| Engineering, Procurement, and<br>Construction (EPC) Contracting<br>Fee | % of Direct and Indirect<br>Costs | 10%                                                                             |  |  |
| Capital Cost and Performance Characteristic Estima                     | ates for Utility Scale Electric   |                                                                                 |  |  |

Sargent & Lundy 67

#### Table 10-1 — Case 10 Capital Cost Estimate

| EIA – Capital C                    | Case 10<br>Cost Estimates – 2 | 2023 \$ USD                                                                     |
|------------------------------------|-------------------------------|---------------------------------------------------------------------------------|
| Configuration                      |                               | Small Modular Reactor Nuclear<br>Power Plant<br>6 x 80 MW Small Modular Reactor |
|                                    | Units                         |                                                                                 |
| EPC Contingency                    | % of EPC Costs                | 12%                                                                             |
| Owner's Services                   | % of EPC Costs                | 7.5%                                                                            |
| Owner's Contingency                | % of Owner's Costs            | 12%                                                                             |
| Estimated Land Requirement         | acres                         | 35                                                                              |
| Estimated Land Cost                | \$/acre                       | 52,000                                                                          |
| Interconnection Costs              |                               |                                                                                 |
| Electrical Transmission Line Costs |                               |                                                                                 |
| Transmission Line Cost             | \$/mile                       | 3,040,000                                                                       |
| Miles                              | miles                         | 1.00                                                                            |
| Substation Expansion               | \$                            | 0                                                                               |
| Gas Interconnection Costs          |                               |                                                                                 |
| Pipeline Cost                      | \$/mile                       | 0                                                                               |
| Miles                              | miles                         | 0.00                                                                            |
| Metering Station                   | \$                            | 0                                                                               |
| Typical Project Timelines          |                               |                                                                                 |
| Development, Permitting,           | in a with a                   | 24                                                                              |
| Engineering                        | months                        | 24                                                                              |
| Plant Construction Time            | months                        | 42                                                                              |
| Total Lead Time Before             | months                        | 66                                                                              |
| Commercial Operation Date (COD)    | montris                       |                                                                                 |
| Operating Life                     | years                         | 40                                                                              |
| EPC Cost Components (Note 1)       |                               |                                                                                 |
| Civil/Structural/Architectural     | \$                            | 656,126,000                                                                     |
| Nuclear Island                     | \$                            | 729,029,000                                                                     |
| Conventional Island                | \$                            | 473,869,000                                                                     |
| Balance of Plant                   | \$                            | 729,029,000                                                                     |
| Indirect Costs                     | \$                            | 619,555,000                                                                     |
| EPC Fee                            | \$                            | 320,761,000                                                                     |
| EPC Contingency                    | \$                            | 423,404,000                                                                     |
| EPC Subtotal                       | \$                            | 3,951,773,000                                                                   |
| Owner's Cost Components (Note 2)   |                               |                                                                                 |
| Owner's Services                   | \$                            | 296,383,000                                                                     |
| Land                               | \$                            | 1,820,000                                                                       |
| Electrical Interconnection         | \$                            | 3,040,000                                                                       |
| Gas Interconnection                | \$                            | 0                                                                               |
| Owner's Contingency                | \$                            | 36,149,000                                                                      |
| Owner's Cost Subtotal              | \$                            | 337,392,000                                                                     |
| Total Capital Cost                 | \$                            | 4,289,165,000                                                                   |
| Capital Cost Notes                 | \$/kW net                     | 8,936                                                                           |

#### Capital Cost Notes

1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include distributable material and labor costs, cranes, scaffolding, engineering, construction management, start-up and commissioning, and contractor overhead. EPC fees are applied to the sum of direct and indirect costs.

| Case 10<br>EIA – Capital Cost Estimates – 2023 \$ USD                                                                                                                                                                                                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Small Modular Reactor Nuclear       Configuration     Power Plant       6 x 80 MW Small Modular Reactor                                                                                                                                                                                                       |  |  |
| Units                                                                                                                                                                                                                                                                                                         |  |  |
| 2. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs (if applicable), and land acquisition costs. |  |  |

Owner's costs include owner's services, land, and utility interconnection costs. Specifically, the transmission line for the SMR nuclear power plant is expected to operate at a high voltage to be capable of exporting the full plant output. The SMR costs also take into account cost efficiencies including industry learning that would be expected to be realized by a nth-of-a-kind facility. The indicated costs do not include the full burden of design, licensing, and manufacturing facility development required to bring a new SMR design to market. These costs are expected to make first-of-a-kind capital expenses greater than nth-of-a-kind capital expenses but may be somewhat offset by financial incentives such as tax credits or cost sharing arrangements through public-private partnerships.

#### **10.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

The operating and maintenance (O&M) cost estimates for SMR nuclear power were informed by the Nuclear Energy Institute's (NEI) *Nuclear Costs in Context* (NEI 2022) which summarizes operating and maintenance data collected by the EUCG from operating nuclear power generation facilities. Adjustments were made to reflect assumed differentials in fixed and variable O&M attributable to the nuances of SMR plant design and operation. Cost basis values were escalated to 2023 dollars using Handy Whitman's Total Nuclear Production Plant index.



#### Table 10-2 — Case 10 Operational Cost Estimate

| Case 10<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                                 |                          |                                                                                                                        |  |
|-----------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Small Modular Reactor Nuclear Power Plant                                         |                          |                                                                                                                        |  |
| Fixed O&M – Plant (Note 1)                                                        | Units                    | Value                                                                                                                  |  |
| Subtotal Fixed O&M                                                                | \$/kW-year               | 121.99 \$/kW-year                                                                                                      |  |
| Variable O&M (Note 2) \$/MWh 3.19 \$/MWh                                          |                          |                                                                                                                        |  |
| O&M Cost Notes                                                                    |                          |                                                                                                                        |  |
| 1. Fixed O&M costs include labor, materials and contracted services, a insurance. | nd G&A costs. O&M costs  | exclude property taxes and                                                                                             |  |
| 2. Variable O&M costs include water, water discharge treatment cost, o            | hemicals, and consumable | 2. Variable O&M costs include water, water discharge treatment cost, chemicals, and consumables. Fuel is not included. |  |

### 10.4. ENVIRONMENTAL AND EMISSIONS INFORMATION

Small modular reactor nuclear power plants do not produce regulated environmental air emissions. While other environmental compliance requirements may apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>x</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu.



# CASE 11. GEOTHERMAL PLANT, 50 MW NET

#### **11.1. CASE DESCRIPTION**

This case is a 50 MW (net) geothermal power plant accessing a hydrothermal reservoir to generate power via a binary cycle. Geothermal power can be generated either from hydrothermal reservoirs or an enhanced geothermal system (EGS). Hydrothermal reservoirs are underground reservoirs of high temperature, pressurized water. The hot water can be used to generate power through dry steam generators, flash steam generators, or binary cycles, as used in this case. Dry and flash steam generators convert the pumped water into steam to directly turn steam turbines. While these plants have lower capital costs per kW of capacity, they are restricted to very hot (>390°F) aquifers and the dissolved minerals and gases in the water lead to greater wear on the turbines and therefore higher maintenance costs.

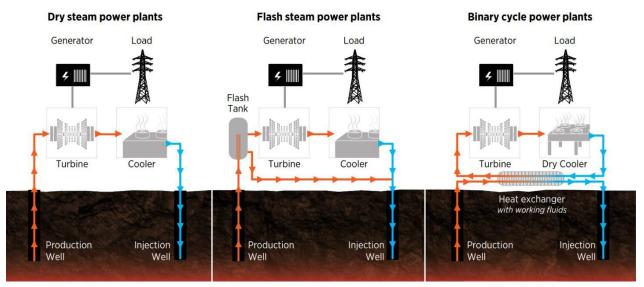



Figure 11-1 — Geothermal Plant Configurations for Hydrothermal Reservoirs

Source: DOE, "GeoVision: Harnessing the Heat Beneath Our Feet", 2019

Binary cycle geothermal power plants use the hydrothermal reservoir to power an Organic Rankine Cycle (ORC) generator. ORC power generation uses an organic working fluid that is vaporized in a heat exchanger to power a conventional steam turbine. The low boiling-point of the working fluid allows power generation from lower temperature hydrothermal resources, typically 300–375°F. Binary cycle plants comprise the majority of new geothermal power plants built in the United States in the last five years. They are typically located near existing geothermal resources to utilize the aquifer's generation potential more fully. Additionally, binary cycle plants are often built to repower older power plants whose hydrothermal reservoirs have cooled down too much to be effective for steam power generation. Both of these scenarios significantly reduce the costs associated with resource exploration and well drilling, which can account for

over 50% of the cost of a new geothermal plant. Likewise, this case presents a brownfield site, in which a hot aquifer (350°F) has been identified with production and injection wells already drilled. This analysis isolates the costs of building and maintaining the geothermal plant itself and is a realistic starting point for a new geothermal plant built in the United States today.

While hydrothermal reservoirs are naturally occurring geologic features, EGS reservoirs are human-made reservoirs where additional fluid has been injected into underground rock to increase permeability and fluid flow. They are less geographically restricted than conventional hydrothermal plants. EGS power plants are the subject of active research and development, but at this time there are no commercial examples in the United States on which to base a cost estimate.

#### **11.1.1. Mechanical Equipment and Systems**

A binary cycle geothermal power plant requires power generation equipment and a gathering system to convey geothermal fluid between the power plant and the reservoir wells.

The ORC power generation equipment for this case includes two 30 MW turbine generators, heat exchangers, and the associated fluid pumps. Each turbine generator requires three heat exchangers. Two of the heat exchangers are used to preheat and vaporize the organic working fluid by contacting it with the hot geothermal fluid, and the remaining heat exchanger uses an air blower to cool and condense the organic working fluid after expansion in the turbine. Unlike steam geothermal plants, the geothermal fluid never contacts air, as it cycles from the production wells through the heat exchangers and back into the reservoirs at injection wells.

The field gathering equipment includes pumps associated with production and injection wells, which are assumed to be already drilled to the depth of the hydrothermal reservoir. The number of wells required depends strongly on the characteristics of the hydrothermal reservoir, and this modeled case assumes 8 production and 8 injection wells. Pipes to transfer the fluid from the wells to the power plant equipment are also include in the field gathering system.

Operating the pumps and cooling equipment requires electricity that reduces the net output of the power plant. To obtain 50 MW of net output, the turbine generators require a gross output of about 58 MW.

#### **11.1.2. Electrical and Control Systems**

Each generator has its own step-up transformer and circuit breaker. After the circuit breaker, each electrical connection is combined via a high-voltage bus into a high-voltage circuit breaker before being fed into the grid.

Sargent & Lundy 72

#### **11.1.3. Offsite Requirements**

Geothermal plants must be located near drilled wells that tap into reservoirs of hot geothermal fluid. This case also assumes a one-mile transmission line.

#### **11.2. CAPITAL COST ESTIMATE**

Table 11-1 summarizes the cost components for this case.

| Case 11<br>EIA – Capital Cost Estimates – 2023 \$ USD               |                                   |                                     |
|---------------------------------------------------------------------|-----------------------------------|-------------------------------------|
| Configuration                                                       |                                   | Geothermal<br>50 MW<br>Binary Cycle |
|                                                                     | Units                             |                                     |
| Plant Characteristics                                               |                                   |                                     |
| Net Plant Capacity                                                  | MW                                | 50                                  |
| Capital Cost Assumptions (Note 1)                                   |                                   |                                     |
| Engineering, Procurement, and<br>Construction (EPC) Contracting Fee | % of Direct and<br>Indirect Costs | 10%                                 |
| EPC Contingency                                                     | % of EPC Costs                    | 4%                                  |
| Owner's Services                                                    | % of EPC Costs                    | 12%                                 |
| Owner's Contingency                                                 | % of Owner's<br>Costs             | 4%                                  |
| Estimated Land Requirements (Support<br>buildings only)             | acres                             | 200                                 |
| Estimated Land Cost                                                 | \$/acre                           | 30,000                              |
| Electric Interconnection Costs                                      |                                   |                                     |
| Transmission Line Cost                                              | \$/mile                           | 2,076,000                           |
| Miles                                                               | miles                             | 1.00                                |
| Typical Project Timelines                                           |                                   |                                     |
| Development, Permitting, Engineering                                | months                            | 18                                  |
| Plant Construction Time                                             | months                            | 18                                  |
| Total Lead Time Before Commercial<br>Operation Date (COD)           | months                            | 36                                  |
| Operating Life                                                      | years                             | 40                                  |
| EPC Cost Components                                                 |                                   |                                     |
| Civil Structural Material and Installation                          | \$                                | 39,670,000                          |
| Mechanical – Power generating<br>Equipment                          | \$                                | 56,672,000                          |
| Mechanical – Field Gathering,<br>Production / Injection Pumps       |                                   | 20,654,000                          |
| Electrical – Balance of Plant (BOP) and I&C                         | \$                                | 8,213,000                           |

Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies

|                                                                                                                                                                                                                                                                                                                                                    | Case 11                                                                                                              |                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| EIA – Capital Cost Estimates – 2023 \$ USD                                                                                                                                                                                                                                                                                                         |                                                                                                                      |                                                                                                                                              |  |
| Configuration                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | Geothermal<br>50 MW                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      | Binary Cycle                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                    | Units                                                                                                                |                                                                                                                                              |  |
| Electrical – Substation and Switchyard                                                                                                                                                                                                                                                                                                             |                                                                                                                      | 6,453,000                                                                                                                                    |  |
| Indirect Costs                                                                                                                                                                                                                                                                                                                                     | \$                                                                                                                   | 15,799,000                                                                                                                                   |  |
| EPC Fee                                                                                                                                                                                                                                                                                                                                            | \$                                                                                                                   | 14,746,000                                                                                                                                   |  |
| EPC Contingency                                                                                                                                                                                                                                                                                                                                    | \$                                                                                                                   | 6,488,000                                                                                                                                    |  |
| EPC Subtotal                                                                                                                                                                                                                                                                                                                                       | \$                                                                                                                   | 168,695,000                                                                                                                                  |  |
| Owner's Cost Components (Note 2)                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                              |  |
| Owner's Services                                                                                                                                                                                                                                                                                                                                   | \$                                                                                                                   | 20,243,000                                                                                                                                   |  |
| Land                                                                                                                                                                                                                                                                                                                                               | \$                                                                                                                   | 6,000,000                                                                                                                                    |  |
| Electrical Interconnection                                                                                                                                                                                                                                                                                                                         | \$                                                                                                                   | 2,076,000                                                                                                                                    |  |
| Owner's Contingency                                                                                                                                                                                                                                                                                                                                | \$                                                                                                                   | 1,133,000                                                                                                                                    |  |
| Owner's Cost Subtotal                                                                                                                                                                                                                                                                                                                              | \$                                                                                                                   | 29,452,000                                                                                                                                   |  |
| Total Capital Cost                                                                                                                                                                                                                                                                                                                                 | \$                                                                                                                   | 198,147,000                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                    | \$/kW net                                                                                                            | 3,963                                                                                                                                        |  |
| Capital Cost Notes                                                                                                                                                                                                                                                                                                                                 |                                                                                                                      |                                                                                                                                              |  |
| <ol> <li>Costs based on EPC contracting approach. Direct<br/>civil/structural, mechanical, and electrical/I&amp;C contraction and labor costs, cranes, scaffolding, engine<br/>and contractor overhead. EPC fees are<br/>2. Owner's costs include project development, studies<br/>optimization and owner's start up and commissioning.</li> </ol> | mponents of the facility. I<br>ering, construction manage<br>applied to the sum of di<br>lies, permitting, legal, ow | ndirect costs include distributable<br>gement, start-up and commissioning,<br>irect and indirect costs.<br>ner's project management, owner's |  |

2. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs and land acquisition costs.



# **11.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

# Table 11-2 — Case 11 Operating and Maintenance (O&M) Cost Estimates

| Case 11<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                                                                                  |                               |                                 |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|
| G                                                                                                                                  | Geothermal                    |                                 |
| Fixed O&M – Plant (Note 1)                                                                                                         | Units                         | Value                           |
| Labor                                                                                                                              | \$/year                       | 2,019,000                       |
| Plant Maintenance                                                                                                                  | \$/year                       | 2,994,000                       |
| Field Maintenance                                                                                                                  | \$/year                       | 1,258,000                       |
| Geothermal Pump Maintenance                                                                                                        | \$/year                       | 1,259,000                       |
| Subtotal Fixed O&M                                                                                                                 | \$/year                       | 7,530,000                       |
| \$/kW-year                                                                                                                         | \$/kW-year                    | 150.60 \$/kW-year               |
| Variable O&M                                                                                                                       | \$/MWh                        | 0.00 \$/MWh                     |
| O&M Cost Notes                                                                                                                     |                               |                                 |
| <ol> <li>Fixed O&amp;M costs include labor, materials and contr<br/>O&amp;M costs exclude property taxes and insurance.</li> </ol> | acted services, and general a | and administrative (G&A) costs. |

## **11.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**

Binary geothermal power plants do not burn fuel, and the geothermal fluid extracted from the ground does not contact the air, so there is no release of dissolved gases from the hydrothermal reservoir. However, a small amount of the organic working fluid used in the ORC generator, typically isobutane or n-pentane, leaks through valves and seals during normal operation. For a 50 MW plant, this is expected to be limited to 125 tons of isobutane or n-pentane per year (0.167 lbs / MMBtu).



# CASE 12. HYDROELECTRIC PLANT, 100 MW NET

## **12.1. CASE DESCRIPTION**

This case is based on a "New Stream Reach Development" 100 MW hydroelectric power plant with 30 feet of available head. There are several types of hydroelectric power plants including run-of-river, storage, and pumped storage. This case is based on a storage type hydropower plant that includes a dam to store water in a reservoir where water is released through tunnels to a powerhouse to spin a turbine.

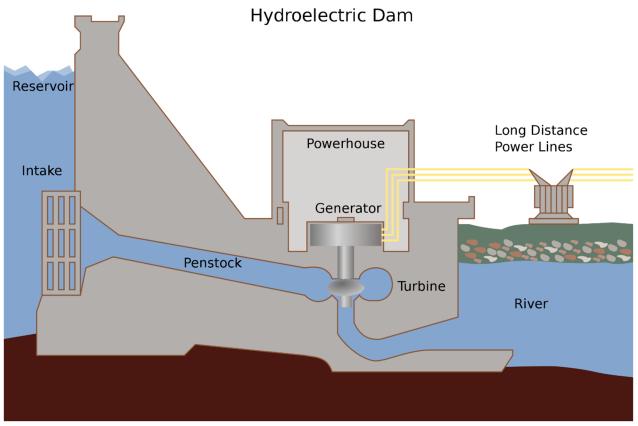



Figure 12-1 — Dam of a Hydroelectric Power Plant

Figure 12-2 show a diagram of the major components of a storage-type hydroelectric power plant. The dam structure holds water in a reservoir. Water passes through an intake in the reservoir through the penstock. The penstock consists of concrete 'power tunnels' that direct water to a turbine that spins a generator that distributes electric power to the grid.



**Source:** Alan Cressler, *Marshall County*, AL. Digital Image. Retrieved from <u>Guntersville Dam - Encyclopedia of Alabama</u> (accessed Aug 1, 2023)





Source: Tennessee Valley Authority, Licensed by GFDL and CC-BY-2.6, <u>Wikimedia Commons</u> (Accessed Aug 2 2023)

The costs for this case include a concrete dam with a spillway and diversion tunnel to control the water level in the reservoir. There are four identical penstocks, approximately 4.5 meters in diameter. Each penstock leads to a Kaplan-type hydro-turbine, which is suitable for modeled stream head. Each of the four turbine-generators is rated for 25 MW. Power is stepped up from 13.8 kV to 154 kV for distribution.





Figure 12-3 — Typical Hydroelectric Power Turbine Hall

**Source:** Sargent & Lundy project site photo archive.

# **12.2. CAPITAL COST ESTIMATE**

Table 12-1 summarizes the cost components for this case.

| Case 12<br>EIA – Capital Cost Estimates – 2023 \$ USD |    |                                                              |
|-------------------------------------------------------|----|--------------------------------------------------------------|
| Configuration                                         |    | Hydroelectric Power Plant<br>New Stream Reach<br>Development |
| Units                                                 |    |                                                              |
| Plant Characteristics                                 |    |                                                              |
| Net Plant Capacity                                    | MW | 100                                                          |

# Table 12-1 — Case 12 Capital Cost Estimates



| Case 12<br>EIA – Capital Cost Estimates – 2023 \$ USD               |                                   |                                 |
|---------------------------------------------------------------------|-----------------------------------|---------------------------------|
| Configuration                                                       |                                   | Hydroelectric Power Plant       |
|                                                                     |                                   | New Stream Reach<br>Development |
|                                                                     | Units                             |                                 |
| Head                                                                | ft                                | 30                              |
| Capital Cost Assumptions (Note 1)                                   |                                   |                                 |
| Engineering, Procurement, and<br>Construction (EPC) Contracting Fee | % of Direct and<br>Indirect Costs | 10%                             |
| EPC Contingency                                                     | % of EPC Costs                    | 5%                              |
| Owner's Services                                                    | % of EPC Costs                    | 7%                              |
| Owner's Contingency                                                 | % of Owner's<br>Costs             | 5%                              |
| Estimated Land Requirements (Support<br>buildings only)             | acres                             | 2                               |
| Estimated Land Cost                                                 | \$/acre                           | 128,000                         |
| Electric Interconnection Costs                                      |                                   |                                 |
| Transmission Line Cost                                              | \$/mile                           | 2,412,000                       |
| Miles                                                               | miles                             | 1.00                            |
| Substation Expansion                                                | \$                                | 0                               |
| Typical Project Timelines                                           |                                   |                                 |
| Development, Permitting, Engineering                                | months                            | 36                              |
| Plant Construction Time                                             | months                            | 36                              |
| Total Lead Time Before COD                                          | months                            | 72                              |
| Operating Life                                                      | years                             | 50                              |
| EPC Cost Components                                                 |                                   |                                 |
| Civil Structural Material and Installation                          | \$                                | 371,101,000                     |
| Mechanical Equipment Supply and<br>Installation                     | \$                                | 93,933,000                      |
| Electrical / I&C Supply and Installation                            | \$                                | 42,248,000                      |
| Indirect Costs                                                      | \$                                | 60,874,000                      |
| EPC Fee                                                             | \$                                | 56,816,000                      |
| EPC Contingency                                                     | \$                                | 31,249,000                      |
| EPC Subtotal                                                        | \$                                | 656,221,000                     |
| Owner's Cost Components (Note 2)                                    |                                   |                                 |
| Owner's Services                                                    | \$                                | 45,935,000                      |
| Land                                                                | \$                                | 256,000                         |
| Electrical Interconnection                                          | \$                                | 2,412,000                       |
| Owner's Contingency                                                 | \$                                | 2,430,000                       |
| Owner's Cost Subtotal                                               | \$                                | 51,033,000                      |
| Total Capital Cost                                                  | \$                                | 707,254,000                     |



| Case 12<br>EIA – Capital Cost Estimates – 2023 \$ USD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hydroelectric Power Plant<br>New Stream Reach<br>Development |  |
| Units<br>\$/kW net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,073                                                        |  |
| Capital Cost Notes 1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include distributable material and labor costs, cranes, scaffolding, engineering, construction management, startup and commissioning, and contractor overhead. EPC fees are applied to the sum of direct and indirect costs. 2. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs and land acquisition costs. |                                                              |  |

# **12.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

Table 12-2 summarizes the operating and maintenance cost components for this case.

# Table 12-2 — Case 12 Operating and Maintenance (O&M) Cost Estimates

| Case 12<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD |            |                  |  |
|---------------------------------------------------|------------|------------------|--|
| Hydroelectric Power Plant                         |            |                  |  |
| Fixed O&M – Plant (Note 1)                        | Units      | Value            |  |
| Subtotal Fixed O&M                                | \$/year    | 3,354,000        |  |
| \$/kW-year                                        | \$/kW-year | 33.54 \$/kW-year |  |
| Variable O&M                                      | \$/MWh     | 0.00 \$/MWh      |  |
| O&M Cost Notes                                    |            |                  |  |
| 4. Fixed OOM sects include taken materials and    |            |                  |  |

1. Fixed O&M costs include labor, materials, and contracted services, and general and administrative (G&A) costs. O&M costs exclude property taxes and insurance.

# **12.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**

Hydroelectric power does not produce regulated environmental air emissions. While other environmental compliance requirements apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>x</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu. Academic research on the impact of dams on the carbon cycle of their local waterways is ongoing.



# CASE 13. ONSHORE WIND, LARGE PLANT FOOTPRINT,200 MW NET

#### **13.1. CASE DESCRIPTION**

This case is an onshore wind project in the Great Plains region that is based on a total project capacity of 200 MW. The region has an abundance of land that is suitable for onshore wind turbine siting and is not subject to land constraints that would constraint project size. Parameters that affect project costs and performance include turbine nameplate capacity, rotor diameter, and hub height. The case configuration assumes wind turbines rated at 2.8 MW and 125-meter rotor diameters and 90-meter hub height. These features reflect modern wind turbines which employ larger rotor diameter and greater hub heights. The main advantage to taller hub heights and increased rotor diameters include access to better wind profiles at higher altitudes and increased turbine swept area, allowing the turbine unit to capture more energy.

#### **13.1.1. Mechanical Equipment and Systems**

Wind turbine generators (WTGs) convert kinetic wind energy into electrical power. The most ubiquitous type of wind turbine utilized for electric power generation are those of the horizontal-axis three-bladed design. Lift is generated when wind flows around the turbine blades, resulting in rotation. The blades are connected to a central hub and drivetrain which turns a generator located inside of the nacelle, the housing positioned atop the wind turbine tower.

#### **13.1.2 Electrical and Control Systems**

Each WTG consists of a doubly fed induction generator. The low-voltage output from the generator is stepped up to medium voltage through a transformer located either in the nacelle or at the tower base. A medium-voltage collection system conveys the generated energy to an onsite substation, which further steps up the voltage for interconnection with the transmission system with a voltage of 230 kV.

A supervisory control and data acquisition (SCADA) system is provided for communications and control of the wind turbines and substation. The SCADA system allows the operations staff to remotely control and monitor each wind turbine and the wind farm as a whole.

#### **13.1.3 Offsite Requirements**

Wind farms harness power from wind and thus, require no fuel or fuel infrastructure. The offsite requirements are limited to construction of site and access roads to each wind turbine, operating and maintenance (O&M) building and electrical interconnection to the transmission system.

#### **13.2. CAPITAL COST ESTIMATE**

Table 13-1 summarizes the cost components for this case. The capital cost estimate is based on an engineering, procurement, and construction (EPC) contracting approach.

In addition to EPC contract costs, the capital cost estimate in Table 13-1 covers owner's costs. Owner's costs include owner's services which include project development, studies, permitting, legal, owner's project management, owner's engineering, owner's start-up and commissioning costs, project feasibility analyses, wind resource assessments, geotechnical studies, contracting for land access, transmission access, permitting, and electrical interconnection costs. The estimate is presented as an overnight cost in 2023 dollars and thus excludes allowance for funds used during construction or interest during construction. Leasing costs are provided in the O&M.

| Case 13<br>EIA – Capital Cost Estimates – 2023 \$ USD     |                                   |                                                                                     |  |  |
|-----------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------|--|--|
| Configuration                                             |                                   | Onshore Wind – Large Plant<br>Footprint: Great Plains Region<br>200 MW   2.8 MW WTG |  |  |
| Hub Height (m)                                            |                                   | 90                                                                                  |  |  |
| Rotor Diameter (m)                                        |                                   | 125                                                                                 |  |  |
|                                                           | Units                             |                                                                                     |  |  |
| Plant Characteristics                                     |                                   |                                                                                     |  |  |
| Net Plant Capacity                                        | MW                                | 200                                                                                 |  |  |
| Capital Cost Assumptions                                  |                                   |                                                                                     |  |  |
| EPC Contracting Fee                                       | % of Direct and<br>Indirect Costs | 8%                                                                                  |  |  |
| EPC Contingency                                           | % of EPC Costs                    | 5%                                                                                  |  |  |
| Owner's Services                                          | % of EPC                          | 7%                                                                                  |  |  |
| Owner's Contingency                                       | % of Owners Costs                 | 5%                                                                                  |  |  |
| Electric Interconnection Costs                            |                                   |                                                                                     |  |  |
| Transmission Line Cost                                    | \$/mile                           | 2,412,000                                                                           |  |  |
| Miles                                                     | miles                             | 1.00                                                                                |  |  |
| Typical Project Timelines                                 |                                   |                                                                                     |  |  |
| Development, Permitting, Engineering                      | months                            | 12                                                                                  |  |  |
| Plant Construction Time                                   | months                            | 9                                                                                   |  |  |
| Total Lead Time Before Commercial<br>Operation Date (COD) | months                            | 21                                                                                  |  |  |
| Operating Life                                            | years                             | 25                                                                                  |  |  |
| EPC Cost Components (Note 1)                              |                                   |                                                                                     |  |  |
| WTG Procurement and Supply                                | \$                                | 160,168,00                                                                          |  |  |

#### Table 13-1 — Case 13 Capital Cost Estimate



| Case 13<br>EIA – Capital Cost Estimates – 2023 \$ USD                      |                                                                                                                                                             |                                                                                                                                                                          |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Configuration                                                              |                                                                                                                                                             | Onshore Wind – Large Plant<br>Footprint: Great Plains Region<br>200 MW   2.8 MW WTG                                                                                      |  |
| Hub Height (m)                                                             |                                                                                                                                                             | 90                                                                                                                                                                       |  |
| Rotor Diameter (m)                                                         |                                                                                                                                                             | 125                                                                                                                                                                      |  |
|                                                                            | Units                                                                                                                                                       |                                                                                                                                                                          |  |
| WTG Civil Work                                                             | \$                                                                                                                                                          | 62,130,000                                                                                                                                                               |  |
| Electrical - Collection System                                             | \$                                                                                                                                                          | 12,100,000                                                                                                                                                               |  |
| Indirect Costs                                                             | \$                                                                                                                                                          | 8,112,000                                                                                                                                                                |  |
| EPC Fee                                                                    | \$                                                                                                                                                          | 19,401,000                                                                                                                                                               |  |
| EPC Contingency                                                            | \$                                                                                                                                                          | 13,096,000                                                                                                                                                               |  |
| EPC Subtotal                                                               | \$                                                                                                                                                          | 275,007,000                                                                                                                                                              |  |
| Owner's Cost Components (Note 2)                                           |                                                                                                                                                             |                                                                                                                                                                          |  |
| Owner's Services                                                           | \$                                                                                                                                                          | 19,250,000                                                                                                                                                               |  |
| Electrical Interconnection                                                 | \$                                                                                                                                                          | 2,412,000                                                                                                                                                                |  |
| Owner's Contingency                                                        | \$                                                                                                                                                          | 1,083,000                                                                                                                                                                |  |
| Owner's Cost Subtotal                                                      | \$                                                                                                                                                          | 22,745,000                                                                                                                                                               |  |
| Total Capital Cost                                                         | \$                                                                                                                                                          | 297,752,000                                                                                                                                                              |  |
|                                                                            | \$/kW net                                                                                                                                                   | 1,489                                                                                                                                                                    |  |
| Capital Cost Notes                                                         |                                                                                                                                                             |                                                                                                                                                                          |  |
| Indirect costs include distributable<br>construction management, startup a | nechanical, and electric<br>material and labor cos<br>and commissioning, an<br>he sum of direct and in<br>elopment, studies, peri<br>and owner's startup an | cal/I&C components of the facility.<br>ts, cranes, scaffolding, engineering,<br>d contractor overhead. EPC fees are<br>ndirect costs.<br>mitting, legal, owner's project |  |

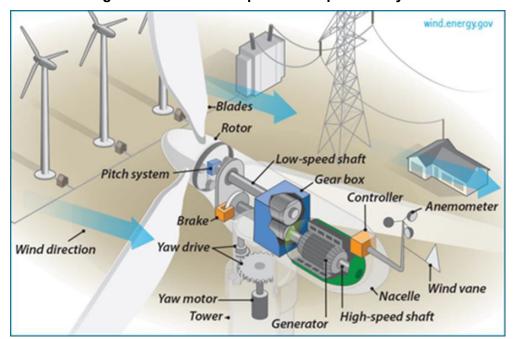
#### **13.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

O&M cost estimates reflect a full-service agreement arrangement, under which an O&M contractor provides labor, management, and parts replacement (including unscheduled parts replacement) for the WTGs, collection system, and substation. Our cost estimates exclude site specific owner's costs such royalties, property taxes and insurance. Table 13-2 summarizes the average annual O&M expenses projected for an assumed 25-year project life.

Sargent & Lundy <sup>83</sup>

| Table 13-2 — Case 13 O&M Cost Estimate                                                                           |                               |                                |
|------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|
| Case 13<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                                                                |                               |                                |
| Onshore Wind – Large Pla                                                                                         | nt Footprint: Great Plains Re | egion                          |
| Fixed O&M – Plant (Note 1)                                                                                       | Units                         | Value                          |
| WTG Scheduled Maintenance                                                                                        | \$/year                       | 2,240,000                      |
| WTG Unscheduled Maintenance                                                                                      | \$/year                       | 2,800,000                      |
| Leasing Costs                                                                                                    | \$/year                       | 996,000                        |
| Balance of Plant Maintenance                                                                                     | \$/year                       | 575,200                        |
| Subtotal Fixed O&M                                                                                               | \$/year                       | 6,611,200                      |
| \$/kW-year                                                                                                       | \$/kW-year                    | 33.06 \$/kW-year               |
| Variable O&M (Note 2)                                                                                            | \$/MWh                        | 0.00 \$/MWh                    |
| O&M Cost Notes                                                                                                   |                               |                                |
| 1. Fixed O&M costs include labor, materials and contract                                                         | cted services, and general a  | nd administrative (G&A) costs. |
| 2. O&M costs estimates reflect the Full Service Agreem<br>maintenance, and exclude certain site-specific owner's |                               |                                |
| 3. Average Full Service Agreement term considered: 25                                                            | years                         |                                |

## **13.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**


Wind power projects do not produce regulated environmental air emissions. While other environmental compliance requirements may apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>x</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu.



# CASE 14. ONSHORE WIND, REPOWERING/RETROFIT, 150 MW NET

#### **14.1. CASE DESCRIPTION**

The onshore wind repower case is based on a total project capacity of 150 MW. The region is reflective of the Midwest/Great Plains area in the center of the United States, which has an abundance of wind turbines suitable for potential repower scenarios. Parameters that affect project cost and performance include turbine nameplate capacity, rotor diameter and hub height. The case configuration assumes a partial repower of wind turbines rated at 1.5 MW to wind turbines rated at 1.6 MW with 125-m rotor diameter and 90-m hub height. This will consist of the repowering of 94 wind turbine generators (WTGs) for a 150 MW capacity. These features reflect modern wind turbine repowers which employ larger rotor diameter. The primary advantage of larger rotor diameters is the increased turbine swept area, enabling the unit to capture more energy. Wind project repowering can be categorized as either a partial repowering or a full repowering. This case is assumed to be a partial repowering, which entails the replacement of certain high use WTG components with upgraded equipment while other components of the initial WTG are reused. The partial repower includes the replacement of blades, hub, nacelle components, main shaft, main bearing assembly, gearbox, and flex coupling.





**Source:** Office of Energy Efficiency & Renewable Energy, Wind Energy Technologies Office – U.S. Department of Retrieved from Energy.gov, https://www.energy.gov/eere/wind/inside-wind-turbine (accessed May 31, 2019).

#### **14.1.1. Mechanical Equipment and Systems**

WTGs convert kinetic wind energy into electrical power. The most ubiquitous type of wind turbine utilized for electric power generation are those of the horizontal-axis three-bladed design. Lift is generated when wind flows around the turbine blades, resulting in rotation. The blades are connected to a central hub and drivetrain which turns a generator located inside of the nacelle, the housing positioned atop the wind turbine tower.

#### **14.1.2. Electrical and Control Systems**

Each WTG consists of a doubly fed induction generator. The low-voltage output from the generator is stepped up to medium voltage through a transformer located either in the nacelle or at the tower base. A medium-voltage collection system conveys the generated energy to an onsite substation, which further steps up the voltage for interconnection with the transmission system with a voltage of 230 kV.

A supervisory control and data acquisition (SCADA) system is provided for communications and control of the wind turbines and substation. The SCADA system allows the operations staff to remotely control and monitor each wind turbine and the wind farm as a whole.

#### **14.1.3. Offsite Requirements**

Wind farms harness power from wind and thus, require no fuel or fuel infrastructure. The offsite requirements are limited to construction of site and access roads to each wind turbine, operating and maintenance (O&M) building and electrical interconnection to the transmission system.

#### **14.2. CAPITAL COST ESTIMATE**

Table 14-1 summarizes the cost components for this case. The capital cost estimate is based on an engineering, procurement, and construction (EPC) contracting approach.

In addition to EPC contract costs, the capital cost estimate in Table 14-1 covers owner's costs. Owner's costs include owner's services which include project development, studies, permitting, legal, owner's project management, owner's engineering, owner's start-up and commissioning costs, project feasibility analyses, wind resource assessments, geotechnical studies, contracting for land access, transmission access, permitting, and electrical interconnection costs. The estimate is presented as an overnight cost in 2023 dollars and thus excludes allowance for funds used during construction or interest during construction. Leasing Costs are provided in the O&M.



| Table 14-1 — | Case | 14 Capital | Cost Estimate |
|--------------|------|------------|---------------|
|              | Juse |            |               |

| Case 14<br>EIA – Capital Cost Estimates – 2023 \$ USD     |                                   |                                                    |
|-----------------------------------------------------------|-----------------------------------|----------------------------------------------------|
| Configuration                                             |                                   | Onshore Wind – Repower<br>150 MW   1.5-1.62 MW WTG |
| Hub Height (m)                                            |                                   | 90                                                 |
| Rotor Diameter (m)                                        |                                   | 125                                                |
|                                                           | Units                             |                                                    |
| Plant Characteristics                                     |                                   |                                                    |
| Net Plant Capacity                                        | MW                                | 150                                                |
| Capital Cost Assumptions                                  |                                   |                                                    |
| EPC Contracting Fee                                       | % of Direct and<br>Indirect Costs | 8%                                                 |
| EPC Contingency                                           | % of EPC Costs                    | 5%                                                 |
| Owner's Services                                          | % of EPC Costs                    | 10%                                                |
| Owner's Contingency                                       | % of Owner's Costs                | 5%                                                 |
| Electric Interconnection Costs                            |                                   |                                                    |
| Transmission Line Cost                                    | \$/mile                           | 0                                                  |
| Miles                                                     | miles                             | 0                                                  |
| Typical Project Timelines                                 |                                   |                                                    |
| Development, Permitting, Engineering                      | months                            | 12                                                 |
| Plant Construction Time                                   | months                            | 6                                                  |
| Total Lead Time Before Commercial<br>Operation Date (COD) | months                            | 18                                                 |
| Operating Life                                            | years                             | 20                                                 |
| EPC Cost Components (Notes 1)                             |                                   |                                                    |
| WTG Components -Turbine Kit and Blade<br>Kit              | \$                                | 136,323,00                                         |
| Component Removal                                         | \$                                | 4,928,00                                           |
| Installation/Repowering                                   | \$                                | 12,017,00                                          |
| Mobilization/Demobilization                               | \$                                | 4,739,00                                           |
| Indirect Costs                                            | \$                                | 7,900,00                                           |
| EPC Fee                                                   | \$                                | 13,273,00                                          |
| EPC Contingency                                           | \$                                | 8,959,00                                           |
| EPC Subtotal                                              | \$                                | 188,139,00                                         |
| Owner's Cost Components (Notes 2)                         |                                   |                                                    |
| Owner's Services                                          | \$                                | 18,814,00                                          |
| Owner's Contingency                                       | \$                                | 941,00                                             |
| Owner's Costs Subtotal                                    | \$                                | 19,755,00                                          |
| Total Capital Cost                                        | \$                                | 207,894,00                                         |
|                                                           | \$/kW net                         | 1,38                                               |

#### Capital Cost Notes

1. Costs based on EPC contracting approach. This is an estimate of a repower replacing the blades, hub, nacelle, main shaft, main bearing assembly, gearbox, and flex coupling. WTG component costs consist of 1.62 MW components to replace 1.5 MW WTGs. Indirect costs include distributable material and labor



# Case 14 EIA – Capital Cost Estimates – 2023 \$ USD

| Configuration      | Onshore Wind – Repower   |
|--------------------|--------------------------|
|                    | 150 MW   1.5-1.62 MW WTG |
| Hub Height (m)     | 90                       |
| Rotor Diameter (m) | 125                      |
|                    |                          |

Units

costs, cranes, scaffolding, engineering, construction management, startup and commissioning, and contractor overhead. Component removal costs include dismantling of WTG, loading to vehicles, grounding checks, and (gearbox) oil disposal. Installation/Repowering costs include road work, civil work, and WTG installation.

2. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's startup and commissioning costs. Owner's contingency is applied to owner's services costs only. Interconnection costs are not included as existing interconnection equipment is assumed to be reused for the repowered facility.

## 14.3. OPERATIONS AND MAINTENANCE COST ESTIMATE

O&M cost estimates reflect a full-service agreement arrangement, under which an O&M contractor provides labor, management, and parts replacement (including unscheduled parts replacement) for the WTGs, collection system, and substation. Our cost estimates exclude site specific owner's costs such as property taxes and insurance. Table 14-2 summarizes the average annual O&M expenses projected for an assumed additional 20-year project life.

| Case 14<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD |                               |                  |
|---------------------------------------------------|-------------------------------|------------------|
| Onshore Wind – Large Pl                           | ant Footprint: Great Plains R | egion            |
| Fixed O&M – Plant (Note 1)                        | Units                         | Value            |
| WTG Scheduled Maintenance                         | \$/year                       | 1,808,000        |
| WTG Unscheduled Maintenance                       | \$/year                       | 2,260,000        |
| Balance of Plant Maintenance                      | \$/year                       | 452,000          |
| Leasing Costs                                     | \$/year                       | 1,262,000        |
| Subtotal Fixed O&M                                | \$/year                       | 5,782,000        |
| \$/kW-year                                        | \$/kW-year                    | 38.55 \$/kW-year |
| Variable O&M (Note 2)                             | \$/MWh                        | 0.00 \$/MWh      |
| O&M Cost Notes                                    |                               |                  |

# Table 14-2 — Case 14 O&M Cost Estimate

Fixed O&M costs include labor, materials and contracted services, and general and administrative (G&A) cost
 O&M costs estimates reflect the Full Service Agreement and exclude site-specific owner's costs, such as royalties, property taxes, and insurance.

3. Average FSA term considered: 20 years



#### 14.4. ENVIRONMENTAL AND EMISSIONS INFORMATION

Wind power projects do not produce regulated environmental air emissions. While other environmental compliance requirements may apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>x</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu.



# CASE 15. OFFSHORE WIND: FIXED-BOTTOM MONOPILE FOUNDATIONS, 900 MW NET

#### **15.1. CASE DESCRIPTION**

The offshore wind project is based on a total project capacity of 900 MW. Parameters that affect project cost and performance include project size, turbine nameplate capacity, water depth and distance to shore. The case configuration assumes wind turbines rated at 15 MW each, located 30 miles offshore in waters with a depth of 100 feet. An onshore cable run of 5 miles is also assumed.

For the purposes of this study, it has been assumed that wind turbines installed employ fixed-type foundation structures. Generally, these are installed in relatively shallow waters, not exceeding 150 feet, consistent with our assumption. Water depth and distance to shore has a significant impact on the cost of fixed foundation structure due to the expenses being related to cable lengths and installation costs.

#### **15.1.1. Mechanical Equipment and Systems**

Wind turbine generators (WTGs) convert kinetic wind energy into electrical power. The most ubiquitous type of wind turbine utilized for electric power generation are those of the horizontal-axis three-bladed design. Lift is generated when wind flows around the turbine blades, resulting in rotation. The blades are connected to a central hub and drivetrain which turns a generator located inside of the nacelle, the housing positioned atop the wind turbine tower.

#### **15.1.2 Electrical and Control Systems**

Each wind turbine consists of a doubly fed induction generator with high-speed electrical slip rings, which produces electricity from the rotational energy of wind. The converter converts DC to AC. The power collection system collects energy from all the wind turbines and increases the voltage to 66 kV through a dedicated transformer at the WTG. The electricity is transmitted via array cables, buried in the sea floor to the offshore substation, where the voltage is increased to 138kV. It is then transmitted to an onshore substation via export cables. The power from this substation is supplied for interconnection with the transmission system.

A supervisory control and data acquisition (SCADA) system is provided for communications and control of the wind turbines and substation. The SCADA system allows the operations staff to remotely control and monitor each wind turbine and the wind farm as a whole.

Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies

# Sargent & Lundy <sup>90</sup>

#### **15.1.3 Offsite Requirements**

Since wind is a clean source of energy, the offsite requirements are very limited. These include construction of offshore-to-shore submarine cables, port infrastructures, installation vessels (construction and cable laying) and electrical interconnection to the transmission system.

#### **15.2. CAPITAL COST ESTIMATE**

Table 15-1 summarizes the cost components for this case. The capital cost estimate is based on an engineering, procurement, and construction (EPC) contracting approach.

In addition to EPC contract costs, the capital cost estimate in Table 15-1 covers owner's costs. Owner's costs include owner's services which include project development, studies, permitting, legal, owner's project management, owner's engineering, owner's start-up and commissioning costs, project feasibility analyses, wind resource assessments, geotechnical studies, contracting for land access, transmission access, permitting, and electrical interconnection costs. The estimate is presented as an overnight cost in 2023 dollars and thus excludes allowance for funds used during construction or interest during construction. Leasing Costs are provided in the operating and maintenance (O&M).

| Case 15<br>EIA – Capital Cost Estimates – 2023 \$ USD        |                                   |                                                     |  |
|--------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|--|
| Configuration                                                |                                   | Offshore Wind: Fixed-Bottom<br>Monopile Foundations |  |
|                                                              |                                   | 900 MW   15 MW WTG                                  |  |
| Offshore Cable Length (mi)                                   |                                   | 30                                                  |  |
| Onshore Cable Length (mi)                                    |                                   | 5                                                   |  |
| Water Depth (ft)                                             |                                   | 100                                                 |  |
| Plant Characteristics                                        |                                   |                                                     |  |
| Net Plant Capacity                                           | MW                                | 900                                                 |  |
| Capital Cost Assumptions                                     |                                   |                                                     |  |
| EPC Contracting Fee                                          | % of Direct and Indirect<br>Costs | 10%                                                 |  |
| EPC Contingency                                              | % of EPC Costs                    | 6%                                                  |  |
| Owner's Services                                             | % of EPC Costs                    | 10%                                                 |  |
| Owner's Contingency                                          | % of Owner's Costs                | 7%                                                  |  |
| Typical Project Timelines                                    |                                   |                                                     |  |
| Development, Permitting, Engineering                         | months                            | 24                                                  |  |
| Plant Construction Time<br>Total Lead Time Before Commercial | months                            | 12                                                  |  |
| Operation Date (COD)                                         | months                            | 36                                                  |  |
| Operating Life                                               | years                             | 25                                                  |  |
| EPC Cost Components (Note 1-2)                               |                                   |                                                     |  |

#### Table 15-1 — Case 15 Capital Cost Estimate



| Case 15<br>EIA – Capital Cost Estimates – 2023 \$ USD                                                                           |           |                                                     |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------|
| Configuration                                                                                                                   |           | Offshore Wind: Fixed-Bottom<br>Monopile Foundations |
|                                                                                                                                 |           | 900 MW   15 MW WTG                                  |
| Offshore Cable Length (mi)                                                                                                      |           |                                                     |
| Onshore Cable Length (mi)                                                                                                       |           | 5                                                   |
| Water Depth (ft)                                                                                                                |           | 100                                                 |
| WTG Procurement and Supply                                                                                                      | \$        | 1,172,322,000                                       |
| WTG Fabrication/Assembly/Installation                                                                                           | \$        | 688,635,000                                         |
| Electrical Interconnection                                                                                                      | \$        | 385,623,000                                         |
| Onshore Transmission<br>Offshore Transmission and Electrical                                                                    | \$        | 49,832,000                                          |
| Balance of Plant (BOP)                                                                                                          | \$        | 152,010,000                                         |
| Indirect Costs                                                                                                                  | \$        | 123,678,000                                         |
| EPC Fee                                                                                                                         | \$        | 257,210,000                                         |
| EPC Contingency                                                                                                                 | \$        | 169,759,000                                         |
| EPC Subtotal                                                                                                                    | \$        | 2,999,069,000                                       |
| Owner's Cost Components (Note 3)                                                                                                | \$        |                                                     |
| Owner's Services                                                                                                                | \$        | 299,907,000                                         |
| Owner's Contingency                                                                                                             | \$        | 20,993,000                                          |
| Owner's Costs Subtotal                                                                                                          | \$        | 320,900,000                                         |
| Total Capital Cost                                                                                                              | \$        | 3,319,969,000                                       |
|                                                                                                                                 | \$/kW net | 3,689                                               |
| Capital Cost Notes                                                                                                              |           |                                                     |
| <ol> <li>Costs based on EPC contracting approach. WTG as<br/>offshore substation foundations, and installation costs</li> </ol> |           |                                                     |

offshore substation foundations, and installation costs of WTGs. Indirect costs include distributable material and labor costs, cranes, scaffolding, engineering, construction management, startup and commissioning, and contractor overhead. EPC fees are applied to the sum of direct and indirect costs.

2. Interconnection costs include interconnection surveys, application fees, and construction materials/contracting costs with the necessary equipment. Onshore/Offshore transmission costs include onshore/offshore substation costs and transmission line costs.

3. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's startup and commissioning costs. Other owner's costs include electrical interconnection costs.

#### **15.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

Operating expenditures cover all maintenance expenses during operations, including leasing, management, labor, equipment and vessel rentals, parts, and consumables for both scheduled and unscheduled maintenance of the WTGs and balance of plant systems, as well as operations monitoring. Table 15-2 summarizes the average annual O&M expenses projected for an assumed 25-year project life.

Sargent & Lundy <sup>92</sup>

#### Table 15-2 — Case 15 O&M Cost Estimate

| Case 15<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD                                                              |                                                  |                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|--|--|--|
| Fixed-bottom O                                                                                                 | Fixed-bottom Offshore Wind: Monopile Foundations |                                     |  |  |  |
| Fixed O&M – Plant (Notes 1-2)                                                                                  | Fixed O&M – Plant (Notes 1-2) Units Value        |                                     |  |  |  |
| Maintenance Costs                                                                                              | \$/year                                          | 109,800,000                         |  |  |  |
| Leasing Costs                                                                                                  | \$/year                                          | 28,800,000                          |  |  |  |
| Subtotal Fixed O&M                                                                                             | \$/year                                          | 138,600,000                         |  |  |  |
| \$/kW-year                                                                                                     | \$/kW-year                                       | 154.00 \$/kW-year                   |  |  |  |
| Variable O&M                                                                                                   | \$/MWh                                           | 0.00 \$/MWh                         |  |  |  |
| O&M Notes                                                                                                      |                                                  |                                     |  |  |  |
| <ol> <li>Leasing numbers are based on projects on the<br/>Leasing will fluctuate based on location.</li> </ol> | ne east coast (New York, No                      | orth Carolina, and South Carolina). |  |  |  |
| 2. Fixed O&M costs include labor, materials, an                                                                | d contracted services.                           |                                     |  |  |  |

#### **15.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**

Wind power projects do not produce regulated environmental air emissions. While other environmental compliance requirements may apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>X</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu.



# CASE 16. SOLAR PHOTOVOLTAIC WITH SINGLE AXIS TRACKING, 150 MWAC

#### **16.1. CASE DESCRIPTION**

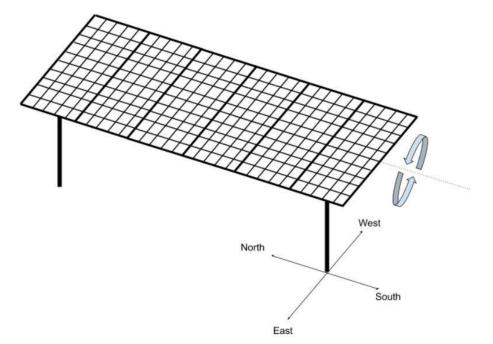
This case is a nominal 150 MW<sub>AC</sub> solar photovoltaic (PV) facility with single-axis tracking. While continued advances in technical efficiency have resulted in lower module prices over the past decade, solar PV costs have increased somewhat relative to 2019 pricing. This case uses 195 MW<sub>DC</sub> of monocrystalline passive emitter and rear contact (PERC) bifacial modules connected in 1500-V strings with independent single-axis tracker rows that are placed in a north-south orientation with east-west tracking. The case also uses 150 MW<sub>AC</sub> of central power conversion stations (inverters with integrated medium-voltage transformers), resulting in a DC/AC ratio of 1.3 at the inverter. Solar PV projects are relatively simple since there is no fuel or waste and limited moving parts; however, single-axis tracking systems require considerable land commitments due to a low ground coverage ratio intended to limit self-shading as well as create room for both tracking rotation and easy access for maintenance purposes. Many tracking companies offer advanced backtracking software that help to optimize yield and ground coverage ratio, though this was not considered in this estimate.





Bifacial PV panels (left) and tracking systems (right). **Source:** Sargent & Lundy project site photo archive.




#### **16.1.1. Mechanical Equipment and Systems**

Solar PV systems convert sunlight into electrical power. Solar PV modules convert incident solar radiation into a potential difference within individual solar cells that produces DC electricity. The solar PV facility assumed for this study is comprised of 390,000 individual 500-watt, 1500-V monocrystalline solar modules with PERC architecture for increased efficiency. These modules are connected in series to each other in strings. The exact number of modules in each string varies across the United States depending on site specific conditions and module characteristics but typically range from 26 up to 32 modules per string. The strings connect to each other in parallel to form large solar arrays, which make up the bulk of the facility. Arrays are often grouped together into distinct blocks throughout the plant with each block having a single designated inverter pad. Mechanical components of these arrays include the racking and solar tracking equipment. This estimate assumes the racking uses a driven pile foundation; however, depending on the site's geotechnical characteristics, ground screws and concrete foundations can also be used.

The tracking system's exact mechanics depend on the manufacturer. This system, and nearly all singleaxis tracking systems currently being manufactured, use a north-south oriented tracking axis that is horizontally parallel with respect to the ground. This orientation allows the panels to track the sun as it crosses the sky from east to west. One variation in tracking mechanics that can impact the overall cost is linked versus unlinked row tracking. Linked row tracking connects multiple rows to a single tracker mechanism, thereby requiring them all to rotate at the same angle throughout the day but significantly reducing the number of tracker motors that need to be procured for the system. Unlinked row tracking allows individual rows to track the sun at different angles but require a solar tracker mechanism on each row. This case assumes an unlinked single-axis tracker technology.







## **16.1.2. Electrical and Control Systems**

Each block within a PV is typically made up of identical components and functionality. Electrical components include:

- DC and AC wiring
- Combiner boxes
- Inverters
- Step-up transformers
- Control system
- Switchyard with electrical interconnection to the grid

As previously explained, modules are combined in series to form series strings. These strings are combined in parallel to form solar arrays. Arrays are then connected via combiner boxes to combine the current from each string of each array before feeding the DC power into an inverter. The number of arrays combined into each combiner box is dependent on the site layout, the current of each string, and the size of the combiner box. This estimate assumes one combiner box for every thirty strings. After DC cables from the combiner boxes are fed into the inverter, the inverter then converts the DC electricity from the combiner boxes into AC electricity. Inverters are generally grouped into two different categories defined by their capacity with smaller inverters that are spread around the array being referred to as string inverters and



larger inverters skidded at select central locations in the facility are referred to as central inverters. Central inverters currently used in new projects are typically rated between 1,500 kW and 4000 kW. This system uses one 2500-kW central inverter with one integrated 2.5 MVA medium-voltage transformer within each PV block. Inverters that are skidded with a medium-voltage transformer (either via internal or external integration) are referred to as power conversion stations and are typically sold as a cohesive unit from the inverter manufacturer.

A solar facility's nominal capacity is typically defined by either the net AC capacity of the inverters across all blocks or the maximum allowable injection capacity into the electric grid as defined by the project's interconnection agreement. In general, there will always be more installed DC capacity from the modules than AC capacity from the inverters. The ratio of DC to AC capacity (DC/AC ratio) is typically between 1.2 and 1.4; however, some projects increase the DC/AC ratio with the intention of harnessing the DC power that is clipped by the inverter's maximum capacity into battery storage energy. On the other side of the spectrum, some projects will decrease the DC/AC ratio to allow for additional reactive compensation. This estimate assumes a DC/AC ratio of 1.3.

#### **16.1.3. Offsite Requirements**

Solar PV facilities require no fuel and produce no waste. The offsite requirements are limited to an interconnection between the PV facility and the transmission system. In the event the facility plans to have the modules cleaned, offsite requirements will also include water for the purpose of cleaning the solar modules. Water is not always a requirement because the necessity of cleaning is regionally dependent. In regions with significant rainfall and limited dust accumulation, cleaning is often unnecessary because it occurs naturally. In dust heavy and dry regions (which often have higher solar irradiance), cleaning occurs proportionally to the dust accumulation from once or twice a year up to bi-monthly and typically uses offsite water that is brought in on trucks. This analysis assumes one cleaning per year.

#### **16.2. CAPITAL COST ESTIMATE**

Table 16-1 summarizes the cost components for this case. Solar prices have been increasing due to rising commodity pricing, delivery and manufacturing costs, and labor costs. As the solar PV industry has been subject to volatile pricing, labor challenges, and being restricted to difficult land, the engineering, procurement, and construction (EPC) contractors and developers have also been bearing more contingency and overhead, further increasing a solar project's overall cost.

Despite these cost increases, advancements in solar PV technology and construction continue to provide downward pressure on the \$/kW cost. As solar modeling and engineering software advances, projects are able to optimize layouts and ground coverage for the lowest levelized cost of energy; however, in recent



years, this only serves to limit the cost increases rather than to cause a material decrease in total project costs. Solar modules that are arriving on the market are rated to have a net string potential of 1500 V rather than the previous 1000 V string that was common in the early and mid-2010s. This increased net potential allows for lower wiring losses, which increases the net energy yield and lowers wiring material costs in the electrical balance-of-plant.

| Case 16<br>EIA – Capital Cost Estimates – 2023 \$ USD           |                                   |                                                    |
|-----------------------------------------------------------------|-----------------------------------|----------------------------------------------------|
| Configuration                                                   |                                   | Solar PV with Single-Axis<br>Tracking<br>150 MW AC |
| DC / AC Ratio                                                   |                                   | 1.3                                                |
| Module Type                                                     |                                   | Bifacial Monocrystalline                           |
|                                                                 | Units                             |                                                    |
| Plant Characteristics                                           |                                   |                                                    |
| Net Plant Capacity                                              | MW_AC                             | 150                                                |
| Capital Cost Assumptions                                        |                                   |                                                    |
| EPC Contracting Fee                                             | % of Direct and<br>Indirect Costs | 5%                                                 |
| EPC Contingency                                                 | % of EPC Costs                    | 5%                                                 |
| Owner's Services                                                | % of EPC Costs                    | 5%                                                 |
| Owner's Contingency                                             | % of Owner's Costs                | 10%                                                |
| Estimated Land Requirement (Note 1)                             | acres                             | 1000                                               |
| Interconnection Costs                                           |                                   |                                                    |
| Electrical Transmission Interconnection Costs                   | ¢/mile                            | 2,442,000                                          |
| Transmission Line Cost<br>Miles                                 | \$/mile<br>miles                  | 2,412,000<br>1.00                                  |
| Typical Project Timelines                                       | IIIIes                            | 1:00                                               |
| Development, Permitting, Engineering                            | months                            | 24                                                 |
| Plant Construction Time                                         | months                            | 12                                                 |
| Total Lead Time Before Commercial                               |                                   |                                                    |
| Operation Date (COD)                                            | months                            | 36                                                 |
| Operating Life                                                  | years                             | 35                                                 |
| EPC Cost Components (Note 2)                                    |                                   |                                                    |
| Module Supply                                                   | \$                                | 72,150,000                                         |
| Inverter Supply                                                 | \$                                | 10,395,000                                         |
| Racking, Tracker and Balance-of-Plant<br>(BOP) Equipment Supply | \$                                | 44,850,000                                         |
| Main Power Transformer and Substation                           | \$                                | 10,500,000                                         |
| Construction / Installation Labor                               | \$                                | 26,325,000                                         |
| Supervisory, Control, and Data Acquisition<br>Subcontract       | \$                                | 915,000                                            |
| Civil/Structural/Architectural Subcontract                      | \$                                | 13,650,000                                         |
| Indirect Costs                                                  | \$                                | 12,675,000                                         |
| EPC Contracting Fee                                             | \$                                | 9,573,000                                          |

## Table 16-1 — Case 16 Capital Cost Estimate



| Case 16<br>EIA – Capital Cost Estimates – 2023 \$ USD |           |                                                    |
|-------------------------------------------------------|-----------|----------------------------------------------------|
| Configuration                                         |           | Solar PV with Single-Axis<br>Tracking<br>150 MW AC |
| DC / AC Ratio                                         |           | 1.3                                                |
| Module Type                                           |           | Bifacial Monocrystalline                           |
|                                                       | Units     |                                                    |
| EPC Contingency                                       | \$        | 10,052,000                                         |
| EPC Subtotal                                          | \$        | 211,085,000                                        |
| Owner's Cost Components (Note 3)                      |           |                                                    |
| Owner's Services                                      | \$        | 10,554,000                                         |
| Electrical Interconnection                            | \$        | 2,412,000                                          |
| Owner's Contingency                                   | \$        | 1,297,000                                          |
| Owner's Costs Subtotal                                | \$        | 14,263,000                                         |
| Total Capital Cost                                    | \$        | 225,348,000                                        |
|                                                       | \$/kW net | 1,502                                              |

 Land for this resource type is typically leased and not purchased. Minor costs for land acquisition and lease during development and construction period is included in the owner's services costs. Annual lease costs are also accounted for in the fixed operating and maintenance (O&M).

2. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include distributable material and labor costs, cranes, scaffolding, engineering, construction management, start-up and commissioning, contractor overhead, freight, and duties/sales taxes. EPC fees are applied to the sum of direct and indirect costs.

 Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs.

#### **16.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

Operations and maintenance costs associated with 150-MW<sub>AC</sub>, single-axis tracking solar PV project have increased slightly overall with a range of specific factors increasing and decreasing individually. There are five main factors to solar PV O&M: preventative maintenance, unscheduled maintenance, module cleaning, inverter maintenance reserve, and the land lease. As technological reliability increases and designs become more focused on decreasing O&M costs, preventative maintenance gets less costly and unscheduled maintenance occurs less frequently. Examples of O&M-focused designs are DC harnesses for optimal wiring configurations, wireless communication and control systems, and central inverter locations for ease of access. These increases in design and reliability savings are more than offset by the increases in equipment and maintenance labor costs leading to an overall increase in both preventative and unscheduled maintenance. Similarly, the inverter maintenance reserve is another factor that increased overall in cost but is subject to competing impacts between higher inverter pricing but increasing inverter reliability that drives the reserve down.



Module cleaning is the only cost component that decreased overall. Cleaning is typically less expensive for PV fields with trackers using independent rows because a single truck can clean two rows at a time instead of one. New coatings and design of PV modules have also resulted in slight decreases in the amount of "typical" module cleanings in the United States from two on average down to one. The final annual expense is the land lease. Solar PV projects typically rent, rather than purchase, the land for the project; therefore, it is an operating expense and not a capital cost. As the increased demand for solar PV projects continues throughout the country, there has been a material drop in ideal sites that are available and PV developers have been forced to locate facilities on more expensive and unideal land. Additionally, landowners have become more aware of the economic value of these facilities and have begun to charge more for leasing their land.

#### Table 16-2 — Case 16 O&M Cost Estimate

| Case 16<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD<br>Solar PV with Single-Axis Tracking |            |                |
|-----------------------------------------------------------------------------------------|------------|----------------|
|                                                                                         |            |                |
| Preventative Maintenance                                                                | \$/year    | 1,500,000      |
| Module Cleaning (Note 2)                                                                | \$/year    | 136,000        |
| Unscheduled Maintenance                                                                 | \$/year    | 225,000        |
| Inverter Maintenance Reserve                                                            | \$/year    | 374,000        |
| Land Lease (Note 3)                                                                     | \$/year    | 800,000        |
| Subtotal Fixed O&M                                                                      | \$/year    | 3,035,000      |
| \$/kW-year                                                                              | \$/kW-year | 20.23 \$/kW-yr |
| Variable O&M                                                                            | \$/MWh     | 0.00 \$/MWh    |
| D&M Cost Notes                                                                          |            |                |

1. Fixed O&M costs include labor, materials and contracted services, and general and administrative (G&A) costs. O&M costs exclude property taxes and insurance.

2. Assume one module cleaning per year.

3. Land for solar PV projects is typically leased rather than owned, this is considered to be a representative annual expense but varies across projects.

#### **16.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**

Solar PV does not produce regulated environmental air emissions. While other environmental compliance requirements may apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>X</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu.



# CASE 17. SOLAR PHOTOVOLTAIC WITH SINGLE AXIS TRACKING, AC-COUPLED BATTERY ENERGY STORAGE, 150 MWAC | 200 MWH

#### **17.1. CASE DESCRIPTION**

This case is based on a nominal 150 MW<sub>AC</sub> solar photovoltaic (PV) plant with 200 MWh of lithium-ion battery storage that is AC-coupled. Solar PV has increasingly been coupled with battery storage in recent years due to price reductions in lithium-ion batteries. The AC-coupling architecture refers to a design in which the PV and battery components are coupled on AC side (grid side) of the inverter. The AC-coupled system assumes a DC/AC ratio of 1.4, resulting in a DC size of 210 MW. AC-coupled systems are typically built at a higher DC/AC ratio than standalone PV to maximize the amount of available energy to charge the battery energy storage system (BESS) without sacrificing PV output while the BESS is charging or idle. The factors driving cost increases of solar PV projects are shared with systems coupled with battery storage. Cost increases are partially offset by modeling technology used to optimize design and reduce civil costs per kW, higher power modules, lower priced inverters, and lower risk. Batteries can be either AC- or DC-coupled to the solar array. AC-coupled systems have a simpler architecture that is easier to install and can be retrofit to an existing solar plant with the batteries interconnected directly at the substation. AC-coupled systems offer higher efficiency when used in power AC applications, but they also have slightly lower efficiencies when charging the battery. The most common application for AC-coupled systems is peak shaving, or energy arbitrage, where there is a limit on the power allowed into the grid and the peak of the solar generation is stored in a battery to be sold during the highest demand peaks for optimal profit.

#### **17.1.1. Mechanical Equipment and Systems**

This case assumes a nominal 150 MW<sub>AC</sub> solar PV plant with 200 MWh of lithium-ion battery storage. Batteries are typically sized by their output in kWh and not by their capacity in MW, which is defined by the AC capacity of the battery's inverters. The 200 MWh battery system in this estimate is comprised of four hours of 50 MW output. The mechanical equipment for the solar portion is the same as a stand-alone solar PV facility: 500-watt 1500-V monocrystalline modules, ground mounted racking with driven pile foundations, and independent single-axis tracking equipment. The mechanical equipment associated with the battery storage is the batteries themselves, the containers they are placed in, the fire suppression system, and the concrete foundations for the battery containers. This estimate assumes the use of 80 containers, each 40 feet in length and containing 2.5 MWh of battery storage. Smaller 20-foot containers are sometimes used depending on constraints with site availability and project size. Containers are often provided with unpopulated racks to allow for periodic additions of more batteries ("augmentation") to compensate for

energy capacity lost to battery degradation. Alternatively, battery augmentation may be performed by adding entirely new battery containers to vacant footprints on a project site.

#### **17.1.2. Electrical and Control Systems**

When incorporating AC-coupled battery storage into a solar PV site, there is no change in the electrical components of the solar array and solar inverters. The solar modules are connected in series with DC wiring into solar strings. The solar strings are connected in parallel to combiner boxes that output the current into the solar inverters. The output of the solar inverter then enters a switchgear that feeds the AC current into either the grid or the battery inverter. It is also important to note that battery storage inverters are different from solar inverters in that they are typically bi-directional inverters that can alternate between inverting AC to DC and inverting DC to AC. Battery storage inverters also allow the batteries to be charged by either the solar array or the grid. This facility uses 150 MW of solar inverters plus 50 MW of battery inverters. Battery inverters are typically more expensive than solar inverters.

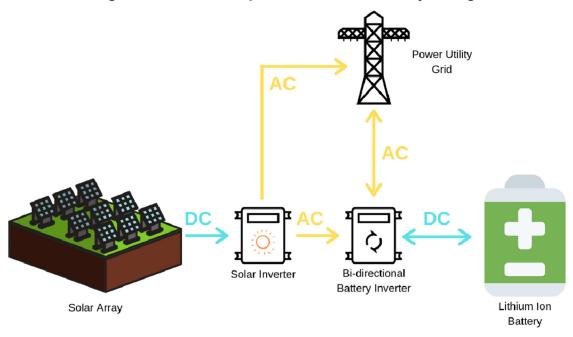



Figure 17-1 — AC-Coupled Solar PV and Battery Storage

Adapted from Clean Energy Reviews,

https://www.cleanenergyreviews.info/blog/ac-coupling-vs-dc-coupling-solar-battery-storage (accessed June 12, 2019).

Whether power is being used from the battery storage or the solar array, it passes through a switchyard that contains the circuit breaker, step-up transformer, and electrical interconnection with the grid. A supervisory control and data acquisition (SCADA) system is provided for communications and control of

the inverters and substation. The SCADA system allows the operations staff to remotely control and monitor the solar PV farm as a whole.

## **17.1.3. Offsite Requirements**

Solar PV and battery storage facilities require no fuel and produce no waste. The offsite requirements are limited to an interconnection between the facility and the transmission system as well as water for the purpose of cleaning the solar modules—if applicable since cleaning is regionally dependent. In regions with significant rainfall and limited dust accumulation, cleaning is often unnecessary and occurs naturally. In dust heavy and dry regions, cleaning typically occurs once or twice a year and uses offsite water that is brought in on trucks. This analysis assumes two cleanings per year.

## **17.2. CAPITAL COST ESTIMATE**

Table 17-1 summarizes the cost components for this case. It should be noted that the DC/AC ratio for this paired technology is higher than that of a standalone PV system. This requires more panels, racking, etc., so the cost for these components will be higher than those of a standalone PV system with the same net AC output. Solar prices have been increasing due to rising commodity pricing, delivery and manufacturing costs, and labor costs. Facing volatile pricing, labor challenges, and being restricted to difficult land, EPC contractors and developers have also been bearing more contingency and overhead, further increasing the solar portion of the project's overall price. The battery cost estimate also increased relative to the 2019 pricing due to inflation and the inclusion of substation costs.

| Case 17<br>EIA – Capital Cost Estimates – 2023 \$ USD |       |                                                               |
|-------------------------------------------------------|-------|---------------------------------------------------------------|
| Configuration                                         |       | Solar PV with Single-<br>Axis Tracking and<br>Battery Storage |
| Battery Configuration                                 |       | AC Coupled                                                    |
| DC / AC Ratio                                         |       | 1.4                                                           |
| Module Type                                           |       | Bifacial<br>Monocrystalline                                   |
| Battery Type                                          |       | Lithium Ion                                                   |
|                                                       | Units |                                                               |
| Plant Characteristics                                 |       |                                                               |
| Net Solar Capacity                                    | MW_AC | 150                                                           |
| Net Battery Capacity                                  | MW_AC | 50                                                            |
| Battery Duration                                      | hour  | 4                                                             |
| Capital Cost Assumptions                              |       |                                                               |

Sargent & Lundy <sup>103</sup>

| Case 17<br>EIA – Capital Cost Estimates – 2023 \$ USD              |                                |                                                               |  |
|--------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------|--|
| Configuration                                                      |                                | Solar PV with Single-<br>Axis Tracking and<br>Battery Storage |  |
| Battery Configuration                                              |                                | AC Coupled                                                    |  |
| DC / AC Ratio                                                      |                                | 1.4                                                           |  |
| Module Type                                                        |                                | Bifacial<br>Monocrystalline                                   |  |
| Battery Type                                                       |                                | Lithium Ion                                                   |  |
|                                                                    | Units                          |                                                               |  |
| EPC Contracting Fee                                                | % of Direct and Indirect Costs | 5%                                                            |  |
| EPC Contingency                                                    | % of Project Costs             | 5%                                                            |  |
| Owner's Services                                                   | % of Project Costs             | 5%                                                            |  |
| Owner's Contingency                                                | % of Project Costs             | 10%                                                           |  |
| Estimated Land Requirement (Note 1)                                | acres                          | 1150                                                          |  |
| Interconnection Costs                                              |                                |                                                               |  |
| Electrical Transmission Interconnection Costs                      |                                |                                                               |  |
| Transmission Line Cost                                             | \$/mile                        | 2,412,000                                                     |  |
| Miles                                                              | miles                          | 1.00                                                          |  |
| Typical Project Timelines                                          |                                |                                                               |  |
| Development, Permitting, Engineering                               | months                         | 24                                                            |  |
| Plant Construction Time                                            | months                         | 12                                                            |  |
| Total Lead Time Before<br>Commercial Operation Date (COD)          | months                         | 36                                                            |  |
| Operating Life                                                     | years                          | 35-Year PV; 20-Year<br>BESS                                   |  |
| EPC Cost Components (Note 2)                                       |                                |                                                               |  |
| PV Module Supply                                                   | \$                             | 77,700,000                                                    |  |
| PV Inverter Supply                                                 | \$                             | 10,395,000                                                    |  |
| PV Racking, Tracker and Balance-of-Plant<br>(BOP) Equipment Supply | \$                             | 48,300,000                                                    |  |
| BESS Container Supply                                              | \$                             | 50,560,000                                                    |  |
| BESS BOP Equipment Supply (Note 3)                                 | \$                             | 12,280,000                                                    |  |
| Main Power Transformer and Substation                              | \$                             | 10,500,000                                                    |  |
| PV Construction / Installation Labor                               | \$                             | 28,350,000                                                    |  |
| BESS Construction / Installation Labor                             | \$                             | 2,900,000                                                     |  |
| SCADA Subcontract                                                  | \$                             | 915,000                                                       |  |
| Civil/Structural/Architectural Subcontract                         | \$                             | 14,700,000                                                    |  |
| Indirect Costs                                                     | \$                             | 21,650,000                                                    |  |
| EPC Contracting Fee                                                | \$                             | 13,913,000                                                    |  |
| EPC Contingency                                                    | \$                             | 14,608,000                                                    |  |
| EPC Subtotal                                                       | \$                             | 306,771,000                                                   |  |



## Case 17 EIA – Capital Cost Estimates – 2023 \$ USD

| Configuration                    |           | Solar PV with Single-<br>Axis Tracking and<br>Battery Storage |
|----------------------------------|-----------|---------------------------------------------------------------|
| Battery Configuration            |           | AC Coupled                                                    |
| DC / AC Ratio                    |           | 1.4                                                           |
| Module Type                      |           | Bifacial<br>Monocrystalline                                   |
| Battery Type                     |           | Lithium Ion                                                   |
|                                  | Units     |                                                               |
| Owner's Cost Components (Note 4) |           |                                                               |
| Owner's Services                 | \$        | 15,339,000                                                    |
| Electrical Interconnection       | \$        | 2,412,000                                                     |
| Owner's Contingency              | \$        | 1,775,000                                                     |
| Owner's Cost Subtotal            | \$        | 19,526,000                                                    |
| Total Capital Cost               | \$        | 326,297,000                                                   |
|                                  | \$/kW net | 2,175                                                         |
| Capital Cost Notes               |           |                                                               |

# 1. Land for this resource type is typically leased and not purchased. Minor costs for land acquisition and lease during development and construction period is included in the owner's services costs. Annual lease costs are also accounted for in the fixed operating and maintenance (O&M).

2. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include distributable material and labor costs, cranes, scaffolding, engineering, construction management, start-up and commissioning, contractor overhead, freight, and duties/sales taxes. EPC fees are applied to the sum of direct and indirect costs. 3. BESS BOP equipment supply is inclusive of all equipment and materials except for BESS units to provide medium-voltage feeders to the substation. Including but not limited to auxiliary power equipment and transfer switches; inverters; medium-voltage transformers; cabling and conduit; equipment foundations; and supervisory control and data acquisition (SCADA).

4. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs.

## **17.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

For this case, Sargent & Lundy grouped the O&M costs into the following categories: preventative maintenance, unscheduled maintenance, module cleaning, inverter maintenance reserve, battery augmentation, and the land lease. Descriptions of all the factors except the battery augmentation can be found in Section 16.3. The typical lifetime of a battery is 7300 cycles, which yields a lifetime of roughly 20 years (based on approximately one cycle per day). Sargent & Lundy assumes periodic augmentation to compensate for energy capacity lost to battery degradation for the first 20 years. More extensive decommissioning of the original BESS equipment and rebuilding with entirely new batteries, may be necessary in order to have storage of PV generation for the 35-year expected life of the PV technology.

Sargent & Lundy has modeled only augmentation through year 20, not any decommissioning or extensive rebuild afterwards.

| Case 17<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD |                              |                  |
|---------------------------------------------------|------------------------------|------------------|
| Solar PV with Single-Axis                         | Fracking and Battery Storage |                  |
| Fixed O&M – Plant (Note 1)                        | Units                        | Value            |
| Preventative Maintenance                          | \$/year                      | 2,700,000        |
| Module Cleaning (Note 2)                          | \$/year                      | 146,000          |
| Unscheduled Maintenance                           | \$/year                      | 525,000          |
| Inverter Maintenance Reserve                      | \$/year                      | 374,000          |
| Battery Augmentation                              | \$/year                      | 1,200,000        |
| Land Lease (Note 3)                               | \$/year                      | 814,200          |
| Subtotal Fixed O&M                                | \$/year                      | 5,759,200        |
| \$/kW-year                                        | \$/kW-year                   | 38.39 \$/kW-year |
| /ariable O&M                                      | \$/MWh                       | 0.00 \$/MWh      |
| D&M Cost Notes                                    |                              |                  |

## Table 17-2 — Case 17 O&M Cost Estimate

O&M costs exclude property taxes and insurance. 2. Assume two module cleanings per year.

3. Solar PV projects typically rent land rather than purchase it, this is considered to be a representative annual expense but varies across projects.

## **17.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**

Neither solar PV nor battery storage produce regulated environmental air emissions. While other environmental compliance requirements may apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>x</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu.



## CASE 18. SOLAR PHOTOVOLTAIC WITH SINGLE AXIS TRACKING, DC-COUPLED BATTERY ENERGY STORAGE, 150 MWAC | 200 MWH

### **18.1. CASE DESCRIPTION**

This case is based on a nominal 150 MW<sub>AC</sub> solar photovoltaic (PV) plant with 200 MWh of lithium-ion battery storage that is DC-coupled. The DC-coupling architecture refers to a design in which the PV and battery components are coupled on DC side (plant side) of the inverter. The DC-coupled system assumes a DC/AC ratio of 1.6, resulting in a DC size of 240 MW. DC-coupled systems often have the highest DC/AC ratio because unlike most systems that experience increased clipping losses as the DC/AC ratio increases, DC-coupled systems can capture energy that would have otherwise been clipped and use it to charge the battery energy storage system (BESS). DC-coupled systems require no inversion of solar electricity from DC to AC and back again before the electricity is stored in the battery and can thus achieve higher BESS roundtrip efficiency than AC-coupled systems. But DC-coupled systems also have a more complex arrangement and control architecture, are more difficult to install and retrofit with an existing solar system, and require additional equipment such as DC to DC converters. DC-coupled systems may be used for the same applications as AC-coupled systems such as peak shaving, or energy arbitrage, but they tend to be more costly to install than AC-coupled designs and are less common in the industry.

### **18.1.1. Mechanical Equipment and Systems**

This case assumes a nominal 150 MW<sub>AC</sub> solar PV plant with 200 MWh of lithium-ion battery storage. Batteries are typically sized by their output in kWh and not by their capacity in MW, which is defined by the AC capacity of the battery's inverters. The 200 MWh battery system in this estimate is comprised of four hours of 50 MW output. The mechanical equipment for the solar portion is the same as a stand-alone solar PV facility: 500-watt 1500-V monocrystalline modules, ground mounted racking with driven pile foundations, and independent single-axis tracking equipment. The mechanical equipment associated with the battery storage is the batteries themselves, the containers they are placed in, the fire suppression system, and the concrete foundations for the battery containers. This estimate assumes the use of 80 containers, each 40 feet in length and containing 2.5 MWh of battery storage. Smaller 20-foot containers are sometimes used depending on constraints with site availability and project size. Containers are often provided with unpopulated racks to allow for periodic battery augmentations to compensate for energy capacity lost to battery degradation. Alternatively, battery augmentation may be performed by adding entirely new battery containers to vacant footprints on a project site. For DC-coupled PV and BESS facilities, the former augmentation strategy (using spare racks in original containers) has historically been preferred to allow for

more gradual augmentations at the distributed BESS locations on the site; but many modern suppliers offer stand-alone modular options in smaller kWh increments to serve the same purpose.

## **18.1.2. Electrical and Control Systems**

In a DC-coupled system, the PV and battery components share the same bidirectional inverters, and energy used to charge the battery passes through a DC-to-DC converter. In such an architecture, the hardware and controls allow charging the battery from the grid or directly from the PV without conversion to AC. In this case, excess PV generation that exceeds the inverter capacity limit and would normally be clipped by the inverter is instead used to charge the batteries. Like most PV arrangements, the PV modules are connected in series with DC wiring to form strings which are in turn connected in parallel at combiner boxes. In the DC-coupled architecture, the DC output from the PV combiner boxes may be sent through the DC/AC inverters to the grid or directly to the BESS through the DC-to-DC converters. This facility uses 150 MW of bidirectional inverters which covers both the PV and BESS capacities. Bidirectional inverters (sometimes referred to as battery inverters) are typically more expensive than solar inverters.

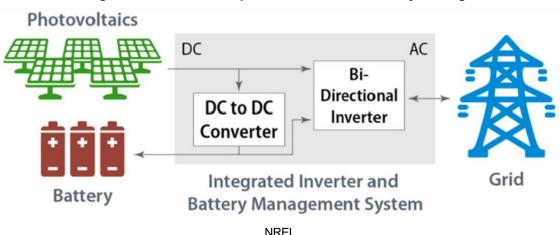



Figure 18-1 — DC-Coupled Solar PV and Battery Storage

Whether power is being used from the battery storage or the solar array, it passes through a switchyard that contains the circuit breaker, step-up transformer, and electrical interconnection with the grid.

## **18.1.3. Offsite Requirements**

Solar PV and battery storage facilities require no fuel and produce no waste. The offsite requirements are limited to an interconnection between the facility and the transmission system as well as water for the purpose of cleaning the solar modules. Cleaning is regionally dependent. In regions with significant rainfall and limited dust accumulation, cleaning is often unnecessary and occurs naturally. In dust heavy and dry

Source: (https://www.nrel.gov/docs/fy21osti/77917.pdf)

regions, cleaning typically occurs once or twice a year and uses offsite water that is brought in on trucks. This analysis assumes two cleanings per year.

## **18.2. CAPITAL COST ESTIMATE**

Table 18-1 summarizes the cost components for this case. It should be noted that the DC/AC ratio for this paired technology is higher than that of the AC-coupled and standalone PV systems. This requires more panels, racking, etc., so the cost for these components will be higher than those of the AC-coupled and standalone PV cases with the same net AC capacity ratings. Facing volatile pricing, labor challenges, and being restricted to difficult land, EPC contractors and developers have also been bearing more contingency and overhead, further increasing the solar portion of the project's overall price. The battery cost estimate also increased relative to the 2019 pricing due to inflation and the inclusion of substation costs in this iteration of the estimate.

| Case 18<br>EIA – Capital Cost Estimates – 2023 \$ USD |                                   |                                                              |  |
|-------------------------------------------------------|-----------------------------------|--------------------------------------------------------------|--|
| Configuration                                         |                                   | Solar PV with Single-Axis<br>Tracking and<br>Battery Storage |  |
| Battery Configuration                                 |                                   | DC Coupled                                                   |  |
| DC / AC Ratio                                         |                                   | 1.6                                                          |  |
| Module Type                                           |                                   | Bifacial Monocrystalline                                     |  |
| Battery Type                                          |                                   | Lithium Ion                                                  |  |
|                                                       | Units                             |                                                              |  |
| Plant Characteristics                                 |                                   |                                                              |  |
| Net Solar Capacity                                    | MW_AC                             | 150                                                          |  |
| Net Battery Capacity                                  | MW_AC                             | 50                                                           |  |
| Battery Duration                                      | hour                              | 4                                                            |  |
| Capital Cost Assumptions                              |                                   |                                                              |  |
| EPC Contracting Fee                                   | % of Direct and Indirect<br>Costs | 5%                                                           |  |
| EPC Contingency                                       | % of Project Costs                | 5%                                                           |  |
| Owner's Services                                      | % of Project Costs                | 5%                                                           |  |
| Owner's Contingency                                   | % of Project Costs                | 10%                                                          |  |
| Estimated Land Requirement (Note 1)                   | acres                             | 1300                                                         |  |
| Interconnection Costs                                 |                                   |                                                              |  |
| Electrical Transmission Interconnection Costs         |                                   |                                                              |  |
| Transmission Line Cost                                | \$/mile                           | 2,412,000                                                    |  |
| Miles                                                 | miles                             | 1.00                                                         |  |



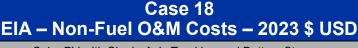
| Case 18<br>EIA – Capital Cost Estimates – 2023 \$ USD     |           |                                                              |
|-----------------------------------------------------------|-----------|--------------------------------------------------------------|
| Configuration                                             |           | Solar PV with Single-Axis<br>Tracking and<br>Battery Storage |
| Battery Configuration                                     |           | DC Coupled                                                   |
| DC / AC Ratio                                             |           | 1.6                                                          |
| Module Type                                               |           | Bifacial Monocrystalline                                     |
| Battery Type                                              |           | Lithium Ion                                                  |
|                                                           | Units     |                                                              |
| Typical Project Timelines                                 |           |                                                              |
| Development, Permitting, Engineering                      | months    | 24                                                           |
| Plant Construction Time                                   | months    | 12                                                           |
| Total Lead Time Before Commercial                         | months    | 36                                                           |
| Operation Date (COD)<br>Operating Life                    |           | 35-Year PV; 20-Year BESS                                     |
| EPC Cost Components (Note 2)                              | years     | 35-Tear PV, 20-Tear DESS                                     |
| PV Module Supply                                          | \$        | 88,800,00                                                    |
| Bidirectional Inverter Supply                             |           | 11,205,00                                                    |
| PV Racking, Tracker and Balance-of-<br>Plant              | \$<br>\$  | 55,200,00                                                    |
| (BOP) Equipment Supply<br>BESS Container Supply           | \$        | 50,560,00                                                    |
| BESS BOP Equipment Supply (Note 3)                        | \$        | 30,700,00                                                    |
| Main Power Transformer & Substation                       | \$        | 10,500,00                                                    |
| PV Construction / Installation Labor                      | \$        | 32,400,00                                                    |
| BESS Construction / Installation Labor                    | \$        | 7,250,00                                                     |
| Supervisory, Control, and Data<br>Acquisition Subcontract | \$        | 915,00                                                       |
| Civil/Structural/Architectural<br>Subcontractor           | \$        | 16,800,00                                                    |
| Indirect Costs                                            | \$        | 23,600,00                                                    |
| EPC Contracting Fee                                       | \$        | 16,397,00                                                    |
| EPC Contingency                                           | \$        | 17,216,00                                                    |
| EPC Subtotal                                              | \$        | 361,543,00                                                   |
| Owner's Cost Components (Note 4)                          |           |                                                              |
| Owner's Services                                          | \$        | 18,077,00                                                    |
| Electrical Interconnection                                |           | 2,412,00                                                     |
| Owner's Contingency                                       | \$        | 2,049,00                                                     |
| Owner's Cost Subtotal                                     | \$        | 22,538,00                                                    |
| Total Capital Cost                                        | \$        | 384,081,00                                                   |
|                                                           | \$/kW net | 2,56                                                         |

## Case 18 EIA – Capital Cost Estimates – 2023 \$ USD

| Configuration         | Solar PV with Single-Axis<br>Tracking and<br>Battery Storage |
|-----------------------|--------------------------------------------------------------|
| Battery Configuration | DC Coupled                                                   |
| DC / AC Ratio         | 1.6                                                          |
| Module Type           | Bifacial Monocrystalline                                     |
| Battery Type          | Lithium Ion                                                  |
| Units                 |                                                              |

1. Land for this resource type is typically leased and not purchased. Minor costs for land acquisition and lease during development and construction period is included in the owner's services costs. Annual lease costs are also accounted for in the fixed operating and maintenance (O&M).

2. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include distributable material and labor costs, cranes, scaffolding, engineering, construction management, start-up and commissioning, contractor overhead, freight, and duties/sales taxes. EPC fees are applied to the sum of direct and indirect costs.


3. BESS BOP equipment supply is inclusive of all equipment and materials except for BESS units to provide medium-voltage feeders to the substation, including, but not limited to, auxiliary power equipment and transfer switches; DC-to-DC converters; medium-voltage transformers; cabling and conduit; equipment foundations; and supervisory control and data acquisition (SCADA).

4. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs.

## **18.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

For this case, Sargent & Lundy grouped the O&M costs into the following categories: preventative maintenance, unscheduled maintenance, module cleaning, inverter maintenance reserve, battery augmentation, and the land lease. Descriptions of all the factors except the battery augmentation can be found in Section 16.3. The typical lifetime of a battery is 7300 cycles, which yields a lifetime of roughly 20 years (based on approximately one cycle per day). Sargent & Lundy assumes periodic augmentation to compensate for energy capacity lost to battery degradation for the first 20 years. More extensive decommissioning of the original BESS equipment and rebuilding with entirely new batteries, may be necessary in order to have storage of PV generation for the 35-year expected life of the PV technology. Sargent & Lundy has modeled only augmentation through year 20, not any decommissioning or extensive rebuild afterwards.

## Table 18-2 — Case 18 O&M Cost Estimate



Solar PV with Single-Axis Tracking and Battery Storage

Sargent & Lundy <sup>111</sup>

| \$/kW-year<br>Variable O&M   | \$/kW-year<br>\$/MWh | 39.24 \$/kW-year<br>0.00 \$/MWh |
|------------------------------|----------------------|---------------------------------|
| Subtotal Fixed O&M           | \$/year              | 5,886,400                       |
| Land Lease (Note 3)          | \$/year              | 920,400                         |
| Battery Augmentation         | \$/year              | 1,200,000                       |
| Inverter Maintenance Reserve | \$/year              | 374,000                         |
| Unscheduled Maintenance      | \$/year              | 525,000                         |
| Module Cleaning (Note 2)     | \$/year              | 167,000                         |
| Preventative Maintenance     | \$/year              | 2,700,000                       |
| Fixed O&M – Plant (Note 1)   | Units                | Value                           |

O&M Cost Notes

1. Fixed O&M costs include labor, materials and contracted services, and general and administrative (G&A) costs. O&M costs exclude property taxes and insurance.

2. Assume one module cleaning per year.

3. Land for solar PV projects is typically leased rather than owned, this is considered to be a representative annual expense but varies across projects.

## **18.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**

Solar PV does not produce regulated environmental air emissions. While other environmental compliance requirements may apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>x</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu.



## CASE 19. BATTERY ENERGY STORAGE SYSTEM, 150 MW | 600 MWH

### **19.1. CASE DESCRIPTION**


This case consists of a utility-scale, lithium-ion, battery energy storage system (BESS) with a 150 MW power rating and 600 MWh energy rating; the system can provide 150 MW of power for a four-hour duration. The cost estimate includes a substation consisting of a transformer to increase voltage from the BESS system to the interconnection voltage (modeled as 138 kV), as well as associated switchgear.

The BESS consists of 240 modular, factory-integrated battery storage containers that house the batteries and supporting systems (for example, battery management system, electrical protections, thermal management system, fire protection, etc.). The battery containers modeled in Case 19 are of representative size, 20 feet long x 10 feet wide x 8 feet high, however, industry offerings vary in size and modularity but offer roughly the same energy density per acre and total cost. The BESS uses utility-scale lithium-ion batteries. Approximately 1.5% of the initial battery capacity is assumed to degrade each year and require augmentation by the addition of new batteries. (The augmentation cost is included with the annual O&M, as discussed in Section 19.3). Battery containers are grouped together and connected with an associated inverter-transformer skid, which is approximately 15 feet long x 10 feet wide x 8 feet high and is commonly referred to as a Power Conditioning System (PCS). The PCS houses the inverters, transformer, and associated electrical equipment (for example, fuses and breakers). There is one control building with approximate dimension of 20 feet long x 10 feet wide x 8 feet high to support O&M activities. Each building is set on a concrete slab foundation.

Figure 19-1 shows a typical utility-scale lithium-ion battery. Several battery cells make up a battery module, also commonly referred to as a "battery pack", which is independently monitored and controlled. Several battery modules are contained within a battery rack, and there are several battery racks in a battery container.

Sargent & Lundy <sup>113</sup>





Source: National Renewable Energy Laboratory (NREL) "2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Costs Benchmark, Technical Report NREL/TP-6A20-71714, November 2018. (https://www.nrel.gov/docs/fy19osti/71714.pdf) (accessed July 23, 2019)

The BESS is equipped with 600 MWh of lithium-ion batteries connected in strings and one hundred 1.5 MW inverters. Batteries operate on DC power; however, most electric power generation on the grid is produced and distributed as AC power. Standalone BESS are equipped with inverters to convert between AC power from the grid to DC power for storage within the batteries. Sequentially, the grid or substation AC power is converted by the main power transformer from high-voltage (138+ kV) to medium-voltage (34.5 kV), medium-voltage power is converted to the operational voltage range of the inverters (480–700 V<sub>AC</sub>, depending on design) by medium-voltage transformers, and inverters convert AC power to DC power (1000–1500 V<sub>DC</sub>) for connection with the battery containers. AC-coupled and DC-coupled BESS are discussed in Case 17 and Case 18, respectively, however it is noteworthy that the majority of existing and near-term planned installations of BESS are either standalone or AC-coupled configurations.

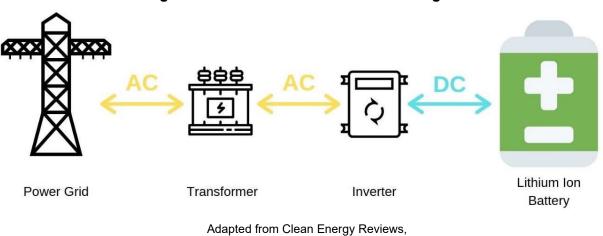



Figure 19-2 — Standalone BESS Flow Diagram

https://www.cleanenergyreviews.info/blog/ac-coupling-vs-dc-coupling-solar-battery-storage (accessed June 12, 2019).

## **19.2. CAPITAL COST ESTIMATE**

Table 19-1 summarizes the cost components for this case. Both the \$/kW and \$/kWh are provided to clearly describe the system estimate. The capital cost estimate is based on a BESS with a power rating of 150 MW and energy rating of 600 MWh (equivalent to a four-hour duration system). The cost estimate includes civil works, foundations, buildings, electrical equipment and related equipment, substation, switchyard, transformers, transmission lines, cabling, controls, and instrumentation. The cost estimate increased relative to the 2019 pricing due to inflation and the inclusion of substation costs in this iteration of the estimate.

| Case 19<br>EIA – Capital Cost Estimates – 2023 \$ USD               |                                 |                                                                 |  |
|---------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------|--|
| Configuration                                                       |                                 | Battery Energy Storage System<br>150 MW   600 MWh<br>Greenfield |  |
| Battery Type                                                        |                                 | Lithium-Ion                                                     |  |
| Service Life                                                        |                                 | 20 years                                                        |  |
| Total Charging Cycles in Service Life                               |                                 | 7,300                                                           |  |
|                                                                     | Units                           | ·                                                               |  |
| Plant Characteristics                                               |                                 |                                                                 |  |
| Power Rating                                                        | MW                              | 150                                                             |  |
| Energy Rating                                                       | MWh                             | 600                                                             |  |
| Duration                                                            | hour                            | 4                                                               |  |
| Capital Cost Assumptions                                            |                                 |                                                                 |  |
| Engineering, Procurement, and Construction<br>(EPC) Contracting Fee | % of Direct & Indirect<br>Costs | 5%                                                              |  |
| EPC Contingency                                                     | % of EPC Costs                  | 5%                                                              |  |
| Owner's Services                                                    | % of EPC Costs                  | 4%                                                              |  |
| Owner's Contingency                                                 | % of Owner's Costs              | 5%                                                              |  |
| Estimated Land Requirement                                          | acres                           | 6                                                               |  |
| Estimated Land Cost                                                 | \$/acre                         | 90,000                                                          |  |
| Interconnection Costs                                               |                                 |                                                                 |  |
| Electrical Transmission Interconnection Costs                       |                                 |                                                                 |  |
| Transmission Line Cost                                              | \$/mile                         | 2,412,000                                                       |  |
| Miles                                                               | miles                           | 1.00                                                            |  |
| Typical Project Timelines                                           |                                 |                                                                 |  |
| Development, Permitting, Engineering                                | months                          |                                                                 |  |
| Plant Construction Time                                             | months                          | 12                                                              |  |
| Total Lead Time Before Commercial<br>Operation Date (COD)           | months                          | 18                                                              |  |
| Operating Life                                                      | years                           | 20                                                              |  |
| EPC Cost Components (Note 1)                                        |                                 |                                                                 |  |
| BESS Unit Supply                                                    | \$                              | 151,700,000                                                     |  |

### Table 19-1 — Case 19 Capital Cost Estimate



| Case 19<br>EIA – Capital Cost Estimates – 2023 \$ USD    |           |                                                                 |
|----------------------------------------------------------|-----------|-----------------------------------------------------------------|
| Configuration                                            |           | Battery Energy Storage System<br>150 MW   600 MWh<br>Greenfield |
| Battery Type                                             |           | Lithium-Ion                                                     |
| Service Life                                             |           | 20 years                                                        |
| Total Charging Cycles in Service Life                    |           | 7,300                                                           |
|                                                          | Units     | ·                                                               |
| BESS Balance-of-Plant (BOP) Equipment<br>Supply (Note 2) | \$        | 36,857,00                                                       |
| BESS Installation                                        | \$        | 8,672,00                                                        |
| Main Power Transformer & Substation                      | \$        | 10,500,00                                                       |
| Indirect Costs                                           | \$        | 17,345,00                                                       |
| EPC Contracting Fee                                      | \$        | 11,254,00                                                       |
| EPC Contingency                                          | \$        | 11,816,00                                                       |
| EPC Subtotal                                             | \$        | 248,144,00                                                      |
| Owner's Cost Components (Note 2)                         |           |                                                                 |
| Owner's Services                                         | \$        | 9,926,00                                                        |
| Land                                                     | \$        | 540,00                                                          |
| Electrical Interconnection                               | \$        | 2,412,00                                                        |
| Owner's Contingency                                      | \$        | 644,00                                                          |
| Owner's Cost Subtotal                                    | \$        | 13,522,00                                                       |
| Total Capital Cost                                       | \$        | 261,666,00                                                      |
|                                                          | \$/kW net | 1,74                                                            |
|                                                          | \$/kWh    | 43                                                              |

### **Capital Cost Notes**

1. Costs based on EPC contracting approach. Direct costs include equipment, material, and labor to construct the civil/structural, mechanical, and electrical/I&C components of the facility. Indirect costs include distributable material and labor costs, cranes, scaffolding, engineering, construction management, start-up and commissioning, contractor overhead, freight, and duties/sales taxes. EPC fees are applied to the sum of direct and indirect costs.

2. BESS BOP equipment supply is inclusive of all equipment and materials except for BESS units to provide medium-voltage feeders to the substation, including, but not limited to, auxiliary power equipment and transfer switches; inverters; medium-voltage transformers; cabling and conduit; equipment foundations; and supervisory control and data acquisition (SCADA).

3. Owner's costs include project development, studies, permitting, legal, owner's project management, owner's engineering, and owner's start-up and commissioning costs. Other owner's costs include electrical interconnection costs, gas interconnection costs (if applicable), and land acquisition costs.



### **19.3. OPERATIONS AND MAINTENANCE COST ESTIMATE**

The O&M cost estimate considers the ongoing O&M cost through the life of a BESS project. The service life of a BESS depends on how it is used. This case assumes that the BESS will have a service life of 7300 equivalent cycles, which yields a lifetime of roughly 20 years (based on approximately one cycle per day) representing a typical use case basis in the industry. A full charge-discharge cycle occurs when a battery is at 0% usable state of charge, is then charged fully to 100% state of charge, and finally is discharged fully back to 0% state of charge. An "equivalent cycle" can be understood as the sum of partial charges and discharges equating to the same net energy throughput as a full charge-discharge cycle. BESS projects that serve ancillary markets may not experience a full charge and discharge cycle every day or may experience partial charge cycles, which is why the concept of "equivalent cycles" is useful. The 7300 equivalent-cycle service life is a typical industry basis to determine the cost and technical specifications for an energy storage system. Capacity degradation of lithium-ion batteries is an inherent performance characteristic of lithium-ion battery technology, occurring both due to age-alone and proportional to their usage. Battery performance guarantees in the industry suggest approximately 1.5% average annual capacity degradation associated with a one full-cycle per day use case for a four-hour duration lithium-ion BESS. Battery degradation guarantees are tailored to the specific use case expected for the individual BESS.

Many BESS projects engage a third-party contractor to conduct regular O&M activities. This cost estimate considers the cost of such contracted services, which include remote monitoring of the system, periodic onsite inspection of equipment conditions and cable connections, replacement of regular consumables (air filters, coolant, etc.), and grounds maintenance. This O&M cost estimate uses the 1.5% battery degradation factor and incorporates the equipment and labor cost of subsequent augmentations in the annual fixed O&M cost. The O&M cost include an annual allowance for general and administrative (G&A) costs. The fixed O&M costs are \$40.00/kW-year or \$10.00/kWh-year. Augmentation is included with fixed cost in this case since the use case assumes the same number of charging cycles each year during the service life of the project. Divergence from the use case could cause greater than expected degradation and voiding of battery performance guarantees. The variable costs are \$0.00/MWh, since there are no consumables linked to energy output within the expected use case.

The O&M costs do not include the cost of energy to charge the system. No costs are included for decommissioning.

Sargent & Lundy <sup>117</sup>

| Table 19-2 — Ca                                    | Table 19-2 — Case 19 O&M Cost Estimate |                             |  |  |  |  |  |
|----------------------------------------------------|----------------------------------------|-----------------------------|--|--|--|--|--|
| Case 19<br>EIA – Non-Fuel O&M Costs – 2023 \$ USD  |                                        |                             |  |  |  |  |  |
| BESS - 150 MW   600 MWh - Greenfield               |                                        |                             |  |  |  |  |  |
| Fixed O&M – Plant (Note 1)                         | Units                                  | Value                       |  |  |  |  |  |
| Battery Maintenance<br>(Preventative & Corrective) | \$/year                                | 2,400,000                   |  |  |  |  |  |
| Battery Augmentation                               | \$/year                                | 3,600,000                   |  |  |  |  |  |
| Subtotal Fixed O&M                                 | \$/year                                | 6,000,000                   |  |  |  |  |  |
| \$/kW-year                                         | \$/kW-year                             | 40.00 \$/kW-year            |  |  |  |  |  |
| Variable O&M (Note 2)                              | \$/MWh                                 | 0.00 \$/MWh                 |  |  |  |  |  |
| O&M Cost Notes                                     |                                        |                             |  |  |  |  |  |
| 1. Fixed O&M costs include labor, materials and    | I contracted services, and G           | &A costs. O&M costs exclude |  |  |  |  |  |

### property taxes and insurance.

2. All costs tied to energy produced are covered in fixed cost.

### **19.4. ENVIRONMENTAL AND EMISSIONS INFORMATION**

BESSs do not produce regulated environmental emission. While other environmental compliance requirements may apply, only air emissions were considered for this report. Therefore, the emissions of NO<sub>x</sub>, SO<sub>2</sub>, and CO<sub>2</sub> are 0.00 lb/MMBtu.



## APPENDIX A. LABOR LOCATION-BASED COST ADJUSTMENTS



### Table 1-1 — Location Adjustment for Ultra-Supercritical Coal w/o Carbon Capture – Greenfield (2023 USD) Case Configuration: 650 MW Net, 1 x 735 MW Gross

| State                | City                  | Base Project Cost (\$/kW) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|----------------------|-----------------------|---------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama              | Huntsville            | 4,103                     | 0.97               | (132)                         | 3971                                |
| Arizona              | Phoenix               | 4,103                     | 1.09               | 383                           | 4486                                |
| Arkansas             | Little Rock           | 4,103                     | 0.97               | (137)                         | 3966                                |
| California           | Bakersfield           | 4,103                     | 1.31               | 1,262                         | 5365                                |
| California           | Los Angeles           | 4,103                     | 1.33               | 1,366                         | 5469                                |
| California           | Modesto               | 4,103                     | 1.35               | 1,418                         | 5521                                |
| California           | Sacramento            | 4,103                     | 1.37               | 1,501                         | 5604                                |
| California           | San Francisco         | 4,103                     | 1.48               | 1,951                         | 6054                                |
| Colorado             | Denver                | 4,103                     | 1.03               | 141                           | 4244                                |
| Connecticut          | Hartford              | 4,103                     | 1.00               | 1,103                         | 5206                                |
| Delaware             | Dover                 | 4,103                     | 1.24               | 991                           | 5094                                |
| District of Columbia | Washington            | 4,103                     | 1.09               | 381                           | 4484                                |
| Florida              | Tallahassee           | 4,103                     | 0.94               | (255)                         | 3848                                |
| Florida              | Tampa                 | 4,103                     | 0.96               | (184)                         | 3919                                |
| Georgia              | Atlanta               | 4,103                     | 1.02               | 84                            | 4187                                |
| Idaho                | Boise                 | 4,103                     | 1.02               | 114                           | 4107                                |
| Illinois             | Chicago               | 4,103                     | 1.36               | 1,466                         | 5569                                |
|                      |                       | 4,103                     | 1.01               | 25                            | 4128                                |
| Indiana              | Indianapolis          | 4,103                     | 1.01               | 25                            | 4128<br>4306                        |
| lowa                 | Davenport<br>Waterlee | 4,103                     | 0.99               | (52)                          | 4306<br>4051                        |
| lowa                 | Waterloo              |                           |                    |                               |                                     |
| Kansas<br>Kentucky   | Wichita<br>Louisville | 4,103<br>4,103            | 0.99               | (59)<br>32                    | 4044<br>4135                        |
|                      |                       |                           |                    |                               |                                     |
| Louisiana            | New Orleans           | 4,103                     | 1.00               | 4                             | 4107                                |
| Maine                | Portland              | 4,103                     | 1.03               | 137                           | 4240                                |
| Maryland             | Baltimore             | 4,103                     | 1.03               | 111                           | 4214<br>5592                        |
| Massachusetts        | Boston                | 4,103                     | 1.36               | 1,489                         |                                     |
| Michigan             | Detroit               | 4,103                     | 1.11               | 461                           | 4564                                |
| Michigan             | Grand Rapids          | 4,103                     | 1.02               | 62                            | 4165                                |
| Minnesota            | Saint Paul            | 4,103                     | 1.13               | 531                           | 4634                                |
| Mississippi          | Biloxi                | 4,103                     | 0.95               | (209)                         | 3894                                |
| Missouri             | St. Louis             | 4,103                     | 1.13               | 525                           | 4628                                |
| Missouri             | Kansas City           | 4,103                     | 1.07               | 306                           | 4409                                |
| Montana              | Great Falls           | 4,103                     | 0.98               | (76)                          | 4027                                |
| Nebraska             | Omaha                 | 4,103                     | 0.99               | (56)                          | 4047                                |
| New Hampshire        | Manchester            | 4,103                     | 1.11               | 466                           | 4569                                |
| New Jersey           | Newark                | 4,103                     | 1.30               | 1,249                         | 5352                                |
| New Mexico           | Albuquerque           | 4,103                     | 1.03               | 141                           | 4244                                |
| New York             | New York              | 4,103                     | 1.70               | 2,852                         | 6955                                |
| New York             | Syracuse              | 4,103                     | 1.14               | 573                           | 4676                                |
| Nevada               | Las Vegas             | 4,103                     | 1.17               | 681                           | 4784                                |
| North Carolina       | Charlotte             | 4,103                     | 0.98               | (71)                          | 4032                                |
| North Dakota         | Bismarck              | 4,103                     | 1.04               | 183                           | 4286                                |
| Ohio                 | Cincinnati            | 4,103                     | 0.98               | (97)                          | 4006                                |
| Oklahoma             | Oklahoma City         | 4,103                     | 0.95               | (217)                         | 3886                                |
| Oregon               | Portland              | 4,103                     | 1.21               | 866                           | 4969                                |
| Pennsylvania         | Philadelphia          | 4,103                     | 1.35               | 1,422                         | 5525                                |
| Pennsylvania         | Scranton              | 4,103                     | 1.13               | 538                           | 4641                                |
| Rhode Island         | Providence            | 4,103                     | 1.23               | 927                           | 5030                                |
| South Carolina       | Charleston            | 4,103                     | 0.95               | (207)                         | 3896                                |
| South Dakota         | Rapid City            | 4,103                     | 1.00               | (6)                           | 4097                                |
| Tennessee            | Nashville             | 4,103                     | 0.99               | (54)                          | 4049                                |
| Texas                | Houston               | 4,103                     | 0.90               | (406)                         | 3697                                |
| Utah                 | Salt Lake City        | 4,103                     | 0.99               | (30)                          | 4073                                |
| Vermont              | Burlington            | 4,103                     | 1.08               | 315                           | 4418                                |
| Virginia             | Alexandria            | 4,103                     | 1.07               | 304                           | 4407                                |
| Virginia             | Roanoke               | 4,103                     | 1.04               | 161                           | 4264                                |
| Washington           | Seattle               | 4,103                     | 1.21               | 843                           | 4946                                |
| Washington           | Spokane               | 4,103                     | 1.07               | 284                           | 4387                                |
| West Virginia        | Charleston            | 4,103                     | 1.02               | 100                           | 4203                                |
| 5                    |                       |                           |                    |                               |                                     |
| Wisconsin            | Green Bay             | 4,103                     | 1.10               | 408                           | 4511                                |

### Table 1-2 — Location Adjustment for Ultra-Supercritical Coal 95% Carbon Capture (2023 USD) Case Configuration: 650 MW Net, 1 x 819 MW Gross

| City                                  | Base Project Cost (\$/kW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Delta Cost Difference (\$/kW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Location Project Cost (\$/kW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hartford                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dover                                 | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Washington                            | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tallahassee                           | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (486)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tampa                                 | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (354)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Atlanta                               | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Portland                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Baltimore                             | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Boston                                | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Detroit                               | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Grand Rapids                          | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Saint Paul                            | 7.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Syracuse                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Las Vegas                             | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Charlotte                             | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bismarck                              | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cincinnati                            | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (178)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Oklahoma City                         | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Burlington                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Alexandria                            | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Roanoke                               | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (109)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                                     | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Seattle                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Spokane                               | 7,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.07<br>1.02<br>1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 530<br>174<br>683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7876<br>7520<br>8029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       | Washington         Tallahassee         Tampa         Atlanta         Boise         Chicago         Indianapolis         Davenport         Waterloo         Wichita         Louisville         New Orleans         Portland         Baltimore         Boston         Detroit         Grand Rapids         Saint Paul         Biloxi         St. Louis         Kansas City         Great Falls         Omaha         Manchester         Newark         Albuquerque         New York         Syracuse         Las Vegas         Charlotte         Bismarck         Cincinnati         Oklahoma City         Portland         Philadelphia         Scranton         Providence         Charleston         Rapid City         Nashville         Houston         Satt Lake City         Burlington         Alexandria | Huntsville         7,346           Phoenix         7,346           Little Rock         7,346           Little Rock         7,346           Los Angeles         7,346           Modesto         7,346           Sacramento         7,346           Sararmento         7,346           Denver         7,346           Denver         7,346           Dover         7,346           Washington         7,346           Tampa         7,346           Mathassee         7,346           Daver         7,346           Mathassee         7,346           Mashington         7,346           Tampa         7,346           Atlanta         7,346           Boise         7,346           Davenport         7,346           Davenport         7,346           Wasterloo         7,346           Wichita         7,346           Louisville         7,346           Detroit         7,346           Batimore         7,346           Saint Paul         7,346           Grand Rapids         7,346           Grand Rapids         7,346 | Huntsvile         7,346         0.97           Pheenix         7,346         1.03           Little Rock         7,346         0.97           Bakersfield         7,346         1.24           Los Angeles         7,346         1.23           Saramento         7,346         1.28           Saramento         7,346         1.30           Saramento         7,346         1.40           Derver         7,346         1.20           Dover         7,346         1.20           Dover         7,346         0.93           Tampa         7,346         0.95           Atlanta         7,346         0.95           Atlanta         7,346         1.02           Boise         7,346         1.03           Chicago         7,346         1.03           Chicago         7,346         1.01           Daverport         7,346         1.01           Daverport         7,346         1.03           Vaterloo         7,346         1.01           Daverport         7,346         1.03           Botson         7,346         1.03           Botson         7,346         1 | Hunsville         7.346         0.97         (24)           Propenix         7.346         1.03         210           Litte Rock         7.346         1.24         1.79           Los Angles         7.346         1.27         1.977           Modesto         7.346         1.28         2.067           Sacarmento         7.346         1.30         2.205           San Francisco         7.346         1.30         2.205           San Francisco         7.346         0.88         (151)           Harford         7.346         0.88         (151)           Harford         7.346         1.04         2.89           Over         7.346         0.93         (486)           Tampa         7.346         0.05         (354)           Allatina         7.346         1.02         136           Boise         7.346         1.03         2.21           Chicago         7.346         1.01         73           Baternerio         7.346         1.03         2.24           Chicago         7.346         1.01         73           Goverport         7.346         1.03         2.24 |

## Table 1-3 — Location Adjustment for Combustion Turbine – Simple Cycle (Aeroderivative) (2023 USD) Case Configuration: 211 MW Net, 4 x 54 MW Gross Aeroderivative Simple Cycle

| State                      | City           | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|----------------------------|----------------|----------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama                    | Huntsville     | 1,606                      | 0.98               | (31)                          | 1575                                |
| Arizona                    | Phoenix        | 1,606                      | 1.01               | 10                            | 1616                                |
| Arkansas                   | Little Rock    | 1,606                      | 0.99               | (22)                          | 1584                                |
| California                 | Bakersfield    | 1,606                      | 1.11               | 179                           | 1785                                |
| California                 | Los Angeles    | 1,606                      | 1.13               | 208                           | 1814                                |
| California                 | Modesto        | 1,606                      | 1.13               | 206                           | 1812                                |
| California                 | Sacramento     | 1,606                      | 1.13               | 223                           | 1829                                |
| California                 | San Francisco  | 1,606                      | 1.14               | 362                           | 1968                                |
| Colorado                   | Denver         | 1,606                      | 0.98               | (26)                          | 1580                                |
| Connecticut                | Hartford       | 1,606                      | 1.09               | 147                           | 1753                                |
| Delaware                   | Dover          | 1,606                      | 1.08               | 136                           | 1733                                |
| District of Columbia       | Washington     | 1,606                      | 1.02               | 32                            | 1638                                |
| Florida                    | Tallahassee    | 1,606                      | 0.97               | (55)                          | 1551                                |
| Florida                    | Tampa          | 1,606                      | 0.97               | (41)                          | 1565                                |
| Georgia                    | Atlanta        | 1,606                      | 1.00               | 8                             | 1605                                |
| Idaho                      | Boise          | 1,606                      | 1.00               | 19                            | 1625                                |
| Illinois                   | Chicago        | 1,606                      | 1.16               | 258                           | 1864                                |
| Indiana                    | Indianapolis   | 1,606                      | 1.00               | (1)                           | 1605                                |
| lowa                       | Davenport      | 1,606                      | 1.00               | (1)                           | 1605                                |
| lowa                       | Waterloo       | 1,606                      | 0.99               | (23)                          | 1583                                |
| Kansas                     | Wichita        | 1,606                      | 0.99               | (23)                          | 1583                                |
| Kansas<br>Kentucky         | Louisville     | 1,606                      | 1.00               | (0)                           | 1606                                |
| Louisiana                  | New Orleans    | 1,606                      | 1.00               | (3)                           | 1603                                |
| Maine                      | Portland       | 1,606                      | 1.00               | 15                            | 1603                                |
| Maryland                   | Baltimore      | 1,606                      | 1.01               | 15                            | 1621                                |
| Massachusetts              | Boston         | 1,606                      | 1.14               | 232                           | 1838                                |
|                            | Detroit        | 1,606                      | 1.14               | 88                            | 1694                                |
| Michigan                   | Grand Rapids   | 1,606                      | 1.00               | 3                             | 1609                                |
| Michigan                   | Saint Paul     | -                          | 1.00               | 98                            | 1704                                |
| Minnesota                  | Biloxi         | 1,606<br>1,606             | 0.97               | (47)                          | 1559                                |
| Mississippi                |                | -                          |                    |                               |                                     |
| Missouri                   | St. Louis      | 1,606                      | 1.07<br>1.03       | 105<br>54                     | 1711<br>1660                        |
| Missouri                   | Kansas City    | 1,606                      |                    |                               |                                     |
| Montana                    | Great Falls    | 1,606                      | 0.99               | (20)                          | 1586<br>1583                        |
| Nebraska                   | Omaha          | 1,606                      |                    | (23)                          |                                     |
| New Hampshire              | Manchester     | 1,606                      | 1.02               | 35                            | 1641                                |
| New Jersey                 | Newark         | 1,606                      | 1.15               | 246                           | 1852                                |
| New Mexico                 | Albuquerque    | 1,606                      | 1.01               | 19                            | 1625                                |
| New York                   | New York       | 1,606                      | 1.28               | 454                           | 2060                                |
| New York                   | Syracuse       | 1,606                      | 1.04               | 57                            | 1663                                |
| Nevada                     | Las Vegas      | 1,606                      | 1.08               | 135                           | 1741                                |
| North Carolina             | Charlotte      | 1,606                      | 0.99               | (18)                          | 1588                                |
| North Dakota               | Bismarck       | 1,606                      | 1.01               | 19                            | 1625                                |
| Ohio                       | Cincinnati     | 1,606                      | 0.98               | (26)                          | 1580                                |
| Oklahoma                   | Oklahoma City  | 1,606                      | 0.97               | (45)                          | 1561                                |
| Oregon                     | Portland       | 1,606                      | 1.08               | 126                           | 1732                                |
| Pennsylvania               | Philadelphia   | 1,606                      | 1.14               | 233                           | 1839                                |
| Pennsylvania               | Scranton       | 1,606                      | 1.03               | 41                            | 1647                                |
| Rhode Island               | Providence     | 1,606                      | 1.07               | 117                           | 1723                                |
| South Carolina             | Charleston     | 1,606                      | 0.98               | (29)                          | 1577                                |
| South Dakota               | Rapid City     | 1,606                      | 0.99               | (10)                          | 1596                                |
| Tennessee                  | Nashville      | 1,606                      | 1.00               | 1                             | 1607                                |
| Texas                      | Houston        | 1,606                      | 0.95               | (80)                          | 1526                                |
| Utah                       | Salt Lake City | 1,606                      | 1.00               | (5)                           | 1601                                |
| Vermont                    | Burlington     | 1,606                      | 1.04               | 62                            | 1668                                |
| Virginia                   | Alexandria     | 1,606                      | 1.01               | 15                            | 1621                                |
| Virginia                   | Roanoke        | 1,606                      | 0.99               | (20)                          | 1586                                |
| Washington                 | Seattle        | 1,606                      | 1.12               | 189                           | 1795                                |
| Washington                 | Spokane        | 1,606                      | 1.03               | 44                            | 1650                                |
|                            | Charleston     | 1,606                      | 1.01               | 14                            | 1620                                |
| West Virginia              |                |                            |                    |                               |                                     |
| West Virginia<br>Wisconsin | Green Bay      | 1,606                      | 1.04               | 71<br>(12)                    | 1677<br>1594                        |

### Table 1-4 — Location Adjustment for Combustion Turbine – Simple Cycle (2023 USD) Case Configuration: 419 MW Net, 1 x H Class Simple Cycle

| AkabanMarshiaM800.070/2)0/41AkanasoUBR Ok.0.080.110.00.42AkanasoUBR Ok.0.681.110.150.65CaloranSenolodu0.681.110.120.69CaloranSararnento0.681.110.120.69CaloranSararnento0.681.110.120.69CaloranSararnento0.681.110.120.69CaloranSararnento0.681.110.610.61CalorantoSararnento0.681.110.610.61CalorantoNardar0.681.110.610.61CorradicalNardar0.681.110.610.61CorradicalNardar0.681.010.670.69CorradicalNardar0.681.010.670.69CorradicalNardar0.681.020.670.69CorradicalNardar0.681.020.670.69CorradicalNardar0.681.020.670.68CorradicalNardar0.681.020.670.68CorradicalNardar0.681.020.670.68CorradicalNardar0.681.020.670.68CorradicalNardar0.681.020.670.68CorradicalNardar0.681.020.630.68CorradicalNardar0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | State         | City        | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|----------------------------|--------------------|-------------------------------|-------------------------------------|
| AkonsaDisrokB201.116642AkonsasDisrokDisrokDisrokDisrokDisrokCalomaDisrokDisrokDisrokDisrokDisrokCalomaNoneronDisrokDisrokDisrokDisrokCalomaNoneronDisrokDisrokDisrokDisrokCalomaDisrokDisrokDisrokDisrokDisrokCalomaDisrokDisrokDisrokDisrokDisrokCalomaDisrokDisrokDisrokDisrokDisrokCalomaDisrokDisrokDisrokDisrokDisrokCalomaDisrokDisrokDisrokDisrokDisrokCalomaDisrokDisrokDisrokDisrokDisrokDisrokTalpaDisrokDisrokDisrokDisrokDisrokTalpaDisrokDisrokDisrokDisrokDisrokTalpaDisrokDisrokDisrokDisrokDisrokTalpaDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDisrokDis                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |                            |                    |                               |                                     |
| AkaraseLike RokaBiol0.98(16)0.61CalforniaDakardsellB001.141150.61CalforniaDokategion0.801.181030.66CalforniaSon Franco0.801.161040.00CalforniaSon Franco0.800.160.140.00CalforniaSon Franco0.800.160.140.00CalforniaSon Franco0.800.110.010.01ConvalouHarford8.801.110.600.62ConvalouNavinglorn8.800.160.010.02ConvalouNavinglorn8.800.600.070.02Delever0.800.600.070.020.02Delever0.800.600.010.020.02Delever0.800.600.010.020.02Delever0.800.600.010.020.02Delever0.800.600.010.020.02Delever0.800.600.010.020.02Delever0.800.600.010.020.02Delever0.800.600.010.020.02Delever0.800.600.010.020.02Delever0.800.600.010.020.02Delever0.800.800.800.160.02Delever0.800.800.160.020.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arizona       | Phoenix     |                            | 1.01               |                               |                                     |
| CaldorniaBaskendulB881.14115981CaldorniaModelo6881.18133986CaldorniaSatamendo6861.18132986CaldorniaSatamendo6861.18124986CaldorniaSatamendo6861.18124986CaldorniaSatamendo6861.18100900CaldorniaSatamendo6861.11900901CaldorniaSatamendo6861.11901900DebasoDeor6860.11901866CandorniaMachington8880.860.87806FordiaTatinasca6890.97829868FordiaTatinasca6891.001.90806GeorgiaAlintia6891.001.90805GeorgiaAlintia6891.001.90805GaldorniaDeorsport6891.001.90805GaldorniaBasingalia6800.861.01800Stating Caldornia6890.081.01800800Stating Caldornia6891.001.90801Stating Caldornia6800.081.01800Stating Caldornia6800.001.90801Stating Caldornia6801.001.90801Stating Caldornia6801.019.90801Stating Caldornia <td>Arkansas</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arkansas      |             |                            |                    |                               |                                     |
| CaldornaLas Angleis1681.16153998CaldornaSayrarato8581.17144983CaldornaSayr Frankov8581.17144983CaldoraSayr Frankov8580.48(.17)6.13CaldoraDenver6580.48(.17)6.13CaldoraDenver6580.48(.17)6.13CaldoraDenver6580.48(.17)6.13CaldoraDenver6581.120.906.96CaldoraTarlay6580.96(.17)7.97PackaTarlay6580.97(.19)8.96CaldoraTarlay6581.0038.96CaldoraAbaria6581.001.018.37CaldoraDenverof6581.001.018.33CaldoraDenverof6581.001.018.33CaldoraDenverof6581.001.018.33CaldoraDenverof6581.001.018.33CaldoraDenverof6581.001.018.34CaldoraDenverof6581.001.018.34CaldoraDenverof6581.021.018.34CaldoraDenverof6581.011.018.34CaldoraDenverof6581.011.018.34CaldoraDenverof6581.011.018.34 </td <td>California</td> <td>Bakersfield</td> <td></td> <td>1.14</td> <td></td> <td>951</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | California    | Bakersfield |                            | 1.14               |                               | 951                                 |
| CaliforniaMedia160110170174968CaliforniaSararavano8581.182.341070CaliforniaSararavano8581.282.341070CaliforniaSararavano8581.11169001ConadoDevver8681.11169002ConadoMarine8681.11169002ConadoOxar8681.11169002ConadoOxar8681.1020060ConadoNavigon10020060001Conado1000.010.010.00000Conado1000.010.010.000.00GeregiaAlavine0.001.000.010.00GeregiaAlavine0.000.000.010.00Bata1.000.000.010.000.00Bata0.000.000.010.000.00KanadoNavor0.000.000.010.01KanadoNavor0.000.000.010.01KanadoNavor0.000.000.010.01KanadoNavor0.000.000.010.01KanadoNavor0.000.000.010.01KanadoNavor0.000.010.010.01KanadoNavor0.000.010.010.01KanadoNavor0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |             |                            |                    |                               |                                     |
| CaliforianShar Pianoka1881.17144980CaliforianShar Pianoka8881.281.241.070CaloradaDever6.860.880.84(.17)6.19CaloradaDever6.860.84(.11)6.900.91CaloradaDever6.861.116.900.920.92DelavareDever6.861.116.900.920.92DelavareDever0.961.002.00.920.92Targe0.960.970.910.920.920.92StatioTarge0.961.011.110.920.92StatioDeserport0.861.021.010.930.92StatioDeserport0.861.021.020.920.93StatioDeserport0.861.021.040.920.94StatioDeserport0.860.980.960.940.94StatioDeserport0.980.980.960.970.94StatioDeserport0.980.980.990.970.94StatioDeserport0.980.980.990.970.94StatioDeserport0.980.980.990.970.94StatioDeserport0.980.990.970.94StatioDeserport0.980.990.970.94StatioDeserport0.980.96<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |             |                            |                    |                               |                                     |
| CaldornaSan ParoticionB561.2822.4410100ConnecticutHerkotB581.11DiscB191ConnecticutHerkotB561.11DiscDistricutDiscer of CountinaWadringtonB561.1220.0B56Districut of CountinaWadringtonB561.0220.0B56ParidaTablatosceB560.060.077.02ParidaTablatosceB560.060.079.06ParidaTablatosceB560.011.009.06ParidaBolingB561.011.019.07BirlingDiskingB561.000.011.00BirlingDiskingB561.000.011.00BirlingParigaB561.000.018.01BirlingDiskingB560.000.018.01BirlingDiskingB560.000.018.01BirlingDiskingB561.000.018.01BirlingDiskingB561.000.018.01BirlingDiskingB561.0100.02BirlingDiskingB561.0100.02BirlingDiskingB561.020.010.01BirlingDiskingB561.020.010.01BirlingDiskingB561.020.010.01BirlingDiskingB561.02 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |                            |                    |                               |                                     |
| ColorisolDerver8690.08(1)1819819DelayateDever8.831.119.59.931DelayateDever8.831.119.69.84Delayate8.851.122.08.86EriciaTalinuscen8.650.67(2.8)8.85FardiaTarpa8.651.003.18.89GorgiaAlora8.651.003.08.89GorgiaAlora8.651.003.08.90Biane8.651.001.08.609.00Biane8.651.001.08.60Biane8.651.001.08.60Biane8.661.001.08.60Biane8.661.001.08.60Biane8.661.024.48.60Biane8.661.024.48.60Dosalina8.651.024.48.60Dosalina8.651.018.08.5MarenPerind8.561.018.0Marend8.651.018.08.4Marend8.651.001.68.7Marende8.651.008.78.6Marende8.651.008.78.6Marende8.651.068.78.6Marende8.651.068.78.6Marende8.651.068.78.6Marende8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |                            |                    |                               |                                     |
| ConnenticulHeffuidB&B1.1196.1991DevarueDoverB381.1490928District of ColumbiaWeshingtonB381.222.0886FordiaTarpaB.651.022.0886FordiaTarpaB.651.011.11B.79FordiaTarpaB.651.011.11B.77FordiaDevelopB.551.011.11B.77HinoisOncagoB.551.011.01B.75FordiaDevelopB.551.011.01B.75HinoisOncagoB.551.011.01B.85FordiaB.851.001.01B.85B.96KonaMorianB.851.001.01B.97KonaMorianB.951.019B.94MarineP.951.019B.95MesachulentiB.851.019B.95MesachulentiB.851.019B.95MesachulentiB.951.019B.95MesachulentiB.951.019B.95MesachulentiB.951.021.011.01MesachulentiB.951.031.028.01MesachulentiB.951.041.011.01MesachulentiB.951.043.01.01MesachulentiB.951.043.01.01MesachulentiB.951.04 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                            |                    |                               |                                     |
| DetweenDown8861.1199.0966Flottid of CulturilsVashingtom83610.220868Flottid aTalasaeen8360.88(2)98.0Flottid aTarga8360.87(2)808GeorgiaAlarla8361.011184.7GeorgiaAlarla8361.011184.7IlinoisChicago8361.00(3)833IlinoisChicago8361.00(3)833IlinoisChicago8361.02144800IlinoisIndiaraoIndiarao8361.02144800IlinoisChicago8360.08(10)831833IlinoisVentro8360.08(10)831834IlinoisLakiolic8360.08(10)831834IlinoisLakiolic8361.00(7)834IlinoisNew Cheine8361.019845IlinoisNew Cheine8361.019845MaringDavinoi8361.019845Maring8361.031.019845Maring8361.061.01807877Maring8361.081.066911Maring8361.081.066911Maring8361.066911865Marin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |             |                            |                    |                               |                                     |
| Dint of ColumbiaWeingtor8861.0.29.009.896FlockiaTanpa8360.360.707.09FlockiaTanpa8360.370.28)8.88GeorgiaAllerla8361.0038.39IdahoBoke8361.011.118.47IllinokChlegort8.861.021.098.05IllinokChlegort8.861.001.008.05IllinokChlegort8.861.021.48.05IllinokDaverport8.860.081.078.05KoranaWarten8.860.081.078.05KoranaWarten8.860.081.078.05KoranaWarten8.860.081.078.05KoranaWarten8.860.081.078.05KoranaBalomer8.861.019.058.05Maschuetts8.861.029.058.05Maschuetts8.861.021.059.05Mineschuetts8.861.021.059.05Mineschuetts8.861.081.028.05Mineschuetts8.861.086.659.01Mineschuetts8.861.086.659.01Mineschuetts8.861.086.659.01Mineschuetts8.861.081.028.05Mineschuetts8.861.081.028.05Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             |                            |                    |                               |                                     |
| FierdiaTendiaBeside0.060.070.70700GeorgiaManta8360.070.20980GeorgiaManta8361.003839ItabiaBoke8361.0111847ItabiaIndiago8381.201.68833ItabiaIndiago8381.201.69833ItabiaIndiago8360.081.01833ItabiaWatefoo8360.081.16806KartasWatefoo8360.081.0180KartasWatefoo8360.081.0180KartasWatefoo8360.081.0180KartasWatefoo8360.081.019845KartasRodriga8360.101.08090MarinePartiand8361.019845MarineBatome8361.01811090MarineBatome8361.081.018090MarineBatome8361.081.028090MarineBatome8361.081.028090MarineBatome8361.08659090MarineBatome8361.081.028090MarineBatome8361.081.028090MarineBatome8361.081.02<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |             |                            |                    |                               |                                     |
| FindiaImpa (map a)8890.07(20)989BahaAlaria8361.003.20839ItahoBoke8361.011.11847ItahaIndianosi8381.021.90005IndianaIndianosi8381.021.91833ItahaDaveport8381.021.91830ItahaMatoro8380.38(11)800ItahaMatoro8380.38(11)810KentusUsubile8360.58(11)810KentusUsubile8361.018841MariaPetrand8361.018841Mineado1.831.018845845MariadaBathmore8361.018845Mineado0.8611.181.118845Mineado0.8611.68656011.11Mineado0.8611.68656011.11Mineado1.8611.68656011.11Mineado1.8611.68656011.11Mineado1.8611.68656011.11Mineado1.8621.681.6865601Mineado1.8621.681.6865601Mineado1.8631.681.6865601Mineado1.8631.681.6865601 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |             |                            |                    |                               |                                     |
| GeorgiaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMindaMinda<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |             |                            |                    |                               |                                     |
| idahoDiseDiseBis1.0111647IndiranDinagoola6.8581.20160100IndiranDavenport6.8581.021.46.850IovaDavenport6.8580.08(16)6.850IovaMalroo6.8580.08(17)6.95KanasaWichia6.8580.08(17)6.95KanasaMichia6.8580.08(17)6.95KanasaNavofors6.8580.09(5)6.51MainePoltard6.8580.10188.44Masachaeths0.60n6.8511.118.06.95MichiganGand Rapida6.8561.1618.156.957MichiganGand Rapida6.8561.0176.726.852MichiganGand Rapida6.8561.0206.6616.01MichiganGand Rapida6.8561.0686.9516.951MicascipiBitoria6.8561.0686.9516.951MicascipiBitoria6.8561.0686.9516.951MicascipiBitoria6.8561.0686.9516.951MicascipiBitoria6.8561.1686.9516.951MicascipiBitoria6.8561.1686.9516.951MicascipiBitoria6.8561.1686.9516.951MicascipiBitoria6.8561.1686.9516.951 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |             |                            |                    |                               |                                     |
| IllinoinOnegapB861.00(9)(006)Indana OIndana O(9)(8)(3)IowaDwerportB861.0214600NamesWaterlooB860.98(16)(8)KanasaWohinB860.98(17)B19KanasaUokiniB860.99(2)(8)KanasaNorofrancB860.99(2)(8)KandayLouisinanNorofrancB861.019645MasenuBalmoreB361.019645MasachustinsBalmoreB361.018644MasachustinsBalmore8361.018644MasachustinsBoton8361.018645MinganOrtralB361.027655607MinganGrant RausB361.0865601601MinganGrant Raus8361.086560160MisorintSt. Louis8361.0435671655MisorintKanas Cale8361.0435671655MisorintKanas8361.0270655655MisorintKanas8361.0435671135MisorintKanas8361.0435671135MisorintKanas8361.0435671135MisorintKanas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |             |                            |                    |                               |                                     |
| Induma         Induma         Davergort         836         1.00         (0)         833           towa         Davergort         836         0.28         (16)         820           toma         Watelo         836         0.28         (17)         819           Kentucky         Loivelle         836         0.88         (17)         819           Kentucky         Loivelle         836         0.99         (6)         831           Lossiana         New Orbane         836         0.101         0         845           Main         Petland         836         1.01         0         845           Markand         Batternore         836         1.01         0         844           Massachauetts         Beston         635         1.01         1         637           Markand         Gard Rapids         636         0.68         65         901           Massachauetts         Statis         636         0.88         1.02         85         665           Markand         Gard Rapids         636         0.88         1.03         85         661           Markand         Gard Rapids         636         1.04                                                                                            |               |             |                            |                    |                               |                                     |
| Iowa         Descript         956         1.02         1.4         860           form         Waterion         856         0.98         (16)         820           Kansas         Wichin         836         0.08         (17)         619           Kansas         Waterion         838         1.00         (2)         834           Louislanan         New Ohana         838         0.50         (6)         831           Maine         Pertiand         838         1.01         8         645           Maryandia         Balmoro         836         1.01         8         645           Massachansta         Bototn         836         1.07         57         6833           Menigan         Grand Rapids         836         1.00         1         837           Menigan         Grand Rapids         836         0.55         901           Menisappi         Bitoi         836         0.55         901           Messach         1.08         65         901         832           Messach         1.08         65         901         833           Messach         1.03         823         633         63                                                                                                              |               |             |                            |                    |                               |                                     |
| ioxa         Waterio         836         0.98         (16)         820           Kensias         Watha         836         0.98         (17)         819           Kentusky         Laisville         836         0.99         (6)         831           Louisana         New Ofkana         836         0.99         (6)         831           Maine         New Ofkana         836         1.01         9         845           Mania         Batimore         836         1.01         9         845           Minispan         Saint Pagis         836         1.07         67         693           Minispan         Saint Pagis         836         1.08         65         901           Minispani         Saint Pagis         836         0.88         0.89         0.81         65         901           Minispani         Kanas City         836         0.88         0.89         0.61         822           Minispani         Kanas City         836         0.89         0.10         865         901           Minispani         Kanas City         836         0.88         0.89         0.13         842           Minispani         Kanas Ci                                                                               |               |             |                            |                    |                               |                                     |
| Kansa         Wehla         898         0.98         (17)         B19           Kentsdy         Louisiana         New Ofteans         636         0.99         (5)         831           Louisiana         New Ofteans         636         0.99         (5)         831           Maine         Ballmore         636         1.01         9         845           Massachusetts         Boton         636         1.01         8         944           Massachusetts         Boton         636         1.07         6.7         886           Minigan         Orter (Tapolis)         686         1.00         1         837           Minineada         6836         1.08         65         901         985           Minineada         6836         1.08         65         901         985           Minineada         6836         1.08         65         901         985           Minineada         6836         1.04         35         871         983           Mininada         6836         0.05         (13)         823         985           Netraiska         Ormaha         836         1.01         9         985                                                                                                        |               |             |                            |                    |                               |                                     |
| Kentucky         Louiwle         636         1.00         (2)         834           Losiana         New Orlearis         638         0.99         (5)         831           Maina         Portland         638         1.01         9         845           Mansachusetts         Balimore         638         1.01         8         844           Massachusetts         Boton         636         1.01         8         845           Mingan         Octoot         636         1.07         0.7         863           Mingan         Grand Rapids         636         1.00         1         837           Minnesoda         Saint Paul         836         0.96         (32)         804           Missoini         St. Louis         836         1.04         35         901           Missoini         Kansa Chy         836         1.02         20         866           New Array         New Array         836         1.01         9         845           New Array         New Array         836         1.02         20         866           New Array         New Array         836         1.02         20         865                                                                                                    |               |             |                            |                    |                               |                                     |
| Louisian         New Oleans         836         0.99         (6)         831           Maine         Potiand         836         1.01         9         845           Maryland         Balimore         836         1.01         8         844           Massachusetis         Boston         836         1.01         8         844           Massachusetis         Boston         836         1.07         57         883           Michigan         Grand Rapids         836         1.08         65         901           Minesota         Saint Paul         836         0.96         (32)         804           Missouri         Status         836         1.08         65         901           Missouri         Status         836         1.04         35         871           Mesouri         Status         836         0.98         (16)         823           Nebraska         Omaha         836         1.02         20         856           New Hampshire         Manchester         836         1.01         9         645           New York         835         1.02         20         836           New York                                                                                                         |               |             |                            |                    |                               |                                     |
| Meine         Portand         836         1.01         9         845           Manyand         Ballmore         836         1.01         8         844           Massachuselts         Booton         836         1.18         151         987           Michigan         Detoit         836         1.07         57         883           Minescia         Saint Faul         836         1.00         1         837           Minnesota         Saint Faul         836         1.08         65         901           Missispip         Bioxi         835         0.09         (32)         804           Messouri         St. Louis         836         1.04         35         871           Mesouri         Karasa Chy         836         0.98         (16)         820           New Jampshire         Manchester         836         1.02         20         886           New Variey         Newark         836         1.01         9         845           New Variey         Newark         836         1.01         9         845           New Vork         New York         836         1.01         9         845           N                                                                                                |               |             |                            |                    |                               |                                     |
| Maryland         Baltmore         B36         101         8         944           Messachusetts         Boson         B36         118         151         987           Michigan         Caran Rapids         836         1.07         57         883           Michigan         Grand Rapids         836         1.08         65         091           Minesota         Sait Paul         836         0.96         (32)         804           Mississipipi         Bitoxi         836         0.96         (32)         804           Missanti         Ansas City         836         0.96         (13)         823           Missanti         Stansa City         836         0.98         (16)         820           Netraska         Oranha         836         0.98         (16)         823           New Hampshire         Manchester         836         1.02         20         866           New Mark         836         1.10         9         845           New York         Syracuse         836         1.10         86         922           New York         New York         836         0.99         (12)         824           No                                                                                       |               |             |                            |                    |                               |                                     |
| Massachusetts         Boston         B36         1.18         151         987           Michigan         Detoit         B36         1.07         57         B83           Michigan         Grand Rapids         B36         1.00         1         B37           Minnecota         Saint Paul         B36         0.06         G52         001           Mississipi         Bilox         B36         0.06         G52         004           Mississipi         Bilox         B36         1.04         35         871           Missouri         Kanasa Chy         B36         1.04         35         871           Montana         Great Fails         B36         0.98         (16)         820           New Marpshite         Manchester         B36         1.02         20         856           New Margo         Abuquerque         B36         1.01         9         945           New Morio         Abuquerque         B36         1.04         37         873           New York         Nava Sa         1.04         37         873           New York         Syacuse         B36         1.04         37         849           North                                                                                       |               |             |                            |                    |                               |                                     |
| Michigan         Detroit         836         107         97         883           Michigan         Grand Rapids         836         1.00         1         837           Minesota         Salit Paul         836         1.08         65         901           Missispipi         Blioxi         836         0.96         (32)         804           Missouri         Kansas City         836         1.08         65         901           Missouri         Kansas City         836         1.04         35         671           Montana         Grant Falis         836         0.98         (16)         820           Netraska         Omaha         836         1.02         2.0         856           New Jarsey         Newark         836         1.19         160         996           New Vark         836         1.01         9         845           New Vark         836         1.04         37         873           New Vark         Syrause         836         1.04         37         873           New Vark         Syrause         836         0.99         (12)         824           North Carolin         Charlotte                                                                                              |               |             |                            |                    |                               |                                     |
| Michigan         Grand Rapids         836         1.00         1         837           Minnesola         Sint Paul         636         1.08         65         901           Missispip         Block         636         0.69         (32)         804           Missispip         Block         836         1.04         35         801           Missouri         St. Louis         836         1.04         35         871           Montana         Great Falls         836         0.98         (16)         620           Newharso         Omaha         836         0.98         (16)         620           New Jersey         Manchester         836         1.02         20         866           New Mexico         Alduquerque         836         1.01         9         845           New Vork         New Vork         836         1.04         37         873           New Vork         Syacuse         836         1.04         37         843           New York         Syacuse         836         0.99         (12)         824           North Carolina         Chash         0.99         (12)         824           North Car                                                                                       |               |             |                            |                    |                               |                                     |
| Minnesota         Saint Paul         836         1.08         65         901           Mississippi         Bioxi         836         0.96         (32)         804           Missouri         K1. Louis         836         1.08         65         901           Missouri         Kansas Chy         836         1.08         65         901           Missouri         Kansas Chy         836         0.98         (13)         823           Nebraska         Omaha         836         0.98         (16)         820           New Jensey         Newark         836         1.02         20         856           New Jensey         Newark         836         1.01         9         845           New Vork         New York         836         1.04         37         873           New York         Syracuse         836         1.04         37         873           New York         New York         836         0.99         (12)         824           Nerd Carolina         Charlotte         836         0.99         (17)         819           North Carolina         Charlotte         836         0.96         (30)         806                                                                                      |               |             |                            |                    |                               |                                     |
| Mississippi         Bilod         836         0.96         (32)         804           Missouri         St. Louis         836         1.08         65         901           Missouri         Kansas City         836         1.04         35         871           Montana         Great Fails         836         0.98         (16)         823           Newhampshire         Manchester         836         0.98         (16)         820           New Hampshire         Manchester         836         1.02         20         856           New Mexico         Abluquerue         836         1.01         9         845           New Mexico         Abluquerue         836         1.04         37         873           New York         New York         836         1.04         37         873           Nevada         Las Vegas         836         0.99         (12)         824           North Carolina         Charlote         836         0.96         (30)         806           Ohio         Cincinnati         836         0.96         (30)         806           Oktahoma         Oklahoma City         836         0.96         (30)                                                                               |               |             |                            |                    |                               |                                     |
| Missouri         St. Louis         836         1.08         665         901           Missouri         Kansas City         836         1.04         35         871           Montana         Great Fails         836         0.98         (13)         823           Nebraska         Omaha         836         0.98         (16)         820           New Hampshire         Manchester         836         1.02         200         856           New Hampshire         Manchester         836         1.01         9         856           New Jersey         Newark         836         1.01         9         845           New York         Syracuse         836         1.04         37         873           New York         Syracuse         836         1.04         37         845           Nerd Carolina         Charlotte         836         0.99         (12)         824           North Dakota         Bismarck         836         0.98         (17)         819           Ohio         Charlotta         836         0.98         (30)         862           Oregon         Portland         836         1.10         79         915 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                       |               |             |                            |                    |                               |                                     |
| Massouri         Kansas City         836         1.04         35         871           Montana         Great Falls         836         0.98         (13)         823           Montana         636         0.98         (16)         820           New Hampshire         Manchester         836         1.02         20         856           New Jersey         Newark         836         1.19         160         996           New Mexico         Abuquerque         836         1.01         9         845           New York         New York         836         1.04         37         873           New York         Syracuse         836         1.04         37         873           Neváda         Las Vegas         836         1.02         13         849           North Carolina         Charlotte         836         0.99         (12)         824           North Dakota         Bismarck         836         0.98         (17)         819           Oklahoma City         836         0.96         (30)         806           Oregon         Poltad         836         1.10         79         915           Pennsylvania                                                                                          |               |             |                            |                    |                               |                                     |
| Mortana         Great Falls         836         0.98         (13)         823           Nebtraska         Ornaha         836         0.98         (16)         820           New Hampshire         Machester         836         1.02         20         856           New Jersey         Newark         836         1.19         160         996           New Mexico         Albuquerque         836         1.01         9         845           New York         836         1.04         37         873           New York         Syracuse         836         1.04         37         873           New York         Syracuse         836         1.04         37         873           New York         Syracuse         836         1.02         13         849           North Carolina         Charlotte         836         0.98         (17)         819           Oklahoma         Oklahoma City         836         0.96         (30)         806           Oregon         Portland         836         1.10         79         915           Pennsylvaria         Scranton         836         1.03         26         882                                                                                                  |               |             |                            |                    |                               |                                     |
| Nebraska         Omaha         636         0.98         (16)         820           New Hampshire         Manchester         836         1.02         20         856           New Jersey         Newark         636         1.19         160         996           New York         Abuquerque         636         1.01         9         645           New York         New York         836         1.04         37         873           New York         Syracuse         836         1.04         37         873           New York         Syracuse         836         1.02         13         849           North Carolina         Charlotte         836         0.99         (12)         824           North Dakota         Bismarck         836         0.96         (30)         806           Ohio         Cincinnati         836         0.96         (30)         806           Origon         Portland         836         1.10         79         915           Pennsylvania         Scranton         836         1.18         152         988           Pennsylvania         Scranton         836         0.97         (25)         811 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>                      |               | -           |                            |                    |                               |                                     |
| New Hampshire         Manchester         836         1.02         20         856           New Jersey         Newark         636         1.19         160         996           New Mexico         Albuquerque         636         1.01         9         645           New York         New York         836         1.36         297         1133           New York         Syracuse         636         1.04         37         873           Newada         Las Vegas         636         1.04         37         873           North Carolina         Charlotte         636         0.99         (12)         824           North Dakota         Bismarck         836         1.02         13         849           Ohio         Cincinnati         636         0.96         (17)         819           Oklahoma         Oklahoma City         636         1.10         79         915           Pennsyvania         Philadelphia         836         1.03         26         862           Robd Island         Providence         836         1.09         75         911           South Carolina         Charleston         836         0.09         (6)                                                                           |               |             |                            |                    |                               |                                     |
| New Jersey         Newark         836         1.19         160         996           New Mexico         Albuquerque         836         1.01         9         845           New York         New York         836         1.36         297         1133           New York         Syracuse         836         1.04         37         873           Nevada         Las Vegas         836         1.00         86         922           North Carolina         Charlotte         836         0.99         (12)         824           North Dakota         Bismarck         836         0.98         (17)         819           Oklahoma         Oklahoma City         836         0.96         (30)         806           Oregon         Portland         836         1.10         79         915           Pennsylvania         Philadelphia         836         1.03         26         862           Rhode Island         Providence         836         1.09         75         911           South Carolina         Charleston         836         0.99         (6)         830           South Dakota         Rapid City         836         0.99         (7)                                                                       |               |             |                            |                    |                               |                                     |
| New Mexico         Albuquerque         836         1.01         9         845           New York         New York         836         1.36         297         1133           New York         Syracuse         836         1.04         37         873           New York         Syracuse         836         1.01         86         922           North Carolina         Charlotte         836         0.99         (12)         824           North Dakota         Bismarck         836         0.99         (12)         824           Ohio         Cincinnati         836         0.98         (17)         819           Oklahoma         Oklahoma City         836         0.96         (30)         806           Oregon         Portland         836         1.10         79         915           Pennsylvania         Scranton         836         1.03         26         862           Neu South Carolina         Charlosto         836         0.97         (25)         811           South Carolina         Charleston         836         0.99         (6)         830           Tennessee         Nashvile         836         0.99         (7)                                                                         |               |             |                            |                    |                               |                                     |
| New York         New York         Syracuse         836         1.36         297         1133           New York         Syracuse         836         1.04         37         873           New York         Syracuse         836         1.04         37         873           New Ada         Las Vegas         836         1.01         86         922           North Carolina         Charlote         836         0.99         (12)         824           North Dakota         Bismarck         836         0.99         (17)         819           Ohio         Cincinnati         836         0.96         (30)         866           Oregon         Portland         836         1.10         79         915           Pennsylvania         Scratnon         836         1.03         26         862           Rhode Island         Providence         836         0.97         (25)         811           South Cakota         Rapid City         836         0.99         (6)         833           Tennessee         Nashville         836         0.99         (7)         829           Vermont         Burlington         836         0.99         (7) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>       |               |             |                            |                    |                               |                                     |
| New York         Syracuse         836         1.04         37         873           Nevada         Las Vegas         836         1.10         86         922           North Carolina         Charlotte         836         0.99         (12)         824           North Dakota         Bismarck         836         1.02         13         849           Ohio         Cincinnati         836         0.98         (17)         819           Oklahoma         Oklahoma City         836         0.96         (30)         806           Oregon         Portland         836         1.10         79         915           Pennsylvania         Scranton         836         1.18         152         988           Pennsylvania         Scranton         836         0.99         (6)         830           South Carlina         Charleston         836         0.99         (6)         833           South Dakota         Rapid City         836         0.99         (7)         829           South Dakota         Rapid City         836         0.99         (7)         829           Vermont         Burlington         836         0.99         (7)         <                                                                  |               |             |                            |                    |                               |                                     |
| Nevada         Las Vegas         836         1.10         86         922           North Carolina         Charlotte         836         0.99         (12)         824           North Dakota         Bismarck         836         1.02         13         849           Ohio         Cincinnati         836         0.98         (17)         819           Oklahoma         Oklahoma City         836         0.96         (30)         806           Oregon         Portland         836         1.10         79         915           Pennsylvania         Scranton         836         1.13         26         862           Pennsylvania         Scranton         836         1.03         26         862           South Carolina         Charleston         836         0.97         (25)         811           South Carolina         Charleston         836         0.97         (25)         811           South Dakota         Rapid City         836         0.99         (6)         830           Tennessee         Nashville         836         0.99         (7)         829           Vermont         Burlington         836         0.99         (7)                                                                      |               |             |                            |                    |                               |                                     |
| North Carolina         Charlote         836         0.99         (12)         824           North Dakota         Bismarck         836         1.02         13         849           Ohio         Cincinnati         836         0.98         (17)         819           Oklahoma         Oklahoma         Oklahoma         60         30.0         806           Oregon         Portland         836         1.10         79         915           Pennsylvania         Philadelphia         836         1.18         152         988           Pennsylvania         Scranton         836         1.03         26         862           Rhode Island         Providence         836         1.09         75         911           South Carolina         Charleston         836         0.97         (25)         811           South Dakota         Rapid City         836         0.99         (6)         830           Tennessee         Nashville         836         0.99         (7)         829           Vermont         Burlington         836         0.99         (7)         829           Virginia         Alexandria         836         0.98         (14)                                                                   |               |             |                            |                    |                               |                                     |
| North Dakota         Bismarck         836         1.02         13         849           Ohio         Cincinnati         836         0.98         (17)         819           Oklahoma         Oklahoma City         836         0.96         (30)         806           Oregon         Portland         836         1.10         79         915           Pennsylvania         Philadelphia         836         1.18         152         988           Pennsylvania         Scranton         836         1.03         26         862           Rhode Island         Providence         836         0.97         (25)         811           South Carolina         Charleston         836         0.99         (6)         830           Tennessee         Nashville         836         0.99         (7)         829           Vermont         Burlington         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         1.04         35         871           Virginia         Alexandria         836         1.04         35 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>      |               |             |                            |                    |                               |                                     |
| Ohio         Cincinnati         836         0.98         (17)         819           Oklahoma         Oklahoma City         836         0.96         (30)         806           Oregon         Portland         836         1.10         79         915           Pennsylvania         Philadelphia         836         1.18         152         988           Pennsylvania         Scranton         836         1.03         26         862           Rhode Island         Providence         836         1.09         75         911           South Carolina         Charleston         836         0.97         (25)         811           South Dakota         Rapid City         836         0.99         (6)         830           Texas         Houston         836         0.99         (7)         829           Varant         Salt Lake City         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         1.04         35         871           Virginia         Roanoke         836         1.04         35         871                                                                      |               |             |                            |                    |                               |                                     |
| Oklahoma         Oklahoma City         836         0.96         (30)         806           Oregon         Portland         836         1.10         79         915           Pennsylvania         Philadelphia         836         1.18         152         988           Pennsylvania         Scranton         836         1.03         26         862           Rhode Island         Providence         836         1.09         75         911           South Carolina         Charleston         836         0.97         (25)         811           South Dakota         Rapid City         836         0.99         (6)         833           Texas         Houston         836         0.99         (7)         829           Vermont         Burlington         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         0.98         (14)         822           Washington         Seattle         836         0.98         (14)         822           Washington         Spokane         836         1.03         27 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>      |               |             |                            |                    |                               |                                     |
| Oregon         Portland         836         1.10         79         915           Pennsylvania         Philadelphia         836         1.18         152         988           Pennsylvania         Scranton         836         1.03         26         862           Rhode Island         Providence         836         1.09         75         911           South Carolina         Charleston         836         0.97         (25)         811           South Carolina         Charleston         836         0.97         (25)         811           South Carolina         Rapid City         836         0.99         (6)         830           Tennessee         Nashville         836         0.99         (7)         833           Texas         Houston         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         1.01         9         845           Virginia         Roanoke         836         1.01         9         845           Washington         Speane         836         1.03         27         86                                                                      |               |             |                            |                    |                               |                                     |
| Pensylvania         Philadelphia         836         1.18         152         988           Pennsylvania         Scranton         836         1.03         26         862           Rhode Island         Providence         836         1.09         75         911           South Carolina         Charleston         836         0.97         (25)         811           South Dakota         Rapid City         836         0.99         (6)         830           Tennessee         Nashville         836         0.99         (53)         783           Utah         Salt Lake City         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         1.01         9         845           Virginia         Roanoke         836         1.01         9         845           Washington         Seattle         836         1.03         27         863           Washington         Spokane         836         1.01         9         845           Washington         Spokane         836         1.01         9         845 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>      |               | -           |                            |                    |                               |                                     |
| Pennsylvania         Scranton         836         1.03         26         862           Rhode Island         Providence         836         1.09         75         911           South Carolina         Charleston         836         0.97         (25)         811           South Carolina         Rapid City         836         0.97         (25)         811           South Dakota         Rapid City         836         0.99         (6)         830           Tennessee         Nashville         836         0.99         (53)         833           Texas         Houston         836         0.94         (53)         783           Utah         Salt Lake City         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         1.01         9         845           Virginia         Roanoke         836         1.03         27         863           Washington         Spokane         836         1.01         9         845           Washington         Spokane         836         1.01         9         845 </td <td>Oregon</td> <td></td> <td></td> <td></td> <td></td> <td></td> | Oregon        |             |                            |                    |                               |                                     |
| Rhode Island         Providence         836         1.09         75         911           South Carolina         Charleston         836         0.97         (25)         811           South Dakota         Rapid City         836         0.99         (6)         830           Tennessee         Nashville         836         0.99         (6)         830           Tennessee         Nashville         836         0.94         (53)         783           Utah         Salt Lake City         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Aexandria         836         0.98         (14)         822           Washington         Seattle         836         1.03         277         863           West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                            | Pennsylvania  |             |                            |                    |                               |                                     |
| South Carolina         Charleston         836         0.97         (25)         811           South Dakota         Rapid City         836         0.99         (6)         830           Tennessee         Nashville         836         1.00         (3)         833           Texas         Houston         836         0.94         (53)         783           Utah         Salt Lake City         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Aexandria         836         1.01         9         845           Virginia         Roanoke         836         0.98         (14)         822           Washington         Seattle         836         1.03         277         863           West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                                          |               |             |                            |                    |                               |                                     |
| South Dakota         Rapid City         836         0.99         (6)         830           Tennessee         Nashville         836         1.00         (3)         833           Texas         Houston         836         0.94         (53)         783           Utah         Salt Lake City         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         1.01         9         845           Virginia         Roanoke         836         0.98         (14)         822           Washington         Seattle         836         1.03         277         863           West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                                                                                                                                       |               | Providence  |                            |                    |                               |                                     |
| Tennessee         Nashville         836         1.00         (3)         833           Texas         Houston         836         0.94         (53)         783           Utah         Salt Lake City         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Aexandria         836         1.01         9         845           Virginia         Roanoke         836         0.98         (14)         822           Washington         Seattle         836         1.03         277         863           West Virginia         Charleston         836         1.01         9         845           West Virginia         Charleston         836         1.01         9         845                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |                            |                    |                               |                                     |
| Texas         Houston         836         0.94         (53)         783           Utah         Salt Lake City         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         1.01         9         845           Virginia         Roanoke         836         0.98         (14)         822           Washington         Seattle         836         1.05         121         957           Washington         Spokane         836         1.03         277         863           West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                                                                                                                                                                                                                                   | South Dakota  |             |                            |                    |                               |                                     |
| Utah         Salt Lake City         836         0.99         (7)         829           Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         1.01         9         845           Virginia         Roanoke         836         0.98         (14)         822           Washington         Seattle         836         1.15         121         957           Washington         Spokane         836         1.03         277         863           West Virginia         Charleston         836         1.06         48         884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tennessee     |             |                            |                    |                               |                                     |
| Vermont         Burlington         836         1.04         35         871           Virginia         Alexandria         836         1.01         9         845           Virginia         Roanoke         836         0.98         (14)         822           Washington         Seattle         836         1.15         121         957           Washington         Spokane         836         1.03         27         863           West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Texas         |             |                            |                    |                               |                                     |
| Virginia         Alexandria         836         1.01         9         845           Virginia         Roanoke         836         0.98         (14)         822           Washington         Seattle         836         1.15         121         957           Washington         Spokane         836         1.03         27         863           West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Utah          |             |                            |                    |                               |                                     |
| Virginia         Roanoke         836         0.98         (14)         822           Washington         Seattle         836         1.15         121         957           Washington         Spokane         836         1.03         27         863           West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vermont       |             |                            |                    |                               |                                     |
| Washington         Seattle         836         1.15         121         957           Washington         Spokane         836         1.03         27         863           West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Virginia      | Alexandria  | 836                        |                    |                               |                                     |
| Washington         Spokane         836         1.03         27         863           West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Virginia      | Roanoke     | 836                        | 0.98               | (14)                          | 822                                 |
| West Virginia         Charleston         836         1.01         9         845           Wisconsin         Green Bay         836         1.06         48         884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Washington    | Seattle     | 836                        | 1.15               |                               | 957                                 |
| Wisconsin Green Bay 836 1.06 48 884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Washington    | Spokane     | 836                        | 1.03               | 27                            | 863                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | West Virginia | Charleston  | 836                        | 1.01               | 9                             |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wisconsin     | Green Bay   | 836                        | 1.06               | 48                            | 884                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wyoming       | Cheyenne    | 836                        | 0.99               | (8)                           | 828                                 |

### Table 1-5 — Location Adjustment for Combined-Cycle 2x2x1 (2023 USD) Case Configuration: 1227 MW Net, 2 x 1 H Class Combined Cycle

| State                   | City           | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|-------------------------|----------------|----------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama                 | Huntsville     | 868                        | 0.97               | (26)                          | 842                                 |
| Arizona                 | Phoenix        | 868                        | 1.01               | 8                             | 876                                 |
| Arkansas                | Little Rock    | 868                        | 0.97               | (22)                          | 846                                 |
| California              | Bakersfield    | 868                        | 1.15               | 131                           | 999                                 |
| California              | Los Angeles    | 868                        | 1.18               | 152                           | 1020                                |
| California              | Modesto        | 868                        | 1.17               | 151                           | 1019                                |
| California              | Sacramento     | 868                        | 1.19               | 164                           | 1032                                |
| California              | San Francisco  | 868                        | 1.31               | 268                           | 1136                                |
| Colorado                | Denver         | 868                        | 0.98               | (20)                          | 848                                 |
| Connecticut             | Hartford       | 868                        | 1.13               | 109                           | 977                                 |
| Delaware                | Dover          | 868                        | 1.12               | 104                           | 972                                 |
| District of Columbia    | Washington     | 868                        | 1.03               | 23                            | 891                                 |
| Florida                 | Tallahassee    | 868                        | 0.95               | (42)                          | 826                                 |
| Florida                 | Tampa          | 868                        | 0.96               | (32)                          | 836                                 |
| Georgia                 | Atlanta        | 868                        | 1.00               | 3                             | 871                                 |
| Idaho                   | Boise          | 868                        | 1.01               | 12                            | 880                                 |
| Illinois                | Chicago        | 868                        | 1.22               | 194                           | 1062                                |
| Indiana                 | Indianapolis   | 868                        | 1.00               | (4)                           | 864                                 |
| lowa                    | Davenport      | 868                        | 1.02               | 16                            | 884                                 |
| lowa                    | Waterloo       | 868                        | 0.98               | (18)                          | 850                                 |
| Kansas                  | Wichita        | 868                        | 0.98               | (18)                          | 849                                 |
| Kentucky                | Louisville     | 868                        | 1.00               | (3)                           | 865                                 |
| Louisiana               | New Orleans    | 868                        | 0.99               | (3)                           | 861                                 |
| Maine                   | Portland       | 868                        | 1.01               | 10                            | 878                                 |
| Maryland                | Baltimore      | 868                        | 1.01               | 10                            | 878                                 |
| Massachusetts           | Boston         | 868                        | 1.20               | 173                           | 1041                                |
| Michigan                | Detroit        | 868                        | 1.08               | 66                            | 934                                 |
| Michigan                | Grand Rapids   | 868                        | 1.00               | 2                             | 870                                 |
| Minnesota               | Saint Paul     | 868                        | 1.09               | 76                            | 944                                 |
|                         | Biloxi         | 868                        | 0.96               | (36)                          | 832                                 |
| Mississippi<br>Missouri | St. Louis      | 868                        | 1.08               | 73                            | 941                                 |
| Missouri                |                |                            |                    | 40                            | 908                                 |
|                         | Kansas City    | 868                        | 1.05<br>0.98       | (15)                          | 853                                 |
| Montana                 | Great Falls    | 868                        |                    |                               | 853                                 |
| Nebraska                | Omaha          | 868                        | 0.98               | (18)                          |                                     |
| New Hampshire           | Manchester     | 868                        | 1.03               | 22                            | 890                                 |
| New Jersey              | Newark         | 868                        | 1.21               | 184                           | 1052                                |
| New Mexico              | Albuquerque    | 868                        | 1.01               | 10                            | 878                                 |
| New York                | New York       | 868                        | 1.39               | 341                           | 1209                                |
| New York                | Syracuse       | 868                        | 1.05               | 42                            | 910                                 |
| Nevada                  | Las Vegas      | 868                        | 1.11               | 97                            | 965                                 |
| North Carolina          | Charlotte      | 868                        | 0.98               | (14)                          | 854                                 |
| North Dakota            | Bismarck       | 868                        | 1.02               | 16                            | 884                                 |
| Ohio                    | Cincinnati     | 868                        | 0.98               | (20)                          | 848                                 |
| Oklahoma                | Oklahoma City  | 868                        | 0.96               | (34)                          | 834                                 |
| Oregon                  | Portland       | 868                        | 1.10               | 90                            | 958                                 |
| Pennsylvania            | Philadelphia   | 868                        | 1.20               | 174                           | 1042                                |
| Pennsylvania            | Scranton       | 868                        | 1.04               | 30                            | 898                                 |
| Rhode Island            | Providence     | 868                        | 1.10               | 85                            | 953                                 |
| South Carolina          | Charleston     | 868                        | 0.96               | (32)                          | 836                                 |
| South Dakota            | Rapid City     | 868                        | 0.99               | (6)                           | 862                                 |
| Tennessee               | Nashville      | 868                        | 0.99               | (5)                           | 863                                 |
| Texas                   | Houston        | 868                        | 0.93               | (61)                          | 807                                 |
| Utah                    | Salt Lake City | 868                        | 0.99               | (9)                           | 859                                 |
| Vermont                 | Burlington     | 868                        | 1.04               | 37                            | 905                                 |
| Virginia                | Alexandria     | 868                        | 1.01               | 10                            | 878                                 |
| Virginia                | Roanoke        | 868                        | 0.98               | (16)                          | 852                                 |
| Washington              | Seattle        | 868                        | 1.16               | 138                           | 1006                                |
| Washington              | Spokane        | 868                        | 1.04               | 31                            | 899                                 |
| West Virginia           | Charleston     | 868                        | 1.01               | 10                            | 878                                 |
| Wisconsin               | Green Bay      | 868                        | 1.07               | 56                            | 924                                 |
| Wyoming                 | Cheyenne       | 868                        | 0.99               | (9)                           | 859                                 |
| -                       | •              |                            | •                  |                               | •                                   |

### Table 1-6 — Location Adjustment for Combined-Cycle 1x1x1, Single Shaft (2023 USD) Case Configuration: 627 MW Net, 1 x 1 H Class Combined Cycle

| State                | City           | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|----------------------|----------------|----------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama              | Huntsville     | 921                        | 0.97               | (29)                          | 892                                 |
| Arizona              | Phoenix        | 921                        | 1.01               | 10                            | 931                                 |
| Arkansas             | Little Rock    | 921                        | 0.97               | (27)                          | 894                                 |
| California           | Bakersfield    | 921                        | 1.14               | 133                           | 1054                                |
| California           | Los Angeles    | 921                        | 1.14               | 156                           | 1077                                |
| California           | Modesto        | 921                        | 1.17               | 154                           | 1077                                |
| California           | Sacramento     | 921                        | 1.17               | 168                           | 1089                                |
| California           | San Francisco  | 921                        | 1.18               | 277                           | 1198                                |
| Colorado             | Denver         | 921                        | 0.98               | (20)                          | 901                                 |
| Connecticut          | Hartford       | 921                        | 1.12               | 113                           | 1034                                |
| Delaware             | Dover          | 921                        | 1.12               | 113                           | 1034                                |
|                      |                | 921                        | 1.03               | 24                            | 945                                 |
| District of Columbia | Washington     | 921                        | 0.95               |                               | 945<br>877                          |
| Florida              | Tallahassee    |                            |                    | (44)                          | 887                                 |
| Florida              | Tampa          | 921                        | 0.96               | (34)                          | 922                                 |
| Georgia              | Atlanta        | 921                        | 1.00               | 1                             |                                     |
| Idaho                | Boise          | 921                        | 1.01               | 12                            | 933                                 |
| Illinois             | Chicago        | 921                        | 1.22               | 204                           | 1125                                |
| Indiana              | Indianapolis   | 921                        | 0.99               | (6)                           | 915                                 |
| lowa                 | Davenport      | 921                        | 1.02               | 18                            | 939                                 |
| lowa                 | Waterloo       | 921                        | 0.98               | (19)                          | 902                                 |
| Kansas               | Wichita        | 921                        | 0.98               | (20)                          | 901                                 |
| Kentucky             | Louisville     | 921                        | 1.00               | (5)                           | 916                                 |
| Louisiana            | New Orleans    | 921                        | 0.99               | (10)                          | 911                                 |
| Maine                | Portland       | 921                        | 1.01               | 10                            | 931                                 |
| Maryland             | Baltimore      | 921                        | 1.01               | 10                            | 931                                 |
| Massachusetts        | Boston         | 921                        | 1.20               | 180                           | 1101                                |
| Michigan             | Detroit        | 921                        | 1.08               | 69                            | 990                                 |
| Michigan             | Grand Rapids   | 921                        | 1.00               | 2                             | 923                                 |
| Minnesota            | Saint Paul     | 921                        | 1.09               | 82                            | 1003                                |
| Mississippi          | Biloxi         | 921                        | 0.96               | (37)                          | 884                                 |
| Missouri             | St. Louis      | 921                        | 1.08               | 72                            | 993                                 |
| Missouri             | Kansas City    | 921                        | 1.05               | 42                            | 963                                 |
| Montana              | Great Falls    | 921                        | 0.98               | (15)                          | 906                                 |
| Nebraska             | Omaha          | 921                        | 0.98               | (19)                          | 902                                 |
| New Hampshire        | Manchester     | 921                        | 1.02               | 20                            | 941                                 |
| New Jersey           | Newark         | 921                        | 1.21               | 193                           | 1114                                |
| New Mexico           | Albuquerque    | 921                        | 1.01               | 7                             | 928                                 |
| New York             | New York       | 921                        | 1.39               | 356                           | 1277                                |
| New York             | Syracuse       | 921                        | 1.05               | 44                            | 965                                 |
| Nevada               | Las Vegas      | 921                        | 1.11               | 98                            | 1019                                |
| North Carolina       | Charlotte      | 921                        | 0.98               | (14)                          | 907                                 |
| North Dakota         | Bismarck       | 921                        | 1.02               | 20                            | 941                                 |
| Ohio                 | Cincinnati     | 921                        | 0.98               | (20)                          | 901                                 |
| Oklahoma             | Oklahoma City  | 921                        | 0.96               | (35)                          | 886                                 |
| Oregon               | Portland       | 921                        | 1.10               | 91                            | 1012                                |
| Pennsylvania         | Philadelphia   | 921                        | 1.20               | 182                           | 1103                                |
| Pennsylvania         | Scranton       | 921                        | 1.03               | 32                            | 953                                 |
| Rhode Island         | Providence     | 921                        | 1.10               | 88                            | 1009                                |
| South Carolina       | Charleston     | 921                        | 0.96               | (41)                          | 880                                 |
| South Dakota         | Rapid City     | 921                        | 1.00               | (4)                           | 917                                 |
| Tennessee            | Nashville      | 921                        | 0.99               | (9)                           | 912                                 |
| Texas                | Houston        | 921                        | 0.93               | (64)                          | 857                                 |
| Utah                 | Salt Lake City | 921                        | 0.99               | (13)                          | 908                                 |
| Vermont              | Burlington     | 921                        | 1.03               | 31                            | 952                                 |
| Virginia             | Alexandria     | 921                        | 1.01               | 10                            | 931                                 |
| Virginia             | Roanoke        | 921                        | 0.98               | (16)                          | 905                                 |
| Washington           | Seattle        | 921                        | 1.15               | 140                           | 1061                                |
| Washington           | Spokane        | 921                        | 1.03               | 31                            | 952                                 |
| West Virginia        | Charleston     | 921                        | 1.01               | 11                            | 932                                 |
| Wisconsin            | Green Bay      | 921                        | 1.07               | 62                            | 983                                 |
| Wyoming              | Cheyenne       | 921                        | 0.99               | (8)                           | 913                                 |
| , ,                  | 1 -            | . = .                      | 1                  | (-/                           | 1                                   |

# Table 1-7 — Location Adjustment for Combined Cycle 1x1x1, Single Shaft 95% Carbon Capture (2023 USD) Case Configuration: 543 MW Net, 1 x 1 H Class Combined Cycle

| State                       | City             | Base Project Cost (\$/kW) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|-----------------------------|------------------|---------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama                     | Huntsville       | 2,365                     | 0.96               | (92)                          | 2273                                |
| Arizona                     | Phoenix          | 2,365                     | 1.01               | 32                            | 2397                                |
| Arkansas                    | Little Rock      | 2,365                     | 0.96               | (90)                          | 2275                                |
| California                  | Bakersfield      | 2,365                     | 1.18               | 417                           | 2782                                |
| California                  | Los Angeles      | 2,365                     | 1.21               | 488                           | 2853                                |
| California                  | Modesto          | 2,365                     | 1.20               | 481                           | 2846                                |
| California                  | Sacramento       | 2,365                     | 1.20               | 526                           | 2891                                |
| California                  | San Francisco    | 2,365                     | 1.37               | 870                           | 3235                                |
| Colorado                    | Denver           | 2,365                     | 0.97               | (60)                          | 2305                                |
| Connecticut                 | Hartford         | 2,365                     | 1.15               | 357                           | 2303                                |
| Delaware                    | Dover            | 2,365                     | 1.15               | 352                           | 27122                               |
| District of Columbia        | Washington       | 2,365                     | 1.03               | 75                            | 2440                                |
| Florida                     | Tallahassee      | 2,365                     | 0.94               | (138)                         | 2227                                |
| Florida                     |                  | 2,365                     | 0.95               | (107)                         | 2258                                |
|                             | Tampa            | 2,365                     | 1.00               | 3                             | 2368                                |
| Georgia                     | Atlanta<br>Boise |                           | 1.02               | 37                            | 2300                                |
| Idaho                       |                  | 2,365                     |                    |                               |                                     |
| Illinois                    | Chicago          | 2,365                     | 1.27               | 643                           | 3008                                |
| Indiana                     | Indianapolis     | 2,365                     | 0.99               | (20)                          | 2345                                |
| lowa                        | Davenport        | 2,365                     | 1.02               | 56                            | 2421                                |
| lowa                        | Waterloo         | 2,365                     | 0.98               | (58)                          | 2307                                |
| Kansas                      | Wichita          | 2,365                     | 0.97               | (61)                          | 2304                                |
| Kentucky                    | Louisville       | 2,365                     | 0.99               | (16)                          | 2349                                |
| Louisiana                   | New Orleans      | 2,365                     | 0.99               | (35)                          | 2330                                |
| Maine                       | Portland         | 2,365                     | 1.01               | 32                            | 2397                                |
| Maryland                    | Baltimore        | 2,365                     | 1.01               | 32                            | 2397                                |
| Massachusetts               | Boston           | 2,365                     | 1.24               | 566                           | 2931                                |
| Michigan                    | Detroit          | 2,365                     | 1.09               | 219                           | 2584                                |
| Michigan                    | Grand Rapids     | 2,365                     | 1.00               | 8                             | 2373                                |
| Minnesota                   | Saint Paul       | 2,365                     | 1.11               | 262                           | 2627                                |
| Mississippi                 | Biloxi           | 2,365                     | 0.95               | (117)                         | 2248                                |
| Missouri                    | St. Louis        | 2,365                     | 1.09               | 222                           | 2587                                |
| Missouri                    | Kansas City      | 2,365                     | 1.06               | 135                           | 2500                                |
| Montana                     | Great Falls      | 2,365                     | 0.98               | (46)                          | 2319                                |
| Nebraska                    | Omaha            | 2,365                     | 0.97               | (60)                          | 2305                                |
| New Hampshire               | Manchester       | 2,365                     | 1.03               | 60                            | 2425                                |
| New Jersey                  | Newark           | 2,365                     | 1.26               | 607                           | 2972                                |
| New Mexico                  | Albuquerque      | 2,365                     | 1.01               | 18                            | 2383                                |
| New York                    | New York         | 2,365                     | 1.47               | 1,123                         | 3488                                |
| New York                    | Syracuse         | 2,365                     | 1.06               | 141                           | 2506                                |
| Nevada                      | Las Vegas        | 2,365                     | 1.13               | 307                           | 2672                                |
| North Carolina              | Charlotte        | 2,365                     | 0.98               | (45)                          | 2320                                |
| North Dakota                | Bismarck         | 2,365                     | 1.03               | 65                            | 2430                                |
| Ohio                        | Cincinnati       | 2,365                     | 0.97               | (61)                          | 2304                                |
| Oklahoma                    | Oklahoma City    | 2,365                     | 0.95               | (109)                         | 2256                                |
| Oregon                      | Portland         | 2,365                     | 1.12               | 283                           | 2648                                |
| Pennsylvania                | Philadelphia     | 2,365                     | 1.24               | 573                           | 2938                                |
| Pennsylvania                | Scranton         | 2,365                     | 1.04               | 100                           | 2465                                |
| Rhode Island                | Providence       | 2,365                     | 1.12               | 275                           | 2640                                |
| South Carolina              | Charleston       | 2,365                     | 0.94               | (140)                         | 2225                                |
| South Dakota                | Rapid City       | 2,365                     | 1.00               | (8)                           | 2357                                |
| Tennessee                   | Nashville        | 2,365                     | 0.99               | (34)                          | 2331                                |
| Texas                       | Houston          | 2,365                     | 0.91               | (202)                         | 2163                                |
| Utah                        | Salt Lake City   | 2,365                     | 0.98               | (45)                          | 2320                                |
| Vermont                     | Burlington       | 2,365                     | 1.04               | 89                            | 2454                                |
| Virginia                    | Alexandria       | 2,365                     | 1.01               | 32                            | 2397                                |
| Virginia                    | Roanoke          | 2,365                     | 0.98               | (51)                          | 2314                                |
| Washington                  | Seattle          | 2,365                     | 1.18               | 437                           | 2802                                |
|                             | Spokane          | 2,365                     | 1.04               | 95                            | 2460                                |
| Washington                  |                  |                           |                    |                               |                                     |
| Washington<br>West Virginia | Charleston       | 2,365                     | 1.02               | 37                            | 2402                                |
|                             |                  | 2,365<br>2,365            | 1.02<br>1.08       | 37<br>199                     | 2402<br>2564                        |

### Table 1-8 — Location Adjustment for Bio Energy 95% Carbon Capture (2023 USD) Case Configuration: 50 MW Net, 1 x 65.5 MW Gross Woody Biomass Bubbling Fluidized Bed

| State                       | City             | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|-----------------------------|------------------|----------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama                     | Huntsville       | 12,631                     | 0.96               | (527)                         | 12104                               |
| Arizona                     | Phoenix          | 12,631                     | 1.01               | 161                           | 12792                               |
| Arkansas                    | Little Rock      | 12,631                     | 0.96               | (492)                         | 12139                               |
| California                  | Bakersfield      | 12,631                     | 1.19               | 2,375                         | 15006                               |
| California                  | Los Angeles      | 12,631                     | 1.13               | 2,903                         | 15534                               |
| California                  | Modesto          | 12,631                     | 1.23               | 2,639                         | 15270                               |
| California                  | Sacramento       | 12,631                     | 1.24               | 2,986                         | 15617                               |
| California                  | San Francisco    | 12,631                     | 1.40               | 5,046                         | 17677                               |
| Colorado                    | Denver           | 12,631                     | 0.98               | (294)                         | 12337                               |
| Connecticut                 | Hartford         | 12,631                     | 1.17               | 2,165                         | 14796                               |
| Delaware                    | Dover            | 12,631                     | 1.16               | 1,961                         | 14790                               |
| District of Columbia        | Washington       | 12,631                     | 1.05               | 588                           | 13219                               |
| Florida                     | Tallahassee      | 12,631                     | 0.94               | (814)                         | 11817                               |
| Florida                     |                  | 12,631                     | 0.95               | (686)                         | 11945                               |
|                             | Tampa<br>Atlanta |                            |                    | , ,                           | 11945                               |
| Georgia                     |                  | 12,631                     | 1.00<br>1.02       | (32)<br>293                   | 12599                               |
| Idaho                       | Boise            | 12,631                     |                    |                               |                                     |
| Illinois                    | Chicago          | 12,631                     | 1.29               | 3,679                         | 16310                               |
| Indiana                     | Indianapolis     | 12,631                     | 1.00               | 41                            | 12672                               |
| lowa                        | Davenport        | 12,631                     | 1.03               | 354                           | 12985                               |
| lowa                        | Waterloo         | 12,631                     | 0.99               | (167)                         | 12464                               |
| Kansas                      | Wichita          | 12,631                     | 0.99               | (148)                         | 12483                               |
| Kentucky                    | Louisville       | 12,631                     | 1.00               | (50)                          | 12581                               |
| Louisiana                   | New Orleans      | 12,631                     | 0.99               | (152)                         | 12479                               |
| Maine                       | Portland         | 12,631                     | 1.01               | 165                           | 12796                               |
| Maryland                    | Baltimore        | 12,631                     | 1.03               | 386                           | 13017                               |
| Massachusetts               | Boston           | 12,631                     | 1.26               | 3,259                         | 15890                               |
| Michigan                    | Detroit          | 12,631                     | 1.10               | 1,203                         | 13834                               |
| Michigan                    | Grand Rapids     | 12,631                     | 1.01               | 93                            | 12724                               |
| Minnesota                   | Saint Paul       | 12,631                     | 1.11               | 1,433                         | 14064                               |
| Mississippi                 | Biloxi           | 12,631                     | 0.94               | (725)                         | 11906                               |
| Missouri                    | St. Louis        | 12,631                     | 1.11               | 1,450                         | 14081                               |
| Missouri                    | Kansas City      | 12,631                     | 1.06               | 801                           | 13432                               |
| Montana                     | Great Falls      | 12,631                     | 0.98               | (256)                         | 12375                               |
| Nebraska                    | Omaha            | 12,631                     | 0.99               | (170)                         | 12461                               |
| New Hampshire               | Manchester       | 12,631                     | 1.04               | 471                           | 13102                               |
| New Jersey                  | Newark           | 12,631                     | 1.27               | 3,456                         | 16087                               |
| New Mexico                  | Albuquerque      | 12,631                     | 1.01               | 164                           | 12795                               |
| New York                    | New York         | 12,631                     | 1.52               | 6,576                         | 19207                               |
| New York                    | Syracuse         | 12,631                     | 1.07               | 858                           | 13489                               |
| Nevada                      | Las Vegas        | 12,631                     | 1.13               | 1,695                         | 14326                               |
| North Carolina              | Charlotte        | 12,631                     | 0.98               | (306)                         | 12325                               |
| North Dakota                | Bismarck         | 12,631                     | 1.03               | 365                           | 12996                               |
| Ohio                        | Cincinnati       | 12,631                     | 0.97               | (357)                         | 12274                               |
| Oklahoma                    | Oklahoma City    | 12,631                     | 0.95               | (664)                         | 11967                               |
| Oregon                      | Portland         | 12,631                     | 1.13               | 1,700                         | 14331                               |
| Pennsylvania                | Philadelphia     | 12,631                     | 1.27               | 3,356                         | 15987                               |
| Pennsylvania                | Scranton         | 12,631                     | 1.06               | 776                           | 13407                               |
| Rhode Island                | Providence       | 12,631                     | 1.13               | 1,589                         | 14220                               |
| South Carolina              | Charleston       | 12,631                     | 0.94               | (747)                         | 11884                               |
| South Dakota                | Rapid City       | 12,631                     | 0.99               | (74)                          | 12557                               |
| Tennessee                   | Nashville        | 12,631                     | 0.99               | (178)                         | 12453                               |
| Texas                       | Houston          | 12,631                     | 0.90               | (1,202)                       | 11429                               |
| Utah                        | Salt Lake City   | 12,631                     | 0.99               | (184)                         | 12447                               |
| Vermont                     | Burlington       | 12,631                     | 1.06               | 757                           | 13388                               |
| Virginia                    | Alexandria       | 12,631                     | 1.02               | 310                           | 12941                               |
| Virginia                    | Roanoke          | 12,631                     | 0.98               | (262)                         | 12369                               |
| Washington                  | Seattle          | 12,631                     | 1.20               | 2,499                         | 15130                               |
|                             | Spokane          | 12,631                     | 1.05               | 575                           | 13206                               |
| Washington                  | Spokalle         | ,                          |                    |                               |                                     |
| Washington<br>West Virginia | Charleston       | 12,631                     | 1.01               | 171                           | 12802                               |
|                             |                  |                            | 1.01<br>1.09       | 171<br>1,090                  | 12802<br>13721                      |

#### Table 1-9 — Location Adjustment for Advanced Nuclear (Brownfield) (2023 USD) Case Configuration: 2156 MW Net, 2 x AP1000

| State           Alabama         Huntsville           Arizona         Phoenix           Arkansas         Little Rock           California         Bakersfiel           California         Los Ange           California         Los Ange           California         Sacramer           California         Sacramer           California         Sacramer           Colorado         Denver           Connecticut         Hartford           Delaware         Dover           District of Columbia         Washingte           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor                            | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | opject Cost (\$/kW)           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861           7,861 | Location Variation 1.01 1.00 1.04 1.04 1.18 1.19 1.20 1.21 1.26 0.98 1.12 1.06 1.02 0.97 0.98 1.04 1.03 1.19 1.03 1.19 1.03 1.02 0.99 0.99 1.03 1.05 1.03 1.05 1.03 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Delta Cost Difference (\$/kW)           68           (18)           328           1,384           1,499           1,567           1,628           2,053           (191)           926           488           179           (253)           (129)           287           272           1,464           265           189           (48)           (74)           271           376           219 | Total Location Project Cost (\$/kW)           7929           7843           8189           9245           9360           9428           9489           9914           7670           8787           8349           8040           7608           7732           8148           8133           9325           8126           8050           7813           7787           8132           8237           8080 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arizona         Phoenix           Arkansas         Little Rock           California         Bakersfiel           California         Los Ange           California         Los Ange           California         Sacramer           Colorado         Denver           Connecticut         Hartford           Delaware         Dover           District of Columbia         Washingte           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Davenpor           Iowa         Davenpor           Iowa         Waterloo           Kentucky         Louisville           Louissiana         New Orle:           Maine         Portland           Minesota         Saint Pau           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Jarska         Omaha           New Hampshire         | K     Image: Constraint of the second s                           | 7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861                                   | 1.00           1.04           1.18           1.19           1.20           1.21           1.26           0.98           1.12           1.06           1.02           0.97           0.98           1.04           1.03           1.19           1.02           0.99           0.99           0.99           0.99           0.99           0.99           1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (18)         328         1,384         1,499         1,567         1,628         2,053         (191)         926         488         179         (253)         (129)         287         272         1,464         265         189         (48)         (74)         271         376         219                                                                                                  | 7843         8189         9245         9360         9428         9489         9914         7670         8787         8349         8040         7608         7732         8148         8133         9325         8126         8050         7787         8132         8132                                                                                                                                    |
| Arkansas       Little Rock         California       Bakersfiel         California       Los Ange         California       Modesto         California       Sacramer         California       San Franc         Colorado       Denver         Connecticut       Hartford         Delaware       Dover         District of Columbia       Washingte         Florida       Tallahass         Illinois       Chicago         Indiana       Indianapo         Iowa       Davenpor         Iowa       Waterloo         Kentucky       Louisville         Louissiana       New Orlea         Maine       Portland         Missouri       St. Louis         Missouri       St. Louis         Missouri       Kansas C         Montana       Great Fall         New Janska       Omaha                                                                   | bock     Image: Second se                           | 7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861                                   | 1.04         1.18         1.19         1.20         1.21         1.26         0.98         1.12         1.06         1.02         0.97         0.98         1.04         1.03         1.02         0.99         0.99         1.02         0.99         1.03         1.02         0.99         1.03         1.05         1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 328         1,384         1,499         1,567         1,628         2,053         (191)         926         488         179         (253)         (129)         287         272         1,464         265         189         (48)         (74)         271         376         219                                                                                                               | 8189           9245           9360           9428           9428           9914           7670           8787           8349           8040           7608           7732           8148           8133           9325           8126           8050           7787           8132           8132                                                                                                           |
| California         Bakersfiel           California         Los Ange           California         Modesto           California         Sacramer           California         San France           Colorado         Denver           Connecticut         Hartford           Delaware         Dover           District of Columbia         Washingte           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Illinois         Chicago           Indiana         Indianapo           lowa         Davenpor           lowa         Davenpor           lowa         Davenpor           lowa         Waterloo           Kantacky         Louisville           Louisiana         New Orlea           Maine         Portland           Maryland         Baltimore           Missouri         Kanasa C           Minesota         Saint Pau           Missouri         Kanasa C           Montana              | ield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861                                                                             | 1.18         1.19         1.20         1.21         1.26         0.98         1.12         1.06         1.02         0.97         0.98         1.04         1.03         1.02         0.99         0.99         1.03         1.05         1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,384         1,499         1,567         1,628         2,053         (191)         926         488         179         (253)         (129)         287         272         1,464         265         189         (48)         (74)         271         376         219                                                                                                                           | 9245<br>9360<br>9428<br>9489<br>9914<br>7670<br>8787<br>8349<br>8040<br>7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132                                                                                                                                                                                                                                                |
| California         Los Ange           California         Modesto           California         Sacramer           California         San Franc           Colorado         Denver           Connecticut         Hartford           Delaware         Dover           District of Columbia         Washingte           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Idaho         Boise           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orlea           Maine         Portland           Maine         Portland           Minnesota         Saint Pau           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           Nebraska         Omaha           New Hampshire         Manchest           New York         New York           New York         New      | geles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861                                                                                                                                                                                                                                                                                 | 1.19         1.20         1.21         1.26         0.98         1.12         1.06         1.02         0.97         0.98         1.04         1.03         1.12         0.99         0.99         1.03         1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,499         1,567         1,628         2,053         (191)         926         488         179         (253)         (129)         287         272         1,464         265         189         (48)         (74)         271         376         219                                                                                                                                         | 9360<br>9428<br>9489<br>9914<br>7670<br>8787<br>8349<br>8040<br>7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132                                                                                                                                                                                                                                                        |
| California         Modesto           California         Sacramer           California         San Franc           California         San Franc           Colorado         Denver           Connecticut         Hartford           Delaware         Dover           District of Columbia         Washingtu           Florida         Tallahass           Florida         Tallahass           Florida         Tampa           Georgia         Atlanta           Idaho         Boise           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orlea           Maine         Portland           Minesota         Saint Pau           Minesota         Saint Pau           Missouri         St. Louis           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Hampshire         < | b constraints of the second se | 7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861                                                                                                                                                                                                                                                                                 | 1.20           1.21           1.26           0.98           1.12           1.06           1.02           0.97           0.98           1.04           1.03           1.02           0.99           0.99           1.03           1.02           0.99           0.99           1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,567         1,628         2,053         (191)         926         488         179         (253)         (129)         287         272         1,464         265         189         (48)         (74)         271         376         219                                                                                                                                                       | 9428<br>9489<br>9914<br>7670<br>8787<br>8349<br>8040<br>7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132                                                                                                                                                                                                                                                                |
| California         Sacramer           California         San Franc           Colorado         Denver           Connecticut         Hartford           Delaware         Dover           District of Columbia         Washinglu           Florida         Tallahass           Florida         Tallahass           Georgia         Atlanta           Idaho         Boise           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Waterloo           Kentucky         Louisville           Louisaina         New Orlea           Maine         Portland           Michigan         Getrand Ra           Minnesota         Saint Pau           Missouri         St. Louis           Missouri         St. Louis           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Mexico         Albuquere           New York         New York           New York         New York                          | ento ento ento ento ento ento ento ento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861                                                                                                                                                                                                                                                                                               | 1.21           1.26           0.98           1.12           1.06           1.02           0.97           0.98           1.04           1.03           1.19           1.03           1.02           0.99           0.99           1.03           1.02           0.99           0.99           1.03           1.05           1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,628         2,053         (191)         926         488         179         (253)         (129)         287         272         1,464         265         189         (48)         (74)         271         376         219                                                                                                                                                                     | 9489<br>9914<br>7670<br>8787<br>8349<br>8040<br>7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132                                                                                                                                                                                                                                                                |
| California         San Franc           Colorado         Denver           Connecticut         Hartford           Delaware         Dover           District of Columbia         Washingtr           Florida         Tallahass           Florida         Tallahass           Georgia         Atlanta           Idaho         Boise           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Waterloo           Kentucky         Louisville           Louisana         New Orle:           Maine         Portland           Michigan         Detroit           Missasippi         Biloxi           Minssouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Jersey         Newark           New York         New York           New York         New York                                                                                                                                                  | Incisco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861                                                                                                                                                                                                                                                                                 | 1.26<br>0.98<br>1.12<br>1.06<br>1.02<br>0.97<br>0.98<br>1.04<br>1.03<br>1.19<br>1.03<br>1.02<br>0.99<br>0.99<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>0.98<br>1.04<br>1.03<br>1.02<br>0.99<br>1.03<br>1.02<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03 | 2,053<br>(191)<br>926<br>488<br>(179<br>(253)<br>(129)<br>287<br>272<br>1,464<br>265<br>189<br>(48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                  | 9914<br>7670<br>8787<br>8349<br>8040<br>7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132<br>8132                                                                                                                                                                                                                                                                        |
| Colorado         Denver           Connecticut         Hartford           Delaware         Dover           District of Columbia         Washingte           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Idaho         Boise           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Davenpor           Iowa         Waterloo           Kentucky         Louisville           Louisiana         New Orlea           Maine         Portland           Maryland         Baltimore           Michigan         Detroit           Minnesota         Saint Pau           Missouri         St. Louis           Missouri         St. Louis           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Jersey         Newark           New York         New Y     | gton gton ssee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861         7,861                                                                                                                                                                                                                                                                                 | 0.98<br>1.12<br>1.06<br>1.02<br>0.97<br>0.98<br>1.04<br>1.03<br>1.19<br>1.03<br>1.02<br>0.99<br>0.99<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (191)<br>926<br>488<br>(179)<br>(253)<br>(129)<br>287<br>272<br>1,464<br>265<br>189<br>(48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                          | 7670<br>8787<br>8349<br>8040<br>7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132                                                                                                                                                                                                                                                                                        |
| Connecticut         Hartford           Delaware         Dover           District of Columbia         Washingte           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tallahass           Florida         Tampa           Georgia         Atlanta           Idaho         Boise           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Davenpor           Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orler           Maine         Portland           Maryland         Baltimore           Mischigan         Detroit           Minesota         Saint Pau           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Jersey         Newark           | gton ssee  pools oft o lee leans d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.12           1.06           1.02           0.97           0.98           1.04           1.03           1.19           1.02           0.99           0.99           1.03           1.02           0.99           1.03           1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 926<br>488<br>179<br>(253)<br>(129)<br>287<br>272<br>1,464<br>265<br>189<br>(48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                                     | 8787<br>8349<br>8040<br>7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132<br>8237                                                                                                                                                                                                                                                                                        |
| Delaware         Dover           District of Columbia         Washingte           Florida         Tallahass           Florida         Tampa           Georgia         Atlanta           Idaho         Boise           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orlex           Maine         Portland           Maryland         Baltimore           Michigan         Gerand Ra           Minnesota         Saint Pau           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           Nebraska         Omaha           New Hampshire         Manchest           New Mexico         Albuquero           New York         New York           New York         New York                                                                                                                                                        | gton ssee  pools oft o lee leans d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.06<br>1.02<br>0.97<br>0.98<br>1.04<br>1.03<br>1.19<br>1.03<br>1.02<br>0.99<br>0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 488<br>179<br>(253)<br>(129)<br>287<br>272<br>1,464<br>265<br>189<br>(48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                                            | 8349<br>8040<br>7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132                                                                                                                                                                                                                                                                                                        |
| District of Columbia         Washingtr           Florida         Tallahass           Florida         Tampa           Georgia         Atlanta           Idaho         Boise           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orlea           Maine         Portland           Maryland         Baltimore           Michigan         Grand Ra           Minnesota         Saint Pau           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Harpshire         Manchest           New York         New York           New York         New York                                                                                                                                                                                                                         | opolis<br>ort<br>o<br>le<br>leans<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.02<br>0.97<br>0.98<br>1.04<br>1.03<br>1.19<br>1.03<br>1.02<br>0.99<br>0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179           (253)           (129)           287           272           1,464           265           189           (48)           (74)           271           376           219                                                                                                                                                                                                               | 8040<br>7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8237                                                                                                                                                                                                                                                                                                                |
| Florida     Tallahass       Florida     Tampa       Georgia     Atlanta       Idaho     Boise       Illinois     Chicago       Indiana     Indianapo       Iowa     Davenpor       Iowa     Waterloo       Kansas     Wichita       Kentucky     Louisville       Louisiana     New Orles       Maine     Portland       Maryland     Baltimore       Michigan     Gerand Ra       Minnesota     Saint Pau       Missouri     St. Louis       Missouri     Kansas C       Montana     Great Fall       New Hampshire     Manchest       New Jersey     Newark       New York     New York       New York     New York                                                                                                                                                                                                                                                                                                                                                                                                                                                          | opolis<br>ort<br>o<br>le<br>leans<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.97<br>0.98<br>1.04<br>1.03<br>1.19<br>1.03<br>1.02<br>0.99<br>0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (253)<br>(129)<br>287<br>272<br>1,464<br>265<br>189<br>(48)<br>(74)<br>271<br>271<br>376<br>219                                                                                                                                                                                                                                                                                                   | 7608<br>7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132<br>8237                                                                                                                                                                                                                                                                                                                |
| Florida     Tampa       Georgia     Atlanta       Idaho     Boise       Illinois     Chicago       Indiana     Indianapo       Iowa     Davenpor       Iowa     Waterloo       Iowa     Waterloo       Iowa     Vaterloo       Kansas     Wichita       Kentucky     Louisville       Louisiana     New Orlea       Maine     Portland       Maryland     Baltimore       Michigan     Gerand Ra       Minnesota     Saint Pau       Missouri     St. Louis       Missouri     St. Louis       Missouri     Kansas C       Montana     Great Fall       New Hampshire     Manchest       New Harpshire     Manchest       New Mexico     Albuquere       New York     New York       New York     New York                                                                                                                                                                                                                                                                                                                                                                     | o ort o o o o o o o o o o o o o o o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.98<br>1.04<br>1.03<br>1.19<br>1.03<br>1.02<br>0.99<br>0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (129)<br>287<br>272<br>1,464<br>265<br>189<br>(48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                                                                   | 7732<br>8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132<br>8237                                                                                                                                                                                                                                                                                                                        |
| Georgia         Atlanta           Idaho         Boise           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orlex           Maine         Portland           Maryland         Baltimore           Michigan         Grand Ra           Minnesota         Saint Pau           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Hampshire         Manchest           New Jork         New York           New York         New York                                                                                                                                                                                                                                                                                                                                              | oolis ort oolis oo | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.04<br>1.03<br>1.19<br>1.03<br>1.02<br>0.99<br>0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 287<br>272<br>1,464<br>265<br>(48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                                                                                   | 8148<br>8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132<br>8237                                                                                                                                                                                                                                                                                                                                |
| Idaho         Boise           Illinois         Chicago           Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orle:           Maine         Portland           Maryland         Baltimore           Michigan         Detroit           Minnesota         Saint Pau           Mississippi         Biloxi           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Jersey         Newark           New Mexico         Albuquerc           New York         New York           New York         New York                                                                                                                                                                                                                                                                       | oolis ort oolis oo | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.03<br>1.19<br>1.03<br>1.02<br>0.99<br>0.99<br>1.03<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 272<br>1,464<br>265<br>189<br>(48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                                                                                   | 8133<br>9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8132<br>8237                                                                                                                                                                                                                                                                                                                                        |
| Illinois         Chicago           Indiana         Indianapo           Iowa         Davenpor           Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orlex           Maine         Portland           Maryland         Baltimore           Michigan         Detroit           Michigan         Grand Ra           Minnesota         Saint Pau           Missouri         St. Louis           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Harpshire         Manchest           New Mexico         Albuquero           New York         New York           New York         New York                                                                                                                                                                                                                                                                                               | oolis ort oolis oo | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.19<br>1.03<br>1.02<br>0.99<br>0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,464<br>265<br>(48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                                                                                                 | 9325<br>8126<br>8050<br>7813<br>7787<br>8132<br>8237                                                                                                                                                                                                                                                                                                                                                        |
| Indiana         Indianapoo           Iodiana         Indianapoo           Iowa         Davenpor           Iowa         Waterloo           Kentucky         Louisville           Louisana         New Orler           Maine         Portland           Maryland         Baltimore           Michigan         Detroit           Michigan         Grand Ra           Minnesota         Saint Pau           Missouri         St. Louis           Missouri         St. Louis           Missouri         St. Louis           Messach         Ornaha           New Hampshire         Manchest           New Jersey         Newark           New York         New York           New York         New York                                                                                                                                                                                                                                                                                                                                                                             | oolis ort oolis oo | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.03<br>1.02<br>0.99<br>0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 265<br>189<br>(48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                                                                                                   | 8126<br>8050<br>7813<br>7787<br>8132<br>8237                                                                                                                                                                                                                                                                                                                                                                |
| Iowa         Davenpor           Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orlex           Maine         Portland           Maryland         Baltimore           Massachusetts         Boston           Michigan         Detroit           Mississippi         Biloxi           Missouri         St. Louis           Missouri         St. Louis           Missouri         St. Louis           Messaka         Ornaha           New Hampshire         Manchest           New Jersey         Newark           New York         New York           New York         New York                                                                                                                                                                                                                                                                                                                                                                                                                   | ort<br>o<br>le<br>leans<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.02<br>0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 189           (48)           (74)           271           376           219                                                                                                                                                                                                                                                                                                                       | 8050<br>7813<br>7787<br>8132<br>8237                                                                                                                                                                                                                                                                                                                                                                        |
| Iowa         Waterloo           Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orler           Maine         Portland           Maryand         Baltimore           Massachusetts         Boston           Michigan         Grand Ra           Minnesota         Saint Pau           Mississippi         Biloxi           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Harpshire         Albuquerc           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                       | o leans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.99<br>0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (48)<br>(74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                                                                                                                 | 7813<br>7787<br>8132<br>8237                                                                                                                                                                                                                                                                                                                                                                                |
| Kansas         Wichita           Kentucky         Louisville           Louisiana         New Orlea           Maine         Portland           Maryland         Baltimore           Massachusetts         Boston           Michigan         Detroit           Michigan         Grand Ra           Mississippi         Biloxi           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Jersey         Newark           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                               | leans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99<br>1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (74)<br>271<br>376<br>219                                                                                                                                                                                                                                                                                                                                                                         | 7787<br>8132<br>8237                                                                                                                                                                                                                                                                                                                                                                                        |
| Kentucky         Louisville           Louisiana         New Orlea           Maine         Portland           Maryland         Baltimore           Massachusetts         Boston           Michigan         Detroit           Michigan         Grand Ra           Minnesota         Saint Pau           Mississippi         Biloxi           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Jersey         Newark           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                          | leans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,861<br>7,861<br>7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.03<br>1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 271<br>376<br>219                                                                                                                                                                                                                                                                                                                                                                                 | 8132<br>8237                                                                                                                                                                                                                                                                                                                                                                                                |
| Louisiana         New Orlex           Maine         Portland           Maryland         Baltimore           Massachusetts         Boston           Michigan         Detroit           Michigan         Grand Ra           Minnesota         Saint Pau           Mississippi         Biloxi           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           New Hampshire         Manchest           New Hampshire         Manchest           New Mexico         Albuquere           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                    | leans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,861<br>7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.05<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 376<br>219                                                                                                                                                                                                                                                                                                                                                                                        | 8237                                                                                                                                                                                                                                                                                                                                                                                                        |
| Maine         Portland           Maryland         Baltimore           Massachusetts         Boston           Michigan         Detroit           Michigan         Grand Ra           Minnesota         Saint Pau           Mississippi         Biloxi           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           Nebraska         Omaha           New Hampshire         Manchest           New Jersey         Newark           New York         New York           New York         Syracuse           NewYork         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,861<br>7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 219                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Maryland         Baltimore           Massachusetts         Boston           Michigan         Detroit           Michigan         Grand Ra           Minnesota         Saint Pau           Mississippi         Biloxi           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           Nebraska         Omaha           New Hampshire         Manchest           New Mexico         Albuquero           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861<br>7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   | 8080                                                                                                                                                                                                                                                                                                                                                                                                        |
| Massachusetts         Boston           Michigan         Detroit           Michigan         Grand Ra           Minnesota         Saint Pau           Mississippi         Biloxi           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           Nebraska         Omaha           New Hampshire         Manchest           New Mexico         Albuquero           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Michigan         Detroit           Michigan         Grand Ra           Minnesota         Saint Pau           Mississippi         Biloxi           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           Nebraska         Omaha           New Hampshire         Manchest           New Mexico         Albuquerc           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 169                                                                                                                                                                                                                                                                                                                                                                                               | 8030                                                                                                                                                                                                                                                                                                                                                                                                        |
| Michigan     Grand Ra       Minnesota     Saint Pau       Mississippi     Biloxi       Missouri     St. Louis       Missouri     St. Louis       Missouri     Kansas C       Montana     Great Fall       Nebraska     Omaha       New Hampshire     Manchest       New Arkico     Albuquerc       New York     New York       New York     Syracuse       Nevada     Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,352                                                                                                                                                                                                                                                                                                                                                                                             | 9213                                                                                                                                                                                                                                                                                                                                                                                                        |
| Minnesota         Saint Pau           Mississippi         Biloxi           Missouri         St. Louis           Missouri         St. Louis           Missouri         Kansas C           Montana         Great Fall           Nebraska         Omaha           New Hampshire         Manchest           New Jersey         Newark           New Work         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 452                                                                                                                                                                                                                                                                                                                                                                                               | 8313                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mississippi     Biloxi       Missouri     St. Louis       Missouri     Kansas C       Montana     Great Fall       Nebraska     Omaha       New Hampshire     Manchest       New Jersey     Newark       New Mexico     Albuquerc       New York     New York       New York     Syracuse       Nevada     Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49                                                                                                                                                                                                                                                                                                                                                                                                | 7910                                                                                                                                                                                                                                                                                                                                                                                                        |
| Missouri     St. Louis       Missouri     Kansas C       Montana     Great Fall       Nebraska     Omaha       New Hampshire     Manchest       New Jersey     Newark       New Mexico     Albuquerc       New York     New York       New York     Syracuse       Nevada     Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 279                                                                                                                                                                                                                                                                                                                                                                                               | 8140                                                                                                                                                                                                                                                                                                                                                                                                        |
| Missouri     Kansas C       Montana     Great Fall       Nebraska     Omaha       New Hampshire     Manchest       New Jersey     Newark       New Mexico     Albuquero       New York     New York       New York     Syracuse       Nevada     Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (241)                                                                                                                                                                                                                                                                                                                                                                                             | 7620                                                                                                                                                                                                                                                                                                                                                                                                        |
| Montana         Great Fall           Nebraska         Omaha           New Hampshire         Manchest           New Jersey         Newark           New Mexico         Albuquerd           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,099                                                                                                                                                                                                                                                                                                                                                                                             | 8960                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nebraska         Omaha           New Hampshire         Manchest           New Jersey         Newark           New Mexico         Albuquero           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 310                                                                                                                                                                                                                                                                                                                                                                                               | 8171                                                                                                                                                                                                                                                                                                                                                                                                        |
| New Hampshire         Manchest           New Jersey         Newark           New Mexico         Albuquero           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (134)                                                                                                                                                                                                                                                                                                                                                                                             | 7727                                                                                                                                                                                                                                                                                                                                                                                                        |
| New Jersey         Newark           New Mexico         Albuquero           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (44)                                                                                                                                                                                                                                                                                                                                                                                              | 7817                                                                                                                                                                                                                                                                                                                                                                                                        |
| New Mexico         Albuquero           New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 581                                                                                                                                                                                                                                                                                                                                                                                               | 8442                                                                                                                                                                                                                                                                                                                                                                                                        |
| New York         New York           New York         Syracuse           Nevada         Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,344                                                                                                                                                                                                                                                                                                                                                                                             | 9205                                                                                                                                                                                                                                                                                                                                                                                                        |
| New York Syracuse<br>Nevada Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 546                                                                                                                                                                                                                                                                                                                                                                                               | 8407                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nevada Las Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,567                                                                                                                                                                                                                                                                                                                                                                                             | 10428                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 304                                                                                                                                                                                                                                                                                                                                                                                               | 8165                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,118                                                                                                                                                                                                                                                                                                                                                                                             | 8979                                                                                                                                                                                                                                                                                                                                                                                                        |
| North Carolina Charlotte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (72)                                                                                                                                                                                                                                                                                                                                                                                              | 7789                                                                                                                                                                                                                                                                                                                                                                                                        |
| North Dakota Bismarck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (83)                                                                                                                                                                                                                                                                                                                                                                                              | 7778                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ohio Cincinnati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (152)                                                                                                                                                                                                                                                                                                                                                                                             | 7709                                                                                                                                                                                                                                                                                                                                                                                                        |
| Oklahoma Oklahoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (248)                                                                                                                                                                                                                                                                                                                                                                                             | 7613                                                                                                                                                                                                                                                                                                                                                                                                        |
| Oregon Portland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,013                                                                                                                                                                                                                                                                                                                                                                                             | 8874                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pennsylvania Philadelph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,193                                                                                                                                                                                                                                                                                                                                                                                             | 9054                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pennsylvania Scranton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300                                                                                                                                                                                                                                                                                                                                                                                               | 8161                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rhode Island Providence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 861                                                                                                                                                                                                                                                                                                                                                                                               | 8722                                                                                                                                                                                                                                                                                                                                                                                                        |
| South Carolina Charlesto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 728                                                                                                                                                                                                                                                                                                                                                                                               | 8589                                                                                                                                                                                                                                                                                                                                                                                                        |
| South Dakota Rapid City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (271)                                                                                                                                                                                                                                                                                                                                                                                             | 7590                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tennessee Nashville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 444                                                                                                                                                                                                                                                                                                                                                                                               | 8305                                                                                                                                                                                                                                                                                                                                                                                                        |
| Texas Houston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (371)                                                                                                                                                                                                                                                                                                                                                                                             | 7490                                                                                                                                                                                                                                                                                                                                                                                                        |
| Utah Salt Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ke City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 435                                                                                                                                                                                                                                                                                                                                                                                               | 8296                                                                                                                                                                                                                                                                                                                                                                                                        |
| Vermont Burlington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,262                                                                                                                                                                                                                                                                                                                                                                                             | 9123                                                                                                                                                                                                                                                                                                                                                                                                        |
| Virginia Alexandria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Iria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105                                                                                                                                                                                                                                                                                                                                                                                               | 7966                                                                                                                                                                                                                                                                                                                                                                                                        |
| Virginia Roanoke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (97)                                                                                                                                                                                                                                                                                                                                                                                              | 7764                                                                                                                                                                                                                                                                                                                                                                                                        |
| Washington Seattle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,344                                                                                                                                                                                                                                                                                                                                                                                             | 9205                                                                                                                                                                                                                                                                                                                                                                                                        |
| Washington Spokane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 501                                                                                                                                                                                                                                                                                                                                                                                               | 8362                                                                                                                                                                                                                                                                                                                                                                                                        |
| West Virginia Charlesto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76                                                                                                                                                                                                                                                                                                                                                                                                | 7937                                                                                                                                                                                                                                                                                                                                                                                                        |
| Wisconsin Green Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86                                                                                                                                                                                                                                                                                                                                                                                                | 7947                                                                                                                                                                                                                                                                                                                                                                                                        |
| Wyoming Cheyenne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (132)                                                                                                                                                                                                                                                                                                                                                                                             | 7729                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Table 1-10 — Location Adjustment for Small Modular Reactor Nuclear Power Plant (2023 USD) Case Configuration: 480 MW Net, 6 x 80 MW Small Modular Reactor

| State                      | City           | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|----------------------------|----------------|----------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama                    | Huntsville     | 8,936                      | 0.99               | (76)                          | 8860                                |
| Arizona                    | Phoenix        | 8,936                      | 1.01               | 60                            | 8996                                |
| Arkansas                   | Little Rock    | 8,936                      | 1.00               | 26                            | 8962                                |
| California                 | Bakersfield    | 8,936                      | 1.13               | 1,193                         | 10129                               |
| California                 | Los Angeles    | 8,936                      | 1.15               | 1,305                         | 10241                               |
| California                 | Modesto        | 8,936                      | 1.15               | 1,364                         | 10300                               |
| California                 | Sacramento     | 8,936                      | 1.16               | 1,442                         | 10378                               |
| California                 | San Francisco  | 8,936                      | 1.21               | 1,897                         | 10833                               |
| Colorado                   | Denver         | 8,936                      | 0.98               | (148)                         | 8788                                |
| Connecticut                | Hartford       | 8,936                      | 1.10               | 912                           | 9848                                |
| Delaware                   | Dover          | 8,936                      | 1.07               | 668                           | 9604                                |
| District of Columbia       | Washington     | 8,936                      | 1.02               | 153                           | 9089                                |
| Florida                    | Tallahassee    | 8,936                      | 0.97               | (288)                         | 8648                                |
| Florida                    | Tampa          | 8,936                      | 0.98               | (190)                         | 8746                                |
| Georgia                    | Atlanta        | 8,936                      | 1.02               | 157                           | 9093                                |
| Idaho                      | Boise          | 8,936                      | 1.02               | 186                           | 9122                                |
| Illinois                   | Chicago        | 8,936                      | 1.18               | 1,579                         | 10515                               |
| Indiana                    | Indianapolis   | 8,936                      | 1.01               | 123                           | 9059                                |
| lowa                       | Davenport      | 8,936                      | 1.01               | 213                           | 9149                                |
| lowa                       | Waterloo       | 8,936                      | 0.99               | (55)                          | 8881                                |
| Kansas                     | Wichita        | 8,936                      | 0.99               | (69)                          | 8867                                |
| Kentucky                   | Louisville     | 8,936                      | 1.01               | 130                           | 9066                                |
| Louisiana                  | New Orleans    | 8,936                      | 1.01               | 130                           | 9000                                |
| Maine                      | Portland       | 8,936                      | 1.02               | 180                           | 9116                                |
| Maryland                   | Baltimore      | 8,936                      | 1.02               | 143                           | 9079                                |
| Massachusetts              | Boston         | 8,936                      | 1.15               | 1,327                         | 10263                               |
|                            | Detroit        | 8,936                      | 1.15               | 493                           | 9429                                |
| Michigan                   |                | 8,936                      | 1.00               | 62                            | 8998                                |
| Michigan                   | Grand Rapids   |                            | 1.05               | 474                           |                                     |
| Minnesota                  | Saint Paul     | 8,936                      |                    |                               | 9410<br>8684                        |
| Mississippi                | Biloxi         | 8,936                      | 0.97               | (252)                         |                                     |
| Missouri                   | St. Louis      | 8,936                      | 1.09<br>1.04       | 792                           | 9728<br>9267                        |
| Missouri                   | Kansas City    | 8,936                      | 0.99               | 331                           |                                     |
| Montana                    | Great Falls    | 8,936                      |                    | (105)                         | 8831                                |
| Nebraska                   | Omaha          | 8,936                      | 0.99               | (56)                          | 8880                                |
| New Hampshire              | Manchester     | 8,936                      | 1.04               | 368                           | 9304                                |
| New Jersey                 | Newark         | 8,936                      | 1.15               | 1,383                         | 10319                               |
| New Mexico                 | Albuquerque    | 8,936                      | 1.03               | 298                           | 9234                                |
| New York                   | New York       | 8,936                      | 1.30               | 2,683                         | 11619                               |
| New York                   | Syracuse       | 8,936                      | 1.04               | 326                           | 9262                                |
| Nevada                     | Las Vegas      | 8,936                      | 1.10               | 905                           | 9841                                |
| North Carolina             | Charlotte      | 8,936                      | 0.99               | (76)                          | 8860                                |
| North Dakota               | Bismarck       | 8,936                      | 1.01               | 92                            | 9028                                |
| Ohio                       | Cincinnati     | 8,936                      | 0.99               | (126)                         | 8810                                |
| Oklahoma                   | Oklahoma City  | 8,936                      | 0.97               | (246)                         | 8690                                |
| Oregon                     | Portland       | 8,936                      | 1.09               | 794                           | 9730                                |
| Pennsylvania               | Philadelphia   | 8,936                      | 1.14               | 1,222                         | 10158                               |
| Pennsylvania               | Scranton       | 8,936                      | 1.03               | 302                           | 9238                                |
| Rhode Island               | Providence     | 8,936                      | 1.09               | 773                           | 9709                                |
| South Carolina             | Charleston     | 8,936                      | 1.02               | 143                           | 9079                                |
| South Dakota               | Rapid City     | 8,936                      | 0.99               | (112)                         | 8824                                |
| Tennessee                  | Nashville      | 8,936                      | 1.02               | 142                           | 9078                                |
| Texas                      | Houston        | 8,936                      | 0.95               | (423)                         | 8513                                |
| Utah                       | Salt Lake City | 8,936                      | 1.02               | 155                           | 9091                                |
| Vermont                    | Burlington     | 8,936                      | 1.08               | 717                           | 9653                                |
| Virginia                   | Alexandria     | 8,936                      | 1.01               | 75                            | 9011                                |
| Virginia                   | Roanoke        | 8,936                      | 0.99               | (98)                          | 8838                                |
| Washington                 | Seattle        | 8,936                      | 1.12               | 1,104                         | 10040                               |
| Washington                 | Spokane        | 8,936                      | 1.04               | 392                           | 9328                                |
|                            | Charleston     | 8,936                      | 1.01               | 98                            | 9034                                |
| West Virginia              |                |                            |                    |                               |                                     |
| West Virginia<br>Wisconsin | Green Bay      | 8,936                      | 1.03               | 312<br>(67)                   | 9248<br>8869                        |

#### Table 1-11 — Location Adjustment for Geothermal (2023 USD) Case Configuration: 50 MW Net, Binary Cycle

| State                | City            | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|----------------------|-----------------|----------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama              | Huntsville      | N/A                        | N/A                | N/A                           | N/A                                 |
| Arizona              | Phoenix         | N/A                        | N/A                | N/A                           | N/A                                 |
| Arkansas             | Little Rock     | N/A                        | N/A                | N/A                           | N/A                                 |
| California           | Bakersfield     | 3,963                      | 1.14               | 535                           | 4,498                               |
| California           | Los Angeles     | 3,963                      | 1.16               | 625                           | 4,588                               |
| California           | Modesto         | 3,963                      | 1.15               | 606                           | 4,569                               |
| California           | Sacramento      | 3,963                      | 1.17               | 656                           | 4,619                               |
| California           | San Francisco   | 3,963                      | 1.24               | 934                           | 4,897                               |
| Colorado             | Denver          | N/A                        | N/A                | N/A                           | N/A                                 |
| Connecticut          | Hartford        | N/A                        | N/A                | N/A                           | N/A                                 |
| Delaware             | Dover           | N/A                        | N/A                | N/A                           | N/A                                 |
| District of Columbia | Washington      | N/A                        | N/A                | N/A                           | N/A                                 |
| Florida              | Tallahassee     | N/A                        | N/A                | N/A                           | N/A                                 |
| Florida              | Tampa           | N/A                        | N/A                | N/A                           | N/A                                 |
| Georgia              | Atlanta         | N/A                        | N/A                | N/A                           | N/A                                 |
| Idaho                | Boise           | 3,963                      | 1.02               | 82                            | 4,045                               |
| Illinois             | Chicago         | N/A                        | N/A                | N/A                           | N/A                                 |
| Indiana              | Indianapolis    | N/A                        | N/A                | N/A                           | N/A                                 |
| lowa                 | Davenport       | N/A                        | N/A                | N/A                           | N/A                                 |
| lowa                 | Waterloo        | N/A                        | N/A                | N/A                           | N/A                                 |
| Kansas               | Wichita         | N/A                        | N/A                | N/A                           | N/A                                 |
| Kentucky             | Louisville      | N/A                        | N/A                | N/A                           | N/A                                 |
| Louisiana            | New Orleans     | N/A                        | N/A                | N/A                           | N/A                                 |
| Maine                | Portland        | N/A                        | N/A                | N/A                           | N/A                                 |
| Maryland             | Baltimore       | N/A                        | N/A                | N/A                           | N/A                                 |
| Massachusetts        | Boston          | N/A                        | N/A                | N/A                           | N/A                                 |
| Michigan             | Detroit         | N/A                        | N/A                | N/A                           | NA                                  |
| Michigan             | Grand Rapids    | N/A                        | N/A                | N/A                           | N/A                                 |
| Minnesota            | Saint Paul      | N/A                        | N/A                | N/A                           | N/A                                 |
| Mississippi          | Biloxi          | N/A                        | N/A                | N/A                           | N/A                                 |
| Missouri             | St. Louis       | N/A                        | N/A                | N/A                           | N/A                                 |
| Missouri             | Kansas City     | N/A                        | N/A                | N/A                           | N/A                                 |
| Montana              | Great Falls     | N/A                        | N/A                | N/A                           | N/A                                 |
| Nebraska             | Omaha           | N/A                        | N/A                | N/A                           | N/A                                 |
| New Hampshire        | Manchester      | N/A                        | N/A                | N/A                           | N/A                                 |
| New Jersey           | Newark          | N/A                        | N/A                | N/A                           | N/A                                 |
| New Mexico           | Albuquerque     | N/A                        | N/A                | N/A                           | N/A                                 |
| New York             | New York        | N/A                        | N/A                | N/A                           | N/A                                 |
| New York             | Syracuse        | N/A                        | N/A                | N/A                           | N/A                                 |
| Nevada               | Las Vegas       | 3,963                      | 1.10               | 395                           | 4,358                               |
| North Carolina       | Charlotte       | N/A                        | N/A                | N/A                           | N/A                                 |
| North Dakota         | Bismarck        | N/A                        | N/A                | N/A                           | N/A                                 |
| Ohio                 | Cincinnati      | N/A                        | N/A                | N/A                           | N/A                                 |
| Oklahoma             | Oklahoma City   | N/A N/A                    | N/A                | N/A                           | N/A                                 |
| Oregon               | Portland        | 3,963                      | 1.09               | 353                           | 4,316                               |
| Pennsylvania         | Philadelphia    | N/A                        | N/A                | N/A                           | N/A                                 |
| Pennsylvania         | Scranton        | N/A N/A                    | N/A<br>N/A         | N/A<br>N/A                    | N/A                                 |
| Rhode Island         | Providence      | N/A<br>N/A                 | N/A<br>N/A         | N/A<br>N/A                    | N/A                                 |
| South Carolina       | Ob a sha a ta s | N/A N/A                    | N/A<br>N/A         | N/A N/A                       | N/A N/A                             |
| South Dakota         | Rapid City      | N/A<br>N/A                 | N/A<br>N/A         | N/A<br>N/A                    | N/A                                 |
| Tennessee            | Nashville       | N/A<br>N/A                 | N/A<br>N/A         | N/A<br>N/A                    | N/A N/A                             |
|                      | Houston         | N/A<br>N/A                 | N/A<br>N/A         | N/A<br>N/A                    | N/A<br>N/A                          |
| Texas<br>Utah        | Salt Lake City  | N/A<br>N/A                 | N/A<br>N/A         | N/A<br>N/A                    | N/A<br>N/A                          |
|                      |                 |                            |                    |                               |                                     |
| Vermont              | Burlington      | N/A                        | N/A                | N/A                           | N/A                                 |
| Virginia             | Alexandria      | N/A                        | N/A                | N/A                           | N/A                                 |
| Virginia             | Roanoke         | N/A                        | N/A                | N/A                           | N/A                                 |
| Washington           | Seattle         | 3,963                      | 1.13               | 512                           | 4,475                               |
| Washington           | Spokane         | 3,963                      | 1.03               | 138                           | 4,101                               |
| West Virginia        | Charleston      | N/A                        | N/A                | N/A                           | N/A                                 |
| Wisconsin            | Green Bay       | N/A                        | N/A                | N/A                           | N/A                                 |
| Wyoming              | Cheyenne        | N/A                        | N/A                | N/A                           | N/A                                 |

#### Table 1-12 — Location Adjustment for Hydroelectric Power Plant (2023 USD) Case Configuration: 100 MW Net, New Stream Reach Development

| State                | City           | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |  |  |  |
|----------------------|----------------|----------------------------|--------------------|-------------------------------|-------------------------------------|--|--|--|
| Alabama              | Huntsville     | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Arizona              | Phoenix        | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Arkansas             | Little Rock    | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| California           | Bakersfield    | 7,073                      | 1.18               | 1,254                         | 8327                                |  |  |  |
| California           | Los Angeles    | 7,073                      | 1.19               | 1,366                         | 8439                                |  |  |  |
| California           | Modesto        | 7,073                      | 1.19               | 1,428                         | 8501                                |  |  |  |
| California           | Sacramento     | 7,073                      | 1.20               | 1,498                         | 8571                                |  |  |  |
| California           | San Francisco  | 7,073                      | 1.27               | 1,496                         | 9010                                |  |  |  |
| Colorado             | Denver         | 7,073                      | 0.98               | (162)                         | 6911                                |  |  |  |
| Connecticut          | Hartford       | 7,073                      | 1.13               | 904                           | 7977                                |  |  |  |
| Delaware             | Dover          | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| District of Columbia | Washington     | N/A                        | N/A                | N/A<br>N/A                    | N/A N/A                             |  |  |  |
| Florida              | Tallahassee    | N/A N/A                    | N/A<br>N/A         | N/A                           | N/A N/A                             |  |  |  |
| Florida              | Tampa          | N/A                        | N/A                | N/A N/A                       | N/A N/A                             |  |  |  |
|                      | Atlanta        | N/A<br>N/A                 | N/A<br>N/A         | N/A<br>N/A                    | N/A N/A                             |  |  |  |
| Georgia              |                |                            | 1.03               |                               | 7289                                |  |  |  |
| Idaho                | Boise          | 7,073                      |                    | 216                           |                                     |  |  |  |
| Illinois             | Chicago        | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Indiana              | Indianapolis   | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| lowa                 | Davenport      | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| lowa                 | Waterloo       | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Kansas               | Wichita        | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Kentucky             | Louisville     | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Louisiana            | New Orleans    | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Maine                | Portland       | 7,073                      | 1.03               | 192                           | 7265                                |  |  |  |
| Maryland             | Baltimore      | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Massachusetts        | Boston         | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Michigan             | Detroit        | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Michigan             | Grand Rapids   | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Minnesota            | Saint Paul     | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Mississippi          | Biloxi         | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Missouri             | St. Louis      | 7,073                      | 1.13               | 903                           | 7976                                |  |  |  |
| Missouri             | Kansas City    | 7,073                      | 1.04               | 318                           | 7391                                |  |  |  |
| Montana              | Great Falls    | 7,073                      | 0.98               | (115)                         | 6958                                |  |  |  |
| Nebraska             | Omaha          | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| New Hampshire        | Manchester     | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| New Jersey           | Newark         | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| New Mexico           | Albuquerque    | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| New York             | New York       | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| New York             | Syracuse       | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Nevada               | Las Vegas      | 7,073                      | 1.14               | 978                           | 8051                                |  |  |  |
| North Carolina       | Charlotte      | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| North Dakota         | Bismarck       | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Ohio                 | Cincinnati     | 7,073                      | 0.98               | (134)                         | 6939                                |  |  |  |
| Oklahoma             | Oklahoma City  | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Oregon               | Portland       | 7,073                      | 1.12               | 870                           | 7943                                |  |  |  |
| Pennsylvania         | Philadelphia   | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Pennsylvania         | Scranton       | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Rhode Island         | Providence     | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| South Carolina       | Charleston     | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| South Dakota         | Rapid City     | 7,073                      | 0.98               | (173)                         | 6900                                |  |  |  |
| Tennessee            | Nashville      | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Texas                | Houston        | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Utah                 | Salt Lake City | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Vermont              | Burlington     | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Virginia             | Alexandria     | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Virginia             | Roanoke        | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Washington           | Seattle        | 7,073                      | 1.17               | 1,186                         | 8259                                |  |  |  |
| Washington           | Spokane        | 7,073                      | 1.06               | 429                           | 7502                                |  |  |  |
| West Virginia        | Charleston     | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Wisconsin            | Green Bay      | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
| Wyoming              | Cheyenne       | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |
|                      |                |                            |                    |                               |                                     |  |  |  |

### Table 1-13 — Location Adjustment for Onshore Wind – Large Plant Footprint: Great Plains Region (2023 USD) Case Configuration: 200 MW Net, 200 MW | 2.82 MW WTG

|                    | Base Project Cost (\$/kW)                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Delta Cost Difference (\$/kW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Location Project Cost (\$/kW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| City<br>Huntsville | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| San Francisco      | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Denver             | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hartford           | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dover              | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Washington         | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tallahassee        | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tampa              | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Atlanta            | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Boise              | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Saint Paul         | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Biloxi             | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| St. Louis          | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Kansas City        | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Great Falls        | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Omaha              | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Manchester         | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Providence         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Charleston         | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rapid City         | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nashville          | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Houston            | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Salt Lake City     | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Burlington         | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Alexandria         | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Roanoke            | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Seattle            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Seattle<br>Spokane |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Spokane            | 1,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1545<br>1495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.04<br>1.00<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56<br>6<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1545<br>1495<br>1565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | Hartford Dover Hartford Dover Washington Tallahassee Tampa Atlanta Boise Chicago Indianapolis Davenport Waterloo Wichita Louisville New Orleans Portland Baltimore Boston Detroit Grand Rapids Saint Paul Biloxi St. Louis Kansas City Great Falls Omaha Manchester Newark Albuquerque New York Syracuse Las Vegas Charlotte Bismarck Cincinnati Oklahoma City Portland Pinladelphia Scranton Providence Charleston Rapid City Nashville Houston Sait Lake City Burlington | Little Rock         1,489           Bakersfield         1,489           Los Angeles         1,489           Modesto         1,489           Saramento         1,489           San Francisco         1,489           Denver         1,489           Hartford         1,489           Dover         1,489           Washington         1,489           Tallahassee         1,489           Atlanta         1,489           Boise         1,489           Chicago         1,489           Boise         1,489           Indianapolis         1,489           Davenport         1,489           Waterloo         1,489           Louisville         1,489           Louisville         1,489           Dever         1,489           Batimore         1,489           Boston         1,489           Detroit         1,489           Boston         1,489           Saint Paul         1,489           Bioxi         1,489           St. Louis         1,489           Kansas City         1,489           Manchester         1,489 | Little Rock         1,489         1.00           Bakersfield         1,489         1.15           Los Angeles         1,489         1.18           Modesto         1,489         1.18           Modesto         1,489         1.18           Sarrancisco         1,489         1.28           Denver         1,489         0.98           Harfford         1,489         0.98           Harfford         1,489         0.97           Washington         1,489         0.97           Atlanta         1,489         0.97           Atlanta         1,489         1.02           Doise         1,489         1.02           Indianapolis         1,489         0.97           Atlanta         1,489         0.02           Indianapolis         1,489         0.02           Davenport         1,489         0.02           Vaterico         1,489         0.98           Wichita         1,489         0.02           Portland         1,489         1.01           Baltimore         1,489         1.01           Boston         1,489         1.01           Grand Rapids         1. | Lille Rock         1.489         1.00         5           Bakersfield         1.489         1.15         218           Los Angeles         1.489         1.16         274           Modesto         1.489         1.18         224           Modesto         1.489         1.18         244           Sararmento         1.489         1.18         268           Sararizanto         1.489         0.98         (31)           Harford         1.489         0.98         (34)           Dover         1.489         0.97         (02)           Washington         1.489         0.96         (64)           Tampa         1.489         0.97         (33)           Allanta         1.489         1.01         16           Boise         1.489         1.02         24           Okragoolis         1.489         1.02         24           Waterloo         1.489         0.98         (27)           Louisville         1.489         0.98         (27)           Louisville         1.489         1.01         17           Batimore         1.489         1.02         23           Portland |

### Table 1-14 — Location Adjustment for Onshore Wind Repowering/Retrofit (2023 USD) Case Configuration: 150 MW Net, 150 MW | 1.5-1.62 MW WTG

| State                | City           | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|----------------------|----------------|----------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama              | Huntsville     | 1,386                      | 1.00               | (3)                           | 1383                                |
| Arizona              | Phoenix        | 1,386                      | 0.99               | (9)                           | 1377                                |
| Arkansas             | Little Rock    | 1,386                      | 1.01               | 21                            | 1407                                |
| California           | Bakersfield    | 1,386                      | 1.11               | 148                           | 1534                                |
| California           | Los Angeles    | 1,386                      | 1.13               | 182                           | 1568                                |
| California           | Modesto        | 1,386                      | 1.12               | 165                           | 1551                                |
| California           | Sacramento     | 1,386                      | 1.13               | 179                           | 1565                                |
| California           | San Francisco  | 1,386                      | 1.10               | 271                           | 1657                                |
| Colorado             | Denver         | 1,386                      | 0.98               | (22)                          | 1364                                |
| Connecticut          | Hartford       | 1,386                      | 1.08               | 106                           | 1492                                |
| Delaware             | Dover          | 1,386                      | 1.04               | 56                            | 1442                                |
| District of Columbia | Washington     | 1,386                      | 1.04               | 25                            | 1411                                |
| Florida              | Tallahassee    | 1,386                      | 0.98               | (32)                          | 1354                                |
| Florida              | Tampa          | 1,386                      | 0.99               | (20)                          | 1366                                |
| Georgia              | Atlanta        | 1,386                      | 1.01               | 18                            | 1404                                |
| Idaho                | Boise          | 1,386                      | 1.01               | 27                            | 1404                                |
|                      |                |                            | 1.13               | 186                           | 1413                                |
| Illinois             | Chicago        | 1,386<br>1,386             | 1.13               | 24                            | 1572                                |
| Indiana              | Indianapolis   |                            |                    |                               |                                     |
| lowa                 | Davenport      | 1,386                      | 1.01               | 15                            | 1401                                |
| lowa                 | Waterloo       | 1,386                      | 0.99               | (15)                          | 1371                                |
| Kansas               | Wichita        | 1,386                      | 0.99               | (17)                          | 1369                                |
| Kentucky             | Louisville     | 1,386                      | 1.01               | 16                            | 1402                                |
| Louisiana            | New Orleans    | 1,386                      | 1.02               | 28                            | 1414                                |
| Maine                | Portland       | 1,386                      | 1.01               | 13                            | 1399                                |
| Maryland             | Baltimore      | 1,386                      | 1.01               | 11                            | 1397                                |
| Massachusetts        | Boston         | 1,386                      | 1.12               | 173                           | 1559                                |
| Michigan             | Detroit        | 1,386                      | 1.04               | 56                            | 1442                                |
| Michigan             | Grand Rapids   | 1,386                      | 1.00               | 0                             | 1386                                |
| Minnesota            | Saint Paul     | 1,386                      | 1.04               | 55                            | 1441                                |
| Mississippi          | Biloxi         | 1,386                      | 0.98               | (32)                          | 1354                                |
| Missouri             | St. Louis      | 1,386                      | 1.08               | 113                           | 1499                                |
| Missouri             | Kansas City    | 1,386                      | 1.03               | 37                            | 1423                                |
| Montana              | Great Falls    | 1,386                      | 0.99               | (17)                          | 1369                                |
| Nebraska             | Omaha          | 1,386                      | 0.99               | (16)                          | 1370                                |
| New Hampshire        | Manchester     | 1,386                      | 1.03               | 46                            | 1432                                |
| New Jersey           | Newark         | 1,386                      | 1.13               | 177                           | 1563                                |
| New Mexico           | Albuquerque    | 1,386                      | 1.03               | 35                            | 1421                                |
| New York             | New York       | 1,386                      | 1.22               | 310                           | 1696                                |
| New York             | Syracuse       | 1,386                      | 1.03               | 48                            | 1434                                |
| Nevada               | Las Vegas      | 1,386                      | 1.09               | 125                           | 1511                                |
| North Carolina       | Charlotte      | 1,386                      | 0.99               | (13)                          | 1373                                |
| North Dakota         | Bismarck       | 1,386                      | 0.99               | (8)                           | 1378                                |
| Ohio                 | Cincinnati     | 1,386                      | 0.98               | (22)                          | 1364                                |
| Oklahoma             | Oklahoma City  | 1,386                      | 0.98               | (30)                          | 1356                                |
| Oregon               | Portland       | 1,386                      | 1.08               | 114                           | 1500                                |
| Pennsylvania         | Philadelphia   | 1,386                      | 1.12               | 165                           | 1551                                |
| Pennsylvania         | Scranton       | 1,386                      | 1.02               | 26                            | 1412                                |
| Rhode Island         | Providence     | 1,386                      | 1.07               | 93                            | 1479                                |
| South Carolina       | Charleston     | 1,386                      | 1.03               | 48                            | 1434                                |
| South Dakota         | Rapid City     | 1,386                      | 0.98               | (22)                          | 1364                                |
| Tennessee            | Nashville      | 1,386                      | 1.02               | 32                            | 1418                                |
| Texas                | Houston        | 1,386                      | 0.97               | (48)                          | 1338                                |
| Utah                 | Salt Lake City | 1,386                      | 1.02               | 25                            | 1411                                |
| Vermont              | Burlington     | 1,386                      | 1.07               | 97                            | 1483                                |
| Virginia             | Alexandria     | 1,386                      | 1.01               | 18                            | 1404                                |
| Virginia             | Roanoke        | 1,386                      | 0.99               | (15)                          | 1371                                |
| Washington           | Seattle        | 1,386                      | 1.12               | 162                           | 1548                                |
| Washington           | Spokane        | 1,386                      | 1.03               | 42                            | 1428                                |
| West Virginia        | Charleston     | 1,386                      | 1.00               | 3                             | 1389                                |
| Wisconsin            | Green Bay      | 1,386                      | 1.03               | 36                            | 1422                                |
| Wyoming              | Cheyenne       | 1,386                      | 0.99               | (20)                          | 1366                                |
| , sining             | eeyonno        | 1,000                      | 0.00               | (20)                          | 1000                                |

#### Table 1-15 — Location Adjustment for Fixed-bottom Offshore Wind: Monopile Foundations Case Configuration: 900 MW Net, 900 MW | 15 MW WTG

| State                | City                  | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |  |  |  |  |
|----------------------|-----------------------|----------------------------|--------------------|-------------------------------|-------------------------------------|--|--|--|--|
| Alabama              | Huntsville            | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
|                      | Phoenix               | N/A<br>N/A                 | N/A                | N/A<br>N/A                    | N/A                                 |  |  |  |  |
| Arizona              |                       |                            |                    |                               |                                     |  |  |  |  |
| Arkansas             | Little Rock           | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| California           | Bakersfield           | 3,689                      | 1.15               | 542                           | 4231                                |  |  |  |  |
| California           | Los Angeles           | 3,689                      | 1.18               | 674                           | 4363                                |  |  |  |  |
| California           | Modesto               | 3,689                      | 1.16               | 606                           | 4295                                |  |  |  |  |
| California           | Sacramento            | 3,689                      | 1.18               | 660                           | 4349                                |  |  |  |  |
| California           | San Francisco         | 3,689                      | 1.27               | 1,012                         | 4701                                |  |  |  |  |
| Colorado             | Denver                | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Connecticut          | Hartford              | 3,689                      | 1.11               | 397                           | 4086                                |  |  |  |  |
| Delaware             | Dover                 | 3,689                      | 1.06               | 218                           | 3907                                |  |  |  |  |
| District of Columbia | Washington            | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Florida              | Tallahassee           | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Florida              | Tampa                 | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Georgia              | Atlanta               | 3,689                      | 1.02               | 57                            | 3746                                |  |  |  |  |
| Idaho                | Boise                 | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
|                      |                       |                            |                    |                               |                                     |  |  |  |  |
| Illinois             | Chicago               | 3,689                      | 1.19               | 703                           | 4392                                |  |  |  |  |
| Indiana              | Indianapolis          | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| lowa                 | Davenport             | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| lowa                 | Waterloo              | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Kansas               | Wichita               | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Kentucky             | Louisville            | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Louisiana            | New Orleans           | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Maine                | Portland              | 3,689                      | 1.01               | 47                            | 3736                                |  |  |  |  |
| Maryland             | Baltimore             | 3,689                      | 1.01               | 41                            | 3730                                |  |  |  |  |
| Massachusetts        | Boston                | 3,689                      | 1.18               | 647                           | 4336                                |  |  |  |  |
| Michigan             | Detroit               | 3,689                      | 1.06               | 212                           | 3901                                |  |  |  |  |
| Michigan             | Grand Rapids          | 3,689                      | 1.00               | 1                             | 3690                                |  |  |  |  |
| Minnesota            | Saint Paul            | 3,689                      | 1.06               | 218                           | 3907                                |  |  |  |  |
|                      | Biloxi                | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Mississippi          |                       |                            |                    |                               |                                     |  |  |  |  |
| Missouri             | St. Louis             | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Missouri             | Kansas City           | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Montana              | Great Falls           | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Nebraska             | Omaha                 | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| New Hampshire        | Manchester            | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| New Jersey           | Newark                | 3,689                      | 1.18               | 664                           | 4353                                |  |  |  |  |
| New Mexico           | Albuquerque           | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| New York             | New York              | 3,689                      | 1.32               | 1,168                         | 4857                                |  |  |  |  |
| New York             | Syracuse              | 3,689                      | 1.05               | 181                           | 3870                                |  |  |  |  |
| Nevada               | Las Vegas             | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| North Carolina       | Charlotte             | 3,689                      | 0.99               | (48)                          | 3641                                |  |  |  |  |
| North Dakota         | Bismarck              | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Ohio                 | Cincinnati            | N/A<br>N/A                 | N/A                | N/A<br>N/A                    | N/A                                 |  |  |  |  |
|                      |                       |                            |                    |                               |                                     |  |  |  |  |
| Oklahoma             | Oklahoma City         | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Oregon               | Portland              | 3,689                      | 1.11               | 412                           | 4101                                |  |  |  |  |
| Pennsylvania         | Philadelphia          | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Pennsylvania         | Scranton              | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Rhode Island         | Providence            | 3,689                      | 1.09               | 344                           | 4033                                |  |  |  |  |
| South Carolina       | Charleston            | 3,689                      | 1.04               | 134                           | 3823                                |  |  |  |  |
| South Dakota         | Rapid City            | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Tennessee            | Nashville             | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Texas                | Houston               | 3,689                      | 0.95               | (185)                         | 3504                                |  |  |  |  |
| Utah                 | Salt Lake City        | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Vermont              | Burlington            | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
| Virginia             | Alexandria            | 3,689                      | 1.02               | 64                            | 3753                                |  |  |  |  |
| Virginia             | Roanoke               | 3,689                      | 0.98               | (56)                          | 3633                                |  |  |  |  |
| -                    | Seattle               | 3,689                      | 1.16               | 595                           | 4284                                |  |  |  |  |
| Washington           |                       |                            |                    | 150                           | 4284<br>3839                        |  |  |  |  |
| Washington           | Spokane               | 3,689                      | 1.04               |                               |                                     |  |  |  |  |
| West Virginia        | Charleston            | N/A                        | N/A                | N/A                           | N/A                                 |  |  |  |  |
|                      |                       |                            |                    |                               |                                     |  |  |  |  |
| Wisconsin<br>Wyoming | Green Bay<br>Cheyenne | 3,689<br>N/A               | 1.04<br>N/A        | 147<br>N/A                    | 3836<br>N/A                         |  |  |  |  |

### Table 1-16 — Location Adjustment for Solar PV w/ Single Axis Tracking (2023 USD) Case Configuration: 150 MW Net, 150 MWAC

| State                | City                  | Base Project Cost (\$/kW ) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|----------------------|-----------------------|----------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama              | Huntsville            | 1,502                      | 0.98               | (22)                          | 1480                                |
| Arizona              | Phoenix               | 1,502                      | 1.01               | 11                            | 1513                                |
|                      |                       |                            |                    |                               |                                     |
| Arkansas             | Little Rock           | 1,502                      | 0.99               | (20)                          | 1482                                |
| California           | Bakersfield           | 1,502                      | 1.09               | 136                           | 1638                                |
| California           | Los Angeles           | 1,502                      | 1.10               | 150                           | 1652                                |
| California           | Modesto               | 1,502                      | 1.10               | 155                           | 1657                                |
| California           | Sacramento            | 1,502                      | 1.11               | 165                           | 1667                                |
| California           | San Francisco         | 1,502                      | 1.16               | 247                           | 1749                                |
| Colorado             | Denver                | 1,502                      | 0.99               | (18)                          | 1484                                |
| Connecticut          | Hartford              | 1,502                      | 1.07               | 112                           | 1614                                |
| Delaware             | Dover                 | 1,502                      | 1.07               | 104                           | 1606                                |
| District of Columbia | Washington            | 1,502                      | 1.01               | 19                            | 1521                                |
| Florida              | Tallahassee           | 1,502                      | 0.97               | (40)                          | 1462                                |
| Florida              | Tampa                 | 1,502                      | 0.98               | (29)                          | 1473                                |
| Georgia              | Atlanta               | 1,502                      | 1.00               | 7                             | 1509                                |
| Idaho                | Boise                 | 1,502                      | 1.00               | 14                            | 1516                                |
|                      |                       |                            |                    |                               |                                     |
| Illinois             | Chicago               | 1,502                      | 1.13               | 201                           | 1703                                |
| Indiana              | Indianapolis          | 1,502                      | 1.00               | (2)                           | 1500                                |
| lowa                 | Davenport             | 1,502                      | 1.01               | 23                            | 1525                                |
| lowa                 | Waterloo              | 1,502                      | 0.99               | (15)                          | 1487                                |
| Kansas               | Wichita               | 1,502                      | 0.99               | (15)                          | 1487                                |
| Kentucky             | Louisville            | 1,502                      | 1.00               | 2                             | 1504                                |
| Louisiana            | New Orleans           | 1,502                      | 1.00               | (3)                           | 1499                                |
| Maine                | Portland              | 1,502                      | 1.01               | 14                            | 1516                                |
| Maryland             | Baltimore             | 1,502                      | 1.01               | 11                            | 1513                                |
| Massachusetts        | Boston                | 1,502                      | 1.11               | 171                           | 1673                                |
| Michigan             | Detroit               | 1,502                      | 1.04               | 65                            | 1567                                |
| Michigan             | Grand Rapids          | 1,502                      | 1.00               | 4                             | 1506                                |
| Minnesota            | Saint Paul            | 1,502                      | 1.05               | 77                            | 1579                                |
| Mississippi          | Biloxi                | 1,502                      | 0.98               | (33)                          | 1469                                |
|                      |                       |                            |                    |                               |                                     |
| Missouri             | St. Louis             | 1,502                      | 1.05               | 74                            | 1576                                |
| Missouri             | Kansas City           | 1,502                      | 1.03               | 42                            | 1544                                |
| Montana              | Great Falls           | 1,502                      | 0.99               | (12)                          | 1490                                |
| Nebraska             | Omaha                 | 1,502                      | 0.99               | (15)                          | 1487                                |
| New Hampshire        | Manchester            | 1,502                      | 1.02               | 24                            | 1526                                |
| New Jersey           | Newark                | 1,502                      | 1.12               | 181                           | 1683                                |
| New Mexico           | Albuquerque           | 1,502                      | 1.01               | 14                            | 1516                                |
| New York             | New York              | 1,502                      | 1.23               | 341                           | 1843                                |
| New York             | Syracuse              | 1,502                      | 1.03               | 42                            | 1544                                |
| Nevada               | Las Vegas             | 1,502                      | 1.07               | 101                           | 1603                                |
| North Carolina       | Charlotte             | 1,502                      | 0.99               | (12)                          | 1490                                |
| North Dakota         | Bismarck              | 1,502                      | 1.01               | 21                            | 1523                                |
| Ohio                 | Cincinnati            | 1,502                      | 0.99               | (16)                          | 1486                                |
| Oklahoma             |                       | 1,502                      | 0.99               | (16)                          | 1480                                |
|                      | Oklahoma City         |                            |                    |                               |                                     |
| Oregon               | Portland              | 1,502                      | 1.06               | 87                            | 1589                                |
| Pennsylvania         | Philadelphia          | 1,502                      | 1.11               | 165                           | 1667                                |
| Pennsylvania         | Scranton              | 1,502                      | 1.02               | 32                            | 1534                                |
| Rhode Island         | Providence            | 1,502                      | 1.06               | 89                            | 1591                                |
| South Carolina       | Charleston            | 1,502                      | 0.98               | (28)                          | 1474                                |
| South Dakota         | Rapid City            | 1,502                      | 1.00               | (4)                           | 1498                                |
| Tennessee            | Nashville             | 1,502                      | 1.00               | (3)                           | 1499                                |
| Texas                | Houston               | 1,502                      | 0.96               | (58)                          | 1444                                |
| Utah                 | Salt Lake City        | 1,502                      | 1.00               | (5)                           | 1497                                |
| Vermont              | Burlington            | 1,502                      | 1.03               | 41                            | 1543                                |
| Virginia             | Alexandria            | 1,502                      | 1.00               | 7                             | 1509                                |
| Virginia             | Roanoke               | 1,502                      | 0.99               | (14)                          | 1488                                |
| -                    |                       |                            |                    |                               |                                     |
| Washington           | Seattle               | 1,502                      | 1.09               | 132                           | 1634                                |
| Washington           | Spokane               | 1,502                      | 1.02               | 35                            | 1537                                |
| West Virginia        | Charleston            | 1,502                      | 1.01               | 13                            | 1515                                |
| 8                    |                       |                            |                    |                               |                                     |
| Wisconsin<br>Wyoming | Green Bay<br>Cheyenne | 1,502<br>1,502             | 1.04<br>1.00       | 55<br>(6)                     | 1557<br>1496                        |

### Table 1-17 — Location Adjustment for Solar PV w/ Single Axis Tracking + AC Coupled Battery Storage (2023 USD) Case Configuration: 150 MW Net, 150 MWAC Solar 50 MW | 200 MWh Storage

| State                | City                       | Base Project Cost (\$/kW) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |  |  |  |  |
|----------------------|----------------------------|---------------------------|--------------------|-------------------------------|-------------------------------------|--|--|--|--|
| Alabama              | Huntsville                 | 2,175                     | 0.99               | (18)                          | 2157                                |  |  |  |  |
| Arizona              | Phoenix                    | 2,175                     | 1.00               | 8                             | 2183                                |  |  |  |  |
| Arkansas             | Little Rock                | 2,175                     | 1.00               | (2)                           | 2173                                |  |  |  |  |
| California           | Bakersfield                | 2,175                     | 1.09               | 191                           | 2366                                |  |  |  |  |
| California           | Los Angeles                | 2,175                     | 1.10               | 209                           | 2384                                |  |  |  |  |
| California           | Modesto                    | 2,175                     | 1.10               | 216                           | 2391                                |  |  |  |  |
| California           | Sacramento                 | 2,175                     | 1.10               | 227                           | 2402                                |  |  |  |  |
| California           | San Francisco              | 2,175                     | 1.15               | 331                           | 2506                                |  |  |  |  |
| Colorado             | Denver                     | 2,175                     | 0.99               | (27)                          | 2148                                |  |  |  |  |
| Connecticut          | Hartford                   | 2,175                     | 1.07               | 146                           | 2321                                |  |  |  |  |
|                      | Dover                      | 2,175                     | 1.07               | 140                           | 2321                                |  |  |  |  |
| Delaware             |                            |                           |                    |                               |                                     |  |  |  |  |
| District of Columbia | Washington                 | 2,175                     | 1.01               | 27                            | 2202                                |  |  |  |  |
| Florida              | Tallahassee                | 2,175                     | 0.98               | (49)                          | 2126                                |  |  |  |  |
| Florida              | Tampa                      | 2,175                     | 0.98               | (33)                          | 2142                                |  |  |  |  |
| Georgia              | Atlanta                    | 2,175                     | 1.01               | 19                            | 2194                                |  |  |  |  |
| Idaho                | Boise                      | 2,175                     | 1.01               | 26                            | 2201                                |  |  |  |  |
| Illinois             | Chicago                    | 2,175                     | 1.12               | 251                           | 2426                                |  |  |  |  |
| Indiana              | Indianapolis               | 2,175                     | 1.00               | 9                             | 2184                                |  |  |  |  |
| lowa                 | Davenport                  | 2,175                     | 1.01               | 27                            | 2202                                |  |  |  |  |
| lowa                 | Waterloo                   | 2,175                     | 0.99               | (19)                          | 2156                                |  |  |  |  |
| Kansas               | Wichita                    | 2,175                     | 0.99               | (20)                          | 2155                                |  |  |  |  |
| Kentucky             | Louisville                 | 2,175                     | 1.01               | 13                            | 2188                                |  |  |  |  |
| Louisiana            | New Orleans                | 2,175                     | 1.01               | 15                            | 2190                                |  |  |  |  |
| Maine                | Portland                   | 2,175                     | 1.01               | 21                            | 2196                                |  |  |  |  |
| Maryland             | Baltimore                  | 2,175                     | 1.01               | 17                            | 2192                                |  |  |  |  |
| Massachusetts        | Boston                     | 2,175                     | 1.10               | 222                           | 2397                                |  |  |  |  |
| Michigan             | Detroit                    | 2,175                     | 1.04               | 82                            | 2257                                |  |  |  |  |
| Michigan             | Grand Rapids               | 2,175                     | 1.00               | 4                             | 2179                                |  |  |  |  |
| Minnesota            | Saint Paul                 | 2,175                     | 1.04               | 84                            | 2259                                |  |  |  |  |
| Mississippi          | Biloxi                     | 2,175                     | 0.98               | (42)                          | 2133                                |  |  |  |  |
| Missouri             | St. Louis                  | 2,175                     | 1.06               | 120                           | 2295                                |  |  |  |  |
|                      |                            |                           | 1.00               | 53                            | 2295                                |  |  |  |  |
| Missouri             | Kansas City<br>Great Falls | 2,175                     | 0.99               |                               | 2220                                |  |  |  |  |
| Montana              |                            | 2,175                     |                    | (19)                          |                                     |  |  |  |  |
| Nebraska             | Omaha                      | 2,175                     | 0.99               | (18)                          | 2157                                |  |  |  |  |
| New Hampshire        | Manchester                 | 2,175                     | 1.02               | 48                            | 2223                                |  |  |  |  |
| New Jersey           | Newark                     | 2,175                     | 1.11               | 231                           | 2406                                |  |  |  |  |
| New Mexico           | Albuquerque                | 2,175                     | 1.02               | 37                            | 2212                                |  |  |  |  |
| New York             | New York                   | 2,175                     | 1.20               | 433                           | 2608                                |  |  |  |  |
| New York             | Syracuse                   | 2,175                     | 1.02               | 53                            | 2228                                |  |  |  |  |
| Nevada               | Las Vegas                  | 2,175                     | 1.07               | 147                           | 2322                                |  |  |  |  |
| North Carolina       | Charlotte                  | 2,175                     | 0.99               | (15)                          | 2160                                |  |  |  |  |
| North Dakota         | Bismarck                   | 2,175                     | 1.01               | 13                            | 2188                                |  |  |  |  |
| Ohio                 | Cincinnati                 | 2,175                     | 0.99               | (23)                          | 2152                                |  |  |  |  |
| Oklahoma             | Oklahoma City              | 2,175                     | 0.98               | (41)                          | 2134                                |  |  |  |  |
| Oregon               | Portland                   | 2,175                     | 1.06               | 130                           | 2305                                |  |  |  |  |
| Pennsylvania         | Philadelphia               | 2,175                     | 1.10               | 211                           | 2386                                |  |  |  |  |
| Pennsylvania         | Scranton                   | 2,175                     | 1.02               | 42                            | 2217                                |  |  |  |  |
| Rhode Island         | Providence                 | 2,175                     | 1.06               | 122                           | 2297                                |  |  |  |  |
| South Carolina       | Charleston                 | 2,175                     | 1.01               | 11                            | 2186                                |  |  |  |  |
| South Dakota         | Rapid City                 | 2,175                     | 0.99               | (18)                          | 2157                                |  |  |  |  |
| Tennessee            | Nashville                  | 2,175                     | 1.01               | 20                            | 2195                                |  |  |  |  |
| Texas                | Houston                    | 2,175                     | 0.97               | (71)                          | 2104                                |  |  |  |  |
| Utah                 | Salt Lake City             | 2,175                     | 1.01               | 15                            | 2190                                |  |  |  |  |
| Vermont              | Burlington                 | 2,175                     | 1.04               | 97                            | 2272                                |  |  |  |  |
| Virginia             | Alexandria                 | 2,175                     | 1.04               | 12                            | 2187                                |  |  |  |  |
|                      |                            |                           |                    |                               |                                     |  |  |  |  |
| Virginia             | Roanoke                    | 2,175                     | 0.99               | (18)                          | 2157                                |  |  |  |  |
| Washington           | Seattle                    | 2,175                     | 1.09               | 188                           | 2363                                |  |  |  |  |
| Washington           | Spokane                    | 2,175                     | 1.02               | 54                            | 2229                                |  |  |  |  |
| West Virginia        | Charleston                 | 2,175                     | 1.01               | 15                            | 2190                                |  |  |  |  |
| Wisconsin            | Green Bay                  | 2,175                     | 1.02               | 54                            | 2229                                |  |  |  |  |
| Wyoming              | Cheyenne                   | 2,175                     | 0.99               | (13)                          | 2162                                |  |  |  |  |

### Table 1-18 — Location Adjustment for Solar Photovoltaic, Single-Axis Tracking (with 1.6 Inverter Loading Ratio) with Battery Hybrid (2023 USD) Case Configuration: 150 MW PV DC Coupled to 50 MW/200 MWh BESS

| State                    | City           | Base Project Cost (\$/kW) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|--------------------------|----------------|---------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama                  | Huntsville     | 2,561                     | 0.99               | (23)                          | 2538                                |
| Arizona                  | Phoenix        | 2,561                     | 1.00               | 9                             | 2570                                |
| Arkansas                 | Little Rock    | 2,561                     | 1.00               |                               | 2570                                |
|                          |                |                           | 1.00               | (4)                           | 2337                                |
| California<br>California | Bakersfield    | 2,561                     |                    |                               |                                     |
| -                        | Los Angeles    | 2,561                     | 1.10               | 252                           | 2813                                |
| California               | Modesto        | 2,561                     | 1.10               | 261                           | 2822                                |
| California               | Sacramento     | 2,561                     | 1.11               | 274                           | 2835                                |
| California               | San Francisco  | 2,561                     | 1.16               | 400                           | 2961                                |
| Colorado                 | Denver         | 2,561                     | 0.99               | (34)                          | 2527                                |
| Connecticut              | Hartford       | 2,561                     | 1.07               | 177                           | 2738                                |
| Delaware                 | Dover          | 2,561                     | 1.06               | 146                           | 2707                                |
| District of Columbia     | Washington     | 2,561                     | 1.01               | 31                            | 2592                                |
| Florida                  | Tallahassee    | 2,561                     | 0.98               | (60)                          | 2501                                |
| Florida                  | Tampa          | 2,561                     | 0.98               | (41)                          | 2520                                |
| Georgia                  | Atlanta        | 2,561                     | 1.01               | 22                            | 2583                                |
| Idaho                    | Boise          | 2,561                     | 1.01               | 30                            | 2591                                |
| Illinois                 | Chicago        | 2,561                     | 1.12               | 305                           | 2866                                |
| Indiana                  | Indianapolis   | 2,561                     | 1.00               | 9                             | 2570                                |
| lowa                     | Davenport      | 2,561                     | 1.01               | 33                            | 2594                                |
| lowa                     | Waterloo       | 2,561                     | 0.99               | (23)                          | 2538                                |
| Kansas                   | Wichita        | 2,561                     | 0.99               | (25)                          | 2536                                |
| Kentucky                 | Louisville     | 2,561                     | 1.01               | 15                            | 2576                                |
| Louisiana                | New Orleans    | 2,561                     | 1.01               | 16                            | 2577                                |
| Maine                    | Portland       | 2,561                     | 1.01               | 25                            | 2586                                |
| Maryland                 | Baltimore      | 2,561                     | 1.01               | 19                            | 2580                                |
| Massachusetts            | Boston         | 2,561                     | 1.11               | 269                           | 2830                                |
| Michigan                 | Detroit        | 2,561                     | 1.04               | 98                            | 2659                                |
| Michigan                 | Grand Rapids   | 2,561                     | 1.04               | 4                             | 2565                                |
| Minnesota                | Saint Paul     | 2,561                     | 1.04               | 102                           | 2505                                |
|                          | Biloxi         |                           | 0.98               |                               | 2509                                |
| Mississippi              |                | 2,561                     |                    | (52)                          |                                     |
| Missouri                 | St. Louis      | 2,561                     | 1.06               | 144                           | 2705                                |
| Missouri                 | Kansas City    | 2,561                     | 1.02               | 63                            | 2624                                |
| Montana                  | Great Falls    | 2,561                     | 0.99               | (23)                          | 2538                                |
| Nebraska                 | Omaha          | 2,561                     | 0.99               | (23)                          | 2538                                |
| New Hampshire            | Manchester     | 2,561                     | 1.02               | 57                            | 2618                                |
| New Jersey               | Newark         | 2,561                     | 1.11               | 280                           | 2841                                |
| New Mexico               | Albuquerque    | 2,561                     | 1.02               | 43                            | 2604                                |
| New York                 | New York       | 2,561                     | 1.21               | 526                           | 3087                                |
| New York                 | Syracuse       | 2,561                     | 1.03               | 64                            | 2625                                |
| Nevada                   | Las Vegas      | 2,561                     | 1.07               | 177                           | 2738                                |
| North Carolina           | Charlotte      | 2,561                     | 0.99               | (19)                          | 2542                                |
| North Dakota             | Bismarck       | 2,561                     | 1.01               | 16                            | 2577                                |
| Ohio                     | Cincinnati     | 2,561                     | 0.99               | (29)                          | 2532                                |
| Oklahoma                 | Oklahoma City  | 2,561                     | 0.98               | (51)                          | 2510                                |
| Oregon                   | Portland       | 2,561                     | 1.06               | 156                           | 2717                                |
| Pennsylvania             | Philadelphia   | 2,561                     | 1.10               | 256                           | 2817                                |
| Pennsylvania             | Scranton       | 2,561                     | 1.02               | 50                            | 2611                                |
| Rhode Island             | Providence     | 2,561                     | 1.06               | 147                           | 2708                                |
| South Carolina           | Charleston     | 2,561                     | 1.00               | 10                            | 2571                                |
| South Dakota             | Rapid City     | 2,561                     | 0.99               | (22)                          | 2539                                |
| Tennessee                | Nashville      | 2,561                     | 1.01               | 22                            | 2583                                |
| Texas                    | Houston        | 2,561                     | 0.97               | (87)                          | 2474                                |
| Utah                     | Salt Lake City | 2,561                     | 1.01               | 17                            | 2578                                |
| Vermont                  | Burlington     | 2,561                     | 1.04               | 114                           | 2675                                |
|                          | *              |                           |                    |                               |                                     |
| Virginia                 | Alexandria     | 2,561                     | 1.01               | 13                            | 2574                                |
| Virginia                 | Roanoke        | 2,561                     | 0.99               | (23)                          | 2538                                |
| Washington               | Seattle        | 2,561                     | 1.09               | 227                           | 2788                                |
| Washington               | Spokane        | 2,561                     | 1.03               | 65                            | 2626                                |
| West Virginia            | Charleston     | 2,561                     | 1.01               | 18                            | 2579                                |
| Wisconsin                | Green Bay      | 2,561                     | 1.03               | 65                            | 2626                                |
| Wyoming                  | Cheyenne       | 2,561                     | 0.99               | (16)                          | 2545                                |

### Table 1-19 — Location Adjustment for Battery Storage: 4 hours (2023 USD) Case Configuration: 150 MW / 600 MWh

| State                        | City           | Base Project Cost (\$/kW) | Location Variation | Delta Cost Difference (\$/kW) | Total Location Project Cost (\$/kW) |
|------------------------------|----------------|---------------------------|--------------------|-------------------------------|-------------------------------------|
| Alabama                      | Huntsville     | 1,744                     | 1.01               | 21                            | 1765                                |
| Arizona                      | Phoenix        | 1,744                     | 0.99               | (17)                          | 1703                                |
| Arkansas                     | Little Rock    | 1,744                     | 1.03               | 58                            | 1802                                |
|                              |                | 1,744                     | 1.03               | 126                           | 1802                                |
| California                   | Bakersfield    |                           |                    |                               |                                     |
| California                   | Los Angeles    | 1,744                     | 1.09               | 149                           | 1893                                |
| California                   | Modesto        | 1,744                     | 1.07               | 130                           | 1874                                |
| California                   | Sacramento     | 1,744                     | 1.08               | 136                           | 1880                                |
| California                   | San Francisco  | 1,744                     | 1.11               | 187                           | 1931                                |
| Colorado                     | Denver         | 1,744                     | 0.99               | (18)                          | 1726                                |
| Connecticut                  | Hartford       | 1,744                     | 1.05               | 83                            | 1827                                |
| Delaware                     | Dover          | 1,744                     | 1.01               | 22                            | 1766                                |
| District of Columbia         | Washington     | 1,744                     | 1.01               | 24                            | 1768                                |
| Florida                      | Tallahassee    | 1,744                     | 0.99               | (15)                          | 1729                                |
| Florida                      | Tampa          | 1,744                     | 1.00               | (4)                           | 1740                                |
| Georgia                      | Atlanta        | 1,744                     | 1.02               | 34                            | 1778                                |
| Idaho                        | Boise          | 1,744                     | 1.02               | 31                            | 1775                                |
| Illinois                     | Chicago        | 1,744                     | 1.07               | 121                           | 1865                                |
| Indiana                      | Indianapolis   | 1,744                     | 1.02               | 37                            | 1781                                |
| lowa                         | Davenport      | 1,744                     | 1.01               | 13                            | 1757                                |
| lowa                         | Waterloo       | 1,744                     | 1.00               | (5)                           | 1739                                |
| Kansas                       | Wichita        | 1,744                     | 1.00               | (3)                           | 1740                                |
| Kentucky                     | Louisville     | 1,744                     | 1.00               | 35                            | 1779                                |
| Louisiana                    | New Orleans    | 1,744                     | 1.02               | 56                            | 1800                                |
| Maine                        | Portland       | 1,744                     | 1.03               | 19                            | 1763                                |
|                              | Baltimore      |                           |                    |                               |                                     |
| Maryland                     |                | 1,744                     | 1.01               | 19                            | 1763                                |
| Massachusetts                | Boston         | 1,744                     | 1.07               | 123                           | 1867                                |
| Michigan                     | Detroit        | 1,744                     | 1.02               | 32                            | 1776                                |
| Michigan                     | Grand Rapids   | 1,744                     | 1.00               | 1                             | 1745                                |
| Minnesota                    | Saint Paul     | 1,744                     | 1.01               | 15                            | 1759                                |
| Mississippi                  | Biloxi         | 1,744                     | 0.99               | (17)                          | 1727                                |
| Missouri                     | St. Louis      | 1,744                     | 1.07               | 121                           | 1865                                |
| Missouri                     | Kansas City    | 1,744                     | 1.01               | 25                            | 1769                                |
| Montana                      | Great Falls    | 1,744                     | 0.99               | (13)                          | 1731                                |
| Nebraska                     | Omaha          | 1,744                     | 1.00               | (4)                           | 1740                                |
| New Hampshire                | Manchester     | 1,744                     | 1.03               | 60                            | 1804                                |
| New Jersey                   | Newark         | 1,744                     | 1.06               | 112                           | 1856                                |
| New Mexico                   | Albuquerque    | 1,744                     | 1.03               | 61                            | 1805                                |
| New York                     | New York       | 1,744                     | 1.12               | 204                           | 1948                                |
| New York                     | Syracuse       | 1,744                     | 1.02               | 34                            | 1778                                |
| Nevada                       | Las Vegas      | 1,744                     | 1.07               | 116                           | 1860                                |
| North Carolina               | Charlotte      | 1,744                     | 1.00               | (5)                           | 1739                                |
| North Dakota                 | Bismarck       | 1,744                     | 0.99               | (22)                          | 1722                                |
| Ohio                         | Cincinnati     | 1,744                     | 0.99               | (17)                          | 1727                                |
| Oklahoma                     | Oklahoma City  | 1,744                     | 0.99               | (17)                          | 1725                                |
| Oregon                       | Portland       | 1,744                     | 1.06               | 107                           | 1851                                |
| Pennsylvania                 | Philadelphia   | 1,744                     | 1.06               | 107                           | 1849                                |
| ,                            | Scranton       | 1,744                     | 1.06               | 23                            | 1767                                |
| Pennsylvania<br>Rhada Jaland | Providence     |                           | 1.01               | 75                            | 1767                                |
| Rhode Island                 |                | 1,744                     |                    |                               |                                     |
| South Carolina               | Charleston     | 1,744                     | 1.07               | 119                           | 1863                                |
| South Dakota                 | Rapid City     | 1,744                     | 0.98               | (35)                          | 1709                                |
| Tennessee                    | Nashville      | 1,744                     | 1.04               | 66                            | 1810                                |
| Texas                        | Houston        | 1,744                     | 0.99               | (23)                          | 1721                                |
| Utah                         | Salt Lake City | 1,744                     | 1.03               | 60                            | 1804                                |
| Vermont                      | Burlington     | 1,744                     | 1.08               | 143                           | 1887                                |
| Virginia                     | Alexandria     | 1,744                     | 1.01               | 21                            | 1765                                |
| Virginia                     | Roanoke        | 1,744                     | 1.00               | (8)                           | 1736                                |
| Washington                   | Seattle        | 1,744                     | 1.08               | 138                           | 1882                                |
| Washington                   | Spokane        | 1,744                     | 1.03               | 44                            | 1788                                |
|                              | Charleston     | 1,744                     | 1.00               | (1)                           | 1743                                |
| West Virginia                | Chaneston      | 1,744                     |                    |                               |                                     |
| West Virginia<br>Wisconsin   | Green Bay      | 1,744                     | 0.99               | (8)                           | 1736                                |

## APPENDIX B. COMBUSTION TURBINE CAPACITY ADJUSTMENTS



| I              |               |                |           |           |           |           |           |           |         |        |        | Gas    | s Turbine Based Capacity and Heat Rate Adjustments |        |         |        |        |         |         |         |
|----------------|---------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|---------|--------|--------|--------|----------------------------------------------------|--------|---------|--------|--------|---------|---------|---------|
| LOCA           | ATION         | Adjustn        | nent Basi | is        | Simple    | Cycle     | Combin    | ed Cyle   | 4 x LM6 | 000PF+ | 1 x 7  |        | 2 x 7HA                                            |        | 2 x 7HA |        |        | OHL WCT | 1 x 900 | OHL ACC |
| State          | City          | ASHRAE Station | Alt (ft)  | Ave T (F) | MW adj SC | HR adj SC | MW adj CC | HR adj CC | MW net  | HR net | MW net | HR net | MW net                                             | HR net | MW net  | HR net | MW net | HR net  | MW net  | HR net  |
| ISO            | ISO           | -              | 0         | 59.0      | 100.0%    | 100.0%    | 100.0%    | 100.0%    | 210.7   | 8,511  | 419.4  | 8,236  | 1,227.3                                            | 5,660  | 1,211.5 | 5,734  | 626.7  | 5,645   | 616.2   | 5,742   |
| Alabama        | Huntsville    | 723230         | 624       | 62.2      | 96.6%     | 100.3%    | 97.0%     | 100.3%    | 203.5   | 8,538  | 405.0  | 8,262  | 1,190.9                                            | 5,676  | 1,175.6 | 5,750  | 608.2  | 5,661   | 597.9   | 5,758   |
| Arizona        | Phoenix       | 722780         | 1,107     | 75.5      | 89.8%     | 101.7%    | 92.2%     | 101.0%    | 189.2   | 8,651  | 376.6  | 8,372  | 1,131.1                                            | 5,719  | 1,116.6 | 5,794  | 577.6  | 5,705   | 567.9   | 5,802   |
| Arkansas       | Little Rock   | 723400         | 563       | 61.7      | 97.0%     | 100.3%    | 97.4%     | 100.2%    | 204.3   | 8,534  | 406.7  | 8,258  | 1,195.0                                            | 5,674  | 1,179.7 | 5,748  | 610.2  | 5,659   | 600.0   | 5,756   |
| California     | Los Angeles   | 722950         | 97        | 63.4      | 97.9%     | 100.4%    | 98.6%     | 100.2%    | 206.3   | 8,548  | 410.6  | 8,272  | 1,209.7                                            | 5,673  | 1,194.1 | 5,747  | 617.7  | 5,659   | 607.4   | 5,756   |
| California     | Bakersfield   | 723840         | 489       | 66.2      | 95.5%     | 100.7%    | 96.5%     | 100.5%    | 201.2   | 8,572  | 400.4  | 8,295  | 1,184.6                                            | 5,686  | 1,169.4 | 5,760  | 604.9  | 5,671   | 594.8   | 5,768   |
| California     | Sacramento    | 724839         | 23        | 61.9      | 98.8%     | 100.3%    | 99.2%     | 100.1%    | 208.1   | 8,536  | 414.2  | 8,260  | 1,217.4                                            | 5,668  | 1,201.8 | 5,742  | 621.7  | 5,654   | 611.2   | 5,750   |
| California     | Modesto       | 724926         | 73        | 63.4      | 98.0%     | 100.4%    | 98.6%     | 100.2%    | 206.5   | 8,548  | 411.0  | 8,272  | 1,210.7                                            | 5,673  | 1,195.2 | 5,747  | 618.3  | 5,659   | 607.9   | 5,755   |
| California     | San Francisco | 724940         | 8         | 58.3      | 100.3%    | 99.9%     | 100.1%    | 100.0%    | 211.3   | 8,505  | 420.5  | 8,230  | 1,229.1                                            | 5,658  | 1,213.3 | 5,732  | 627.7  | 5,643   | 617.1   | 5,740   |
| California     | Redding       | 725920         | 497       | 63.2      | 96.6%     | 100.4%    | 97.2%     | 100.3%    | 203.6   | 8,547  | 405.2  | 8,271  | 1,193.3                                            | 5,677  | 1,178.0 | 5,751  | 609.4  | 5,663   | 599.1   | 5,760   |
| Colorado       | Denver        | 725650         | 5,414     | 51.2      | 83.6%     | 99.2%     | 82.6%     | 100.7%    | 176.1   | 8,444  | 350.5  | 8,172  | 1,014.1                                            | 5,699  | 1,001.1 | 5,773  | 517.9  | 5,684   | 509.2   | 5,781   |
| Connecticut    | Hartford      | 725087         | 19        | 52.5      | 102.5%    | 99.4%     | 101.6%    | 99.7%     | 216.1   | 8,456  | 430.0  | 8,182  | 1,246.4                                            | 5,642  | 1,230.4 | 5,715  | 636.5  | 5,627   | 625.8   | 5,723   |
| DC             | Washington    | 745940         | 282       | 56.7      | 99.9%     | 99.8%     | 99.6%     | 99.9%     | 210.6   | 8,491  | 419.1  | 8,217  | 1,222.2                                            | 5,657  | 1,206.5 | 5,730  | 624.1  | 5,642   | 613.6   | 5,739   |
| Delaware       | Dover         | 724088         | 28        | 56.3      | 101.0%    | 99.7%     | 100.6%    | 99.9%     | 212.8   | 8,488  | 423.5  | 8,214  | 1,234.4                                            | 5,653  | 1,218.5 | 5,726  | 630.4  | 5,638   | 619.8   | 5,734   |
| Florida        | Tampa         | 722110         | 19        | 73.9      | 94.0%     | 101.5%    | 96.2%     | 100.7%    | 198.0   | 8,638  | 394.2  | 8,359  | 1,180.8                                            | 5,702  | 1,165.6 | 5,776  | 603.0  | 5,688   | 592.9   | 5,785   |
| Florida        | Tallahassee   | 722140         | 55        | 68.6      | 96.0%     | 101.0%    | 97.4%     | 100.5%    | 202.2   | 8,593  | 402.5  | 8,315  | 1,195.5                                            | 5,688  | 1,180.2 | 5,762  | 610.5  | 5,673   | 600.3   | 5,770   |
| Georgia        | Atlanta       | 722190         | 1,027     | 63.3      | 94.7%     | 100.4%    | 95.4%     | 100.4%    | 199.7   | 8,547  | 397.4  | 8,271  | 1,170.5                                            | 5,684  | 1,155.4 | 5,758  | 597.7  | 5,669   | 587.7   | 5,766   |
| Idaho          | Boise         | 726810         | 2,814     | 53.4      | 92.2%     | 99.4%     | 91.4%     | 100.3%    | 194.2   | 8,463  | 386.6  | 8,190  | 1,121.9                                            | 5,676  | 1,107.5 | 5,750  | 572.9  | 5,661   | 563.3   | 5,758   |
| Illinois       | Chicago       | 997338         | 663       | 50.1      | 101.2%    | 99.1%     | 99.9%     | 99.7%     | 213.2   | 8,435  | 424.3  | 8,163  | 1,225.5                                            | 5,642  | 1,209.8 | 5,716  | 625.8  | 5,628   | 615.3   | 5,724   |
| Indiana        | Indianapolis  | 724380         | 790       | 53.9      | 99.2%     | 99.5%     | 98.5%     | 99.9%     | 209.1   | 8,467  | 416.1  | 8,194  | 1,208.6                                            | 5,654  | 1,193.1 | 5,728  | 617.2  | 5,640   | 606.8   | 5,736   |
| lowa           | Davenport     | 725349         | 753       | 49.7      | 101.0%    | 99.1%     | 99.6%     | 99.7%     | 212.8   | 8,432  | 423.5  | 8,159  | 1,222.7                                            | 5,642  | 1,207.0 | 5,715  | 624.4  | 5,628   | 613.9   | 5,724   |
| lowa           | Waterloo      | 725480         | 686       | 48.0      | 101.9%    | 98.9%     | 100.3%    | 99.6%     | 214.7   | 8,417  | 427.4  | 8,145  | 1,230.8                                            | 5,637  | 1,215.0 | 5,710  | 628.5  | 5,622   | 617.9   | 5,718   |
| Kansas         | Wichita       | 724500         | 1,321     | 57.9      | 95.8%     | 99.9%     | 95.6%     | 100.2%    | 201.9   | 8,501  | 401.8  | 8,227  | 1,173.8                                            | 5,672  | 1,158.7 | 5,746  | 599.4  | 5,657   | 589.3   | 5,754   |
| Kentucky       | Louisville    | 724230         | 488       | 58.6      | 98.4%     | 100.0%    | 98.4%     | 100.1%    | 207.5   | 8,507  | 412.9  | 8,233  | 1,207.5                                            | 5,664  | 1,192.0 | 5,738  | 616.7  | 5,650   | 606.3   | 5,746   |
| Louisiana      | New Orleans   | 722316         | 2         | 69.1      | 96.0%     | 101.0%    | 97.5%     | 100.5%    | 202.2   | 8,597  | 402.4  | 8,319  | 1,196.2                                            | 5,689  | 1,180.9 | 5,763  | 610.9  | 5,674   | 600.6   | 5,771   |
| Maine          | Portland      | 726060         | 45        | 47.2      | 104.6%    | 98.8%     | 102.8%    | 99.4%     | 220.3   | 8,410  | 438.5  | 8,139  | 1,261.5                                            | 5,627  | 1,245.3 | 5,700  | 644.2  | 5,613   | 633.4   | 5,709   |
| Maryland       | Baltimore     | 724060         | 56        | 56.3      | 100.9%    | 99.7%     | 100.5%    | 99.9%     | 212.6   | 8,488  | 423.1  | 8,214  | 1,233.2                                            | 5,653  | 1,217.3 | 5,726  | 629.7  | 5,638   | 619.1   | 5,735   |
| Massachusetts  | Boston        | 725090         | 12        | 52.2      | 102.7%    | 99.3%     | 101.7%    | 99.7%     | 216.4   | 8,453  | 430.6  | 8,180  | 1,247.6                                            | 5,641  | 1,231.6 | 5,714  | 637.1  | 5,626   | 626.4   | 5,722   |
| Michigan       | Detroit       | 725375         | 626       | 51.1      | 100.9%    | 99.2%     | 99.7%     | 99.7%     | 212.6   | 8,444  | 423.2  | 8,171  | 1,224.1                                            | 5,645  | 1,208.4 | 5,718  | 625.1  | 5,630   | 614.6   | 5,726   |
| Michigan       | Grand Rapids  | 726350         | 803       | 49.1      | 101.0%    | 99.0%     | 99.6%     | 99.7%     | 212.9   | 8,427  | 423.8  | 8,154  | 1,222.3                                            | 5,641  | 1,206.6 | 5,714  | 624.2  | 5,626   | 613.7   | 5,723   |
| Minnesota      | Saint Paul    | 726584         | 700       | 46.9      | 102.3%    | 98.8%     | 100.5%    | 99.5%     | 215.5   | 8,408  | 428.9  | 8,136  | 1,233.4                                            | 5,634  | 1,217.6 | 5,707  | 629.9  | 5,619   | 619.3   | 5,715   |
| Mississippi    | Jackson       | 722350         | 330       | 65.5      | 96.3%     | 100.7%    | 97.2%     | 100.4%    | 202.9   | 8,566  | 403.8  | 8,290  | 1,193.4                                            | 5,682  | 1,178.1 | 5,756  | 609.4  | 5,667   | 599.2   | 5,764   |
| Missouri       | St. Louis     | 724340         | 531       | 57.8      | 98.6%     | 99.9%     | 98.4%     | 100.0%    | 207.8   | 8,501  | 413.6  | 8,226  | 1,208.1                                            | 5,663  | 1,192.6 | 5,736  | 616.9  | 5,648   | 606.6   | 5,745   |
| Missouri       | Kansas City   | 724463         | 742       | 57.4      | 98.0%     | 99.8%     | 97.8%     | 100.1%    | 206.6   | 8,497  | 411.1  | 8,223  | 1,200.2                                            | 5,664  | 1,184.8 | 5,737  | 612.9  | 5,649   | 602.6   | 5,746   |
| Montana        | Great Falls   | 727750         | 3,364     | 45.2      | 93.1%     | 98.6%     | 91.3%     | 100.0%    | 196.2   | 8,393  | 390.5  | 8,122  | 1,120.2                                            | 5,659  | 1,105.8 | 5,732  | 572.0  | 5,644   | 562.4   | 5,741   |
| Nebraska       | Omaha         | 725530         | 1,332     | 51.6      | 98.2%     | 99.3%     | 97.1%     | 99.9%     | 206.8   | 8,448  | 411.7  | 8,175  | 1,191.7                                            | 5,654  | 1,176.4 | 5,728  | 608.6  | 5,639   | 598.3   | 5,736   |
| Nevada         | Las Vegas     | 724846         | 2,203     | 69.4      | 88.5%     | 101.0%    | 89.9%     | 101.0%    | 186.4   | 8,599  | 371.0  | 8,322  | 1,103.2                                            | 5,714  | 1,089.1 | 5,789  | 563.4  | 5,700   | 553.9   | 5,797   |
| New Hampshire  | Concord       | 726050         | 346       | 47.2      | 103.5%    | 98.8%     | 101.7%    | 99.5%     | 218.0   | 8,410  | 433.9  | 8,139  | 1,248.2                                            | 5,630  | 1,232.2 | 5,704  | 637.4  | 5,616   | 626.7   | 5,712   |
| New Jersey     | Newark        | 725020         | 7         | 55.8      | 101.3%    | 99.7%     | 100.8%    | 99.8%     | 213.4   | 8,484  | 424.7  | 8,210  | 1,236.8                                            | 5,651  | 1,220.9 | 5,724  | 631.6  | 5,636   | 621.0   | 5,733   |
| New Mexico     | Albuquerque   | 723650         | 5,310     | 58.5      | 81.6%     | 100.0%    | 81.5%     | 101.0%    | 171.9   | 8,507  | 342.1  | 8,232  | 1,000.5                                            | 5,719  | 987.6   | 5,793  | 510.9  | 5,704   | 502.3   | 5,801   |
| New York       | New York      | 725053         | 130       | 55.3      | 101.0%    | 99.6%     | 100.5%    | 99.8%     | 212.9   | 8,479  | 423.7  | 8,206  | 1,233.0                                            | 5,651  | 1,217.2 | 5,724  | 629.7  | 5,636   | 619.1   | 5,733   |
| New York       | Syracuse      | 725190         | 413       | 48.9      | 102.5%    | 99.0%     | 101.0%    | 99.6%     | 216.1   | 8,425  | 430.0  | 8,153  | 1,240.1                                            | 5,636  | 1,224.2 | 5,709  | 633.3  | 5,621   | 622.6   | 5,718   |
| North Carolina | Charlotte     | 723140         | 728       | 61.5      | 96.5%     | 100.3%    | 96.8%     | 100.3%    | 203.3   | 8,532  | 404.6  | 8,257  | 1,188.6                                            | 5,675  | 1,173.3 | 5,749  | 607.0  | 5,661   | 596.8   | 5,757   |
| North Carolina | Asheville     | 723150         | 2,117     | 56.5      | 93.5%     | 99.8%     | 93.2%     | 100.3%    | 197.1   | 8,490  | 392.2  | 8,215  | 1,143.5                                            | 5,677  | 1,128.8 | 5,751  | 583.9  | 5,662   | 574.1   | 5,759   |
| North Dakota   | Bismarck      | 727640         | 1,651     | 43.5      | 100.1%    | 98.5%     | 97.9%     | 99.6%     | 210.9   | 8,379  | 419.7  | 8,108  | 1,201.2                                            | 5,635  | 1,185.8 | 5,708  | 613.4  | 5,620   | 603.1   | 5,716   |
| Ohio           | Cincinnati    | 724297         | 490       | 55.0      | 99.9%     | 99.6%     | 99.3%     | 99.9%     | 210.4   | 8,477  | 418.8  | 8,203  | 1,218.3                                            | 5,654  | 1,202.7 | 5,728  | 622.2  | 5,640   | 611.7   | 5,736   |

|                |                |                |          |           |           |           |           |           |         |        |        | Ga     | s Turbine Ba | sed Capacit | y and Heat | Rate Adjus | tments  |         |         |         |
|----------------|----------------|----------------|----------|-----------|-----------|-----------|-----------|-----------|---------|--------|--------|--------|--------------|-------------|------------|------------|---------|---------|---------|---------|
| LOC            | ATION          | Adjustn        | nent Bas | is        | Simple    | Cycle     | Combin    | ed Cyle   | 4 x LM6 | 000PF+ | 1 x 7  | 7HA.03 | 2 x 7HA      | .03 WCT     | 2 x 7HA    | .03 ACC    | 1 x 900 | OHL WCT | 1 x 900 | OHL ACC |
| State          | City           | ASHRAE Station | Alt (ft) | Ave T (F) | MW adj SC | HR adj SC | MW adj CC | HR adj CC | MW net  | HR net | MW net | HR net | MW net       | HR net      | MW net     | HR net     | MW net  | HR net  | MW net  | HR net  |
| ISO            | ISO            | -              | 0        | 59.0      | 100.0%    | 100.0%    | 100.0%    | 100.0%    | 210.7   | 8,511  | 419.4  | 8,236  | 1,227.3      | 5,660       | 1,211.5    | 5,734      | 626.7   | 5,645   | 616.2   | 5,742   |
| Oklahoma       | Oklahoma City  | 723530         | 1,285    | 61.3      | 94.6%     | 100.2%    | 95.0%     | 100.4%    | 199.4   | 8,530  | 396.9  | 8,255  | 1,165.4      | 5,681       | 1,150.4    | 5,755      | 595.1   | 5,666   | 585.1   | 5,763   |
| Oklahoma       | Tulsa          | 723560         | 650      | 61.6      | 96.7%     | 100.3%    | 97.1%     | 100.3%    | 203.8   | 8,533  | 405.6  | 8,257  | 1,191.6      | 5,675       | 1,176.3    | 5,748      | 608.5   | 5,660   | 598.3   | 5,757   |
| Oregon         | Portland       | 726980         | 19       | 54.9      | 101.6%    | 99.6%     | 101.0%    | 99.8%     | 214.0   | 8,476  | 426.0  | 8,202  | 1,239.1      | 5,649       | 1,223.1    | 5,722      | 632.7   | 5,634   | 622.1   | 5,730   |
| Pennsylvania   | Philadelphia   | 724080         | 10       | 56.8      | 100.8%    | 99.8%     | 100.5%    | 99.9%     | 212.5   | 8,492  | 423.0  | 8,218  | 1,233.6      | 5,654       | 1,217.8    | 5,727      | 630.0   | 5,639   | 619.4   | 5,736   |
| Pennsylvania   | Wilkes-Barre   | 725130         | 930      | 50.5      | 100.0%    | 99.2%     | 98.8%     | 99.8%     | 210.8   | 8,439  | 419.6  | 8,166  | 1,212.6      | 5,646       | 1,197.0    | 5,720      | 619.2   | 5,632   | 608.8   | 5,728   |
| Rhode Island   | Providence     | 997278         | 33       | 53.0      | 102.3%    | 99.4%     | 101.4%    | 99.7%     | 215.5   | 8,460  | 429.0  | 8,187  | 1,244.3      | 5,643       | 1,228.3    | 5,717      | 635.4   | 5,629   | 624.7   | 5,725   |
| South Carolina | Charleston     | 722080         | 40       | 66.7      | 96.8%     | 100.8%    | 97.9%     | 100.4%    | 203.9   | 8,576  | 405.9  | 8,299  | 1,202.0      | 5,682       | 1,186.6    | 5,756      | 613.8   | 5,668   | 603.5   | 5,764   |
| South Carolina | Spartanburg    | 723120         | 943      | 61.6      | 95.7%     | 100.3%    | 96.1%     | 100.3%    | 201.6   | 8,533  | 401.4  | 8,257  | 1,179.1      | 5,678       | 1,163.9    | 5,752      | 602.1   | 5,663   | 592.0   | 5,760   |
| South Dakota   | Rapid City     | 726620         | 3,160    | 47.3      | 93.1%     | 98.8%     | 91.5%     | 100.0%    | 196.2   | 8,411  | 390.5  | 8,140  | 1,123.5      | 5,662       | 1,109.1    | 5,736      | 573.7   | 5,648   | 564.1   | 5,744   |
| Tennessee      | Knoxville      | 723260         | 962      | 59.8      | 96.3%     | 100.1%    | 96.4%     | 100.2%    | 203.0   | 8,518  | 404.0  | 8,243  | 1,183.6      | 5,673       | 1,168.4    | 5,747      | 604.4   | 5,658   | 594.3   | 5,755   |
| Tennessee      | Nashville      | 723270         | 600      | 60.5      | 97.3%     | 100.2%    | 97.5%     | 100.2%    | 205.1   | 8,524  | 408.1  | 8,248  | 1,197.0      | 5,671       | 1,181.7    | 5,745      | 611.3   | 5,656   | 601.0   | 5,753   |
| Texas          | Houston        | 722436         | 32       | 70.7      | 95.2%     | 101.2%    | 97.0%     | 100.6%    | 200.6   | 8,610  | 399.3  | 8,332  | 1,190.1      | 5,693       | 1,174.8    | 5,767      | 607.7   | 5,679   | 597.5   | 5,776   |
| Utah           | Salt Lake City | 725720         | 4,225    | 54.1      | 86.9%     | 99.5%     | 86.3%     | 100.6%    | 183.1   | 8,469  | 364.4  | 8,196  | 1,058.6      | 5,694       | 1,045.0    | 5,768      | 540.6   | 5,679   | 531.5   | 5,776   |
| Vermont        | Burlington     | 726170         | 330      | 47.0      | 103.6%    | 98.8%     | 101.8%    | 99.5%     | 218.3   | 8,409  | 434.5  | 8,137  | 1,249.5      | 5,630       | 1,233.5    | 5,703      | 638.1   | 5,615   | 627.4   | 5,711   |
| Virginia       | Alexandria     | 724050         | 10       | 59.0      | 100.0%    | 100.0%    | 100.0%    | 100.0%    | 210.6   | 8,511  | 419.3  | 8,236  | 1,226.9      | 5,660       | 1,211.1    | 5,734      | 626.5   | 5,645   | 616.0   | 5,742   |
| Virginia       | Lynchburg      | 724100         | 940      | 56.5      | 97.7%     | 99.8%     | 97.3%     | 100.1%    | 205.8   | 8,490  | 409.7  | 8,215  | 1,194.3      | 5,663       | 1,179.0    | 5,737      | 609.9   | 5,649   | 599.7   | 5,745   |
| Washington     | Spokane        | 727850         | 2,353    | 48.5      | 95.6%     | 99.0%     | 94.2%     | 99.9%     | 201.5   | 8,421  | 401.0  | 8,150  | 1,155.8      | 5,657       | 1,140.9    | 5,730      | 590.2   | 5,642   | 580.3   | 5,739   |
| Washington     | Seattle        | 994014         | 7        | 53.5      | 102.2%    | 99.5%     | 101.4%    | 99.7%     | 215.3   | 8,464  | 428.5  | 8,191  | 1,243.9      | 5,644       | 1,227.9    | 5,718      | 635.2   | 5,630   | 624.5   | 5,726   |
| West Virginia  | Charleston     | 724140         | 910      | 56.0      | 98.0%     | 99.7%     | 97.5%     | 100.0%    | 206.5   | 8,485  | 410.9  | 8,211  | 1,197.1      | 5,662       | 1,181.8    | 5,735      | 611.3   | 5,647   | 601.1   | 5,744   |
| Wisconsin      | Green Bay      | 726450         | 687      | 45.8      | 102.7%    | 98.7%     | 100.8%    | 99.5%     | 216.5   | 8,399  | 430.9  | 8,127  | 1,237.3      | 5,630       | 1,221.4    | 5,704      | 631.9   | 5,616   | 621.2   | 5,712   |
| Wyoming        | Cheyenne       | 725640         | 6,130    | 47.0      | 82.3%     | 98.8%     | 80.9%     | 100.6%    | 173.5   | 8,409  | 345.2  | 8,137  | 992.9        | 5,695       | 980.2      | 5,769      | 507.0   | 5,680   | 498.5   | 5,777   |