

Updated Buildings Sector Appliance and Equipment Costs and Efficiencies

March 2023

The U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this report do not represent those of DOE or any other federal agencies.					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this					
	U.S. Department of Energy (DOI independent of approval by any	E), prepared this report other officer or emplo	t. By law, our data, and eyee of the U.S. Gover	alyses, and forecasts are	

i

Updated Buildings Sector Appliance and Equipment Costs and Efficiencies

Energy used in the residential and commercial sectors provides a wide range of services, including heating, cooling, lighting, refrigeration, cooking, and numerous other end uses. The U.S. Energy Information Administration (EIA) conducts two buildings-sector surveys—the *Residential Energy Consumption Survey* (RECS) and the *Commercial Buildings Energy Consumption Survey* (CBECS)—that provide information on the equipment stock and energy consumption within existing buildings. However, these surveys do not directly gather other information that we need to project future energy consumption, such as equipment cost information or nameplate efficiency ratings.

The Residential Demand Module (RDM) and the Commercial Demand Module (CDM) of the National Energy Modeling System (NEMS) use equipment cost and performance technology menus that represent competing options for most of the major end uses. The contracted reports in Appendixes A–D provide the information basis on which these menus can be built, focusing on cost and efficiency characterizations across equipment and fuel types. Previous editions of the *Annual Energy Outlook* (AEO) used similar contracted reports.

Multiple equipment classes and types are represented in these menus so that the projected equipment stock can change over time in response to fuel prices and other factors that affect equipment choice, such as appliance standards. The equipment menus interact with other NEMS parameters to determine market shares, equipment efficiency levels, cost estimates, and equipment interactions, and they are used to translate service demand into energy demand.

Appendixes A and B constitute one set of reports that characterizes most major residential equipment and commercial heating, cooling, and water heating equipment. Appendix A is used in developing Reference case projections, while Appendix B is used in developing advanced technology cases.² These assumptions will be developed and implemented during the AEO2025 cycle.

Appendixes C and D constitute another set of reports that characterizes residential and commercial lighting, as well as commercial ventilation and refrigeration equipment. Appendix C is used in developing the Reference case, while Appendix D is used in developing advanced technology cases. These assumptions were developed and implemented during the AEO2023 cycle.

When referencing the contracted reports in Appendixes A, B, C, and D, you should cite them as reports by Guidehouse and Leidos, prepared for the U.S. Energy Information Administration.

¹ Examples of equipment interactions are solar water heaters that supplement traditional water heaters, clothes washers that reduce the need for clothes drying, and water heaters that provide dishwashers and clothes washers with heated water.

² In addition to the Reference case, we also develop sensitivities to explore different assumptions for the cost and performance of future technologies. For the more optimistic cases, some equipment achieves lower life-cycle costs through improved efficiency or lower upfront costs, or both. The contracted reports provide a base case and an advanced case for modeling the AEO Reference case along with the more optimistic cases. We use the advanced case assumptions to develop side cases for AEO reports that include such analyses.

APPENDIX A

EIA - Technology Forecast Updates – Residential and Commercial Building Technologies – Reference Case

Presented to:

U.S. Energy Information Administration

Prepared by:

Guidehouse

1676 International Drive McLean, VA 22102

And

Leidos 11951 Freedom Drive Reston, VA 20190

March 3, 2023

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

March 2023

Table of Contents

	•			1
F	11	n	a	Ш
_				

<u>Objective</u>	5	Residential Gas-Fired Water Heater	56
<u>Methodology</u>	6	Residential Oil-Fired Water Heater	59
<u>Definitions</u>	7	Residential Electric Resistance Water Heater	62
Market Transformation	8	Residential Electric Heat Pump Water Heater	65
		Residential Solar Water Heater	68
Residential Gas-Fired Furnaces (North)	10	Residential Gas-Fired Instantaneous Water Heater	72
Residential Gas-Fired Furnaces (Rest of Country)	11	Residential Electric Instantaneous Water Heater	74
Residential Oil-Fired Furnaces	14		
Residential Gas-Fired Boilers	17	Residential Refrigerator/Freezer (Top-Mount)	77
Residential Oil-Fired Boilers	20	Residential Refrigerator/Freezer (Side-Mount)	78
Residential Electric Furnaces	23	Residential Refrigerator/Freezer (Bottom-Mount)	79
Residential Electric Resistance Heaters	25	Residential Freezers (Chest)	83
Residential Central Air Conditioners (North)	27	Residential Freezers (Upright)	84
Residential Central Air Conditioners (South)	28	Residential Natural Gas Cooktops	87
Residential Room Air Conditioners	31	Residential Natural Gas Ovens	88
Residential Portable Air Conditioners	34	Residential Natural Gas Ranges	89
Residential Swamp Coolers	37	Residential Electric Cooktops	92
Residential Air-Source Heat Pumps	39	Residential Electric Ovens	93
Residential Ductless Mini-Split Air-Source Heat Pumps	43	Residential Electric Ranges	94
Residential Ground-Source Heat Pumps	45	Residential Clothes Dryers (Electric)	97
Residential Natural Gas Heat Pumps	47	Residential Clothes Dryers (Gas)	98
Residential Cordwood Stoves	49	Residential Clothes Washers (Front-Loading)	101
Residential Wood Pellet Stoves	52	Residential Clothes Washers (Top-Loading)	102
		Residential Dishwashers	105

Table of Contents

TT • 1	1
Final	
TILL	4

Commercial Gas-Fired Furnaces	109	Commercial Electric Booster Water Heater	158
Commercial Oil-Fired Furnaces	112	Commercial Gas-Fired Booster Water Heater	159
Commercial Electric Resistance Heaters	115	Commercial Gas-Fired Instantaneous Water Heater	161
Commercial Electric Boilers	117	Commercial Solar Water Heater	164
Commercial Gas-Fired Boilers	119		
Commercial Oil-Fired Boilers	122	Commercial Gas Range with Griddle and Oven	167
Commercial Centrifugal Chillers	125	Commercial Electric Range with Griddle and Oven	168
Commercial Reciprocating Chillers	127	Commercial Hot Food Holding Cabinet - Small	172
Commercial Screw Chillers	129	Commercial Hot Food Holding Cabinet - Medium	173
Commercial Scroll Chillers	131	Commercial Hot Food Holding Cabinet - Large	174
Commercial Gas Fired Chillers	133		
Commercial Rooftop Air Conditioners	135	<u>Data Sources</u>	A-1
Commercial Gas-Fired Engine-Driven Rooftop Air Conditioners	137	<u>References</u>	B-1
Commercial Rooftop Heat Pumps	139		
Commercial Ground-Source Heat Pumps	141		
Packaged Terminal Air Conditioners	143		
Packaged Terminal Heat Pumps	145		
Commercial Gas-Fired Water Heater	148		
Commercial Electric Resistance Water Heater	151		
Commercial Heat Pump Water Heater	154		
Commercial Oil-Fired Water Heater	156		

The objective of this study is to develop baseline and projected performance/cost characteristics for residential and commercial end-use equipment.

- Installed base in 2012 and 2018 (for commercial products) or 2015 and 2020 (for residential products) and current market (2022)
 - Review literature, standards, installed base, contractor, and manufacturer information
 - Provide a relative comparison and characterization of the cost/efficiency of a generic product
- Forecast of technology improvements that are projected to be available through 2050
 - Review trends in standards, product enhancements, and Research and Development (R&D)
 - Project impact of product improvements and enhancement to technology

The performance/cost characterization of end-use equipment developed in this study will assist EIA in projecting national primary energy consumption.

Input from industry stakeholders, including government, R&D organizations, and manufacturers, was used to project product enhancements concerning equipment performance and cost attributes.

- Technology forecasting involves many uncertainties.
- Technology developments impact performance and cost forecasts.
- Varied sources ensure a balanced view of technology progress and the probable timing of commercial availability.
- Only currently published efficiency standards and regulations are considered when predicting technology developments; unpublished future regulatory action is not predicted.
- All costs are shown in 2022 dollars (2022\$).
- Ranges, when given, represent the span of typical values for a given parameter (e.g., installed cost for equipment meeting the federal standard) not the highest and lowest available on the market.

The following tables represent the current and projected efficiencies for residential and commercial building equipment ranging from the installed base in 2012 and 2018 (for commercial products) or 2015 and 2020 (for residential products) to the highest efficiency equipment that is expected to be commercially available by 2050, assuming incremental adoption. Below are definitions for the terms used in characterizing the status of each technology.

- <u>Installed Base:</u> Efficiency values are for those units installed and "in use" in that year. Cost values are for the typical new unit sold in that year.
- <u>Current Standard:</u> The minimum efficiency (or maximum energy use) that is required (allowed) by current U.S. Department of Energy (DOE) standards, when applicable.
- <u>ENERGY STAR</u>: The minimum efficiency that is required (or maximum energy use allowed) to meet the ENERGY STAR criteria, when applicable. The performance data that are presented are representative of certified products that just meet current ENERGY STAR specifications.
- <u>Typical:</u> Efficiency and cost values are for the average, or "typical," product being sold in the particular timeframe. This may represent either the shipments-weighted average product performance or the most common product on the market.
- <u>High:</u> Efficiency and cost values are for the product with the highest efficiency available in the particular timeframe.

Market Transformation

The market for the reviewed products has changed since this analysis was previously conducted.¹ These changes are noted and reflected in the efficiency and cost characteristics.

- In some categories the typical new product purchased today is more efficient than the average product in the installed base in 2012 (commercial) or 2015 (residential):
 - Residential sector: boilers, central air conditioners, room air conditioners, gas-fired furnaces (North), gas-fired furnaces (Rest of Country), oil-fired furnaces, electric resistance furnaces, heat pump water heaters, gas-fired instantaneous water heaters, natural gas cooktops, natural gas ovens, refrigerator-freezers, freezers, clothes dryers, clothes washers, and dishwashers
 - Commercial sector: gas-fired furnaces, oil-fired boilers, commercial rooftop heat pumps, commercial groundsource heat pumps, gas-fired instantaneous water heater, natural gas and electric ranges, griddles, and ovens
- More stringent Federal standards have taken effect for the following products:
 - Gas-fired and oil-fired boilers in 2021
 - Rooftop air conditioners and rooftop heat pumps in 2018
- Federal standards are slated to take effect in the coming years for the following products:
 - Central air conditioners, residential air-source heat pumps, gas-fired furnaces, oil-fired furnaces, gas-fired boilers, oil-fired boilers, rooftop air conditioners, and rooftop heat pumps in 2023
 - Portable air conditioners in 2025
- ENERGY STAR continues to raise the bar with revised criteria for:
 - Central air conditioners, residential air-source heat pumps, rooftop air conditioners, rooftop heat pumps, residential water heaters, and dishwashers in 2023

Final

Return to Table of Content

Residential Space Heating and Cooling

Residential Gas-Fired Furnaces (North)

	2015	2020		20	22		203	30	204	10	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR (North) V. 4.1	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h) ¹	80	80	80	80	80	80	80	80	80	80	80	80
AFUE (%)	80	80	80	90	95	99	95	99	95	99	95	99
Electric Consumption (kWh/y) ²	374	374	386	636	631	725	631	725	631	725	631	725
Avorago I : fo (v.)3	17	17	17	17	17	17	17	17	17	17	17	17
Average Life (y) ³	26	26	26	26	26	26	26	26	26	26	26	26
Retail Equipment Cost (2022\$)	1,300	1,300	1,080	1,200	1,220	1,390	1,220	1,390	1,220	1,390	1,220	1,390
Total Installed Cost (2022\$)	2,880	2,880	3,690	4,130	4,150	4,320	4,150	4,320	4,150	4,320	4,150	4,320
Annual Maintenance Cost (2022\$)	60	60	120	130	130	130	130	130	130	130	130	130

- 1. Typical input capacity is represented in terms of thousand British thermal units (kBtu) per hour (i.e., kBtu/h).
- 2. Electric consumption, represented in terms of kilowatt hours per year (kWh/y), accounts for the electricity consumption of components such as the furnace fan, draft inducer, and the ignitor. In some high efficiency products, this component also includes auxiliary equipment, such as condensate pumps and heat tape.
- 3. In the Residential Furnaces EERE 2022 Notice of Proposed Rulemaking (NOPR) Technical Support Document (TSD), an average lifetime of 22.5 years is calculated for gas-fired furnaces (North). Lifetime range was calculated using the Weibull Distribution in the Residential Furnaces EERE 2022 NOPR.

Note:

Models on the market can be either weatherized or non-weatherized. The majority (74%) are non-weatherized, and the values in the table use only non-weatherized data.

Electric consumption and cost values for 2022 and beyond are for a national sample and use the Residential Furnaces EERE 2022 NOPR Life-Cycle-Cost (LCC) spreadsheet.

Electric consumption and costs for the 2030, 2040, and 2050 high values are estimated based on the maximum-efficiency level analyzed in Residential Furnaces EERE 2022 NOPR, which is 98% annual fuel utilization efficiency (AFUE). The current standard went into effect in November 2015.

ENERGY STAR V. 4.1 went into effect in February 2013.

The range for average life represents the span of typical values.

Residential Gas-Fired Furnaces (Rest of Country)

	2015	2020		20	22		20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR (ROC) V. 4.1	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	80	80	80	80	80	80	80	80	80	80	80	80
AFUE (%)	80	80	80	90	90	99	95	99	95	99	95	99
Electric Consumption (kWh/y) ¹	279	279	386	636	636	725	631	725	631	725	631	725
A	16	16	16	16	16	16	16	16	16	16	16	16
Average Life (y) ²	25	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	1,260	1,260	1,080	1,200	1,200	1,390	1,220	1,390	1,220	1,390	1,220	1,390
Total Installed Cost (2022\$)	2,380	2,380	3,690	4,130	4,130	4,320	4,150	4,320	4,150	4,320	4,150	4,320
Annual Maintenance Cost (2022\$)	40	40	120	130	130	130	130	130	130	130	130	130

- 1. Electric consumption accounts for the electricity consumption of components such as the furnace fan, draft inducer, and the ignitor. In some high efficiency products, this component also includes auxiliary equipment, such as condensate pumps and heat tape.
- 2. In the Residential Furnaces EERE 2022 NOPR, an average lifetime of 21.5 years is calculated for gas-fired furnaces (Rest of Country). Lifetime range was calculated using the Weibull Distribution in the Residential Furnaces EERE 2022 NOPR.

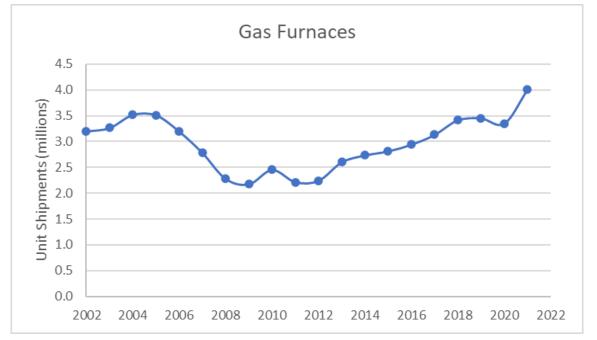
Note:

Models on the market can be either weatherized or non-weatherized. The majority (74%) are non-weatherized, and the values in the table use only non-weatherized data.

Electric consumption and cost values for 2022 and beyond are for a national sample and use the Residential Furnaces EERE 2022 NOPR LCC spreadsheet.

Electric consumption and costs for the 2030, 2040, and 2050 high values are estimated based on the maximum-efficiency level analyzed in Residential Furnaces EERE 2022 NOPR, which is 98% AFUE.

The current standard went into effect in November 2015.


ENERGY STAR V. 4.1 went into effect in February 2013.

The range for average life represents the span of typical values.

Residential Gas-Fired Furnaces

- Current Federal standards for non-weatherized gas furnaces:
 - AFUE $\geq 80\%$
- ENERGY STAR V. 4.1 criteria for gas furnaces:
 - South: AFUE \geq 90%
 - North: AFUE \geq 95%
 - Furnaces must be equipped with electronically commutated fan motor and have less than or equal to 2.0% air leakage
- Most efficient unit currently available: 99.0% AFUE. The current market is nearly evenly split between non-condensing units (AFUE≤82%) and condensing units (AFUE≥90%).
- The maximum AFUE for non-condensing gas furnaces is 82%; above this level, the potential for exhaust gas condensation increases. This condensate is corrosive and requires cost restrictive corrosion resistant venting.
- High-efficiency condensing furnaces typically have high-grade stainless steel (AL 29-4C) heat exchangers.
- Many condensing furnaces are available as direct vent and sealed combustion systems, which do not use room air for combustion, but instead draw combustion air directly from outdoors.
- Depending on the location of the home, piping materials in use, and other considerations, condensing furnaces may need an acid neutralizer and/or lift pump for the condensate.
- Furnaces may contain permanent split capacitor (PSC) fan motors or electronically commutated motors (ECMs). The type of motor affects the electrical consumption of the furnace as well as the seasonal energy efficiency ratio (SEER) / energy efficiency ratio (EER) of the associated air conditioner.
 - The 2016 Energy Conservation Standards for Residential Furnace Fans Final Rule requires that all furnaces use ECM fans.
 - Most non-weatherized gas furnaces employ ECMs and can fully modulate rather than cycling on and off. Because they
 modulate, there is an increase in total fan-on time.

Annual shipments reached 3.5 million units in 2005 and then declined each year until 2009, leveling off at about 2.25 million units. Since 2012, shipments have increased steadily and reached a peak of 4.0 million units in 2021.

Source: Air-Conditioning, Heating, and Refrigeration Institute (AHRI)

Residential Oil-Fired Furnaces

	2015	2020		20	22		20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.1	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	105	105	105	105	105	105	105	105	105	105	105	105
AFUE (%)	83	83	83	85	85	97	85	97	85	97	85	97
Electric Consumption (kWh/y) ¹	477	477	477	466	466	410	466	410	466	410	466	410
A	20	20	20	20	20	20	20	20	20	20	20	20
Average Life (y) ²	33	33	33	33	33	33	33	33	33	33	33	33
Patail Favirament Coat (2022¢)	2,620	2,620	2,620	2,650	2,650	3,170	2,650	3,170	2,650	3,170	2,650	3,170
Retail Equipment Cost (2022\$)	3,450	3,450	3,450	3,490	3,490	4,090	3,490	4,090	3,490	4,090	3,490	4,090
Total Installed Cost (2022¢)	3,250	3,250	3,250	3,480	3,480	5,140	3,480	5,140	3,480	5,140	3,480	5,140
Total Installed Cost (2022\$)	6,520	6,520	6,520	6,820	6,820	10,110	6,820	10,110	6,820	10,110	6,820	10,110
Annual Maintenance Cost (2022\$)	80	80	80	80	80	240	80	240	80	240	80	240

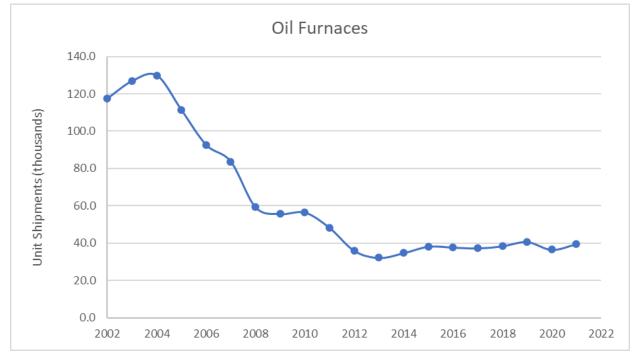
^{1.} Electric consumption accounts for the electricity consumption of components such as the furnace fan, draft inducer, and the ignitor. In some high efficiency products, this component also includes auxiliary equipment, such as condensate pumps and heat tape.

Note:

The current standard went into effect in May 2013.

ENERGY STAR V. 4.1 went into effect in February 2013.

Ranges represent the span of typical values for a given parameter.


^{2.} Lifetime range was calculated using the Weibull Distribution in Residential Furnaces EERE 2011.

Residential Oil-Fired Furnaces

- Current Federal standards:
 - AFUE ≥ 83%
 - ≤ 11 watts of electrical power when in standby and off modes (non-weatherized models only)
- ENERGY STAR V. 4.1 criteria: AFUE ≥ 85%
- Since the latent heat content of oil is lower than that for either propane or natural gas, oil-fired appliances can typically operate at a higher AFUE rating than comparable gas-fired appliances before condensation issues arise.
- Most efficient unit currently available: 96.7% AFUE condensing units with tiny market share (<1%), due to market acceptance issues.
- Condensate from condensing oil furnaces is typically even more corrosive than that of gas-fired systems due to the higher sulfur content in fuel oil. Hence, condensing oil furnaces also likely require the use of an acid neutralizer.
- Oil-fired furnaces, like gas-fired furnaces, achieve condensing conditions through the use of a secondary heat exchanger. Typically, these secondary heat exchangers use a high-grade stainless steel (AL 29-4C).
- Sooting is an issue for all oil-fired appliances, but secondary heat exchangers, with their narrow passages, are even more prone to be plugged by soot. Because of this, condensing oil furnaces typically require frequent cleaning and maintenance.

Inricos which more

Annual shipments declined rapidly after 2004, likely due, at least in part, to an increase in fuel oil prices, which more than tripled from 2002 to 2008. Since 2012 shipments have largely leveled off.

Source: AHRI

Residential Gas-Fired Boilers

	2015	2020 ¹		20	22		203	30^{2}	204	10^2	205	50 ²
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.0	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	100	100	100	100	100	100	100	100	100	100	100	100
AFUE (%)	82	95	84	95	90	96	95	96	95	96	95	96
Electric Consumption (kWh/y) ³	197	506	282	506	527	502	506	502	506	502	506	502
A T'C ()	20	20	20	20	20	20	20	20	20	20	20	20
Average Life (y)	30	30	30	30	30	30	30	30	30	30	30	30
Retail Equipment Cost (2022\$)	2,540	2,890	1,820	2,890	2,440	3,670	2,890	3,670	2,890	3,670	2,890	3,670
Total Installed Cost (2022\$)	7,760	5,940	8,700	5,940	6,700	6,710	5,940	6,710	5,940	6,710	5,940	6,710
Annual Maintenance Cost (2022\$) ⁴	110	160	150	160	160	160	160	160	160	160	160	160

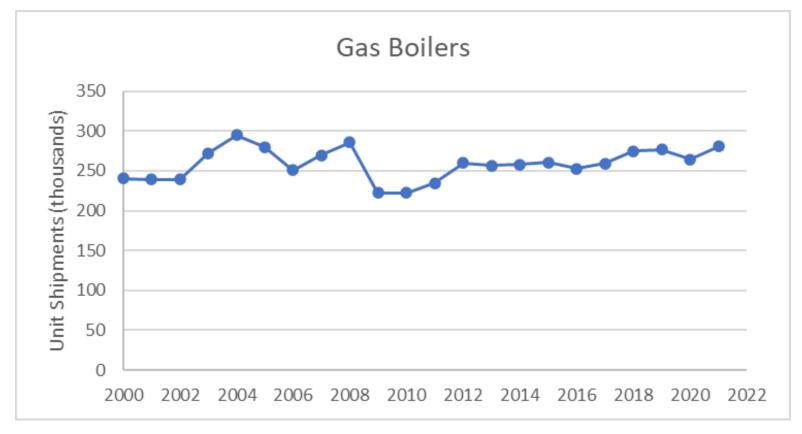
- 1. The 2020 AFUE is estimated based on EERE 2022 preliminary analysis, which estimates that gas-fired boilers with the highest market share in 2020 have an AFUE of 95%.
- 2. The 2030, 2040, 2050 projections are estimated based on the EERE 2022 preliminary analysis, which notes that majority of the market is expected to be condensing, if new standards are not implemented. The EERE 2022 preliminary analysis estimates a minimum efficiency of 95% AFUE for condensing units.
- 3. Electric Consumption accounts for the electricity consumption of auxiliary electrical components including circulating pump, the boiler pump (condensing boilers only), the draft inducer (if present), and the ignitor. It also accounts for the electricity consumption of auxiliary equipment such as a condensate pump and heat tape, which are sometimes installed with higher efficiency boilers. Additionally, it accounts for the additional cooling load due to heat loss from the boiler and water heater as a result of water heating during the cooling season.
- 4. Maintenance cost is the routine annual cost to the consumer of general maintenance for product operation. Maintenance cost is higher for condensing boilers for the inspection of condensate system and replacement of condensate neutralizer filter.

Note:

The current standard went into effect in January 2021.

ENERGY STAR V. 3.0 went into effect in December 2013.

Water boilers considered. Steam boilers also exist but make up a small percentage of the market.


The range for average life represents the span of typical values.

Residential Gas-Fired Boilers

- Federal standard for gas-fired hot-water boilers (more common than steam):
 - AFUE $\geq 84\%$
 - Standard went into effect on January 21, 2021
- ENERGY STAR criteria: AFUE ≥ 90%
- Most efficient gas-fired boiler available: 96.4% AFUE
- Gas-fired boilers have lost market share to furnaces and heat pumps over the past 30 years.
- U.S. gas hot water boiler sales are split approximately 60/40 between condensing and non-condensing.¹ Condensing boilers typically have heat exchangers made of stainless steel, and non-condensing boilers typically have heat exchangers made of cast iron.
- Typically, condensing boilers are low-mass in construction with modulating burners, variable-speed inducer fan systems or sealed powered direct-vent combustion, multiple sensor technologies, and electronic ignition and control.
- Due to incentives and market pressure, the U.S. boiler industry has been shifting towards also providing condensing boilers. Most of these boilers are private-labeled products sourced from Europe, where the hydronic market is much bigger and condensing appliances are much more common and/or required by law.
- Most value-added components for condensing boilers are sourced abroad, even when the condensing boiler is assembled in North America (e.g., heat exchanger, gas valve, burner, sensors, and/or controls).

Residential Gas-Fired Boilers

Annual shipments had a significant decrease following the 2009 financial crisis and a steady recovery in the years since.

Source: Boilers EERE 2022 Preliminary Analysis

Residential Oil-Fired Boilers

	2015	2020 ¹		20	22		203	30^{2}	204	10^2	205	50 ²
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.0	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	140	140	140	140	140	140	140	140	140	140	140	140
AFUE (%)	84	86	86	86	87	88	86	88	86	88	86	88
Electric Consumption (kWh/y) ³	230	310	310	310	307	305	310	305	310	305	310	305
A T.C. ()4	18	18	18	18	18	18	18	18	18	18	18	18
Average Life (y) ⁴	28	28	28	28	28	28	28	28	28	28	28	28
Retail Equipment Cost (2022\$)	4,850	3,590	3,590	3,590	3,680	3,770	3,590	3,770	3,590	3,770	3,590	3,770
Total Installed Cost (2022\$)	9,800	5,510	5,510	5,510	5,600	5,690	5,510	5,690	5,510	5,690	5,510	5,690
Annual Maintenance Cost (2022\$) ⁴	160	170	170	170	170	170	170	170	170	170	170	170

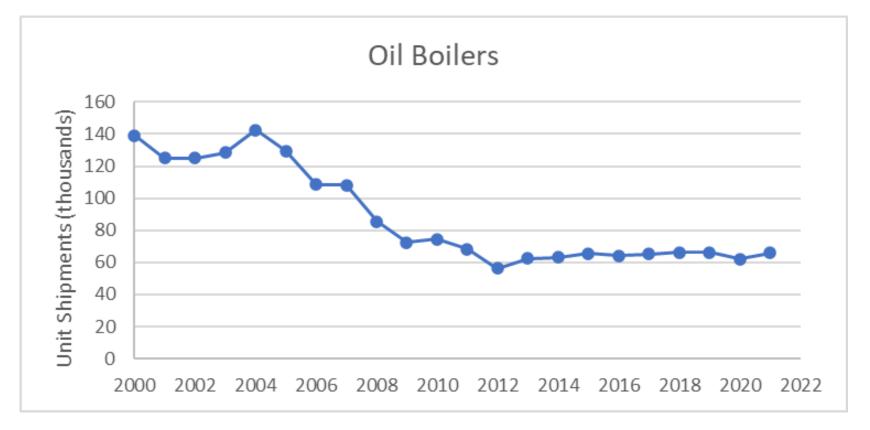
- 1. The 2020 AFUE is estimated based on EERE 2022 preliminary analysis, which estimates that oil-fired boilers with the highest market share in 2020 have an AFUE of 86%.
- 2. The 2030, 2040, 2050 projections are estimated based on the EERE 2022 preliminary analysis, which notes that majority of the market is expected to be at 86% AFUE, if new standards are not implemented.
- 3. Electric Consumption accounts for the electricity consumption of auxiliary electrical components including circulating pump, the ignitor, condensate pump, and heat tape, which are sometimes installed with higher efficiency boilers. Additionally, it accounts for the additional cooling load due to heat loss from the boiler and water heater as a result of water heating during the cooling season.
- 4. Maintenance cost is the routine annual cost to the consumer of general maintenance for product operation.

Note:

The current standard went into effect in January 2021.

ENERGY STAR V. 3.0 went into effect in December 2013.

Water boilers considered. Steam boilers also exist but make up a small percentage of the market.


The range for average life represents the span of typical values.

Residential Oil-Fired Boilers

- Federal standard for oil-fired hot-water boilers (more common than steam):
 - AFUE ≥ 86%
 - Standard went into effect on January 21, 2021
- ENERGY STAR criteria: AFUE ≥ 87%
- Most efficient oil-fired boiler available: 88% AFUE
- Since the latent heat content of oil is lower than that for either propane or natural gas, oil-fired appliances can typically operate at a higher AFUE rating than comparable gas-fired appliances before condensation issues arise.
- Oil boilers have heat exchangers made of cast iron or steel.
- No condensing oil-fired boilers currently exist in the U.S. market. The high sulfur content in fuel-oil causes heat exchanger fouling if the flue gases from an oil-fired boiler were to condense. As a result, condensing oil-fired boilers would require more frequent maintenance and repair, if installed.

Residential Oil-Fired Boilers

Annual shipments declined rapidly after 2004, likely due, at least in part, to an increase in fuel oil prices, which more than tripled from 2002 to 2008. Since 2012 shipments have largely leveled off.

Source: Boilers EERE 2022 Preliminary Analysis

Residential Electric Resistance Furnaces

	2015	2020	20	22	2030	2040	2050
DATA	Installed Base	Installed Base	Current Standard	Typical	Typical	Typical	Typical
Typical Input Capacity (kBtu/h)	68	68	68	68	68	68	68
AFUE (%)	98	98	100	100	100	100	100
Arramaga Lifa (rr)	15	15	15	15	15	15	15
Average Life (y)	30	30	30	30	30	30	30
Retail Equipment Cost (2022\$) ¹	760	760	950	950	950	950	950
Total Installed Cost (2022\$) ¹	1,290	1,290	1,480	1,480	1.480	1,480	1,480
Annual Maintenance Cost (2022\$) ¹	50	50	50	50	50	50	50

^{1.} Costs for a 100% AFUE unit are assumed to be equal to the costs of a 98% AFUE unit.

Note:

The range for average life represents the span of typical values.

The current standard went into effect in January 1992.

Residential Electric Resistance Furnaces

- Federal standards for electric furnaces:
 - AFUE ≥ 78%
 - Standby and off mode power consumption ≤ 10 watts
- According to preliminary Residential Energy Consumption Survey (RECS) data released May 2022, electric central warm-air furnaces are the main source of space heating in approximately 17.5 million U.S. homes or about 14%.
- Electric furnaces range in capacity from 10 to 25 kW (34 to 85 kBtu/h), with 20 kW (68 kBtu/h) being the typical for units on the market.
- Electric resistance furnaces are considered near 100% efficient because there is no flue heat loss, and any jacket losses are contained within the home.
 - ASHRAE Standard 103, the test method for furnaces incorporated by reference into the federal test procedure, specifies that for electric furnaces AFUE = 100 1.7 x jacket losses. Jacket losses can be determined either through testing or assumed to be 1%. Thus, the minimum AFUE of electric furnaces is 98.3%.

Residential Electric Resistance Unit Heaters

	2015	2020	2022	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Typical Capacity (kBtu/h)	3.5	3.5	5.1	5.1	5.1	5.1
Efficiency (%)	100	100	100	100	100	100
Average Life (y) ¹	15	15	15	15	15	15
Average Life (y)	30	30	30	30	30	30
Retail Equipment Cost (2022\$) ²	90	90	85	85	85	85
Retail Equipment Cost (2022\$)	240	240	340	340	340	340
Total Installed Cost (2022\$) ³	150	150	390	390	390	390
Total Histalieu Cost (2022p)	320	320	1,190	1,190	1,190	1,190
Annual Maintenance Cost (2022\$) ⁴	-	-	-	-	-	-

- 1. Assumes similar lifetime to Electric Furnaces on the basis that both products have heating elements that burn out and lead to product failure.
- 2. The lower bound of the equipment costs represents the average retail price listed at the typical capacity for electric baseboard heaters through a retailer website. The upper bound represents the average retail price for compact recessed electric wall heaters at the same capacity.
- 3. Range represents the estimated minimum and maximum installation costs.
- 4. Maintenance costs are negligible.

Residential Electric Resistance Unit Heaters

- Electric resistance unit heaters include electric wall and baseboard heaters. Plug-in space heaters are not included.
- There are currently no federal efficiency requirements for electric resistance unit heaters.
- According to preliminary RECS data released May 2022, electric resistance unit heaters are the main source of space heating in approximately 8.25 million U.S. homes or about 7%.
- Electric heaters range in capacity from 500 to 2,500 watts (1.7 to 8.5 kBtu/h), with 1,500 watts (5.1 kBtu/h) being the most typical for units on the market.
- Electric resistance heating is considered 100% energy efficient; all incoming electric energy is converted to heat.

Residential Central Air Conditioners – North (Not Hot-Dry or Hot-Humid)

DATA	2015	2020		20)22		2023			2030		2040		2050	
	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
SEER ¹	12.5	13.9	13.0	14.1	15.0	17.0	14.1	16.0	17.0	14.4	17.0	14.4	17.0	14.4	17.0
SEER2 ²	11.9	13.2	NA	13.4	NA	16.2	13.4	15.2	16.2	13.7	16.2	13.7	16.2	13.7	16.2
	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Average Life (y)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	2,410	2,670	2,580	2,700	3,110	3,950	2,680	3,750	3,950	2,760	3,950	2,760	3,950	2,760	3,950
Total Installed Cost (2022\$)	4,000	4,300	5,250	5,320	5,520	5,980	5,310	5,880	5,980	5,350	5,980	5,350	5,980	5,350	5,980
Annual Maintenance Cost	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
(2022\$) ³	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150

- 1. Values shown are for split-system units in the 36 kBtu/h (3-ton) size class. Costs and efficiency levels are for "coil-only" systems, meaning they do not include a blower. Note blower-coil systems were analyzed for residential air-source heat pumps, which is why the "High" SEER levels are higher for heat pumps than for air conditioners.
- 2. In 2023, new energy conservation standards for Residential Central Air Conditioners and Heat Pumps took effect. The new standards specify a different metric for central air conditioners (SEER2). SEER to SEER2 conversions were determined using the RESNET website.
- 3. Annual maintenance include preventative maintenance and services provided by HVAC professionals for maintaining product operation. Examples include, calibrate and level thermostat, clean filters, clean indoor and condenser coil, flush/treat condensate drain with anti-algae, inspect condenser coil, monitor operating pressure of refrigerant, inspect fan blade, etc.

Note:

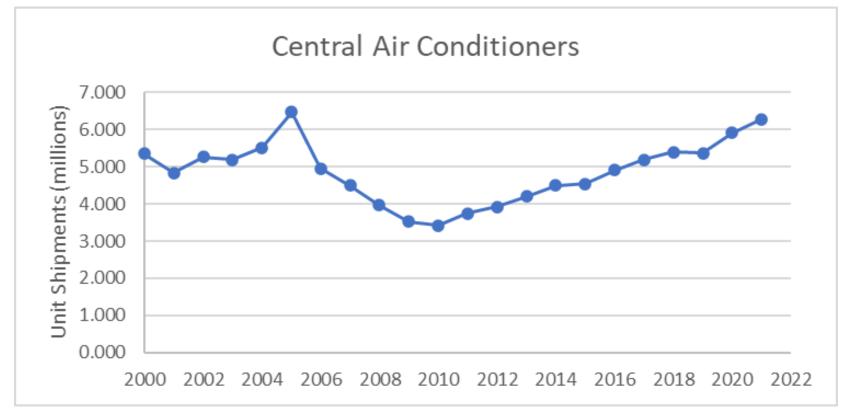
The previous standard went into effect in January 2015. The current standard went into effect in January 2023. ENERGY STAR V. 5.0 went into effect in September 2015. ENERGY STAR V. 6.1 went into effect in January 2023. Ranges represent the span of typical values for a given parameter.

Residential Central Air Conditioners – South (Hot-Dry and Hot-Humid)

DATA	2015	2020		20	22		2023			2030		2040		2050	
	Installed Base		Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
SEER ¹	13.0	14.4	14.0	14.6	15.0	17.0	15.1	16.0	17.0	15.1	17.0	15.1	17.0	15.1	17.0
SEER2 ²	12.4	13.7	NA	13.9	NA	16.2	14.3	15.2	16.2	14.3	16.2	14.3	16.2	14.3	16.2
	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Average Life (y)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	2,410	2,760	2,680	2,850	3,110	3,950	3,110	3,750	3,950	3,190	3,950	3,190	3,950	3,190	3,950
Total Installed Cost (2022\$)	4,000	4,390	5,310	5,390	5,520	5,980	5,520	5,880	5,980	5,570	5,980	5,570	5,980	5,570	5,980
Annual Maintenance Cost	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
(2022\$)	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150

- 1. Values shown are for split-system units in the 36 kBtu/h (3-ton) size class. Costs and efficiency levels are for "coil-only" systems, meaning they do not include a blower. Note blower-coil systems were analyzed for residential air-source heat pumps, which is why the "High" SEER levels are higher for heat pumps than for air conditioners.
- 2. In 2023, new energy conservation standards for Residential Central Air Conditioners and Heat Pumps took effect. The new standards specify a different metric for central air conditioners (SEER2). SEER to SEER2 conversions were determined using the RESNET website.
- 3. Annual maintenance include preventative maintenance and services provided by HVAC professionals for maintaining product operation. Examples include, calibrate and level thermostat, clean filters, clean indoor and condenser coil, flush/treat condensate drain with anti-algae, inspect condenser coil, monitor operating pressure of refrigerant, inspect fan blade, etc.

Note:


The previous standard went into effect in January 2015. The current standard went into effect in January 2023. ENERGY STAR V. 5.0 went into effect in September 2015. ENERGY STAR V. 6.1 went into effect in January 2023. Ranges represent the span of typical values for a given parameter.

Residential Central Air Conditioners

- The previous standards took effect in 2015; amended standards for all product classes went into effect in January 2023.
 - Amended standards are based on new metrics (SEER2, EER2).
 - SEER2 values are generally expected to be lower than SEER because a higher external static pressure is required during testing, which reduces measured performance.
- Systems installed in the Southwest (CA, AZ, NM, and NV) must also meet an EER standard that varies by cooling capacity and system configuration.

Residential Central Air Conditioners

Annual shipments spiked at 6.5 million units in 2005 at the peak of the housing boom and just before more stringent Federal standards took effect in 2006. Annual shipments have been steadily increasing since 2010 and have almost reached the previous high in 2021.

Source: AHRI

Residential Room Air Conditioners

	2015	2020		20)22		203	30^{2}	2040 ²		2050 ²	
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.2	High ¹	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	10	10	10	10	10	10	10	10	10	10	10.0	10.0
CEER (Btu/Wh)	10.9	10.9	10.9	12.0	12.0	15.7	12.0	15.7	12.0	15.7	12.0	15.7
	6	6	6	6	6	6	6	6	6	6	6	6
Average Life (y)	13	13	13	13	13	13	13	13	13	13	13	13
D . W. T	560	330	330	340	340	450	340	450	340	450	340	450
Retail Equipment Cost (2022\$)	710	480	480	480	480	590	480	590	480	590	480	590
	640	490	490	490	490	600	490	600	490	600	490	600
Total Installed Cost (2022\$)	830	630	630	640	640	750	640	750	640	750	10.0 12.0 6 13 340 480	750
Annual Maintenance Cost (2022\$) ³	0	0	0	0	0	0	0	0	0	0	0	0

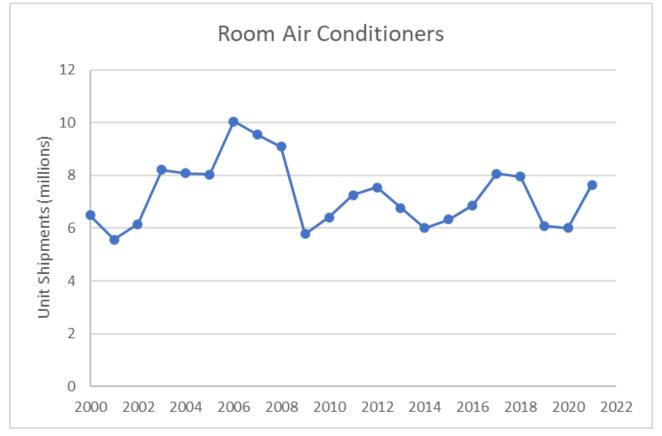
- 1. RAC EERE 2022 NOPR has analysis for combined energy efficiency ratio (CEER) of 16 Btu/Wh, which represents variable speed room air conditioners. However, maximum CEER identified in DOE's Compliance Certification Database (CCD) in August 2022 was 15.7 Btu/Wh. Accordingly, the high CEER is estimated to be 15.7 for 2022 and beyond. Cost values for a representative unit with a CEER of 16 Btu/Wh were used.
- 2. The 2030, 2040, 2050 projections are estimated based on RAC EERE 2022 NOPR, which notes that in the absence of no new standards, room air conditioners with a CEER of 12 Btu/Wh are expected to have the maximum market share.
- 3. Maintenance costs are negligible per RAC EERE 2011 and RAC EERE 2022 NOPR.

Note:

All values are for the most common product class, Product Class 3 (without reverse cycle, with louvered sides, and 8,000 to 13,999 Btu/h).

The current standard went into effect in June 2014.

ENERGY STAR V. 4.2 went into effect in October 2015.


Ranges represent the span of typical values for a given parameter (for example, installed cost for equipment meeting the federal standard) not the highest and lowest available on the market.

Residential Room Air Conditioners

- Analyzed the most common type of room air conditioners: louvered sides (window air conditioners) without reverse cycle and having cooling capacity of 8,000–13,999 Btu/h (DOE Product Class 3).
- Federal standards for Product Class 3:
 - CEER ≥ 10.9 (beginning June 1, 2014)
- CEER incorporates energy use in cooling mode and standby and off modes.
- ENERGY STAR V. 4.2 criteria for Product Class 3:
 - CEER ≥ 12.0 (effective October 26, 2015)
- Efficiency improvements in room air conditioners are attained by:
 - Higher efficiency compressor and fan motors (including variable speed motors), and
 - An increased heat transfer area in the evaporator and condenser using larger heat exchangers, finer fin spacing, micro-channel heat exchangers, and similar design options.

Residential Room Air Conditioners

Annual shipments dropped sharply in 2009, likely due to the recession and an unusually cool summer in the Northeast. Sales have largely leveled off in the years since, fluctuating between 6 and 8 million.

Source: RAC EERE 2022 NOPR

Residential Portable Air Conditioners

	2015	2020	202	22 ⁴	20	25	20	30	204	40	20	50
DATA	Installed Base	Installed Base	Typical	High⁵	New Standard	High ⁵	Typical	High ⁵	Typical	High⁵	Typical	High⁵
Typical Capacity (kBtu/h) ¹	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6
CEER ²	5.6	5.6	5.5	7.6	6.7	7.6	6.7	7.6	6.7	7.6	6.7	7.6
Arromago I ifo (rr)	7	7	7	7	7	7	7	7	7	7	7	7
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$)	700	700	700	810	760	810	760	810	760	810	760	810
Total Installed Cost (2022\$) ³	700	700	700	810	760	810	760	810	760	810	760	810
Annual Maintenance Cost (2022\$) ³	0	0	0	0	0	0	0	0	0	0	0	0

- 1. All values are for the average capacity for single-duct and dual-duct portable air conditioners available on the market.
- 2. CEER is calculated for typical capacity using the equation provided in PAC EERE 2020.
- 3. Installation and maintenance costs are negligible.
- 4. The 2022 Typical estimates are based on PAC EERE 2020, which estimated majority of the market to be at EL1 in 2022 for the no-new standards case, which translates to a CEER of 5.5 for this analysis.
- 5. All High values are based on the most-efficient models available in the market, as specified in PAC EERE 2020.

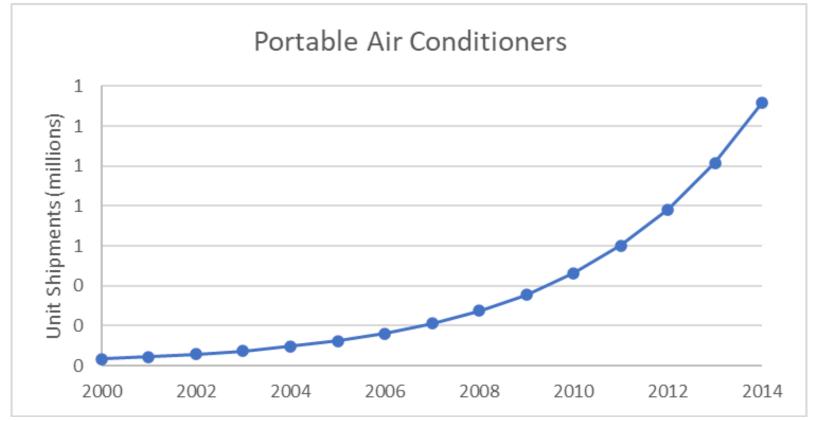
Note:

A final rule for portable air cleaners published in January 2020 with an effective date of January 2025.

Costs are interpolated from the costs presented in PAC EERE 2020.

Range for lifetime represents typical values.

Residential Portable Air Conditioners


- A final rule establishing new energy conservation standards for portable air conditioners published in January 2020 with an effective date of January 2025.
- The final rule outlined an equation-based conservation standard (in CEER) for both single-duct and dual-duct portable ACs, based on the seasonally adjusted cooling capacity (SACC)

Minimum CEER =
$$PR \times \frac{SACC}{(3.7117 \times SACC^{0.6384})}$$

- Efficiency improvements in portable air conditioners are attained by:
 - Higher efficiency compressor and fan motors (including variable speed motors), and
 - An increased heat transfer area in the evaporator and condenser using larger heat exchangers, finer fin spacing, micro-channel heat exchangers, and similar design options.

Residential Portable Air Conditioners

Annual shipments have seen an exponential growth through 2014. Shipments data since 2014 is not publicly available but it is expected that portable air conditioners shipments may have increased in recent years in response to indoor air quality concerns following COVID-19.

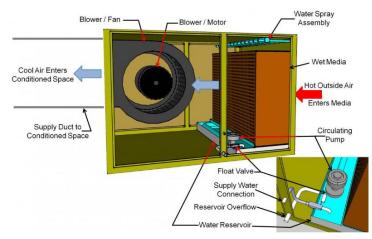
Source: PAC EERE 2020

Residential Swamp Coolers

DATA	2015	2020	20	2022		30	20	40	2050		
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High	
Air Flow Rate (CFM)	3,800	3,800	3,800	4,700	3,800	4,700	3,800	4,700	3,800	4,700	
Power (Hp)	1/3	1/3	1/3	1/2	1/3	1/2	1/3	1/2	1/3	1/2	
	10	10	10	10	10	10	10	10	10	10	
Average Life (y) ¹	12	12	12	12	12	12	12	12	12	12	
Retail Equipment Cost (2022\$)	960	960	960	1,100	960	1,100	960	1,100	960	1,100	
Total Installed Cost (2022\$)	1,360	1,360	1,360	1,540	1,360	1,540	1,360	1,540	1,360	1,540	
Annual Maintenance Cost (2022\$)	330	330	330	330	330	330	330	330	330	330	

^{1.} Average lifetime provided by major swamp cooler installer in the U.S. Southwest.

Note:


Efficiency values were determined based on a sample of window-mounted swamp coolers. Lifetime range represents span of typical values.

Residential Swamp Coolers

- Evaporative cooling (i.e., "swamp coolers") is a technology that takes advantage of water evaporation to cool incoming air. Energy is required to change water from a liquid to a vapor (i.e., the heat of vaporization), and in doing so, temperature of the air is reduced. Evaporative cooling is best suited for hot, dry climates.
- Swamp coolers come in a variety of different configurations, including centrally ducted units that are mounted outside a building or roof; window evaporative coolers that are window-mount units that pull in warm outdoor air, pass it through wet media to remove heat, and blow out the cooled air; or portable plug-in units. Window units were considered for this analysis due to the high model share count on distributor websites.
- The U.S. Environmental Protection Agency (EPA) has cautioned against using swamp coolers in wildfire-impacted areas in smoky conditions because it can result in more smoke bring brought inside.
- Swamp coolers are not a DOE-covered product.

• Swamp cooler metrics include power of the fan/blower, measured in horsepower (hp), and air flow rate, measured in

cubic feet per minute (CFM).

Single-inlet direct swamp cooler. Source: PNNL

Residential Air-Source Heat Pumps

	2015	2020		20	22			20)23		20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	ENERGY STAR Cold Climate Criteria	High ⁴	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
SEER (Cooling) ¹	13.1	15.3	14.0	15.3	15.0	22.6	15.0	16.0	NA	22.6	16.0	22.6	16.5	22.6	17.0	22.6
SEER2 ²	12.4	14.5	NA	14.5	NA	21.5	14.3	15.2	15.2	21.5	15.2	21.5	15.7	21.5	16.2	21.5
HSPF (Heating) ¹	7.9	8.6	8.2	8.6	8.5	12.4	8.8	9.2	NA	12.4	9.2	12.4	9.3	12.4	9.3	12.4
HSPF2 ²	6.7	7.3	NA	7.3	NA	10.6	7.5	7.8	8.1	10.6	7.8	10.6	7.9	10.6	7.9	10.6
Average Life (y)	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3
Retail Equipment Cost (2022\$) ¹	3,290	4,270	3,970	4,270	4,110	6,740	4,110	4,380	4,380	6,740	4,380	6,740	5,000	6,740	5,100	6,740
Total Installed Cost (2022\$) ¹	5,790	6,880	6,730	6,880	6,810	8,620	6,810	6,940	6,940	8,620	6,940	8,620	7,240	8,620	7,330	8,620
Annual Maintenance Cost	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
(2022\$) ³	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150

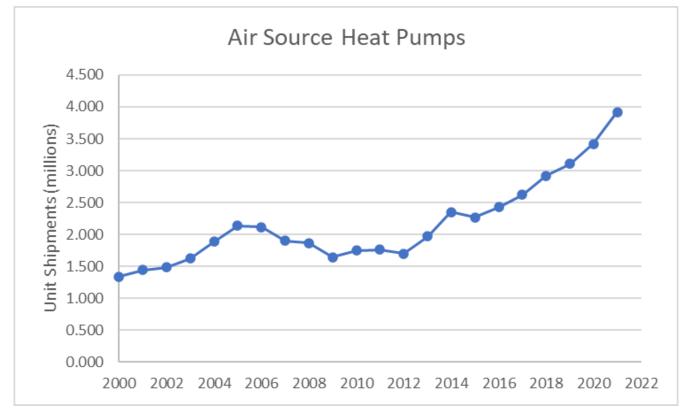
- 1. Values shown are for split-system units in the 36 kBtu/h (3-ton) size class. Costs and efficiency levels are for "blower-coil" systems, meaning they include a blower. Note coil-only systems were analyzed for residential central air conditioners, which is why the "High" SEER levels are higher for heat pumps than for air conditioners.
- 2. In 2023, new energy conservation standards for Residential Central Air Conditioners and Heat Pumps took effect. The new standards specify different metrics for Air-Source Heat Pumps (SEER2 and heating seasonal performance factor 2 (HSPF2)). SEER to SEER2 and HSPF to HSPF2 conversions were determined using the RESNET website.
- 3. Annual maintenance include preventative maintenance and services provided by HVAC professionals for maintaining product operation. Examples include, calibrate and level thermostat, clean filters, clean indoor and condenser coil, flush/treat condensate drain with anti-algae, inspect condenser coil, monitor operating pressure of refrigerant, inspect fan blade, etc.
- 4. High costs derived from developing a cost-efficiency curve between retail/installed costs and SEER.

Note:

The previous standard went into effect in January 2015. The current standard went into effect in January 2023.

ENERGY STAR V. 5.0 went into effect in September 2015. ENERGY STAR V. 6.1 went into effect in January 2023.

Ranges represent the span of typical values for maintenance costs.


Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.88, 2, 1).

Residential Air-Source Heat Pumps

- The previous standards took effect in 2015; amended standards for all product classes went into effect in January 2023.
 - Amended standards are based on new metrics (SEER2, EER2, HSPF2).
 - SEER2 values are generally expected to be lower than SEER because a higher external static pressure is required during testing, which reduces measured performance.
- High efficiency cooling does not necessarily correlate with high efficiency heating. The range of SEER–HSPF combinations is very broad.
- Heat pumps are generally sized to meet the cooling load of the house. When the heating load exceeds heat pump heating capacity, electric resistance heat is used to supplement.
- Variable-speed compressors improve efficiency of heat pumps by reducing cyclic losses and by operating above their nominal speed, boosting heating capacity, and reducing the need for supplementary electric resistance heat.
- In addition to meeting the SEER2 and HSPF2 requirements, air source heat pumps must demonstrate low ambient performance to earn the Cold Climate designation by meeting the following:
 - Coefficient of Performance (COP) at 5 degrees Fahrenheit (°F) ≥ 1.75, measured in accordance with Appendix M1
 H4₂ test
 - Percent of Heating Capacity at 5 °F ≥ 70% of that at 47 °F, with the 5 °F capacity measured per Appendix M1 H4 $_2$ test and the 47 °F capacity measured as the nominal heating capacity per Appendix M1 (i.e., from the Appendix M1 H1 $_N$ test for units having a variable-speed compressor where the compressor speed shall be the maximum speed that the system controls would operate at 47 °F, otherwise from the Appendix M1 H1 $_2$ test)
 - Perform a controls verification procedure (CVP) to confirm that the above performance metrics measured at the Appendix M1 low ambient test point at 5 °F are achieved by the native controls operating as they would in a customer's home

Residential Air-Source Heat Pumps

From 2000 to 2005 annual shipments increased nearly 60% to 2.1 million units, then dropped and leveled off around 1.7 million units. In 2014 annual shipments surpassed the 2005 peak and have been increasing uniformly since then.

Source: AHRI

Residential Central Air Conditioners and Air-Source Heat Pumps

- Principal energy efficiency drivers for central air conditioners and heat pumps:
 - Heat exchanger (surface area, number of tube rows)
 - Compressor (type and single-stage vs. two-stage vs. variable-speed operation)
 - Fan motor choices (PSC vs. ECM fan motors on inside and outside)
 - Control choices (i.e., piston, thermal, and electronic expansion valves)
- When the heat pump or air conditioner's capacity exceeds the heating or cooling load, the unit starts and stops more frequently, causing wear and tear on the components and an overall loss of efficiency. Multi-stage and/or variable-speed compressors can help, as does sophisticated refrigerant management.
- Typical high-efficiency unit (≥ 16 SEER) has very large heat exchanger, ECM evaporator fan motor, and two-stage scroll compressor.
- Variable-speed compressor technology typically leads to a significant SEER boost, making possible high-SEER condensing units with smaller heat exchangers, and thus, smaller enclosures.
- Efficiency levels > 21 SEER made possible through combining existing large heat exchangers with variable-speed compressors, ECM fan motors, and electronic expansion valves.

Residential Ductless Mini-Split Air-Source Heat Pumps

DATA	2015	2020	20	22	20	30	20	40	2050		
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High	
Typical Input Capacity (kBtu/h) ¹	12	12	12	12	12	12	12	12	12	12	
SEER	16.0	16.0	21.9	33.1	21.9	33.1	21.9	33.1	21.9	33.1	
EER	12.5	12.5	13.0	19.1	13.0	19.1	13.0	19.1	13.0	19.1	
HSPF	10.0	10.0	11.1	14.0	11.1	14.0	11.1	14.0	11.1	14.0	
Average Life (y) ²	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	
Retail Equipment Cost (2022\$)	1,580	1,580	1,580	1,580	1,580	1,580	1,580	1,580	1,580	1,580	
Total Installed Cost (2022\$)	2,030	2,030	2,030	2,030	2,030	2,030	2,030	2,030	2,030	2,030	
Annual Maintenance Cost (2022\$) ³	100	100	100	100	100	100	100	100	100	100	

- 1. Representative capacity determined from most frequent capacity in AHRI database
- 2. Assumed same lifespan and maintenance cost as air-source heat pumps given the technology is similar between air-source and ductless mini-split heat pumps, and ductwork itself is not expected to fail.
- 3. Annual maintenance covers the same services identified for air-source heat pumps.

Note:

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.88, 2, 1).

Residential Ductless Mini-Split Air-Source Heat Pumps

- Ductless systems can be useful in "spot cooling" certain high-use areas of a home, such as a living room, bedroom, or
 office.
- Mini-split heat pumps are generally more efficient (often > 20 SEER) and smaller in cooling capacity (often ≤ 24 kBtu/h) compared to split-system heat pumps.
 - A mini-split heat pump could be equal in capacity and efficiency to a split-system heat pump as there are no
 inherent design changes between split-system and mini-split heat pumps, aside from the ductwork. Mini-split heat
 pumps tend to be more efficient and smaller in capacity due to their prevalence for spot cooling, but the same
 technologies are used between the two product categories.
- Due to the similarities in design, cost estimations were determined based on smaller capacity (24 kBtu/h) split-system heat pumps and Gordian's RSMeans Data Building Construction Costs 2023. Efficiency data was analyzed using the AHRI directory, which provides disaggregation of data on the basis of ducted and ductless heat pumps.
- Annual maintenance covers the same services identified for air-source heat pumps.

Residential Ground-Source Heat Pumps

	2015	2020		20	22		20	30	204	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.2	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	36	36	36	36	36	36	36	36	36	36	36	36
COP (Heating) ¹	3.1	3.7	3.2	3.6	3.6	4.5	3.6	4.5	3.6	4.5	3.6	4.5
EER (Cooling) ²	13.3	17.3	14.1	17.3	17.1	22.0	17.3	22.0	17.3	22.0	17.3	22.0
Avaraga Life (v)	8	8	8	8	8	8	8	8	8	8	8	8
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	4,650	5,470	4,820	5,470	5,410	6,530	5,470	6,530	5,470	6,530	5,470	6,530
T-t-1 It-11-1 (Ct (2022#)	14,060	14,880	14,230	14,880	14,880	15,940	14,880	15,940	14,880	15,940	14,880	15,940
Total Installed Cost (2022\$)	22,290	23,120	22,470	23,120	23,120	24,170	23,120	24,170	23,120	24,170	23,120	24,170
Annual Maintenance Cost (2022\$)	90	90	90	90	90	90	90	90	90	90	90	90

- 1. COP values listed are assessed at a "ground loop" test condition, which is representative of closed loop ground source heat pumps (GSHP) operating conditions. However, DOE sets standards at a "water loop" test condition. The AHRI directory lists COP ratings at both sets of test conditions and is used to convert between them where necessary.
- 2. EER values listed are assessed at a full-load "ground loop" test condition, which is representative of closed loop GSHP operating conditions. However, DOE sets standards at a full-load "water loop" test condition. The AHRI directory lists EER ratings at all sets of test conditions and is used to convert between them where necessary.

Note:

Residential and commercial GSHPs are very similar - the main difference in data presented is the different capacity (3-ton vs. 4-ton) and slightly higher installation costs for commercial GSHP. DOE does not distinguish between residential and commercial units in its regulations.

Current standards went into effect on October 9, 2015. COP and EER ratings are converted from the "water loop" test condition to "ground loop."

ENERGY STAR V. 3.2 went into effect January 1, 2012.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay parameters: (17.04, 1.64, 1).

Residential Ground-Source Heat Pumps

- Heating COP does not correlate with cooling EER.
- The ENERGY STAR criteria for water-to-air ground-source heat pumps are:

Туре	Heating COP	Cooling EER
Closed Loop	3.6	17.1
Open Loop	4.1	21.1
Direct Expansion	3.6	16

- The most common GSHP is a closed-loop system in which water or an anti-freeze solution is circulated through plastic pipes buried underground. Open loop systems that employ ground water or surface water (e.g., open well, pond, lake) are used in some parts of the country, but water supply and water quality issues impose limitations on such applications.
- Installation cost is for a closed loop system and includes necessary accessories. The ground loop heat exchanger represents a majority of the installation cost. Installed costs for these systems vary widely.
- Variable speed ECMs improve performance on high-end models.

Residential Natural Gas Heat Pumps

DATA	2015	2020	2022	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Typical Capacity (kBtu/h)	60	60	60	60	60	60
COP (Heating)	1.3	1.3	1.3	1.3	1.3	1.3
COP (Cooling)	0.6	0.7	0.7	0.7	0.7	0.7
Annual Electric Use (kWh/y) ¹	1,500	1,500	1,500	1,500	1,500	1,500
Arrama a Tifa (re)	12	12	12	12	12	12
Average Life (y)	18	18	18	18	18	18
Patril Faccions and Coat (20220) ²	12,940	12,940	12,940	12,940	12,940	12,940
Retail Equipment Cost (2022\$) ²	14,350	14,350	14,350	14,350	14,350	14,350
Total Installed Cost (2022¢\2	14,700	14,700	14,700	14,700	14,700	14,700
Total Installed Cost (2022\$) ²	17,290	17,290	17,290	17,290	17,290	17,290
Annual Maintenance Cost (2022\$)	200	200	200	200	200	200

^{1.} Annual electric use accounts for the electricity consumption of components such as the heat pump fan. Note:

Ranges represent the span of typical values observed in the market.

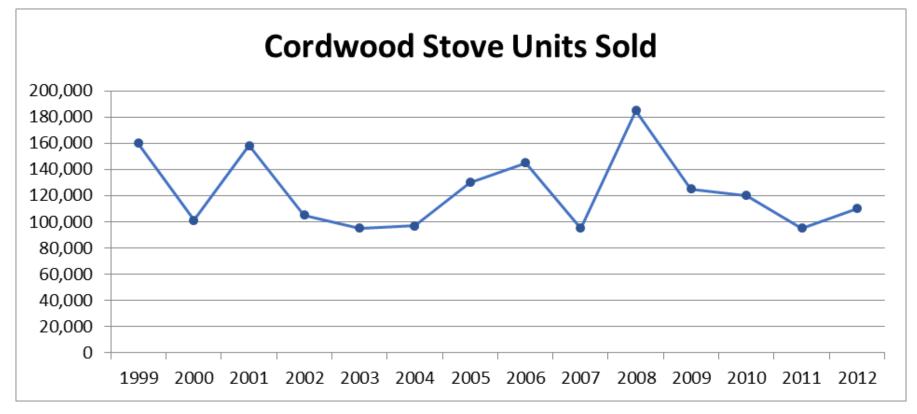
Residential Natural Gas Heat Pumps

- Residential natural gas heat pumps are not currently subject to DOE regulations. The California Energy Commission's (CEC) Title 24, Part 6 Section 112 does indicate cooling efficiency requirements for natural gas heat pumps.
- Natural gas heat pumps are much more popular in other parts of the world, such as Europe. Gas-fired cooling equipment currently comprises less than 1% of the residential air conditioning/heat pump market in the U.S.
- Currently, Robur is the predominant manufacturer of residential-sized natural gas heat pumps with sales operations in the U.S.. Robur units are 5-ton nominal cooling capacity, a size typically associated with larger homes. Since only one product is available, no mid-level or high efficiency categories are included in this analysis.
- The data represents air-source absorption heat pumps. Gas engine-driven vapor compression heat pumps are available in other parts of the world; York formerly offered the Triathlon gas engine-driven heat pump in the U.S. It is possible to couple either technology to the ground (ground-source) rather than the atmosphere (air-source).
- The absorption heat pump is a gas-fired, ammonia-water absorption cycle, combined with a high-efficiency low-pressure boiler integrated into one outdoor unit.
- The cooling efficiency of a gas-fired air-source absorption heat pump is considerably lower than for an electric air-source heat pump. Heating efficiency of an air-source heat pump (electric or gas-fired absorption) decreases as outdoor temperature decreases; however, the gas-fired absorption heat pump recovers waste heat from the combustion process to improve heating efficiency.

Residential Cordwood Stoves

	2015 ¹	2020 ²	202	22 ³	203	30^4	204	40 ⁴	205	50^4
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	50	50	50	50	50	50	50	50	50	50
Efficiency (Non-Catalytic) (HHV) ⁵	63	71	71	80	71	80	71	80	71	80
Efficiency (Catalytic) (HHV) ⁵	72	76	76	81	76	81	76	81	76	81
A	12	12	12	12	12	12	12	12	12	12
Average Life (y)	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$) (Non- Catalytic)	2,880	1,670	1,670	2,300	1,670	2,300	1,670	2,300	1,670	2,300
Retail Equipment Cost (2022\$) (Catalytic)	3,540	3,040	3,040	3,830	3,040	3,830	3,040	3,830	3,040	3,830
Total Installed Cost (2022\$) (Non- Catalytic) ⁶	8,290	7,090	7,090	7,710	7,090	7,710	7,090	7,710	7,090	7,710
Total Installed Cost (2022\$) (Catalytic) ⁶	8,950	8,460	8,460	9,240	8,460	9,240	8,460	9,240	8,460	9,240
Annual Maintenance Cost (2022\$) (Non- Catalytic) ⁷	190	190	190	190	190	190	190	190	190	190
Annual Maintenance Cost (2022\$) (Catalytic) ⁷	280	280	280	280	280	280	280	280	280	280

- 1. For 2015, assumed EPA default efficiencies, which were used by EPA to approximate the efficiency of stoves before the 2015 EPA rule required efficiency testing.
- 2. For 2020, assumed same efficiencies as estimated for 2022 given the most recent EPA rule went into effect in May 2020.
- 3. The 2022 High value is the highest EPA certified efficiency. The 2022 Typical value is the average of EPA certified efficiencies.
- 4. For 2030-2050, it is assumed that the same conditions as current would persist because no impending efficiency requirements are expected from EPA, given recency of 2020 rulemaking and current market factors.
- 5. Efficiency includes combustion and heat transfer efficiency and is based on the higher heating value (HHV) of the fuel.
- 6. Installed costs include the cost of hearth and stainless-steel chimney liner materials and labor.
- 7. For catalytic stoves, annual maintenance cost includes periodic cost of replacing the catalytic combustor.


Note:

The range for average life represents the span of typical values.

Residential Cordwood Stoves

- Residential cordwood stoves that must meet EPA particulate limits fall into two broad classes based on whether they use a catalyst for air treatment. Catalytic wood stoves use a catalytic combustor to reduce emissions from the combustion air. Non-catalytic wood stoves use baffles and introduce secondary air above the flames to enable more complete combustion and reduce emissions.
- In 2015, EPA published an update to its New Source Performance Standards (NSPS), decreasing the emissions limit (previously set by 1988 EPA rule) to 4.5 grams per hour (g/h) for both catalytic and non-catalytic stoves. The new rule did <u>not</u> institute efficiency standards but required that manufacturers test and certify the efficiency of their stoves. This standard took full effect on January 1, 2016.
- In 2020, the NSPS limit for new room heaters was lowered to 2.5 g/h if tested with cord wood.
- Prior to the 2015 rule, manufacturers could either submit efficiency data from laboratory testing or certify with the default efficiency value designated by EPA. EPA's default efficiency values were 63% for non-catalytic wood stoves and 72% for catalytic wood stoves. Under this system, few manufacturers submitted efficiency test data to EPA.
- Multiple test standards are commonly used to assess stove efficiency, and data from product literature does not generally identify the efficiency test method.
- It is not possible to determine performance trends based on construction or configuration (e.g., cast iron vs. plate steel, powered blowers vs. no blowers, etc.) trends in specific equipment type or construction based on published efficiencies. Further, EPA certification data shows no significant relationship between emissions and heating efficiency.
- Cordwood stoves require chimneys for venting combustion gases. Whether conventional masonry chimneys are used
 or metal chimney liners, these add considerable cost to the overall system. Accordingly, installed costs can be twice
 that of the wood stove itself.

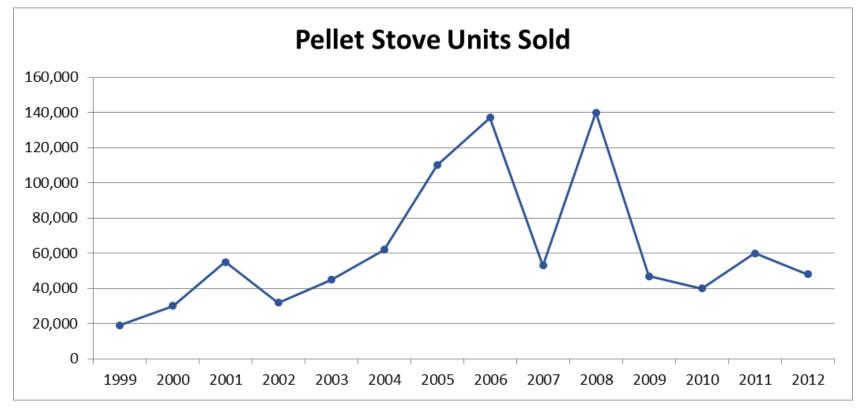
Cordwood stove shipments have averaged 123,000 per year since 1999 and have fluctuated approximately in accordance with fuel oil costs.

Source: HPBA, no post-2012 sales data was publicly available at time of publication.

Residential Wood Pellet Stoves

	2015 ¹	2020 ²	202	22 ³	203	30^4	2040 ⁴		2050 ⁴	
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	50	50	50	50	50	50	50	50	50	50
Efficiency (HHV) ⁵	70	73	73	85	73	85	73	85	73	85
Annual Electricity Consumption (kWh) ⁶	600	600	600	600	600	600	600	600	600	600
A	12	12	12	12	12	12	12	12	12	12
Average Life (y)	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	3,900	3,120	3,120	4,000	3,120	4,000	3,120	4,000	3,120	4,000
Total Installed Cost (2022\$) ⁷	5,550	4,520	4,520	5,400	4,520	5,400	4,520	5,400	4,520	5,400
Annual Maintenance Cost (2022\$)	310	310	310	310	310	310	310	310	310	310

- 1. For 2015, assumed EPA default efficiencies, which were used by EPA to approximate the efficiency of stoves before the 2015 EPA rule required efficiency testing.
- 2. For 2020, assumed same efficiencies as estimated for 2022 given the most recent EPA rule went into effect in May 2020.
- 3. The 2022 High value is the highest EPA certified efficiency. The 2022 Typical value is the average of EPA certified efficiencies.
- 4. For 2030-2050, it is assumed that the same conditions as current would persist because no impending efficiency requirements are expected from EPA, given recency of 2020 rulemaking and current market factors.
- 5. Efficiency includes combustion and heat transfer efficiency and is based on the HHV of the fuel.
- 6. The annual electric consumption estimates assume 6 months/year @ 100kW/mo based on DOE estimates.
- 7. Installed cost includes cost of hearth and vent pipe materials and labor.


Note:

The range for average life represents the span of typical values.

Residential Wood Pellet Stoves

- In 2015, EPA published an update to its NSPS, limiting emissions for wood pellet stoves to 4.5 g/h. Prior to the 2015 EPA rule, most pellet stoves were exempt from EPA's NSPS requirements. The new rule did <u>not</u> institute efficiency standards but required that manufacturers test and certify the efficiency of their stoves. This standard took full effect on January 1, 2016.
- Prior to the 2015 rule, manufacturers could either submit efficiency data from laboratory testing or certify with the default efficiency value designated by EPA. EPA's default efficiency values were 63% for non-catalytic wood stoves and 72% for catalytic wood stoves. Under this system, few manufacturers submitted efficiency test data to EPA.
- Multiple test standards are commonly used to assess stove efficiency and data from product literature does not generally identify the efficiency test method.
- It is not possible to determine performance trends based on construction or configuration (e.g., cast iron vs. plate steel, powered blowers vs. no blowers, etc.) trends in specific equipment type or construction based on published efficiencies. Further, EPA certification data shows no significant relationship between emissions and heating efficiency.
- Wood pellet stoves may be able to be direct vented to the outdoors, eliminating the need for a chimney. This reduces the overall system cost as compared to a cord wood stove. However, they do use electricity to power the pellet feeder, the combustion air fan, and the blower. In the event of a power outage, a pellet stove can not operate without some back-up source of electricity (e.g., battery).

Wood pellet stove shipments grew substantially in the 2005 – 2008 time period but have averaged only 40,000 – 60,000 units since that time.

Source: HPBA, no post-2012 sales data was publicly available at time of publication.

Residential Water Heating

Residential Gas-Fired Storage Water Heaters

	2015	2020		20	22		2023	2030		20	40	2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.0	High	ENERGY STAR V. 5.0	Typical	High	Typical	High	Typical	High
Typical Capacity (gal)	40	40	40	40	40	40	40	40	40	40	40	40	40
Uniform Energy Factor (UEF) ¹	0.58	0.63	0.61	0.61	0.66	0.84	0.83	0.61	0.84	0.61	0.84	0.61	0.84
Average Life (y)	13	13	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
Retail Equipment Cost	590	880	420	420	490	720	700	420	720	420	720	420	720
(2022\$)	650	1,410	990	990	1,110	1,650	1,590	990	1,650	990	1,650	990	1,650
Total Installed Cost (2022\$)	1,240	1,650	740	740	800	1,140	1,130	740	1,140	740	1,140	740	1,140
Total Histalleu Cost (2022¢)	1,240	2,880	1,690	1,690	1,850	3,130	3,160	1,690	3,130	1,690	3,130	1,690	3,130
Annual Maintenance Cost (2022\$) ²	20	20	20	20	20	20	20	20	20	20	20	20	20

- 1. Analysis is based on an average of medium and high draw pattern units, as this is most reflective of the market.
- 2. Maintenance includes manufacturer recommendation for the water heater to be drained and flushed annually to minimize deposition of sediment, maintain operating efficiency, and prolong product life. Available evidence indicates that this is performed in 10% of households.

Note:

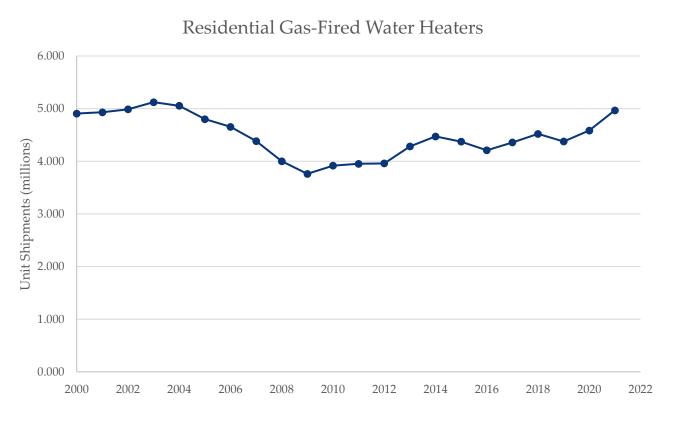
Ranges represent the span of typical values.

Current standards went into effect April 16, 2015.

ENERGY STAR V. 4.0 went into effect January 5, 2022.

ENERGY STAR V. 5.0 will go into effect April 18, 2023

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.1, 1.76, 1).


Residential Gas-Fired Storage Water Heaters

The equations for Federal Standards and the voluntary ENERGY STAR requirements, if applicable, are:

Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes	ENERGY STAR
	Very Small	UEF=0.3456-(0.002*Gal)	No models on the market	NA
≥ 20 gal and ≤	Low	UEF=0.5982-(0.0019*Gal)	0.54 for a 29-gallon water heater	NA
55 gal	Medium	UEF=0.6483-(0.0017*Gal)	0.58 for a 38-gallon water heater	0.64
_	High	UEF=0.692-(0.0013*Gal)	0.64 for a 48-gallon water heater	0.68
	Very Small	UEF=0.647-(0.0006*Gal)	No models on the market	NA
> 55 gal and ≤	Low	UEF=0.7689-(0.0005*Gal)	No models on the market	NA
100 gal	Medium	UEF=0.7897-(0.0004*Gal)	No models on the market	0.78
	High	UEF=0.8072-(0.0003*Gal)	No models on the market	0.80

- There are currently no models on the market above 55 gallons (gal) due to the high UEF, which would require using condensing or gas-fired heat pump (e.g., absorption) technology to achieve.
- The cost of installation is typically \$600 to \$1200, which exceeds that of electric water heaters. This difference can be attributed to multiple differences; for example, gas-fired heaters require an extra 1.5 hours of labor for 2 plumbers.
- Condensing units are high efficiency and use PVC venting instead of stainless-steel. Condensing units also use an electrical supply for electronic ignition and power venting. Some building codes require condensate neutralizer filters.

Shipments were flat at 5 million units per year through 2004, then declined gradually over 5 years to a new plateau at 4 million units until rising again back to 5 million units in 2021.

Source: AHRI

Residential Oil-Fired Water Heaters

	2015	2020		2022		20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (gal)	32	32	32	32	32	32	32	32	32	32	32
Uniform Energy Factor ¹	0.51	0.67	0.64	0.66	0.68	0.66	0.68	0.66	0.68	0.66	0.68
Average Life (y)	13	13	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
Potoil Equipment Cost (2022¢)	1,590	1,880	1,380	1,400	1,480	1,400	1,480	1,400	1,480	1,400	1,480
Retail Equipment Cost (2022\$)	1,710	2,410	2,810	2,870	3,030	2,870	3,030	2,870	3,030	2,870	3,030
Total Installed Cost (2022\$)	2,350	2,650	2,620	2,650	2,730	2,650	2,730	2,650	2,730	2,650	2,730
Total Installed Cost (2022\$)	2,470	3,350	4,050	4,120	4,280	4,120	4,280	4,120	4,280	4,120	4,280
Annual Maintenance Cost (2022\$) ²	210	210	210	210	210	210	210	210	210	210	210

- 1. Analysis is based on an average of medium and high draw pattern units, as this is most reflective of the market.
- 2. Oil-fired storage water heaters are typically cleaned and maintained under maintenance contracts. The annual cost of typical maintenance is based on maintenance contract prices from different oil-fired product suppliers as specified in the CWH EERE 2022 Preliminary Analysis.

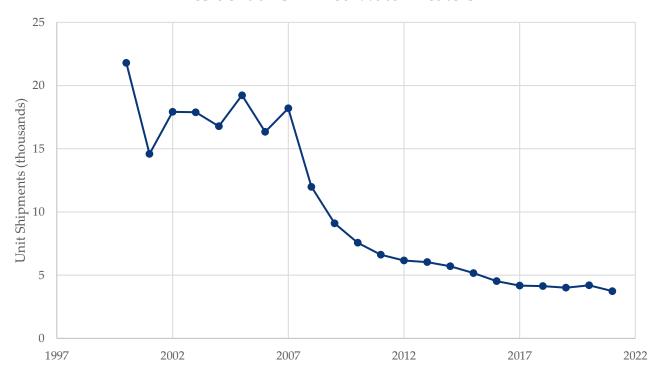
Note:

Ranges represent span of typical values.

Current standards went into effect April 16, 2015.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (16.2, 1.70, 1).

Residential Oil-Fired Water Heaters


• The equations for Federal Standards and the voluntary ENERGY STAR requirements, if applicable, are:

Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes	ENERGY STAR
	Very Small	UEF=0.2509-(0.0012*Gal)	No models on the market	NA
≤ 50 gal	Low	UEF=0.533-(0.0016*Gal)	No models on the market	NA
	Medium	UEF=0.6078-(0.0016*Gal)	No models on the market	NA
	High	UEF=0.6815-(0.0014*Gal)	0.64 for a 29-gallon water heater	NA

- There are no ENERGY STAR requirements for oil-fired storage water heaters.
- Annual shipments of residential oil-fired storage water heaters are approximately 4,000, which is less than 1% of shipments of residential gas-fired storage water heaters.
- Oil-fired storage water heaters often have smaller tanks with larger input ratings relative to natural gas-fired and electric storage water heaters.
- No condensing residential oil-fired storage water heaters currently exist in the U.S. market. Condensing oil-fired water
 heaters are generally not considered technologically feasible because the sulfur content in fuel oil leads to the
 condensate becoming corrosive.
- Residential oil-fired water heaters utilize power burners and have at least some level of electrical power consumption.
- The most efficient models on the market use a proprietary "turbo-flue" design to increase heat transfer to water.

Shipments peaked at about 22,000 units in 2000 and have decreased since then, with an exponential decay occurring since 2007. Only about 4,000 units were shipped in 2021.

Residential Oil-Fired Water Heaters

Source: CWH EERE 2022 Preliminary Analysis

Residential Electric Resistance Storage Water Heaters

	2015	2020	2022			2030		2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (gal)	36	36	36	36	36	36	36	36	36	36	36
Uniform Energy Factor ¹	0.88	0.93	0.92	0.92	0.93	0.92	0.93	0.92	0.93	0.92	0.93
Average Life (y)	13	13	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1
Poteil Faccions and Coat (20226)	290	350	330	330	600	330	600	330	600	330	600
Retail Equipment Cost (2022\$)	530	650	760	760	850	760	850	760	850	760	850
Total Installed Cost (2022\$)	590	710	500	500	550	500	550	500	550	500	550
	940	1,290	1,310	1,310	1,430	1,310	1,430	1,310	1,430	1,310	1,430
Annual Maintenance Cost (2022\$) ²	20	20	20	20	20	20	20	20	20	20	20

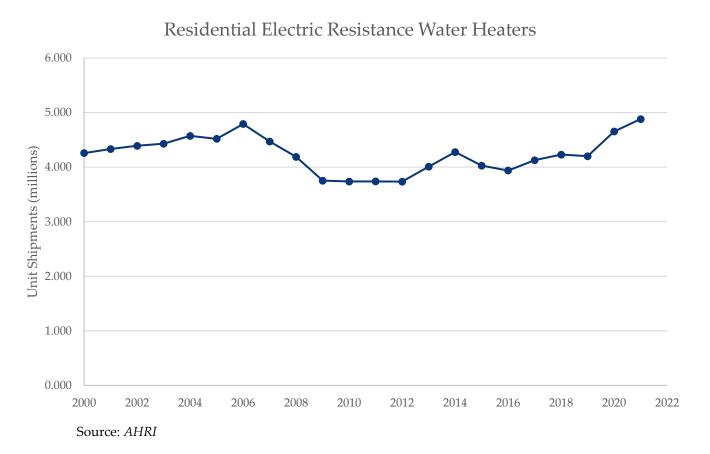
- 1. Beginning in 2016, the efficiency metric for water heaters changed from energy factor (EF) to UEF based on DOE test procedures. The UEF values for the installed base in 2015 are converted values equivalent to 0.90 EF. Analysis is based on an average of low and medium draw pattern units, as this is most reflective of the market.
- 2. Similar to gas-fired and oil-fired storage water heaters, manufacturers recommend that electric storage water heaters be drained and flushed annually to minimize deposition of sediment, maintain operating efficiency, and prolong product life. The available evidence indicates that this practice is done in 10% of households.

Note:

Ranges represent span of typical values.

Current standards went into effect April 16, 2015.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.7, 1.57, 1).


Residential Electric Resistance Storage Water Heaters

• The equations for Federal Standards and the voluntary ENERGY STAR requirements, if applicable, are:

Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes	ENERGY STAR
	Very Small	UEF=0.8808-(0.0008*Gal)	No models on the market	2.00
≥ 20 gal and ≤ 55 gal	Low	UEF=0.9254-(0.0003*Gal)	0.92 for a 27-gallon water heater	2.00
	Medium	UEF=0.9307-(0.0002*Gal)	0.92 for a 45-gallon water heater	2.00
	High	UEF=0.9349-(0.0001*Gal)	0.93 for a 50-gallon water heater	2.00
. EE 1 1	Very Small	UEF=1.9236-(0.0011*Gal)	No models on the market	2.20
> 55 gal and ≤ 120 gal	Low	UEF=2.0440-(0.0011*Gal)	No models on the market	2.20
	Medium	UEF=2.1171-(0.0011*Gal)	2.05 for a 58-gallon water heater	2.20
	High	UEF=2.2418-(0.0011*Gal)	2.15 for a 80-gallon water heater	2.20

- The federal standards for residential electric storage water heaters apply to both electric resistance storage water heaters and heat pump water heaters.
 - The Federal standard levels for the ≤ 55-gallon range are achievable through electric resistance and heat pump technology.
 - The Federal standards for the > 55-gallon range and all ENERGY STAR levels are only achievable through heat pump technology.
- Typical storage volumes range from 25-55 gallons for electric resistance storage water heaters and 45-80 gallons for heat pump water heaters (HPWHs).

Shipments peaked in 2006 then dropped a total of 22 percent over three years. Shipments have gradually increased since then and were at the highest level in 2021.

Residential Heat Pump Water Heaters

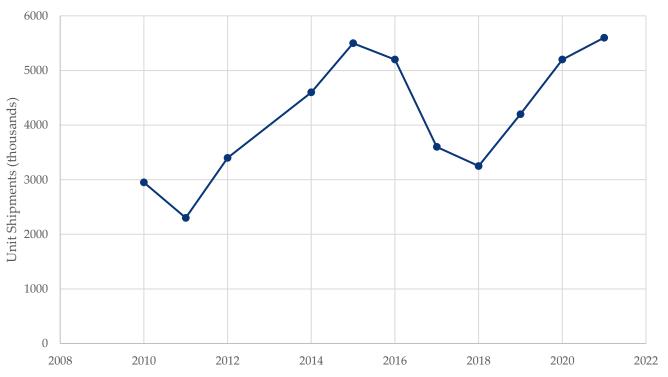
	2015	2020	2022		2030		2040		2050		
DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Capacity (gal)	36	36	36	36	36	36	36	36	36	36	36
Uniform Energy Factor ¹	2.05	3.28	3.33	3.30	3.73	3.33	3.73	3.33	3.73	3.33	3.73
Average Life (y)	13	13	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1
Patril Faviran ant Coat (2022¢) ²	1,290	1,410	630	630	670	630	670	630	670	630	670
Retail Equipment Cost (2022\$) ²	1,650	1,760	1,440	1,440	1,670	1,370	1,590	1,300	1,510	1,240	1,430
Total Installed Cost (2022\$) ²	1,710	1,880	870	870	980	870	980	870	980	870	980
	2,940	3,000	2,230	2,230	2,450	2,120	2,330	2,010	2,210	1,910	2,100
Annual Maintenance Cost (2022\$) ³	20	20	20	20	20	20	20	20	20	20	20

- 1. Analysis is based on an average of low and medium draw pattern units, as this is most reflective of the market.
- 2. It is expected that costs for HPWHs will decrease over time as these products become more common. This analysis estimates these cost decreases for the higher range of costs.
- 3. For heat pump water heater design options, DOE assumed higher maintenance cost to take into account annual cleaning of the air filter, preventative maintenance cost to check the evaporator and refrigeration system, inspection of the condensate withdrawal system, and replacement of the condensate neutralizer filter, if applicable. However, this maintenance is estimated to occur in only 10% of households, so overall maintenance cost is similar to that of other electric resistance water heaters.

Note:

Ranges represent span of typical values.

ENERGY STAR V. 4.0 went into effect January 5, 2022.


Assume same lifetime as electric resistance water heaters.

Residential Heat Pump Water Heaters

- Technology improvements have advanced efficiency and reliability, but the high first-cost and lack of awareness among consumers and contractors still precludes high-volume market penetration.
- New Federal standards that came into effect in April 2015 effectively mandate heat pump technology for electric storage water heaters with storage volume > 55 gallons.
- Integrated models are the most common configuration for residential HPWHs. Several major water heater manufacturers produce such models, and other competitors offer integrated or add-on units (for existing electric or indirect storage water heaters).
- Sales are estimated to be driven partly by rebates and tax credits at the utility, local, state, and Federal level.
- Resistive heating elements are virtually 100% efficient, but there is a jump in efficiency when heat pump technology is adopted because heat pumps' COP are usually between 2.5 and 4.
- Heat pumps raise the water temperature more slowly than resistive heating elements, so most models use backup resistive elements along with the heat pump when hot water demand is high. Most HPWHs allow the consumer to control whether resistive elements are used in periods of high demand (e.g., "hybrid mode" or "heat pump only mode").

Shipments make up a small portion of electric resistance heaters, with a peak of only about 5,500 units, occurring in both 2015 and 2021.

Residential Heat Pump Water Heaters

Source: ENERGY STAR

Residential Solar Water Heaters

	2015	2020	20	22	2030	2040	2050
DATA	Installed Base	Installed Base	ENERGY STAR V. 4.0	Typical	Typical	Typical	Typical
T:1 C:(6/2)1	42	42	40	40	40	40	40
Typical Capacity (ft ²) ¹	65	65	54.4	54.4	54.4	54.4	54.4
Solar Uniform Energy Factor (SUEF) ²	3.0	3.0	3.0	99.0	99.0	99.0	99.0
Avorage I :fo (v)	15	15	15	15	15	15	15
Average Life (y)	30	30	30	30	30	30	30
Retail Equipment Cost (2022\$)	7,710	7,710	6,430	6,430	6,430	6,430	6,430
Total Installed Cost (2022\$)	10,650	10,650	8,060	8,060	8,060	8,060	8,060
Annual Maintenance Cost (2022\$) ³	80	80	80	80	80	80	80

- 1. Capacity selections are based on the range observed from medium draw units in the ENERGY STAR database. Medium draw represented the largest portion of units.
- 2. An SUEF of 3.0 is the required threshold for ENERGY STAR certification, yet a value of 99 was the most common observed SUEF among medium draw units. Note that an SUEF of 99 indicates that no backup heating was required for the applicable draw pattern, and all energy was provided by the solar collector. Since SUEF is a measure of hot water energy out divided by electrical or gas backup energy in, it will be infinite for cases where the collector provides all the hot water needed for the draw pattern the Solar Rating and Certification Corporation's (SRCC's) OG-300 software is written to assign an SUEF of 99 to this case.
- 3. Annual maintenance is expected to be 0.5% to 1% of the total installation for 2022, 2030, 2040, and 2050.

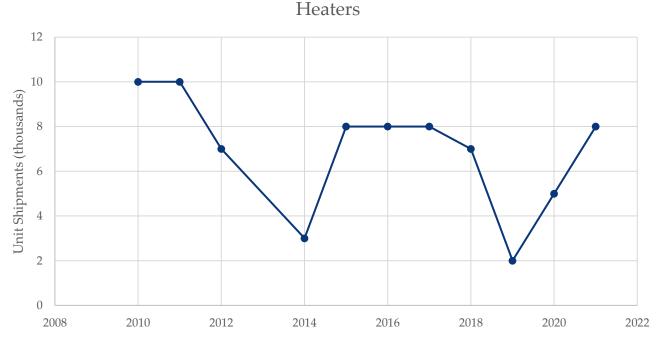
Note:

Ranges represent span of typical values.

ENERGY STAR V. 4.0 went into effect January 5, 2022.

Residential Solar Water Heaters

Solar water heaters are not subject to federal energy conservation standards. The ENERGY STAR requirements are:


Applicable Products	Backup Fuel	ENERGY STAR Requirement	Test Method
7A711 - 1	Gas	SUEF≥3.0	ICC 900/SRCC 300-2020 Solar Thermal System Standard,
Whole-home solar units	Electric	SEF ≥ 1.8	Appendix A: Solar Uniform Energy Factor Procedure for Solar Water Heating Systems

- Solar water heaters can be either active or passive. An active system uses an electric pump to circulate the heat transfer fluid; a passive system has no pump. Most solar water heaters in the U.S. are the active type.
- Solar water heaters are also characterized as open loop (also called "direct") or closed loop (also called "indirect"). An open-loop system circulates household (potable) water through the collector. A closed-loop system uses a heat transfer fluid (water or diluted antifreeze, for example) to collect heat and a heat exchanger to transfer the heat to household water. Direct systems were observed as the most common product type and subject of this analysis.
- In 2020, stakeholders from the solar thermal industry developed the Solar Uniform Energy Factor (SUEF) Specification for solar water heaters to align with the UEF metric used by DOE for other water heating technologies.
- SUEF is also the metric used by the current ENERGY STAR Specification, and it replaced the Solar Energy Factor (SEF)
 metric.
- Over two-third of the current solar water heater market is in the southern or western U.S. (including Hawaii). A collector area of 42 square feet (ft²) would be typical for these areas. Colder areas of the U.S. would require a larger collector (e.g., 65 ft²).
- Installed costs are higher for colder areas where larger collectors are required. Costs also vary widely depending on collector quality, type of system, and site-specific characteristics.

Residential Solar Water Heaters

The shipments data below only represents ENERGY STAR-certified solar water heaters, as ENERGY STAR did not provide a market penetration rate. Solar water heaters have a small market share, with only 10,000 shipments at the peak in 2010 and 2011.

Shipments of ENERGY STAR-Certified Residential Solar Water

Source: ENERGY STAR

Residential Gas-Fired Instantaneous Water Heaters

	2015	2020		20	22		2023	20	30	20	40	2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.0	High	ENERGY STAR V. 5.0	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	199	199	199	199	199	199	199	199	199	199	199	199	199
Uniform Energy Factor (UEF) ¹	0.81	0.89	0.81	0.92	0.87	0.97	0.95	0.92	0.97	0.92	0.97	0.92	0.97
Average Life (y)	19	19	20	20	20	20	20	20	20	20	20	20	20
Patril Farriage and Coat (20224)	1,410	1,180	430	580	580	610	610	580	610	580	610	580	610
Retail Equipment Cost (2022\$)	1,760	1,410	1,020	1,360	1,350	1,430	1,430	1,360	1,430	1,360	1,430	1,360	1,430
Total Installed Cost (2022\$)	2,590	1,760	920	1,070	950	1,090	1,090	1,070	1,090	1,070	1,090	1,070	1,090
Total Installed Cost (2022\$)	3,820	3,350	2,860	3,160	3,140	3,230	3,220	3,160	3,230	3,160	3,230	3,160	3,230
Annual Maintenance Cost (2022\$) ²	90	90	90	90	90	90	90	90	90	90	90	90	90

- 1. Analysis is based on an average of low, medium, and high draw pattern units, as this is most reflective of the market.
- 2. Annual maintenance includes deliming to minimize deposition of sediment in the heat exchanger, maintain operating efficiency and prolong product life. Also includes additional tasks, including inspection of the ignition device, gas valve, controls, thermostat, and venting.

Note:

Ranges represent span of typical values.

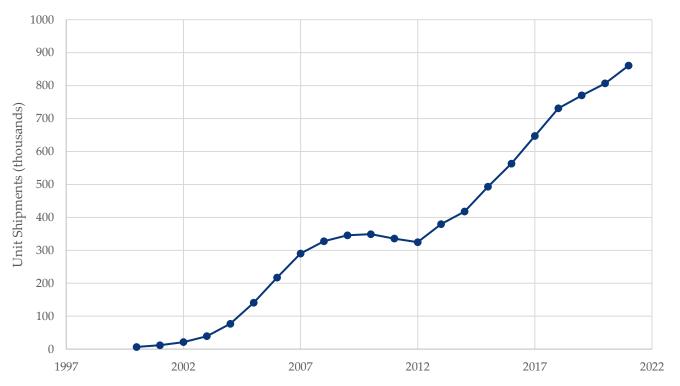
Current standards went into effect April 16, 2015.

ENERGY STAR V. 4.0 went into effect January 5, 2022.

ENERGY STAR V. 5.0 will go into effect April 18, 2023.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (21.3, 1.76, 1).

Residential Gas-Fired Instantaneous Water Heaters


• The equations for Federal Standards and the voluntary ENERGY STAR requirements, if applicable, are:

Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes	ENERGY STAR
	Very Small	UEF=0.80	No models on the market	0.87
<2 gal and	Low	UEF=0.81	No models on the market	0.87
>50,000 Btu/h	Medium	UEF=0.81	0.81	0.87
	High	UEF=0.81	0.81	0.87

- The ENERGY STAR levels require the use of condensing technology.
- All of the major water heater manufacturers now offer an instantaneous water heater model.
- The maintenance costs include cleaning the water inlet filter and the heat exchanger of mineral deposits and replacing the water valve approximately once every five years for all instantaneous water heaters.
- When replacing a storage water heater with an instantaneous water heater, there are significant additional costs to upsize the gas supply line to ¾ inch from the typical ½ inch and change the venting.

Shipments for Gas-Fired Instantaneous Water Heaters have grown steadily with nearly no shipments in 2000 and a peak of about 850,000 units in 2021.

Residential Gas-Fired Instantaneous Water Heaters

Source: CWH EERE 2022 Preliminary Analysis

Residential Electric Instantaneous Water Heaters

	2015	2020		2022		20	30	20	40	2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Representative Input Rate (kW)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Uniform Energy Factor (UEF) ¹	0.96	0.96	0.91	0.96	0.98	0.96	0.98	0.96	0.98	0.96	0.98
Average Life (y)	20	20	20	20	20	20	20	20	20	20	20
Retail Equipment Cost (2022\$)	260	260	260	260	260	260	260	260	260	260	260
Total Installed Cost (2022\$)	520	520	520	520	520	520	520	520	520	520	520
Annual Maintenance Cost (2022\$) ²	90	90	90	90	90	90	90	90	90	90	90

- 1. Analysis is based on an average of low, medium, and very small draw pattern units, as this is most reflective of the market.
- 2. Annual maintenance costs not provided in CWH EERE 2022 Preliminary Analysis. Maintenance costs determined from the following calculation: GIWH (GSWH ESWH) i.e., the difference factor in maintenance between gas and electric storage heat pumps applied to gas instantaneous heat pumps.

Note:

Current standards went into effect April 16, 2015.

Assume same lifetime as gas-fired instantaneous water heaters.

The Federal standards are:

Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes
	Very Small	UEF=0.91	0.91
-2 1	Low	UEF=0.91	0.91
<2 gal	Medium	UEF=0.91	No models on the market
	High	UEF=0.92	No models on the market

- Electric instantaneous water heaters use electric resistance heating elements to heat water when there is a demand. Resistive heating elements are virtually 100% efficient, and the small storage capacities of these products means that they do not lose significant amounts of heat to the environment.
- The federal standards for these products require UEFs of 0.91 for very small, low, and medium draw pattern models and 0.92 for high draw pattern models.
- Most products currently on the market are in the very small draw pattern or the low draw pattern because electric resistance elements can only supply a limited quantity of heat on an instantaneous basis due to circuit amperage limitations.
- Many products are designed for point-of-use applications, such that the water heater only supplies water to one faucet or showerhead.

Residential Appliances

Residential Refrigerator-Freezers (Top)

	2015	2020		20	22		20	30	204	40	2050	
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft ³) ²	19	19	19	19	19	19	19	19	19	19	19	19
Energy Consumption (kWh/y) ³	512	401	411	401	370	358	401	358	401	358	401	358
Average Life (y)	15	15	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$)	670	750	740	750	760	760	750	760	750	760	750	760
Total Installed Cost (2022\$)	670	750	740	750	760	760	750	760	750	760	750	760
Annual Maintenance Cost (2022\$) ⁴	10	10	10	10	10	10	10	10	10	10	10	10

- 1. Product Class 3 is used for this analysis (Refrigerator-freezers—automatic defrost with top-mounted freezer without through-the-door ice service and all-refrigerator—automatic defrost).
- 2. The volume shown here is the nominal total volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. The 2015 installed base energy consumption value is based on an adjusted volume of 21 cubic feet (ft³). Energy consumption values for the 2020 installed base and 2022 and beyond are based on an adjusted volume of 22 ft³, representing the current market.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan, electronics, ice maker), not replaceable components (e.g., water filters).

Note:

Current standard went into effect in September 2014.

ENERGY STAR V. 5.1 went into effect in September 2014.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (10.26, 1.28, 5.13).

Residential Refrigerator-Freezers (Side)

	2015	2020		20	22		20	30	204	40	2050	
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)²	26	26	25	25	25	25	25	25	25	25	25	25
Energy Consumption (kWh/y) ³	893	693	705	693	635	610	693	610	693	610	693	610
Average Life (y)	15	15	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$)	1,400	1,130	1,130	1,130	1,160	1,470	1,130	1,470	1,130	1,470	1,130	1,470
Total Installed Cost (2022\$)	1,400	1,130	1,130	1,130	1,160	1,470	1,130	1,470	1,130	1,470	1,130	1,470
Annual Maintenance Cost (2022\$) ⁴	30	20	20	20	20	30	20	30	20	30	20	30

- 1. Product Class 7 is used for this analysis (Refrigerator-freezers—automatic defrost with side-mounted freezer with through-the-door ice service).
- 2. The volume shown here is the nominal total volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. Based on an adjusted volume of 32 ft³ for all analysis years.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan, electronics, ice maker), not replaceable components (e.g., water filters). Note:

Current standard went into effect in September 2014.

ENERGY STAR V. 5.1 went into effect in September 2014.

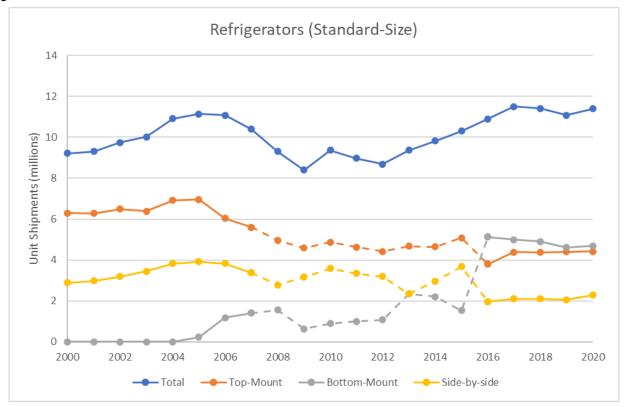
Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (10.26, 1.28, 5.13).

Residential Refrigerator-Freezers (Bottom)

	2015	2020		20	22		20	30	204	40	2050	
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft ³) ²	19	19	19	19	19	19	19	19	19	19	19	19
Energy Consumption (kWh/y) ³	547	473	521	473	469	430	473	430	473	430	473	430
Average Life (y)	15	15	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$)	1,190	920	920	920	920	930	920	930	920	930	920	930
Total Installed Cost (2022\$)	1,190	920	920	920	920	930	920	930	920	930	920	930
Annual Maintenance Cost (2022\$) ⁴	30	20	20	20	20	20	20	20	20	20	20	20

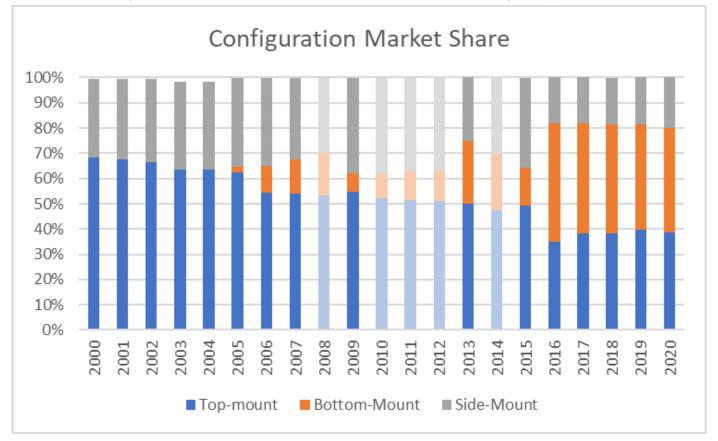
- 1. Product Class 5 is used for this analysis (Refrigerator-freezers—automatic defrost with bottom-mounted freezer without through-the-door ice service).
- 2. The volume shown here is the nominal total volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. Based on an adjusted volume of 23 ft³ for all analysis years.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan, electronics, ice maker), not replaceable components (e.g., water filters). Note:

Current standard went into effect in September 2014.


ENERGY STAR V. 5.1 went into effect in September 2014.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (10.26, 1.28, 5.13).

Residential Refrigerator-Freezers


- Current Federal standards¹:
 - Compliance required beginning September 15, 2014
 - Models divided into 32 product classes based on size (standard or compact), location of freezer (top, bottom, or side), type of defrost (automatic or manual), installation configuration (freestanding or built-in), and presence and configuration (through-the-door or inside cabinet) of automatic icemaker
 - Limits on annual electricity consumption expressed as functions of adjusted volume²
 - New product classes for built-in units
 - Amount by which standards are tightened varies by product class
- ENERGY STAR criteria limit annual electricity consumption to 10% less than the Federal standard
- Energy efficiency opportunities for refrigerators include:
 - More efficient compressor, including variable speed compressors
 - Brushless direct current (DC) fan motor (also known as ECM motor)
 - Variable defrost
 - Larger condenser
 - Dual evaporators
 - Vacuum-insulated panels
 - Refrigerants (Isobutane vs. R134a)

Annual shipment volumes have rebounded from a sharp decline between 2006 and 2009, reaching approximately 11.4 million units in 2020.

Source: *Appliance Magazine; DOE's CCD, as of December 2017; ENERGY STAR Unit Shipment Data* (2017-2020); *Guidehouse analysis.* Dashed lines are a combination of interpolated and available data.

Bottom-mount units have gained market share, surpassing top-mount units since 2016.

Sources: RF EERE 2021 Preliminary Analysis; DOE's CCD, as of December 2017; Guidehouse analysis. Lightly shaded bars indicate interpolated data.

Residential Freezers (Chest)

	2015	2020		2022		20	30	20	40	2050	
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)²	16	15	15	15	15	15	15	15	15	15	15
Energy Consumption (kWh/y) ³	360	297	297	297	287	297	287	297	287	297	287
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	510	590	680	680	690	680	690	680	690	680	690
Total Installed Cost (2022\$)	510	590	680	680	690	680	690	680	690	680	690
Annual Maintenance Cost (2022\$) ⁴	10	10	10	10	10	10	10	10	10	10	10

- 1. Product Class 10 is used for this analysis (Chest freezers and all other freezers except compact freezers).
- 2. The volume shown here is the nominal volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume (zero for freezers) plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. Based on an adjusted volume of 26 ft³, which is the average adjusted volume for units with a rounded total refrigerated volume of 15 ft³ per the DOE CCD.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan, electronics)

Note:

Current standard went into effect in September 2014.

ENERGY STAR excluded as no products at the typical capacity are ENERGY STAR compliant.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (21.96, 1.83, 1).

Residential Freezers (Upright)

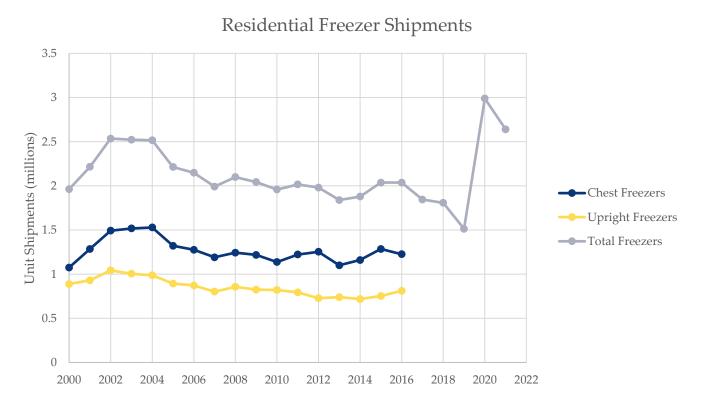
	2015	2020		20	22		20	30	20	40	2050	
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft ³) ²	17	17	18	18	18	18	18	18	18	18	18	18
Energy Consumption (kWh/y) ³	615	446	497	493	448	441	493	441	493	441	493	441
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	690	880	830	830	830	830	830	830	830	830	830	830
Total Installed Cost (2022\$)	690	880	830	830	830	830	830	830	830	830	830	830
Annual Maintenance Cost (2022\$) ⁴	10	10	10	10	10	10	10	10	10	10	10	10

- 1. Product Class 9 is used for this analysis (Upright freezers with automatic defrost).
- 2. The volume shown here is the nominal volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume (zero for freezers) plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. Based on an adjusted volume of 31 ft³, which is the average adjusted volume for units with a rounded total refrigerated volume of 18 ft³ per the DOE CCD.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan electronics).

Note:

Current standard went into effect in September 2014.

ENERGY STAR V. 5.1 went into effect September 2014.


Assume same lifetime as chest freezers.

Residential Freezers

- Current Federal standards¹:
 - Compliance required beginning September 15, 2014
 - Models divided into 10 product classes based on size (standard or compact), orientation (chest or upright), type of defrost (automatic or manual), installation configuration (freestanding or built-in), and presence of automatic icemaker
 - Current analysis focuses on the two representative product classes analyzed in the recent rulemaking, chest and upright freezers.
 - Limits on annual electricity consumption expressed as functions of adjusted volume²
 - Chest freezers and all other freezers except compact freezers (PC 9): 9.88AV + 143.7
 - Upright freezers with automatic defrost (PC 10): 12.43AV + 326.1
- ENERGY STAR criteria limit annual electricity consumption to 10% less than the Federal standard
 - No ENERGY STAR compliant products at the typical capacity for chest freezers
- Energy efficiency opportunities for freezers include:
 - Higher efficiency and/or variable-speed compressor systems
 - Larger heat exchangers
 - Permanent-magnet fan motor systems (vs. shaded pole motor (SPM) and PSC fan motors)
 - Demand defrost systems
 - Vacuum-insulated panels
 - Thicker insulation (though at a loss of consumer utility)
 - Refrigerants (Isobutane vs. R134a)
 - Variable anti-sweat heating
 - Use of forced convection condenser (for upright freezers)

¹Energy Conservation Standards for Residential Refrigerators, Refrigerator-Freezers, and Freezers. 10 CFR 430.32(a). ²Adjusted Volume (AV) = (Fresh Volume) + 1.76 × (Freezer Volume).

Shipment volumes held steady between 2007 to 2016 at about 2 million units per year. Shipments jumped to 3 million units in 2020. Chest freezers represent about 60% of the market.

Sources: Appliance Magazine from 2000 to 2016; ENERGY STAR from 2017 to 2021

Residential Natural Gas Cooktops

	2015	2020	20	22	20	30	20	40	2050	
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
T ' 16 ' (1Pt //)	9	9	9	9	9	9	9	9	9	9
Typical Capacity (kBtu/h)	23	23	23	23	23	23	23	23	23	23
Integrated Annual Energy Consumption (kBtu/y) ¹	1,061	914	914	730	914	730	914	730	914	730
Cooking Efficiency (%)	40	45	45	52	45	52	45	52	45	52
Average Life (y)	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$) ²	290	310	310	330	310	330	310	330	310	330
Total Installed Cost (2022\$) ²	420	460	460	480	460	480	460	480	460	480
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-

- 1. Although there is no performance standard in effect, the test procedure metric has changed from Cooking Efficiency (%) to Integrated Annual Energy Consumption (IAEC) (kBtu/h). The Consumer Cooking Products EERE 2020 notice of proposed determination (NOPD) used for 2020 and beyond in this analysis also determined IAEC using a different test procedure than the Consumer Cooking Products EERE 2016 SNOPR.
- 2. Equipment and installed costs are for cooktops only (not combined range units).
- 3. Annual maintenance costs are negligible.

Note:

The range for typical capacity represents the span of typical values.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (14.56, 5.73).

Residential Natural Gas Ovens

	2015	2020	20	22	20	30	20	40	2050		
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High	
Territoral Compositor (L.P. Lev./L.)	16	16	16	16	16	16	16	16	16	16	
Typical Capacity (kBtu/h)	18	18	18	18	18	18	18	18	18	18	
Tymical Cavity Valuma (4t3)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Typical Cavity Volume (ft³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Integrated Annual Energy Consumption (kBtu/y) ¹	2,038	1,960	1,960	1,831	1,960	1,831	1,960	1,831	1,960	1,831	
Cooking Efficiency (%)	6.6	6.9	6.9	7.3	6.9	7.3	6.9	7.3	6.9	7.3	
Average Life (y)	15	15	15	15	15	15	15	15	15	15	
Retail Equipment Cost (2022\$) ²	740	770	770	810	770	810	770	810	770	810	
Total Installed Cost (2022\$) ²	870	920	920	950	920	950	920	950	920	950	
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-	

- 1. Although there is no performance standard in effect, the test procedure metric has changed from Cooking Efficiency (%) to IAEC (kBtu/y). The 2015 IAEC value is reflective of freestanding standard gas ovens, which was previously determined to be the most representative product class. IAEC for 2020 and beyond is reflective of freestanding self-clean gas ovens, which is the product class that makes up the majority of historical and projected gas oven shipments.
- 2. Equipment and installed costs are for ovens only (not combined ranges). Costs are reflective of freestanding self-clean oven units with single oven component, which represent the majority of the market.
- 3. Maintenance costs are negligible.

Note:

Ranges represent the span of typical values for a given parameter.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (14.56, 5.73).

Residential Natural Gas Ranges

	2015	2020	20	22	20	30	20	40	209	50
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity of Cooktop Component	9	9	9	9	9	9	9	9	9	9
(kBtu/h)	23	23	23	23	23	23	23	23	23	23
Typical Capacity of Oven Component	16	16	16	16	16	16	16	16	16	16
(kBtu/h)	18	18	18	18	18	18	18	18	18	18
Typical Cavity Volume of Oven	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Component (ft ³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Integrated Annual Energy Consumption (kBtu/y) ¹	3,099	2,874	2,874	2,561	2,874	2,561	2,874	2,561	2,874	2,561
Average Life (y)	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$) ²	750	770	770	850	770	850	770	850	770	850
Total Installed Cost (2022\$) ²	900	920	920	1,000	920	1,000	920	1,000	920	1,000
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-

- 1. IAEC of a natural gas range is calculated as the sum of the IAEC for a natural gas cooktop and natural gas oven. IAEC of the oven component is reflective of freestanding self-clean gas ovens, which represent the majority of the market. The 2015 IAEC value of the oven component is reflective of freestanding standard gas ovens, which was previously determined to be the most representative product class.
- 2. Retail and installed cost are reflective of a typical unit with standard 30-inch width and 4 to 5 cooking top heating elements. Based on data from DOE rulemakings, Gordian's RSMeans Data Building Construction Costs 2023, and distributors, total installed cost is estimated to be around \$150 more than retail equipment cost.
- 3. Maintenance costs are negligible.

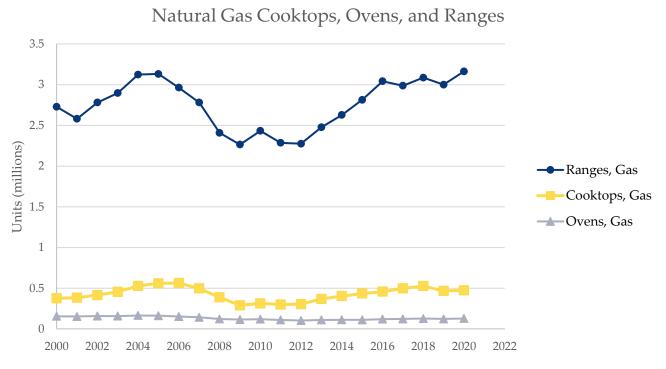
Note:

Ranges represent the span of typical values for a given parameter.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (14.56, 5.73).

Residential Natural Gas Cooktops, Ovens, and Ranges

- DOE analyzes cooktops and ovens separately, although they are often sold together in a single unit that combines both a
 cooktop and an oven into a product referred to as a range.
- Since January 1, 1990, gas cooking products with an electrical supply cord have been required to not be equipped with a constant burning pilot light. This requirement extended to gas cooking products without an electrical supply cord, as of April 9, 2012.
- DOE published a final rule in 2009¹ in which it determined that no standard for cooking efficiency would be cost-justified.
- DOE initiated a standards rulemaking in 2014 to consider amended standards for cooking products, including gas cooktops and ovens².
- On September 2, 2016, DOE proposed performance-based standards for gas cooktops and ovens that would take effect in 2020, if adopted.
- DOE established the new IAEC metric, in kBtu/y, to replace cooking efficiency (%).
- On December 14, 2020, DOE initially determined that amended energy conservation standards for consumer conventional cooking products would not be economically justified and would not result in significant conservation of energy³.
- On February 2, 2023, DOE proposed new and amended energy conservation standards for consumer conventional cooking products⁴.
- The IAEC of a range is calculated as the sum of the IAECs for cooktops and ovens. However, retail and installation costs for a range are similar to the cost of an oven.


¹Energy Conservation Standards for Certain Consumer Products (Dishwashers, Dehumidifiers, Microwave Ovens, and Electric and Gas Kitchen Ranges and Ovens) and for Certain Commercial and Industrial Equipment (Commercial Clothes Washers); Final Rule. 74 FR 16040.

²Energy Conservation Standards for Residential Conventional Cooking Products; Supplemental notice of proposed rulemaking (SNOPR). 81 FR 60784.

³Energy Conservation Standards for Consumer Conventional Cooking Products; Notice of proposed determination (NOPD). 85 FR 80982.

⁴Energy Conservation Standards for Consumer Conventional Cooking Products; SNOPR. 88 FR 6818.

Shipments have been rising since 2012. In 2020, gas range shipments surpassed the peak reached in 2005.

Source: Appliance Magazine and Consumer Cooking Products EERE 2022 SNOPR

Residential Electric Cooktops

	2015	2020	20	22	2030		2040		2050	
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
T	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200
Typical Capacity (W)	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700
Integrated Annual Energy Consumption (kWh/y) ¹	155	155	155	119	155	119	155	119	155	119
Average Life (y)	17	17	17	17	17	17	17	17	17	17
Retail Equipment Cost (2022\$) ²	470	470	470	810	470	810	470	810	470	810
Total Installed Cost (2022\$) ²	620	620	620	1,230	620	1,230	620	1,230	620	1,230
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-

- 1. Although there is no performance standard in effect, the test procedure metric has changed from Cooking Efficiency (%) to IAEC (kBtu/y). IAEC was determined using DOE rulemaking data for the most representative product class, electric smooth element cooking tops, which covers cooking tops with electric resistance heating elements and cooking tops with induction heating elements.
- 2. Equipment and installed costs are for cooktops only (not combined range units). Costs were determined using DOE rulemaking data for the most representative product class, electric smooth cooking tops, which includes cooking tops with electric resistance heating elements and cooking tops with induction heating elements. A high-end unit with induction technology is expected to have a greater retail equipment cost and greater installation cost in order to implement this technology.
- 3. Maintenance costs are negligible.

Note:

The range for typical capacity represents the span of typical values.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (16.88, 6.99).

Residential Electric Ovens

	2015	2020	20	22	2030		2040		2050	
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Tourisal Compains (IAI)	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Typical Capacity (W)	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400
Typical Cavity Volume (ft³)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Typical Cavity volume (it)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Integrated Annual Energy Consumption (kWh/y) ¹	355	355	355	278	355	278	355	278	355	278
Average Life (y)	17	17	17	17	17	17	17	17	17	17
Retail Equipment Cost (2022\$) ²	630	630	630	730	630	730	630	730	630	730
Total Installed Cost (2022\$) ²	770	770	770	870	770	870	770	870	770	870
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-

- 1. Although there is no performance standard in effect, the test procedure metric has changed from Cooking Efficiency (%) to IAEC (kBtu/y). IAEC was determined using DOE rulemaking data for freestanding electric self-clean ovens, which represent the majority of the market.
- 2. Equipment and installed costs are for ovens only (not combined ranges). Costs are reflective of freestanding self-clean oven units with single oven component, which represent the majority of the market.
- 3. Maintenance costs are negligible.

Note:

Ranges represent the span of typical values for a given parameter.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (16.88, 6.99).

Residential Electric Ranges

	2015	2020	20	22	20	30	20	40	2050	
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity of Cooktop Component	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200
(W)	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700
Typical Capacity of Oven Component	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
(W)	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400
Typical Cavity Volume of Oven	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Component (ft³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Integrated Annual Energy Consumption (kWh/y) ¹	510	510	510	397	510	397	510	397	510	397
Average Life (y)	17	17	17	17	17	17	17	17	17	17
Retail Equipment Cost (2022\$) ²	630	630	630	900	630	900	630	900	630	900
Total Installed Cost (2022\$) ²	770	770	770	1,050	770	1,050	770	1,050	770	1,050
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-

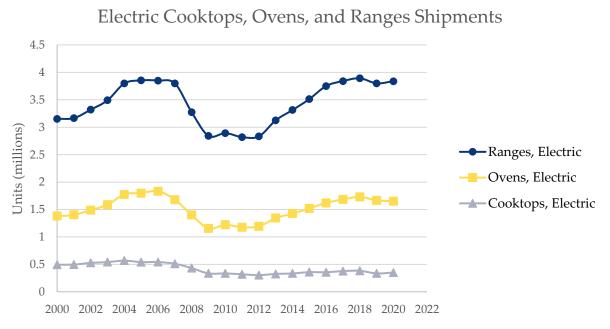
- 1. IAEC of an electric range is calculated as the sum of the IAEC for an electric cooktop and an electric oven. IAEC of the electric cooktop component was determined using DOE rulemaking data for the most representative product class, electric smooth element cooking tops, which covers cooking tops with electric resistance heating elements and cooking tops with induction heating elements. IAEC of the electric oven component was determined using DOE rulemaking data for freestanding electric self-clean ovens, which represent the majority of the market.
- 2. Retail and installed cost are reflective of standard units that are 30-inch wide and have 4 to 5 cooking top heating elements. Based on data from DOE rulemakings, Gordian's RSMeans Data Building Construction Costs 2023, and distributors, total installed cost is estimated to be around \$140 more than retail equipment cost for a typical unit, and \$150 more than retail equipment cost for a high-end unit. A high-end unit with an induction cooking top component is expected to have a greater retail equipment cost and greater installation cost in order to implement this technology.
- 3. Maintenance costs are negligible.

Note:

Ranges represent the span of typical values for a given parameter.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (16.88, 6.99).

Residential Electric Cooktops, Ovens, and Ranges


- DOE analyzes cooktops and ovens separately, although they are often sold together in a single unit that combines both a cooktop and an oven into a product referred to as a range.
- DOE initiated a standards rulemaking in 2014 to consider amended standards for cooking products, including electric cooktops and ovens¹.
- On September 2, 2016, DOE proposed performance-based standards for electric cooktops and ovens that would take effect in 2020 if adopted.
- DOE established the new IAEC metric, in kWh/y, to replace cooking efficiency (%).
- On December 14, 2020, DOE initially determined that amended energy conservation standards for consumer conventional cooking products would not be economically justified and would not result in a significant conservation of energy².
- On February 2, 2023, DOE proposed new and amended energy conservation standards for consumer conventional cooking products³.
- The IAEC of a range is calculated as the sum of the IAECs for cooktops and ovens. However, retail and installation costs for a range are similar to the cost of an oven.

¹Energy Conservation Standards for Residential Conventional Cooking Products; Supplemental notice of proposed rulemaking (SNOPR). 81 FR 60784.

²Energy Conservation Standards for Consumer Conventional Cooking Products; Notice of proposed determination (NOPD). 85 FR 80982.

³Energy Conservation Standards for Consumer Conventional Cooking Products; SNOPR. 88 FR 6818.

Shipments of electric cooking products reached a peak in 2006. Shipments of ranges and ovens have been rising again since 2012. In 2018, electric range shipments surpassed the peak reached in 2006.

Source: Consumer Cooking Products EERE 2022 SNOPR

Residential Clothes Dryers (Electric)

	2015	2020		20)22		20	30	204	4 0	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 1.1 ¹	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)	7.4	7.4	7.4	7.4	7.4	4.5	7.4	4.5	7.4	4.5	7.4	4.5
Combined Energy Factor, D1 (lb/kWh) ²	3.59	3.73	3.73	3.73	NA	3.93	3.73	3.93	3.73	3.93	3.73	3.93
Combined Energy Factor, D2 (lb/kWh) ²	3.59	3.93	3.73	3.93	3.93	11.00	3.93	11.00	3.93	11.00	3.93	11.00
A T*C. ()	8	8	8	8	8	8	8	8	8	8	8	8
Average Life (y)	18	18	18	18	18	18	18	18	18	18	18	18
Retail Equipment Cost (2022\$)	580	580	580	580	580	980	580	980	580	980	580	980
Total Installed Cost (2022\$)	710	710	710	710	710	1,110	710	1,110	710	1,110	710	1,110
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-	-	-

- 1. ENERGY STAR V. 1.1 applies to vented and ventless standard electric clothes dryers.
- 2. The efficiency metric changed from EF to combined energy factor (CEF) in 2015. The 2015 Installed Base CEF data accounts for units tested to appendix D1 and appendix D2, because data specific to each appendix is not available for that year.
- 3. Maintenance costs are negligible. DOE estimated that on average 2.7 percent of electric and 3.3 percent of gas residential clothes dryers are repaired each year. (EERE 2014) Note:

DOE test procedures for consumer clothes dryers appear at title 10 of the Code of Federal Regulations part 430, subpart B, appendix D1 and appendix D2. The second test method, appendix D2, was finalized in a final rule published by DOE on August 14, 2013. For current standard testing, units must be tested according to either the appendix D1 or the appendix D2 test method. ENERGY STAR V. 1.1 requires certified units to be tested according to the appendix D2 test method. The appendix D1 and appendix D2 test methods determine CEF differently. The current standard went into effect in January 2015.

ENERGY STAR V. 1.1 went into effect in May 2017.

The range for average life represents the span of typical values.

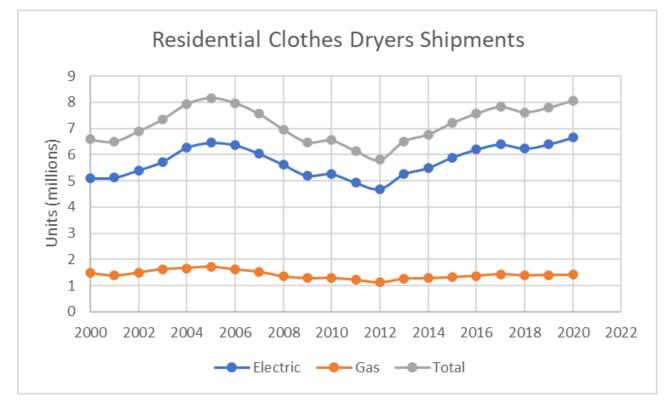
Residential Clothes Dryers (Gas)

	2015	2020		20	22		2030		2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 1.1 ¹	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
Combined Energy Factor, D1 (lb/kWh) ²	3.18	3.30	3.30	3.30	NA	3.48	3.30	3.48	3.30	3.48	3.30	3.48
Combined Energy Factor, D2 (lb/kWh) ²	3.18	3.48	3.30	3.48	3.48	3.50	3.48	3.50	3.48	3.50	3.48	3.50
A I:C- ()	8	8	8	8	8	8	8	8	8	8	8	8
Average Life (y)	18	18	18	18	18	18	18	18	18	18	18	18
Retail Equipment Cost (2022\$)	660	670	660	670	670	670	670	670	670	670	670	670
Total Installed Cost (2022\$)	860	870	870	870	870	870	870	870	870	870	870	870
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-	-	-

- 1. ENERGY STAR V. 1.1 applies to vented and ventless standard electric clothes dryers.
- 2. The efficiency metric changed from EF to CEF in 2015. The 2015 Installed Base CEF data accounts for units tested to appendix D1 and appendix D2, because data specific to each appendix is not available for that year.
- 3. Maintenance costs are negligible. DOE estimated that on average 2.7 percent of electric and 3.3 percent of gas residential clothes dryers are repaired each year. (EERE 2014) Note:

DOE test procedures for consumer clothes dryers appear at title 10 of the Code of Federal Regulations part 430, subpart B, appendix D1 and appendix D2. The second test method, appendix D2, was finalized in a final rule published by DOE on August 14, 2013. For current standard testing, units must be tested according to either the appendix D1 or the appendix D2 test method. ENERGY STAR V. 1.1 requires certified units to be tested according to the appendix D2 test method. The appendix D1 and appendix D2 test methods determine CEF differently. The current standard went into effect in January 2015.

ENERGY STAR V. 1.1 went into effect in May 2017.


The range for average life represents the span of typical values.

Residential Clothes Dryers

- Current standards¹ in effect since 2015:
 - For standard-size electric units : CEF ≥ 3.73 pound per kilowatt hours (lb/kWh)
 - For gas units: $CEF \ge 2.30 \text{ lb/kWh}$
 - Units may be tested according to the test method in appendix D1 or appendix D2, which was finalized in 2013.
- The main differences between appendix D1 and appendix D2 are:
 - Appendix D2 includes test methods that more accurately measure the effects of automatic cycle termination and that may result in differences in the total measured energy consumption of the test cycle as compared to the test methods in appendix D1.
 - Appendix D2 contains instructions for the testing of timer dryers, which include a lower final moisture content (FMC) of the test load as compared to the version of appendix D1 used for the 2011 rulemaking analysis.
- Efficiency improvement technologies for clothes dryers include:
 - Multi-step or modulating heat
 - Higher efficiency drum motors
 - Inlet air pre-heat
 - Better control systems for cycle termination
 - Heat pump (for electric clothes dryers)
- EPA developed ENERGY STAR V. 1.1, which became effective in 2017 and requires units to be tested according to the test method in appendix D2.
- Standard-size heat pump clothes dryers with CEF values up to 11.0 are currently available in the U.S. market. High initial cost has limited market penetration, but some utilities are offering rebates to support market penetration.

¹Energy Conservation Standards for Consumer Clothes Dryers. 10 CFR 430.32(h).

Shipment volumes have been on the rise since 2012. Gas dryers continue to account for about one-fifth of the market.

Source: Consumer Clothes Dryers EERE 2022 NOPR

Residential Clothes Washers (Front)

	2015	2020		20	22		203	30	204	1 0	208	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 8.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)	3.7	4.1	3.4	4.5	4.5	5.0	4.5	5.0	4.5	5.0	4.5	5.0
Integrated Modified Energy Factor (ft ³ /kWh/cycle) ¹	2.16	2.76	1.84	2.76	2.76	3.10	2.76	3.10	2.76	3.10	2.76	3.10
Integrated Water Factor (gal/cycle/ft³)²	4.7	3.2	4.7	3.2	3.2	2.7	3.2	2.7	3.2	2.7	3.2	2.7
A	6	6	6	6	6	6	6	6	6	6	6	6
Average Life (y)	17	17	17	17	17	17	17	17	17	17	17	17
Water Consumption (gal/cycle)	17	14	16	14	14	14	14	14	14	14	14	14
Hot Water Energy (kWh/cycle)	0.21	0.17	0.36	0.12	0.12	0.13	0.12	0.13	0.12	0.13	0.12	0.13
Machine Energy (kWh/cycle)	0.17	0.14	0.15	0.12	0.12	0.17	0.12	0.17	0.12	0.17	0.12	0.17
Dryer Energy (kWh/cycle)	1.31	1.24	1.34	1.17	1.17	1.56	1.17	1.56	1.17	1.56	1.17	1.56
Retail Equipment Cost (2022\$)	735	1,000	705	930	930	950	930	950	930	950	930	950
Total Installed Cost (2022\$)	915	1,175	880	1,130	1,130	1,150	1,130	1,150	1,130	1,150	1,130	1,150
Annual Maintenance Cost (2022\$)	15	15	15	15	15	15	15	15	15	15	15	15

^{1.} The efficiency metric changed from Modified Energy Factor to Integrated Modified Energy Factor (IMEF) in 2015.

Note:

The current standard went into effect in January 2018.

ENERGY STAR V. 8.1 went into effect in February 2018.

The range for average life represents the span of typical values.

^{2.} The efficiency metric changed from Water Factor to Integrated Water Factor (IWF) in 2015.

Residential Clothes Washers (Top)

	2015	2020		20)22		203	30	204	4 0	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 8.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft ³)	3.3	3.4	3.5	3.5	4.4	5.5	3.5	5.5	3.5	5.5	3.5	5.5
Integrated Modified Energy Factor (ft³/kWh/cycle)¹	1.14	1.57	1.57	1.57	2.06	2.76	1.57	2.76	1.57	2.76	1.57	2.76
Integrated Water Factor (gal/cycle/ft³)²	9.2	6.5	6.5	6.5	4.3	3.2	6.5	3.2	6.5	3.2	6.5	3.2
A	6	6	6	6	6	6	6	6	6	6	6	6
Average Life (y)	17	17	17	17	17	17	17	17	17	17	17	17
Water Consumption (gal/cycle)	30	22	23	23	19	18	23	18	23	18	23	18
Hot Water Energy (kWh/cycle)	0.90	0.39	0.41	0.41	0.38	0.24	0.41	0.24	0.41	0.24	0.41	0.24
Machine Energy (kWh/cycle)	0.25	0.13	0.14	0.14	0.12	0.13	0.14	0.13	0.14	0.13	0.14	0.13
Dryer Energy (kWh/cycle)	1.73	1.63	1.68	1.68	1.64	1.61	1.68	1.61	1.68	1.61	1.68	1.61
Retail Equipment Cost (2022\$)	590	590	520	520	640	725	520	725	520	725	520	725
Total Installed Cost (2022\$)	765	765	715	715	840	920	715	920	715	920	715	920
Annual Maintenance Cost (2022\$)	15	15	15	15	15	15	15	15	15	15	15	15

^{1.} The efficiency metric changed from Modified Energy Factor to IMEF in 2015.

Note:

The current standard went into effect in January 2018.

ENERGY STAR V. 8.1 went into effect in February 2018.

The range for average life represents the span of typical values.

^{2.} The efficiency metric changed from Water Factor to IWF in 2015.

Residential Clothes Washers

- The analysis treats front- and top-loading models separately due to their different energy use characteristics.
- Federal standards¹ for standard-capacity clothes washers ($\geq 1.6 \text{ ft}^3$):

	Integrated Mod	ified Energy Factor	Integrated Water Factor				
	Top-Loading	Front-Loading	Top-Loading	Front-Loading			
Current DOE Standard (effective 1/1/2018)	≥ 1.57	≥ 1.84	≤ 6.5	≤ 4.7			
Current ENERGY STAR V. 8.1 (effective 4/22/2021)	≥ 2.06	≥ 2.76	≤ 4.3	≤3.2			

- In 2020, about 40% of top-loading models and almost all front-loading models achieved the ENERGY STAR level.
- Energy efficiency improvement technologies for clothes washers include:
 - Higher efficiency motors and higher spin speeds
 - Better load sensing for adaptive water fill control
 - Reduced water temperature and quantity, while providing equivalent cleaning and rinsing performance
- Maintenance costs include replacement or repair of the drain pump, control board, motor, rubber gaskets, or control
 panel knobs.
- The products on the market with the highest IMEF have significantly larger capacity and therefore use more energy per cycle than typical, smaller capacity products but still perform more efficiently on a per volume basis.

Shipments have been on the rise since 2012 and reached a peak of about 10 million in 2020. Since 2012, top-loading and front-loading units represent approximately 75% and 25% of shipments, respectively.

Source: AHAM Shipment Data; RCW EERE 2021 Preliminary Analysis

Residential Dishwashers

	2015	2020		20)22		2023	20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 6.0	High	ENERGY STAR V. 7.0	Typical	High	Typical	High	Typical	High
Typical Annual Energy Use (kWh/y)	295	270	307	270	270	225	240	240	225	240	225	240	225
Water Consumption (gal/cycle)	4.25	3.50	5.00	3.50	3.50	2.40	3.20	3.20	2.40	3.20	2.40	3.20	2.40
Water Heating Energy Use (kWh/y) ¹	154	125	176	123	123	84	112	123	84	123	84	123	84
Average Life (y)	15	15	15	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$)	440	380	310	340	340	500	430	340	500	340	500	340	500
Total Installed Cost (2022\$)	840	570	490	520	520	690	610	520	690	520	690	520	690
Annual Maintenance Cost (2022\$) ²	-	-	-	-	-	-	-	-	-	-	-	-	-

- 1. Refers to that portion of "Typical Annual Energy Use" that is the energy used to heat water in a separate water heater before it enters the dishwasher. The energy used to heat water inside the dishwasher cannot be disaggregated from the total.
- 2. Maintenance costs are negligible.

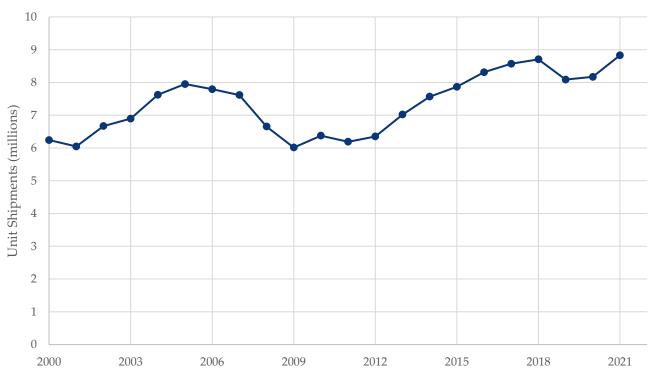
Note:

All values in table reflect 215 cycles/year according to the current test procedure at 10 CFR 430 Appendix C1.

The current standard went into effect in May 2013.

ENERGY STAR V. 6.0 went into effect in January 2016.

ENERGY STAR V. 7.0 will go into effect in July 2023.


Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.9, 1.8, 1).

Residential Dishwashers

- Performance criteria for standard-capacity dishwashers (assumes 215 cycles/year):
 - Federal Standards:
 - May 30, 2013: ≤307 kWh/y, ≤5.0 gal/cycle (DOE Direct Final Rule, published May 2012)
 - ENERGY STAR Criteria:
 - Jan. 29, 2016: \leq 270 kWh/y (5% allowance for connected), \leq 3.5 gal/cycle (V. 6.0)
 - July 19, 2023: ≤ 240 kWh/y, ≤ 3.2 gal/cycle (V. 7.0, effective August 2023)
- ENERGY STAR has maintained a very high market share for several years (93% in 2021), so sales-weighted average efficiency has tracked ENERGY STAR levels.
 - Due to the historically high market penetration of ENERGY STAR products, it is expected that manufacturers will make the necessary adjustments so ENERGY STAR V. 7.0 levels will be typical in future projections.
- Test procedures:
 - Accounts for motor, dryer, booster heater (if present), and hot water from separate water heater, as well as standby and off-mode energy.
 - ENERGY STAR established a cleaning performance test method. While cleaning performance reporting is currently optional, V. 7.0 requires a cleaning index of 65 or higher for ENERGY STAR certification.
 - In January 2023, DOE established a test procedure at Appendix C2, which would go into effect at the time of any amended energy conservation standards. Appendix C2 establishes a minimum cleaning index threshold of 70 as a condition for a valid test cycle. The cleaning index threshold of 70 established by DOE is equivalent to the cleaning index threshold of 65 specified in ENERGY STAR V. 7.0.
- Efficiency improvement technologies for dishwashers include:
 - Better soil sensing
 - Control strategies
 - Water distribution (small pipes, fine filter, small sump, multiple spray arms, alternating water use) and controls (flow meter, temperature sensor)
 - Inline water heater (to minimize sump volume)
 - Separate drain pump, high-efficiency, variable-speed circulation pump motor
 - Condensation drying (rather than power dry)

Shipments increased steadily from the early 1990s until the 2008-2009 recession. Shipments have resumed similar growth since then.

Source: DW EERE 2022 Preliminary Analysis

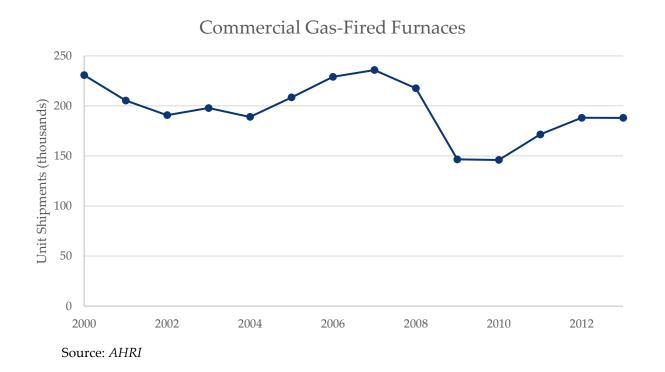
Final

Return to Table of Content

Commercial Space Heating and Cooling

Commercial Gas-Fired Furnaces

	2012	2018		2022		202	23 ¹	2030	2040	2050
DATA	Installed Base	Installed Base	Current Standard	Typical	High	New Standard	Typical	Typical	Typical	Typical
Typical Input Capacity (kBtu/h) ²	400	400	250	250	250	250	250	250	250	250
Thermal Efficiency (%) ³	80	80	80	81	81	81	81	81	81	81
Typical Output Capacity (kBtu/h)	320	320	200	203	203	203	203	203	203	203
Average Life (y)	23	23	23	23	23	23	23	23	23	23
Retail Equipment Cost (2022\$)	1,230	1,230	1,230	1,260	1,260	1,260	1,260	1,260	1,260	1,260
Total Installed Cost (2022\$)	2,540	2,540	2,540	2,580	2,580	2,580	2,580	2,580	2,580	2,580
Total Installed Cost (2022\$/kBtu/h)	8	8	13	13	13	13	13	13	13	13
Annual Maintenance Cost (2022\$)	200	200	200	200	200	200	200	200	200	200
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	1	1	1	1	1	1	1	1


- 1. In 2023, the new Energy Conservation Standards for Commercial Warm Air Furnaces (CWAF) took effect. These projections reflect the 2023 minimum thermal efficiency requirement for gas-fired furnaces, 81%.
- 2. When this analysis was previously conducted in EIA Technology Forecast Updates (2018), a typical input capacity of 400 kBtu/h was listed. An updated typical input capacity value of 250 kBtu/h was determined through an evaluation of the units in the DOE CCD as of August 2022. CWAF EERE 2015 also listed a representative input capacity of 250 kBtu/h.
- 3. DOE's efficiency metric for commercial furnaces accounts only for flue losses, not jacket losses. Note:

The previous standard went into effect in January 1994. The current standard went into effect in January 2023.

Commercial Gas-Fired Furnaces

- Until 2022, the Federal standard required minimum 80% thermal efficiency. This metric, more commonly called "combustion efficiency" in other contexts, accounts only for flue losses, not jacket losses.
 - The Federal standard applied to all units manufactured on or after January 1, 1994, with maximum rated heat input ≥ 225,000 Btu per hour.
 - On January 1, 2023, the minimum Federal standard increased to 81% thermal efficiency.
- ASHRAE Standard 90.1, which is used as a commercial building code in many states, stipulates that furnaces that are not within the conditioned space shall not have jacket losses exceeding 0.75% of the input rating.
- Commercial furnaces are typically non-condensing with thermal efficiencies ranging from 80% to 81%. Condensing commercial furnaces, which can achieve up to 95% thermal efficiency, were previously introduced to the market but are not currently available due to cost and reliability concerns. The highest thermal efficiency included in DOE's CCD at this time is 81%.
- Besides capacity, commercial units can differ from residential furnaces in terms of the control system (i.e., integration with a Building Management System, twinning, or other staging strategies). Commercial systems may also use a heat recovery system to pre-heat inlet air.

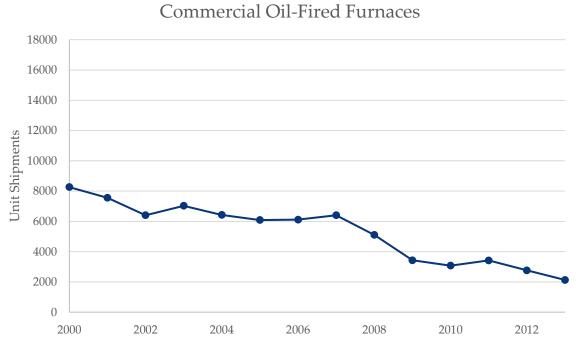
Annual shipments reached a peak of 235.9 thousand units in 2007. Following a decline in shipments after 2007, shipments increased to 188.1 thousand units in 2013. Shipment data after 2013 is not available.

Commercial Oil-Fired Furnaces

	2012	2018		2022		2023 ¹	20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	High	New Standard	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	400	400	250	250	250	250	250	250	250	250	250	250
Thermal Efficiency (%) ²	81	82	81	82	85	82	82	85	82	85	82	85
Typical Output Capacity (kBtu/h)	324	328	203	205	213	205	205	213	205	213	205	213
Average Life (y)	23	23	23	23	23	23	23	23	23	23	23	23
Retail Equipment Cost (2022\$)	5,500	5,560	5,500	5,560	6,020	5,560	5,560	6,020	5,560	6,020	5,560	6,020
Total Installed Cost (2022\$)	7,740	7,810	7,740	7,810	8,380	7,810	7,810	8,380	7,810	8,380	7,810	8,380
Total Installed Cost (2022\$/kBtu/h)	24	24	38	38	39	38	38	39	38	39	38	39
Annual Maintenance Cost (2022\$)	360	360	360	360	370	360	360	370	360	370	360	370
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	2	2	2	2	2	2	2	2	2	2

^{1.} In 2023, the new Energy Conservation Standards for CWAF took effect. These projections reflect the 2023 minimum thermal efficiency requirement for oil-fired furnaces, 82%.

Note:


The previous standard went into effect in January 1994. The current standard went into effect in January 2023.

^{2.} DOE's efficiency metric for commercial furnaces accounts only for flue losses, not jacket losses.

Commercial Oil-Fired Furnaces

- Until 2022, the Federal standard required minimum 81% thermal efficiency. This metric, more commonly called "combustion efficiency" in other contexts, accounts only for flue losses, not jacket losses.
 - The Federal standard applied to all units manufactured on or after January 1, 1994, with maximum rated heat input ≥ 225,000 Btu per hour.
 - On January 1, 2023, the minimum Federal standard increased to 82% thermal efficiency.
- ASHRAE Standard 90.1, which is used as a commercial building code in many states, stipulates that furnaces that are not within the conditioned space shall not have jacket losses exceeding 0.75% of the input rating.
- Commercial oil-fired furnaces have thermal efficiencies ranging from 81% to 85% and are non-condensing (i.e., not designed for condensation of flue gases).
- Besides capacity, commercial units can differ in terms of the control system (i.e., integration with a Building Management System, twinning, or other staging strategies). Commercial systems may also use a heat recovery system to pre-heat inlet air.
- The maintenance cost estimate assumes two cleanings per year.

Annual shipments for commercial oil-fired furnaces have steadily decreased over time to 2,127 units in 2013. Shipment data after 2013 is not available.

Source: AHRI

Commercial Electric Resistance Heaters

	20)12	2()18	20	22	20	30	20	40	20	50
DATA	Installed Base: Small	Installed Base: Large	Installed Base: Small	Installed Base: Large	Small	Large	Small	Large	Small	Large	Small	Large
Typical Capacity (kBtu/h) ¹	17	170	17	170	17	170	17	170	17	170	17	170
Efficiency (%)	100	100	100	100	100	100	100	100	100	100	100	100
Average Life (y)	18	18	18	18	18	18	18	18	18	18	18	18
Retail Equipment Cost (2022\$)	1,000	6,320	1,000	6,320	500	4,630	500	4,630	500	4,630	500	4,630
Total Installed Cost (2022\$)	1,240	7,470	1,240	7,470	660	5,470	660	5,470	660	5,470	660	5,470
Total Installed Cost (2022\$/kBtu/h)	73	44	73	44	39	32	39	32	39	32	39	32
Annual Maintenance Cost (2022\$) ²	-	-	-	-	-	-	-	-	-	-	-	-
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	-	-	-	-	-	-	-	-	-	-

Capacity is output.
 Annual Maintenance Cost is negligible.

Commercial Electric Resistance Heaters

- This analysis examined standard suspended electric wall and ceiling unit heaters, which are more common in commercial settings than baseboard electric heaters that were considered for the residential analysis.
- Electric unit heaters range in capacity from 2 to 80 kW (7 to 270 kBtu/h), with 5 to 50 kW (17 to 170 kBtu/h) being the most typical units on the market.
- Electric resistance heaters are considered near 100% efficient because there is no heat loss through ducts or combustion.
- Installation time and costs are estimated to be minimal.

Commercial Electric Boilers

	2012	2018	2022	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Typical Capacity (kW) ¹	165	165	165	165	165	165
Efficiency (%)	98	98	98	98	98	98
Average Life (y)	15	15	15	15	15	15
Retail Equipment Cost (2022\$) ²	11,620	11,590	9,790	9,790	9,790	9,790
Total Installed Cost (2022\$) ²	17,500	13,820	11,950	11,950	11,950	11,950
Total Installed Cost (2022\$/kBtu/h)	31	25	21	21	21	21
Annual Maintenance Cost (2022\$) ²	170	130	130	130	130	130
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	-	-	-	-

- 1. Capacity is output.
- 2. Retail and installed costs for 2022 and forecasts for 2030 and beyond are based on Gordian's RSMeans Data Building Construction Costs 2023. Maintenance costs are same as EIA Technology Forecast Updates (2018), updated to reflect 2022\$. The costs shown are for one 165kW unit, which would equate to a steady load of approximately 550,000 Btu/h. Annual maintenance in a typical application would include draining the unit for removal of any accumulated scale or sludge buildup.

Commercial Electric Boilers

- There are currently no federal standards associated with electric boilers.
- The costs shown are for one 165kW unit, which would equate to a steady load of approximately 550,000 Btu/h.
- Service life is determined mainly by water quality. Water conditioning (e.g., filters, softeners, de-alkalizers, chemical feeders) may be necessary for a given application.
- Annual maintenance in a typical application would include draining the unit for removal of any accumulated scale or sludge buildup.
- Minor end-use inefficiencies for electric boilers result from heat loss through the boiler (jacket losses).

Commercial Gas-Fired Boilers

D.T.	2012	2018		2022			2023		20	30	20-	40	208	50
DATA	Installed Base	Installed Base	Current Standard ¹	Typical	High	New Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	800	800	800	800	800	800	800	800	800	800	800	800	800	800
Thermal Efficiency (%) ²	77	85	80	85	99	84	85	99	85	99	85	99	85	99
Average Life (y)	30	25	25	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	15,530	25,910	19,150	25,910	42,670	24,320	25,910	42,670	25,910	42,670	25,910	42,670	25,910	42,670
Total Installed Cost (2022\$)	24,600	38,330	30,470	38,330	55,230	35,650	38,330	55,230	38,330	55,230	38,330	55,230	38,330	55,230
Total Installed Cost (2022\$/kBtu/h)	40	56	48	56	70	53	56	70	56	70	56	70	56	70
Annual Maintenance Cost (2022\$) ³	1,710	2,100	2,100	2,100	2,140	2,100	2,100	2,140	2,100	2,140	2,100	2,140	2,100	2,140
Annual Maintenance Cost (2022\$/kBtu/h)	3	3	3	3	3	3	3	3	3	3	3	3	3	3

- 1. The standard level shown here is for small (300 kBtu/h to 2500 kBtu/h) gas-fired hot water commercial packaged boilers, which are the most common type of boilers available on the market.
- 2. DOE's efficiency metric for most boiler types accounts for both flue and jacket losses; previously it did not. DOE continues to uses a combustion efficiency metric instead, for hot water boilers with heat input > 2,500,000 Btu/h.
- 3. Maintenance costs for 2018 and post-2018 are based on Commercial Packaged Boilers EERE 2020. The annualized maintenance costs estimated in the final rule differ for condensing vs. non-condensing boilers. Appendix 8E of the Commercial Packaged Boilers EERE 2020 TSD provides additional information on how the values are calculated.

Note:

The previous standard went into effect in March 2012.

The current standard went into effect in January 2023.

In December 2016, DOE issued a final rule titled Energy Conservation Program: Energy Conservation Standards for Commercial Packaged Boilers. This rule published in January 2020 with an effective date for January 2023.

Commercial Gas-Fired Boilers

- Commercial packaged gas-fired boilers are classified by:
 - Heat input capacity
 - Produce steam or hot water
 - Draft type (natural draft or not) for steam boilers
- The most common type of commercial gas-fired boilers are small gas-fired hot water boilers with 300,000-2,500,000 Btu/h rated heat input.
- Similar technologies to those used in the residential gas-fired boilers market can be leveraged in the commercial arena. The higher efficiency units typically include electronic ignition, power burners, and improved heat exchangers. Some gas-fired boilers also condense water vapor from the flue gases to improve heating efficiency.
- DOE published a final rule for commercial packaged boilers in January 2020 that updated the efficiency ratings of gas-fired commercial packaged boilers beginning January 2023.

Shipments of commercial gas-fired boilers peaked in 2000 and have been steadily declining since 2010. Shipment data after 2013 is not available.

Source: Commercial Packaged Boilers EERE 2020

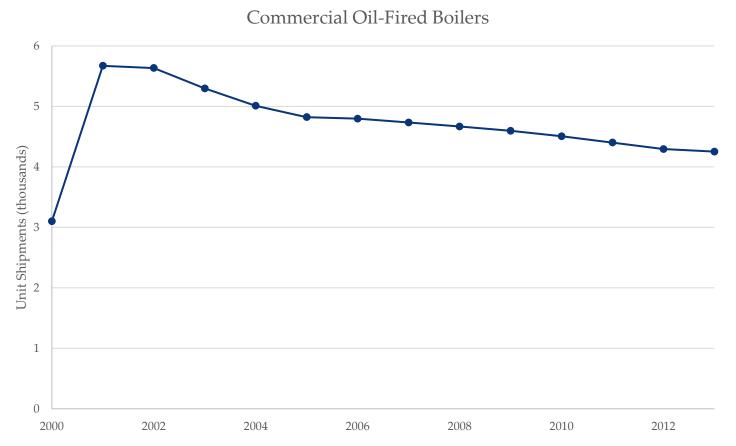
Commercial Oil-Fired Boilers

5.5 .	2012	2018		2022			2023		20	30	20-	40	20	50
DATA	Installed Base	Installed Base	Current Standard ¹	Typical	High	New Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	1,200	800	800	800	800	800	800	800	800	800	800	800	800	800
Thermal Efficiency (%) ²	81	85	82	85	97	87	87	97	87	97	87	97	87	97
Average Life (y)	30	25	25	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	16,830	26,810	23,190	26,810	51,480	29,730	29,730	51,480	29,730	51,480	29,730	51,480	29,730	51,480
Total Installed Cost (2022\$)	22,000	37,240	33,100	37,240	62,910	40,160	40,160	62,910	40,160	62,910	40,160	62,910	40,160	62,910
Total Installed Cost (2022\$/kBtu/h)	23	55	50	55	81	58	58	81	58	81	58	81	58	81
Annual Maintenance Cost (2022\$) ³	1,710	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690
Annual Maintenance Cost (2022\$/kBtu/h)	2	4	4	4	3	4	4	3	4	3	4	3	4	3

- 1. The standard level shown here is for small (300 kBtu/h to 2500 kBtu/h) oil-fired hot water commercial packaged boilers, which are the most common type of boilers available on the market.
- 2. DOE's efficiency metric for most boiler types accounts for both flue and jacket losses; previously it did not. DOE continues to uses a combustion efficiency metric instead, for hot water boilers with heat input > 2,500,000 Btu/h.
- 3. Maintenance costs for 2018 and post-2018 are based on Commercial Packaged Boilers EERE 2020. The annualized maintenance costs estimated in the final rule differ for condensing vs. non-condensing boilers. Appendix 8E of the Commercial Packaged Boilers EERE 2020 TSD provides additional information on how the values are calculated.

Note:

The previous standard went into effect in March 2012.


The current standard went into effect in January 2023.

In December 2016, DOE issued a final rule titled Energy Conservation Program: Energy Conservation Standards for Commercial Packaged Boilers. This rule published in January 2020 with an effective date for January 2023.

Commercial Oil-Fired Boilers

- Commercial packaged oil-fired boilers are classified by:
 - Heat input capacity
 - Produce steam or hot water
- The most common type of commercial oil-fired boilers are small hot water boilers with 300,000-2,500,000 Btu/h rated heat input.
- The higher efficiency units typically include improved heat exchangers, and multi-step or variable-output power burners.
- DOE published a final rule for commercial packaged boilers in January 2020 that updated the efficiency ratings of oil-fired commercial packaged boilers beginning January 2023.

Shipments of commercial oil-fired boilers peaked in 2001 and have been decreasing since then.

Source: Commercial Packaged Boilers EERE 2020

Commercial Centrifugal Chillers (Water-Cooled)

	2012	2018		2022 ²		20	30	204	40	20	50
DATA	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High	Typical	High	Typical	High	Typical	High
Townian I Comparison (town)	400	400	400	400	400	400	400	400	400	400	400
Typical Capacity (tons) ¹	600	600	600	600	600	600	600	600	600	600	600
Efficiency [full-load] (kW/ton)	0.66	0.53	0.56	0.52	0.45	0.49	0.42	0.46	0.41	0.45	0.40
Efficiency [IPLV] (kW/ton)	0.61	0.37	0.50	0.31	0.30	0.30	0.28	0.29	0.26	0.28	0.25
COP [full-load]	5.4	6.6	6.3	6.8	7.8	7.2	8.4	7.6	8.6	7.8	8.8
COP [IPLV]	5.9	9.5	7.0	11.3	11.7	11.7	12.6	12.1	13.5	12.6	14.1
Average Life (y)	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$/ton)	380	500	480	500	680	590	760	660	780	690	810
T-1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	440	560	480	560	740	640	820	720	840	740	870
Total Installed Cost (2022\$/ton)	500	590	540	590	760	670	830	740	860	760	880
Total Installed Cost (2022\$/kBtu/h)	39	48	43	48	63	55	69	61	71	63	73
A served Meintenance Coat (0000¢/s ser	30	30	30	30	30	30	30	30	30	30	30
Annual Maintenance Cost (2022\$/ton)	40	40	40	40	40	40	40	40	40	40	40
Annual Maitnenance Cost (2022\$/kBtu/h)	3	3	3	3	3	3	3	3	3	3	3

- 1. Capacity is output.
- 2. ASHRAE 90.1 data are for units larger than 400 tons and for full-load optimized applications (Path A in ASHRAE 90.1-2019). Typical and high efficiency levels are determined based on the range of products currently available on the market.

Note:

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the integrated part-load value (IPLV)) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value.

ASHRAE 90.1 went into effect in October 2019.

Ranges represent the span of typical values for a given parameter.

Commercial Centrifugal Chillers (Water-Cooled)

- ASHRAE 90.1-2019 stipulates minimum efficiencies for centrifugal chillers separately from positive displacement water-cooled chillers. They are separated into 5 size categories, with categories divided at: 150, 300, 400, and 600 tons; ASHRAE 90.1-2019 also distinguishes between whether the unit will be optimized for full-load (Path A) or part-load operation (Path B). Data here are for Path A; a Path B chiller may have slightly high full-load consumption in exchange for much lower part-load consumption. For example, for a 600-ton unit:
 - Path A: \geq 0.56 kW/ton full-load and \geq 0.50 kW/ton IPLV
 - Path B: \geq 0.585 kW/ton full-load and \geq 38 kW/ton IPLV
- Federal Energy Management Program (FEMP) recommendations, last updated in 2020, match ASHRAE 90.1-2019.
- The highest efficiency centrifugal chillers incorporate some of the following:
 - Variable speed drive (VSD) compressors
 - Dedicated heat recovery (heat pump chiller)
 - Magnetic bearing technology (oil-free operation)
 - Greater heat exchanger surface areas; enhanced tube configurations (counterflow)
 - Optimized fluid flow velocities
 - High efficiency electric motors
 - Improved turbomachinery design, resulting in higher compressor efficiency
 - Better piping and valving, including electronic expansion valves
 - Evaporative condenser for the heat rejection equipment
- Installed costs vary widely depending on equipment needed for installation (e.g., crane) and size of system. This is a mature market with centrifugal chillers representing 75% of commercial chiller sales larger than 200 tons.
- Water-cooled chiller ratings do not include energy consumption of the cooling tower and therefore are not directly comparable to rating for air-cooled chillers. Water-cooled centrifugal chillers were selected for analysis due to a higher model share on the AHRI directory in comparison to air-cooled chillers.

Commercial Reciprocating Chillers (Air-Cooled Only)

	2012	2018		2022 ²		20	30	20	40	208	50
DATA	Installed Base	Installed Base	ASHRAE 90.1-2019 ³	Typical	High	Typical	High	Typical	High	Typical	High
Trunical Compaits (toma)1	100	100	100	100	100	100	100	100	100	100	100
Typical Capacity (tons) ¹	200	200	200	200	200	200	200	200	200	200	200
Efficiency [full-load] (kW/ton)	1.26	1.19	1.19	1.15	1.00	1.15	1.00	1.15	1.00	1.15	1.00
Efficiency [IPLV] (kW/ton)	1.13	0.86	0.86	0.86	0.80	0.80	0.79	0.80	0.79	0.80	0.79
COP [full-load]	2.8	3.0	3.0	3.0	3.5	3.1	3.5	3.1	3.5	3.1	3.5
COP [IPLV]	3.1	4.1	4.1	4.1	4.5	4.4	4.5	4.4	4.5	4.4	4.5
Average Life (y)	20	20	20	20	20	20	20	20	20	20	20
Patail Faccions and Coat (20226/tag)	725	820	820	820	1,030	820	1,030	820	1,030	820	1,030
Retail Equipment Cost (2022\$/ton)	600	730	730	730	880	730	880	730	880	730	880
T-t-1 In-t-11-1 C1 (0000¢/t)	800	880	880	880	1,180	880	1,180	880	1,180	880	1,180
Total Installed Cost (2022\$/ton)	700	760	760	760	1,090	760	1,090	760	1,090	760	1,090
Total Installed Cost (2022\$/kBtu/h)	63	68	68	68	95	68	95	68	95	68	95
Americal Maintenance Coat (2022¢/t)	45	45	50	50	50	45	50	45	50	45	50
Annual Maintenance Cost (2022\$/ton)	25	25	30	30	30	25	30	25	30	25	30
Annual Maintenance Cost (2022\$/kBtu/h)	3	3	3	3	3	3	3	3	3	3	3

- 1. Capacity is output.
- 2. ASHRAE 90.1 data are for units larger than 150 tons and for full-load optimized applications (Path A in ASHRAE 90.1-2019). Typical and high efficiency levels are determined based on the range of products currently available on the market.

Note:

This analysis covers air-cooled chillers only.

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the IPLV) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value.

ASHRAE 90.1 went into effect in October 2019.

Ranges represent the span of typical values for a given parameter.

Commercial Reciprocating Chillers (Air-Cooled Only)

- Reciprocating chillers are most cost effective for small loads (30 to 150-ton range). However, reciprocating chiller market share continues to be supplanted by screw and scroll chillers. This trend has accelerated with the phase out of R-22, which was the refrigerant of choice for reciprocating products, which has in turn driven major manufacturers to replace their reciprocating product lines with scroll products (rather than redesign reciprocating products for new refrigerants). As a result, product options are very limited.
- Reciprocating chillers can be used in either air-cooled or water-cooled applications. Reciprocating chillers shown in the data are air-cooled. Air-cooled chillers are less efficient than the water-cooled models. Listed efficiencies include matched condensers and their associated energy use.
- ASHRAE 90.1-2019 stipulates minimum efficiencies for all air-cooled chillers together, including reciprocating chillers, while water-cooled chillers are separated by positive displacement (e.g., reciprocating) versus centrifugal models. Air-cooled chiller efficiencies are further split by size for more and less than 150 tons. ASHRAE 90.1-2019 also distinguishes between whether the unit will be optimized for full-load (Path A) or part-load operation (Path B). Data here are for Path A; a Path B chiller may have slightly lower full-load efficiency in exchange for much higher part-load efficiency. For example, for a 100-ton unit:
 - Path A: \geq 10.1 EER full-load and \geq 13.7 IPLV EER
 - Path B: \geq 9.7 EER full-load and \geq 15.8 IPLV EER
- FEMP (2022) recommendations for air-cooled chillers are:
 - Path A (<150 tons): \geq 10.89 EER full-load and \geq 13.7 IPLV EER
 - Path B (<150 tons): $\geq 9.7 \text{ EER full-load}$ and $\geq 16.86 \text{ IPLV}$ EER (same as 90.1-2019)
- The highest efficiency reciprocating chillers incorporate some of the following:
 - Multiple compressors for staged capacity control
 - Improved heat-exchangers

Commercial Screw Chillers (Air-Cooled Only)

	2012	2018		2022		20	30	20	40	208	50
DATA	Installed Base	Installed Base	ASHRAE 90.1-2019 ¹	Typical	High	Typical	High	Typical	High	Typical	High
Trunical Consider (tons)	100	100	100	100	100	100	100	100	100	100	100
Typical Capacity (tons)	300	300	300	300	300	300	300	300	300	300	300
Efficiency [full-load] (kW/ton)	1.26	1.18	1.19	1.15	0.92	1.13	0.91	1.04	0.86	0.98	0.81
Efficiency [IPLV] (kW/ton)	1.13	0.84	0.86	0.81	0.55	0.79	0.53	0.72	0.49	0.68	0.45
COP [full-load]	2.8	3.0	3.0	3.1	3.8	3.1	3.9	3.4	4.1	3.6	4.3
COP [IPLV]	3.1	4.2	4.1	4.4	6.4	4.5	6.6	4.9	7.2	5.2	7.8
Average Life (y)	20	20	20	20	20	20	20	20	20	20	20
P-1-11 F	760	970	1,130	1,130	1,230	1,140	1,230	1,180	1,250	1,200	1,270
Retail Equipment Cost (2022\$/ton)	620	850	770	770	870	780	870	820	890	840	910
T-1-1 I (-11-1 C) (20226/1)	910	1,150	1,250	1,250	1,350	1,260	1,350	1,300	1,370	1,320	1,390
Total Installed Cost (2022\$/ton)	850	940	820	820	920	830	920	870	940	890	960
Total Installed Cost (2022\$/kBtu/h)	73	87	86	86	95	87	95	90	96	92	98
Amount Maintenance Cost (2022#/s)	50	50	50	50	50	50	50	50	50	50	50
Annual Maintenance Cost (2022\$/ton)	20	20	20	20	20	20	20	20	20	20	20
Annual Maintenance Cost (2022\$/kBtu/h)	3	3	3	3	3	3	3	3	3	3	3

^{1.} ASHRAE 90.1 data for units larger than 150 tons and for full-load optimized applications (Path A in ASHRAE 90.1-2019). Note:

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the IPLV) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value. ASHRAE 90.1 went into effect in October 2019.

Ranges represent the span of typical values for a given parameter.

Commercial Screw Chillers (Air-Cooled Only)

- Screw chillers are common in 150 to 500-ton capacities but are most cost effective for small (<300 tons) loads; screw chillers dominate the current market for small to mid-size chillers.
- Screw chillers can be used in either air-cooled or water-cooled applications. Screw chillers shown in the data are air-cooled. Air-cooled chillers are less efficient than the water-cooled models. Listed efficiencies include matched condensers and their associated energy use.
- ASHRAE 90.1-2019 stipulates minimum efficiencies for all air-cooled chillers together, including screw chillers, while water-cooled chillers are separated by positive displacement (e.g., screw) versus centrifugal models. Air-cooled chiller efficiencies are further split by size for more and less than 150 tons. ASHRAE 90.1-2019 also distinguishes between whether the unit will be optimized for full-load (Path A) or part-load operation (Path B). Data here are for Path A; a Path B chiller may have slightly lower full-load efficiency in exchange for much higher part-load efficiency. For example, for a ≥ 150-ton unit:
 - Path A: \geq 10.1 EER full-load and \geq 14.0 IPLV EER
 - Path B: \geq 9.7 EER full-load and \geq 16.1 IPLV EER
- FEMP recommendations for air-cooled chillers (updated June 2020) are:
 - Path A (\geq 150 tons): \geq 10.7 EER full-load and \geq 14.0 IPLV EER
 - Path B (\geq 150 tons): \geq 9.7 EER full-load and \geq 16.4 IPLV EER
- The highest efficiency screw chillers incorporate some of the following:
 - Variable speed compressors and/or multiple compressors
 - Economizers
 - Improved heat-exchangers

Commercial Scroll Chillers (Air-Cooled Only)

	2012	2018		2022		20	30	204	40	20	50
DATA	Installed Base	Installed Base	ASHRAE 90.1-2019 ¹	Typical	High	Typical	High	Typical	High	Typical	High
Tourised Courseits (tours)	50	50	50	50	50	50	50	50	50	50	50
Typical Capacity (tons)	140	140	140	140	140	140	140	140	140	140	140
Efficiency [full-load] (kW/ton)	1.23	1.16	1.19	1.15	1.07	1.11	1.06	1.07	1.02	1.02	0.97
Efficiency [IPLV] (kW/ton)	0.99	0.77	0.88	0.77	0.70	0.73	0.68	0.71	0.65	0.69	0.62
COP [full-load]	2.9	3.0	3.0	3.1	3.3	3.2	3.3	3.3	3.4	3.4	3.6
COP [IPLV]	3.7	4.6	4.0	4.6	5.0	4.8	5.2	5.0	5.4	5.1	5.7
Average Life (y)	20	20	20	20	20	20	20	20	20	20	20
Pate: 1 Face: and and Cast (20220/15 a)	680	1,000	1,060	1,060	1,160	1,120	1,160	1,150	1,200	1,200	1,240
Retail Equipment Cost (2022\$/ton)	560	820	530	530	630	590	630	620	670	670	710
T-1-1 I1-11-1 (1/20226/1)	970	1,210	1,170	1,170	1,270	1,230	1,270	1,260	1,310	1,310	1,350
Total Installed Cost (2022\$/ton)	850	970	860	860	960	920	960	950	1,000	1,000	1,040
Total Installed Cost (2022\$/kBtu/h)	76	91	85	85	93	90	93	92	96	96	100
A	60	60	60	60	60	60	60	60	60	60	60
Annual Maintenance Cost (2022\$/ton)	40	40	40	40	40	40	40	40	40	40	40
Annual Maintenance Cost (2022\$/kBtu/h)	4	4	4	4	4	4	4	4	4	4	4

^{1.} ASHRAE 90.1 data for units less than 150 tons and for full-load optimized applications (Path A in ASHRAE 90.1-2019). Note:

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the IPLV) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value. ASHRAE 90.1 went into effect in October 2019.

Ranges represent the span of typical values for a given parameter.

Commercial Scroll Chillers (Air-Cooled Only)

- Scroll chillers range in size from ~20 tons to ~200 tons and can be used in either air-cooled or water-cooled applications. They are the most common type of chiller for small chiller plants. The scroll chillers shown in the data are air-cooled, which is most common. Air-cooled chillers are less efficient than the water-cooled models. Listed efficiencies include matched condensers and their associated energy use.
- ASHRAE 90.1-2019 stipulates minimum efficiencies for all air-cooled chillers together, including scroll chillers, while water-cooled chillers are separated by positive displacement (e.g., scroll) versus centrifugal models. Air-cooled chiller efficiencies are distinct for more and less than 150 tons. ASHRAE 90.1-2019 also distinguishes between whether the unit will be optimized for full-load (Path A) or part-load operation (Path B). Data here are for Path A; a Path B chiller may have slightly lower full-load efficiency in exchange for much higher part-load efficiency. For example, for a 100-ton unit:
 - Path A: \geq 10.1 EER full-load and \geq 13.7 IPLV EER
 - Path B: \geq 9.7 EER full-load and \geq 15.8 IPLV EER
- FEMP recommendations for air-cooled chillers (updated June 2020) are:
 - Path A (< 150 tons): \geq 10.7 EER full-load and \geq 13.7 IPLV EER
 - Path B (< 150 tons): \geq 9.7 EER full-load and \geq 15.9 IPLV EER
- The highest efficiency scroll chillers incorporate some of the following:
 - Multiple compressors for staged capacity control
 - Improved heat-exchangers
 - Variable speed compressor (or other modulation controls)
- With the phase out of R-22, manufacturers have replaced many of their small reciprocating chiller products with equivalent scroll products, making them a primary choice for small tonnage applications.

Commercial Gas-Fired Chillers (Water-Cooled, Direct-Fired Only)

	20	12	20	18		20)22		203	30	20	40	205	50
DATA	Installed Base: Absorption	Installed Base: Engine- Driven	Installed Base: Absorption	Installed Base: Engine- Driven	ASHRAE 90.1-2019 Absorption	CA Title 24 – Engine- Driven	Absorption	Engine- Driven	Absorption	Engine- Driven	Absorption	Engine- Driven	Absorption	Engine- Driven
Typical Capacity	150	150	150	150	150	150	150	150	150	150	150	150	150	150
(tons) ¹	1,500	400	1,500	400	1,500	400	1,500	400	1,500	400	1,500	400	1,500	400
COP [full-load]	1.1	1.7	1.2	1.7	1.0	1.2	1.2	1.7	1.3	1.8	1.4	1.8	1.4	1.8
COP [IPLV]	NA	NA	1.6	2.6	1.0	2.0	1.6	2.6	1.6	2.6	1.6	2.6	1.6	2.6
Average Life (y)	23	25	23	25	23	25	23	25	23	25	23	25	23	25
Retail Equipment	1,060	1,000	1,060	1,000	1,200	1,000	1,200	1,000	1,200	1,000	1,200	1,000	1,200	1,000
Cost (2022\$/ton)	880	880	880	880	870	880	870	880	870	880	870	880	870	880
Total Installed Cost	1,290	1,240	1,180	1,240	1,110	1,240	1,110	1,240	1,110	1,240	1,110	1,240	1,110	1,240
(2022\$/ton)	1,000	1,000	1,000	1,000	850	1,000	850	1,000	850	1,000	850	1,000	850	1,000
Total Installed Cost (2022\$/kBtu/h)	95	93	91	93	82	93	82	93	82	93	82	93	82	93
Annual	40	60	40	60	40	60	40	60	40	60	40	60	40	60
Maintenance Cost (2022\$/ton)	20	40	20	40	20	40	20	40	20	40	20	40	20	40
Annual Maintenance Cost (2022\$/kBtu/h)	3	4	3	4	3	4	3	4	3	4	3	4	3	4

1. Capacity is output.

Note:

This analysis assumes a water-cooled chiller; both gas-fired chiller types (absorption and engine-driven) are shown. COP values for double-effect absorption chillers are shown.

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the IPLV) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value. ASHRAE 90.1 went into effect in October 2019.

CA Title 24 went into effect in January 2020.

Ranges represent the span of typical values for a given parameter.

Commercial Gas-Fired Chillers (Water-Cooled, Direct-Fired Only)

- Gas-fired chillers are available as either air-cooled (~25-50 tons) or water-cooled (150+ tons). This analysis covers only water-cooled chillers of two varieties: absorption and engine-driven vapor compression (direct-fired only; indirect steam or hot water driven units are excluded).
- Direct gas firing provides high enough temperatures to operate double effect absorption chillers, which operate at a 50-60% higher COP than single effect systems. Triple effect chillers, though not commercially available, can boost cooling COP 30-50% beyond double effect chillers. Some companies have worked on prototype direct-fired triple effect absorption chillers, but prohibitively high cost of advanced high heat/corrosion-resistant materials required for triple effect absorption chillers suggests that this technology will not likely have an impact on the market in the near-term.
- Gas-fired engine-driven chillers pair conventional vapor compression systems (typically screw or centrifugal compressors) with natural gas powered-reciprocating engines. They exhibit higher peak cooling COP than absorbers, and engine modulation results in better part-load performance. Future efficiency improvements for engine-driven chillers are not anticipated. Engine-driven chillers allow the opportunity to recover waste heat for useful purposes.
- Maintenance costs for engine-driven chillers are higher than for other chillers because they include all the typical components of a vapor compression chiller in addition to an engine; the engine maintenance costs vary depending on the annual run hours of the unit.
- Limited sales data suggest that the U.S. market for gas-fired chillers is very limited and is mostly for replacement units, not for new installations. Recent increases in electric chiller efficiency have narrowed the operating cost differential with gas chillers. Asia has the majority of the global gas-fired chiller market.
- Gas-fired chiller installations are particularly valuable in locations where electric rates are high and gas prices are low (i.e., low spark spread), where digester or landfill gas sources are available, or where waste heat sources are available (e.g., an industrial process or microturbine CHP system) that could be used with a hybrid direct/indirect-fired absorption chiller to offset the use of natural gas.

Commercial Rooftop Air Conditioners

	2012	2018	2022^4				2023				2030		2040		2050	
DATA	Installed Base		Current Standard	7710100	ENERGY STAR V. 3.1	High	New Standard	Typical	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Output Capacity (kBtu/h)	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
Part Load Efficiency (IEER) ¹	12.4	12.9	12.9	12.9	14.0	23.3	14.8	14.8	18.0	23.3	15.1	23.3	15.1	23.3	15.1	23.3
Efficiency (EER) ²	10.6	11.5	11.5	11.5	12.2	12.8	12.2	12.2	12.7	12.8	12.2	12.8	12.2	12.8	12.2	12.8
Efficiency Conversion	3.6	3.8	3.8	3.8	4.1	6.8	4.3	4.3	5.3	6.8	4.4	6.8	4.4	6.8	4.4	6.8
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	7,760	8,280	8,280	8,280	9,090	12,210	9,490	9,490	10,340	12,210	9,590	12,210	9,590	12,210	9,590	12,210
Total Installed Cost (2022\$)	10,350	11,870	11,870	11,870	13,020	17,600	13,560	13,560	14,970	17,600	13,720	17,600	13,720	17,600	13,720	17,600
Total Installed Cost (2022\$/kBtu/h)	115	132	132	132	145	196	151	151	166	196	152	196	152	196	152	196
Annual Maintenance Cost (2022\$) ³	370	370	370	370	370	370	370	370	370	370	370	370	370	370	370	370
Annual Maintenance Cost (2022\$/kBtu/h)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4

- 1. Values shown are for air-cooled small commercial packaged air conditioners with either electric resistance heating or no heating within the same enclosure. DOE published a direct final rule for commercial packaged air conditioners and heat pumps in January 2016 with initial standards becoming effective in 2018 and additional standards becoming effective in 2023. As part of this rulemaking, DOE changed the regulated metric from EER to integrated energy efficiency ratio (IEER).
- 2. DOE investigated the <u>relationship between IEER and EER</u>. Because the relationship between IEER and EER is weak, this analysis estimates EER values based on the average of the values seen at a given IEER.
- 3. Examples of annual maintenance services include, check tensions, condition, and alignment of belts and adjust as necessary; lubricate shaft and motor bearings; replace air filters; clean coils, drain pan and piping, blowers, fan motors as required; check refrigerant pressure and compressor oil level; etc.
- 4. The 2022 typical efficiency is based on the average IEER from DOE's CCD. The 2022 high efficiency is based on the most-efficient model in DOE's CCD, but costs are estimated based on the most efficient unit analyzed in CUAC EERE 2016, which had an IEER of 21.5.

Note:

EER is the ratio of the cooling capacity (in Btu/h) to the power input (in watts) and provides a measure of the efficiency of equipment operating at full load (i.e., 100 percent cooling capacity) in high-ambient-temperature conditions (i.e., 95 °F). IEER is a single number part-load efficiency based on weighting of EER at various load capacities. Efficiency Conversion is the conversion of IEER from a [(Btu/h)/W] metric to a metric in the same units.

The previous standard went into effect in January 2018. The current standard went into effect in January 2023. ENERGY STAR V. 3.1 went into effect in January 2018. ENERGY STAR V. 4.0 went into effect in January 2023.

Commercial Rooftop Air Conditioners

Air-Cooled Commercial Packaged Air Conditioners

Cooling Capacity (kBtu/h)	Heating Type	Federal Standard Effective 1/1/2018 Min. IEER	Federal Standard Effective 1/1/2023 Min. IEER
Small	Electric resistance or none	12.9	14.8
(≥65 and < 135)	Any other type	12.7	14.6
Large	Electric resistance or none	12.4	14.2
(≥ 135 and < 240)	Any other type	12.2	14.0

- This analysis focused on small air-cooled commercial packaged rooftop air conditioners (90 kBtu/h or 7.5 tons), though there are also standards for many other types of commercial air conditioners.
- Amended standards in terms of IEER for all equipment classes took effect in January 2018. More stringent standards in terms of IEER for all equipment classes took effect in January 2023.

Commercial Gas-Fired Engine-Drive Rooftop Air Conditioners

DATA	2012 ¹	2018	2022	2030	2040	2050	
DATA	Installed Base	Installed Base	Typical	Typical	Typical	Typical	
Typical Capacity (tons)	18	11	11	11	11	11	
Heating COP	1.4	1.4	1.4	1.4	1.4	1.4	
Cooling COP	0.9	1.2	1.2	1.2	1.2	1.2	
Average Life (y)	15	15	15	15	15	15	
Retail Equipment Cost (\$/ton)	3,350	2,820	3,710	3,710	3,710	3,710	
Total Installed Cost (\$/ton)	3,820	3,290	4,110	4,110	4,110	4,110	
Total Installed Cost (\$/kBtu/h)	318	274	343	343	343	343	
Annual Maintenance Cost (2022\$)	70	70	70	70	70	70	
Annual Maintenance Cost (2022\$/kBtu/h)	6	6	6	6	6	6	

^{1.} The 2012 typical capacity and cooling COP were estimated as a simple average between obsolete pre-2003 units and 2013 units, which first became available in 2010; this assumes that each vintage represents about half of the installed base.

Note:

Only one product was available in 2012; the market has grown slightly in years since. Typical capacity and COP for 2018 and later are averages of units available as of 2017.

Commercial Gas-Fired Engine-Drive Rooftop Air Conditioners

- There are only a few gas-fired engine-driven rooftop units currently available in the U.S. market. The first unit was introduced in 2010. It is an 11-ton packaged heat pump with dual scroll compressors, variable refrigerant flow, and a variable speed supply fan. Engine coolant heat recovery improves the heating mode COP.
- There are currently no Federal requirements on gas-fired engine-driven rooftop air conditioners or heat pumps.
- Annual sales of the engine-driven rooftop heat pump are estimated at less than 5,000 units per year.

Commercial Rooftop Heat Pumps

	2012	2018		20)22			2023		20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Ivnical	ENERGY STAR V. 3.1	High	New Standard	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
Part Load Efficiency (IEER) ¹	12.0	11.3	12.2	14.3	12.8	20.3	14.1	15.3	20.3	14.4	20.3	15.3	20.3	15.3	20.3
EER	10.2	11.2	11.3	11.5	11.8	13.0	12.0	11.8	13.0	11.7	13.1	11.7	13.1	11.7	13.1
COP (Heating)	3.3	3.3	3.3	3.4	3.4	3.7	3.4	3.5	3.7	3.4	3.7	3.5	3.7	3.5	3.7
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	7,490	7,490	9,000	10,250	9,380	12,920	10,160	10,600	12,920	10,290	12,920	10,600	12,920	10,600	12,920
Total Installed Cost (2022\$)	9,350	9,350	12,900	14,940	13,530	18,860	14,810	15,520	18,860	15,000	18,860	15,510	18,860	15,510	18,860
Total Installed Cost (2022\$/kBtu/h)	104	104	143	166	150	210	165	172	210	167	210	172	210	172	210
Annual Maintenance Cost (2022\$)	380	380	380	380	380	380	380	380	380	380	380	380	380	380	380
Annual Maintenance Cost (2022\$/kBtu/h)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4

^{1.} Values shown are for air-cooled small commercial packaged heat pumps with either electric resistance heating or no heating within the same enclosure. DOE published a direct final rule for commercial packaged air conditioners and heat pumps in January 2016 with initial standards becoming effective in 2018 and additional standards becoming effective in 2023. As part of this rulemaking, DOE changed the regulated metric from EER to IEER.

Note:

The previous standard went into effect in January 2018. The current standard went into effect in January 2023. ENERGY STAR V. 3.1 went into effect in January 2018. ENERGY STAR V. 4.0 went into effect in January 2023.

Commercial Rooftop Heat Pumps

Air-Cooled Commercial Packaged Heat Pumps

Cooling Capacity (kBtu/h)	Heating Type	Federal Standard Effective 1/1/2018 Min. IEER	Federal Standard Effective 1/1/2023 Min. IEER		
Small	Electric resistance or none	12.2	14.1		
(≥65 and < 135)	Any other type	12.0	13.9		
Large	Electric resistance or none	11.6	13.5		
(≥ 135 and < 240)	Any other type	11.4	13.3		

- This analysis focused on small air-cooled commercial packaged rooftop heat pumps (90 kBtu/h or 7.5 tons), though there are also standards for many other types of commercial heat pumps.
- Amended standards in terms of IEER for all equipment classes took effect in 2018. More stringent standards in terms of IEER for all equipment classes took effect in 2023.

Commercial Ground-Source Heat Pumps

D.T.	2012	2018		2022		20	30	2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	48	48	48	48	48	48	48	48	48	48	48
COP (Heating) ¹	3.1	3.7	3.2	3.5	3.6	3.5	3.6	3.5	3.6	3.5	3.6
EER (Cooling) ²	12.7	17.4	14.1	17.0	21.6	17.0	21.6	17.0	21.6	17.0	21.6
A T'C. ()	8	8	8	8	8	8	8	8	8	8	8
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	10,470	6,470	5,590	6,470	7,880	6,470	7,880	6,470	7,880	6,470	7,880
T . 11 . 11 1 ((2022#)	19,760	18,230	17,350	18,230	19,650	18,230	19,650	18,230	19,650	18,230	19,650
Total Installed Cost (2022\$)	44,820	26,520	25,580	26,520	27,880	26,520	27,880	26,520	27,880	26,520	27,880
Total Installed Cost (2022\$/kBtu/h)	673	466	447	466	495	466	495	466	495	466	495
Annual Maintenance Cost (2022\$)	180	180	180	180	180	180	180	180	180	180	180
Annual Maintenance Cost (2022\$/kBtu/h)	4	4	4	4	4	4	4	4	4	4	4

- 1. COP values listed are assessed at a "ground loop" test condition, which is representative of closed loop GSHP operating conditions. However, DOE sets standards at a "water loop" test condition. The AHRI directory lists COP ratings at both sets of test conditions and is used to convert between them where necessary.
- 2. EER values listed are assessed at a full-load "ground loop" test condition, which is representative of closed loop GSHP operating conditions. However, DOE sets standards at a full-load "water loop" test condition. The AHRI directory lists EER ratings at all sets of test conditions and is used to convert between them where necessary.

Note:

Residential and commercial GSHPs are very similar - the main difference in data presented is the different capacity (3-ton vs. 4-ton) and slightly higher installation costs for commercial GSHP. DOE does not distinguish between residential and commercial units in its regulations.

Commercial Ground-Source Heat Pumps

- The most common commercial ground-source heat pump systems are closed-loop in which water or anti-freeze solution is circulated through plastic pipes buried underground. Commercial water-to-air heat pumps (WAHPs) range in size from 1 ton or less to over 500 tons depending on whether a distributed or centralized architecture is used. Distributed systems are more prevalent.
- Most geothermal WAHPs are rated for capacity and efficiency based on the ISO 13256-1 standard. Heating and cooling efficiency measurements under this standard include input energy for fans and pumps on a proportional basis that only includes that power required to transport air and liquid through the heat pump. The reason for this method is to simplify comparisons between heat pumps and to allow equipment to be optimized for real world conditions without suffering rating penalties. Real world energy use will exceed ratings predictions as a result of higher fluid static pressure requirements.
- ISO 13256-1 cooling rating conditions require 77 °F entering water temperature and 80.6 °F entering air temperature. More typical peak design criteria would be 80-90 °F entering water temperature and 75 °F entering air temperature. As a result, ISO 13256-1 rated cooling efficiency would be higher than typical design peak operation.
- Some WAHPs include efficiency data for a part-load operating condition as allowed by ISO 13256-1 for multiple stage or variable speed compressors. No seasonal energy efficiency metric (analogous to SEER or IEER) currently applies to WAHPs. The annual performance of a geothermal WAHP system can vary more widely than for other system types due to the large influence of ground loop design and characteristics.
- The ENERGY STAR criteria for ground-source heat pumps apply only to residential applications.
- Installation cost is for a closed loop system and includes necessary accessories. The ground loop heat exchanger and distribution pumping systems represent a majority of the installation cost.
- Low end WAHPs utilize single stage compressors. Higher efficiency units incorporate multiple stage or variable speed compressor controls to improve efficiency as well as humidity and temperature control. Variable speed ECM fan motors also improve overall energy efficiency.

Packaged Terminal Air Conditioners

DATA	2012	2018		2022		20	30	20	40	2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	High ²	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h) ¹	9	9	9	9	9	9	9	9	9	9	9
Efficiency (EER)	11.3	11.3	11.3	11.3	13.1	11.3	13.1	11.3	13.1	11.3	13.1
Efficiency	3.3	3.3	3.3	3.3	3.8	3.3	3.8	3.3	3.8	3.3	3.8
Average Life (y)	8	8	8	8	8	8	8	8	8	8	8
Retail Equipment Cost (2022\$)	1,460	1,460	1,460	1,460	1,560	1,460	1,560	1,460	1,560	1,460	1,560
Total Installed Cost (2022\$)	1,740	1,740	1,740	1,740	1,840	1,740	1,840	1,740	1,840	1,740	1,840
Total Installed Cost (2022\$/kBtu/h)	193	193	193	193	204	193	204	193	204	193	204
Annual Maintenance Cost (2022\$)	70	70	70	70	70	70	70	70	70	70	70
Annual Maintenance Cost (2022\$/kBtu/h)	8	8	8	8	8	8	8	8	8	8	8

^{1.} Typical capacity is representative of units with the most shipments. It was also the representative cooling capacity for DOE's analysis in packaged terminal air conditioners (PTAC) and packaged terminal heat pumps (PTHP) EERE 2022 NOPD.

The current standard went into effect in January 2017.

^{2.} High values for 2022 and beyond are based on the max-tech level from PTAC & PTHP EERE 2022 NOPD. Note:

Packaged Terminal Air Conditioners

- PTAC are a self-contained, ductless air conditioning system used for commercial applications.
- Analysis was conducted for the standard equipment class at the representative cooling capacity of 9000 Btu/h.

Cooling Capacity (kBtu/h)	Equipment Size	Equipment Class	Federal Standard EER
		< 7000	11.9
PTAC	Standard	≥7,000 Btu/h and ≤15,000 Btu/h	14.0 – (0.3 x Cap)
		> 15,000 Btu/h	9.5

Packaged Terminal Heat Pumps

	2012	2018		2022		2030		2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical ²	High ³	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h) ¹	9	9	9	9	9	9	9	9	9	9	9
Efficiency (EER)	11.3	11.3	11.3	11.3	13.1	11.5	13.1	11.5	13.1	11.5	13.1
Efficiency	3.3	3.3	3.3	3.3	3.8	3.4	3.8	3.4	3.8	3.4	3.8
COP (Heating)	3.2	3.2	3.2	3.2	3.6	3.3	3.6	3.3	3.6	3.3	3.6
Average Life (y)	8	8	8	8	8	8	8	8	8	8	8
Retail Equipment Cost (2022\$)	1,620	1,620	1,620	1,620	1,720	1,630	1,720	1,630	1,720	1,630	1,720
Total Installed Cost (2022\$)	1,910	1,910	1,910	1,910	2,010	1,910	2,010	1,910	2,010	1,910	2,010
Total Installed Cost (2022\$/kBtu/h)	212	212	212	212	223	212	223	212	223	212	223
Annual Maintenance Cost (2022\$)	70	70	70	70	70	70	70	70	70	70	70
Annual Maintenance Cost (2022\$/kBtu/h)	8	8	8	8	8	8	8	8	8	8	8

- 1. Typical capacity is representative of units with the most shipments. It was also the representative cooling capacity for DOE's analysis in PTAC & PTHP EERE 2022 NOPD.
- 2. Typical values for 2022 and beyond are based on the efficiency level that has the largest market share per PTAC & PTHP EERE 2022 NOPD.
- 3. High values for 2022 and beyond are based on the max-tech level from PTAC & PTHP EERE 2022 NOPD.

Note:

The current standard went into effect in October 2012.

Packaged Terminal Heat Pumps

- PTHP are self-contained heat pumps primarily used for commercial applications.
- Analysis was conducted for the standard equipment class at the representative cooling capacity of 9000 Btu/h.

Cooling Capacity (kBtu/h)	Equipment Size	Equipment Class	Federal Standard EER	Federal Standard COP
		< 7000	11.9	3.3
PTHP	Standard	≥7,000 Btu/h and ≤15,000 Btu/h	14.0 – (0.3 x Cap)	3.7 – (0.052 x Cap)
		> 15,000 Btu/h	9.5	2.9
		< 7000	9.3	2.7
PTHP	Non-Standard	≥7,000 Btu/h and ≤15,000 Btu/h	10.8 – (0.213 x Cap)	2.9 – (0.026 x Cap)
		> 15,000 Btu/h	7.6	2.5

Commercial Water Heating

Commercial Gas-Fired Storage Water Heaters

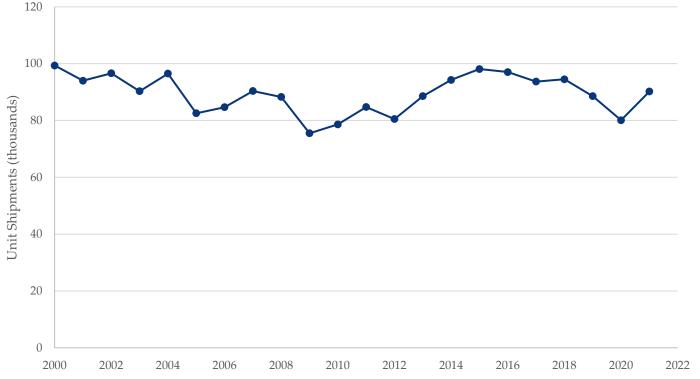
	2012	2018		20	22		20	30	2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Typical Storage Capacity (gal)	100	100	100	100	100	100	100	100	100	100	100	100
Typical Input Capacity (kBtu/h)	199	199	199	199	199	199	199	199	199	199	199	199
Thermal Efficiency (%) ¹	81	82	80	82	94	99	95	99	95	99	95	99
Average Life (y)	13	10	10	10	10	10	10	10	10	10	10	10
B. (-11 F 1 (0000ft)	3,870	3,890	3,850	3,890	4,180	4,290	4,200	4,290	4,200	4,290	4,200	4,290
Retail Equipment Cost (2022\$)	5,170	5,200	5,140	5,200	5,530	5,650	5,550	5,650	5,550	5,650	5,550	5,650
T-1-1 I(-11-1 C) (2022¢)	5,170	5,190	5,140	5,190	6,630	6,730	6,640	6,730	6,640	6,730	6,640	6,730
Total Installed Cost (2022\$)	8,440	8,460	8,410	8,460	8,590	8,710	8,610	8,710	8,610	8,710	8,610	8,710
Total Installed Cost (2022\$/kBtu/h)	42	42	43	42	41	39	40	39	40	39	40	39
Annual Maintenance Cost (2022\$) ²	320	320	320	320	330	330	330	330	330	330	330	330
Annual Maintenance Cost (2022\$/kBtu/h)	2	2	2	2	2	2	2	2	2	2	2	2

- 1. Different levels of standby loss were not included in this analysis.
- 2. Maintenance consists of sediment and scale removal once or twice per year and replacement of miscellaneous components such as gaskets and sealants. Condensing units have an additional cost for replacement of condensate neutralizer media every two years.

Note:

The current standard went into effect in October 2015.

ENERGY STAR V. 2.0 went into effect in October 2018.


The range of retail and installed costs represent the range from replacement market to new construction market.

Commercial Gas-Fired Storage Water Heaters

- Input capacity > 155 kBtu/h and storage capacity ≤ 140 gal
- Federal standard:
 - Minimum thermal efficiency: 80%
 - Maximum standby loss (Btu/h) : Input Rate/ $800 + 110 \times (Rated Volume)^{1/2}$
- ENERGY STAR requirements:
 - Minimum thermal efficiency: 94%
 - Maximum standby loss (Btu/h): $0.84 \times [(Input Rate/800) + 110 \times (Rated Volume)^{1/2}]$
- Baseline units are typically constructed similarly to residential units, though with higher input capacities (and often higher storage volumes).
- High-efficiency units include condensing heat exchangers (typically stainless or enameled steel) to extract additional heat by condensing water vapor in flue gases. Condensing units also include an inducer fan system or power burner. The heat exchanger is typically contained within the tank, but some designs consist of an external heating module attached to a storage tank. Condensing units are expected to be the majority market share by 2030.
- Maintenance consists of sediment and scale removal once or twice per year and replacement of miscellaneous components such as gaskets and sealants. Condensing units have an additional cost for replacement of condensate neutralizer media every two years.

Annual shipments have fluctuated from 99,000 units in 2000 to 75,000 units in 2009, back to 99,000 units in 2015 and gradually decreasing since then until 2020.

Commercial Gas-Fired Storage Water Heaters

Source: CWH EERE 2022 NOPR and AHRI

Commercial Electric Resistance Storage Water Heaters

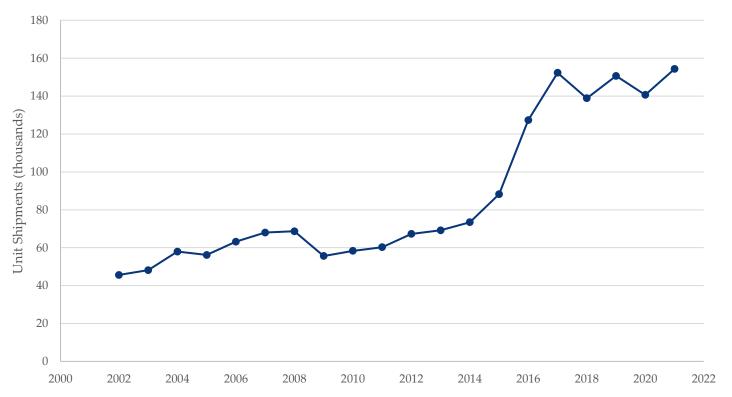
	2012	2018	20	22	2030	2040	2050
DATA	Installed Base	Installed Base	Current Standard	Typical	Typical	Typical	Typical
Typical Storage Capacity (gal)	119	119	119	119	119	119	119
Typical Input Capacity (kW) ¹	18	18	18	18	18	18	18
Typical Input Capacity (kBtu/h)	60	60	60	60	60	60	60
Thermal Efficiency (%)	98	98	98	98	98	98	98
Average Life (y)	12	12	12	12	12	12	12
Potoil Facina ont Cost (2022¢)	3,180	3,180	3,180	3,180	3,180	3,180	3,180
Retail Equipment Cost (2022\$)	3,750	3,750	3,750	3,750	3,750	3,750	3,750
T-1-1 I1-11-1 (1 (2022¢)	4,460	4,460	4,460	4,460	4,460	4,460	4,460
Total Installed Cost (2022\$)	4,690	4,690	4,690	4,690	4,690	4,690	4,690
Total Installed Cost (2022\$/kBtu/h)	76	76	76	76	76	76	76
Annual Maintenance Cost (2022\$)	50	50	50	50	50	50	50
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	1	1	1	1	1

^{1.} Different levels of standby loss were not included in this analysis.

Note:

No new standards rulemaking has been initiated for commercial electric resistance water heaters since CWH EERE 2016 NOPR. Accordingly, the results are the same as EIA Technology Forecast Updates (2018), updated to 2022\$.

The range of retail equipment and installed costs represents the range from replacement market to new construction market.


Commercial Electric Resistance Storage Water Heaters

- Federal standard:
 - Maximum standby loss (%/h): 0.30 + 27/Measured Storage Volume
 - Minimum thermal efficiency: no standard, but all units have an efficiency \geq 98%
- Storage capacity: typically, 50 to 120 gallons, though smaller and larger units exist for specialized applications
- Commercial units are typically constructed similar to residential units, though with higher input capacities (and often higher storage volumes).
- There is very little variation in thermal efficiency on the market; variation in standby loss is typically due to tank design and insulation thickness.
- Maintenance consists of sediment and scale removal once or twice per year.

Commercial Electric Resistance Storage Water Heaters

Annual shipments increased by almost 50% between 2002 and 2008. After a small dip in shipments in 2009, annual shipments have increased by about 173% between 2009 and 2017, stabilizing between 140-150 thousand shipments per year since then.

Commercial Electric Resistance Water Heaters

Source: AHRI

Commercial Heat Pump Water Heaters

D. T.	2012	2018	20	22	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.0	Typical	Typical	Typical
Water Flow Rate (gal/min) ¹	34	34	34	34	34	34	34
Typical Output Capacity (kW) ¹	50	50	50	50	50	50	50
Typical Output Capacity (kBtu/h)	171	171	171	171	171	171	171
Coefficient of Performance (COP _h)	3.9	3.9	3.9	3.0	3.9	3.9	3.9
Average Life (y)	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$) ²	55,406	55,406	55,406	55,406	55,406	55,406	55,406
Total Installed Cost (2022\$) ²	59,940	59,940	59,940	59,940	59,940	59,940	59,940
Total Installed Cost (2022\$/kBtu/h)	351	351	351	351	351	351	351
Annual Maintenance Cost (2022\$) ²	120	120	120	120	120	120	120
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	1	1	1	1	1

- 1. Water flow rate scales with typical capacity. The storage tanks must be purchased and installed separately from the HP unit. The typical output and flow rate provided are near the median of the products available on the market currently.
- 2. Costs are same as EIA Technology Forecast Updates (2018), updated to 2022\$. Updated representative costs for commercial heat pump water heaters are not available due to the extremely small market for these products.

Note:

ENERGY STAR V. 2.0 went into effect in October 2018.

Commercial Heat Pump Water Heaters

- Typical commercial HPWHs (CHPWHs) are add-on units designed to be used with a storage tank(s); integrated CHPWHs have emerged on the market (i.e., heat pump module and storage tank combined in one unit) in recent years.
- CHPWHs serve only a small portion of the commercial water heating (CWH) market, with the ENERGY STAR database listing only two manufacturers, each with one basic model listed.
- CHPWHs can extract heat from either air or water for heating potable water ("air-source" or "water-source"). The capacity of air-source CHPWHs falls at lower ambient air temperatures.
- Air-source CHPWHs cool the surrounding air, which can be desirable when installed indoors in applications with a year-round cooling load (e.g., a commercial kitchen).
- Output capacities for CHPWHs range from 17 kW to over 70 kW for air-source units and over 600 kW for water-source units.
- Some commercial applications require water as hot as 180 °F, such as dishwashing; however, most CHPWHs cannot deliver hot water at temperatures higher than 150 °F.
- There are no current Federal standards for CHPWHs, but DOE prescribes a test procedure for determining COP_h for CHPWHs.
- The most recent ENERGY STAR V. 2.0 specification for CWH equipment went into effect in October 2018. It specifies a COP_h level of 3.0 for CHPWHs.

Commercial Oil-Fired Storage Water Heaters

D. T.	2012	2018		2022		2030		2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Storage Capacity (gal)	70	85	85	85	85	85	85	85	85	85	85
Typical Input Capacity (kBtu/h)	300	300	300	300	300	300	300	300	300	300	300
Thermal Efficiency (%) ¹	79	81	80	81	82	81	82	81	82	81	82
Average Life (y)	13	13	13	13	13	13	13	13	13	13	13
Retail Equipment Cost (2022\$)	5,470	5,470	5,470	5,470	5,470	5,470	5,470	5,470	5,470	5,470	5,470
Total Installed Cost (2022\$)	6,120	6,120	6,120	6,120	6,120	6,120	6,120	6,120	6,120	6,120	6,120
Total Installed Cost (2022\$/kBtu/h)	26	25	26	25	25	25	25	25	25	25	25
Annual Maintenance Cost (2022\$)	200	200	200	200	200	200	200	210	210	210	210
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	1	1	1	1	1	1	1	1	1

^{1.} Different levels of standby loss were not included in this analysis.

Note:

The commercial oil-fired water heaters market is very small; currently, there are only 4 basic models in DOE's CCD. DOE's rulemaking analysis for oil-fired water heaters has not been updated since 2001. The retail, installed, and maintenance costs have been updated from EIA Technology Forecast Updates (2018) to 2022\$.

The current standard went into effect in October 2015.

156

Commercial Oil-Fired Storage Water Heaters

- Input capacity > 155 kBtu/h and storage capacity ≤ 140 gal
- Federal standard:
 - Minimum thermal efficiency: 80%
 - Maximum standby loss (Btu/h) : Input Rate/ $800 + 110 \times (Rated Volume)^{1/2}$
- Condensing units do not exist, thus the highest thermal efficiency on the market is 82%.
- Commercial units are typically constructed similar to residential units, though with higher input capacities (and often higher storage volumes).
- Maintenance costs include sediment and scale removal once or twice per year.
- The market for commercial oil-fired storage water heaters is very small; shipments are approximately 3% of shipments for commercial gas-fired storage water heaters.

Commercial Electric Booster Water Heaters

DATA	2012	2018	2022	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Typical Canacity (cal)	6	6	6	6	6	6
Typical Capacity (gal)	16	16	16	16	16	16
Typical Output Capacity (kBtu/h)	1,374	1,374	1,374	1,374	1,374	1,374
Thermal Efficiency (%)	98	98	98	98	98	98
Average Life (y)	3	3	3	3	3	3
Average Life (y)	10	10	10	10	10	10
Retail Equipment Cost (2022\$) ¹	1,530	1,530	1,920	1,920	1,920	1,920
Retail Equipment Cost (2022\$)	3,290	3,530	4,560	4,560	4,560	4,560
Total Installed Cost (2022\$) 1	1,730	1,730	2,120	2,120	2,120	2,120
Total Histalieu Cost (20225)	3,490	3,730	4,760	4,760	4,760	4,760
Total Installed Cost (2022\$/kBtu/h)	2	2	3	3	3	3
Annual Maintenance Cost (2022\$) ²	-	-	-	-	-	-
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	-	-	-	-

^{1.} The 2012 and 2018 installed base costs are the same as EIA Technology Forecast Updates (2018), updated to 2022\$. Retail costs for 2022 and later are based on the range of costs for products on the market today. Installed costs assume a \$200 installation price.

^{2.} Maintenance costs are negligible.

Commercial Gas-Fired Booster Water Heaters

	2012	2018	20	22	2030	2040	2050
DATA	Installed Base	Installed Base	Current Standard	Typical	Typical	Typical	Typical
T:1 (: t (1)	3	3	3	3	3	3	3
Typical Capacity (gal)	5	5	5	5	5	5	5
Typical Output Capacity (kBtu/h)	500	500	500	500	500	500	500
Thermal Efficiency (%) ¹	80	80	80	80	80	80	80
Arrama and Life (rv)	5	5	5	5	5	5	5
Average Life (y)	10	10	10	10	10	10	10
Patril Equipment Cost (2022¢) ²	5,530	5,760	7,130	7,130	7,130	7,130	7,130
Retail Equipment Cost (2022\$) ²	8,000	9,060	11,120	11,120	11,120	11,120	11,120
Tabel Installed Cost (2022¢) ²	5,830	6,060	7,430	7,430	7,430	7,430	7,430
Total Installed Cost (2022\$) ²	8,300	9,360	11,420	11,420	11,420	11,420	11,420
Total Installed Cost (2022\$/kBtu/h)	14	15	19	19	19	19	19
Annual Maintenance Cost (2022\$)	160	160	160	160	160	160	160
Annual Maintenance Cost (2022\$/kBtu/h)	0	0	0	0	0	0	0

- 1. While EIA Technology Forecast Updates (2018) included high values reflecting condensing models, models currently available in the market do not exceed 80% efficiency.
- 2. The 2012 and 2018 installed base costs are the same as EIA Technology Forecast Updates (2018), updated to 2022\$. Retail costs for 2022 and later are based on the range of costs for products on the market today. Installed costs assume a \$300 installation price.

Commercial Booster Water Heaters

- Booster water heaters are installed, often at the point of use, in series with the main service water heating system to boost service water temperatures. The main service water heating system may provide 110-140 °F water, and the booster water heater may increase that temperature to 180-195 °F. Typical commercial applications for booster water heaters include commercial dishwashers, laundromats, hospitals, and car washes.
- Commercial booster water heaters are regulated by DOE as either storage or instantaneous water heaters, depending on the ratio of input capacity to storage volume. Units with input capacity < 4,000 Btu/h per gallon of stored water are storage water heaters; all other units are instantaneous water heaters.
- DOE's regulations do not currently include standards for electric instantaneous water heaters, but standards are included for electric storage water heaters, gas-fired instantaneous water heaters, and gas-fired storage water heaters.
- Condensing gas-fired booster water heaters, those with an efficiency of 90% of more, were analyzed previously. There are no condensing units currently on the market. Condensing gas-fired booster water heaters can only operate if the incoming water temperature is below 130 °F so there is enough heat transfer to condense.
- Booster water heaters typically have short lifetimes because of high usage and extreme temperatures.
- Shipments are small due to the limited number of applications.

Commercial Gas-Fired Instantaneous Water Heaters

	2012	2018		20)22		20	30	2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 2.0	High ²	Typical	High	Typical	High	Typical	High
T	250	250	250	250	250	250	250	250	250	250	250	250
Typical Capacity (kBtu/h)	399	399	399	399	399	399	399	399	399	399	399	399
Thermal Efficiency (%)	80	92	80	92	94	99	96	99	96	99	96	99
A	17	17	17	17	17	17	17	17	17	17	17	17
Average Life (y)	25	25	25	25	25	25	25	25	25	25	25	25
D. (. '1 F ' (C (00000))	1,630	1,840	1,630	1,840	1,880	7,990	1,930	7,990	1,930	7,990	1,930	7,990
Retail Equipment Cost (2022\$) ¹	4,400	8,610	4,400	8,610	9,000	9,990	9,400	9,990	9,400	9,990	9,400	9,990
T 4 11 4 11 1 C 4 (2022#)1	2,430	3,980	2,430	3,980	4,010	13,000	4,070	13,000	4,070	13,000	4,070	13,000
Total Installed Cost (2022\$) ¹	10,380	13,560	10,380	13,560	13,950	14,950	14,350	14,950	14,350	14,950	14,350	14,950
Total Installed Cost (2022\$/kBtu/h)	25	29	25	29	29	44	30	44	30	44	30	44
A 1 Maintanana Cast (20224) 3	90	100	90	100	100	820	100	820	100	820	100	820
Annual Maintenance Cost (2022\$) ³	760	820	760	820	820	830	830	830	830	830	830	830
Annual Maintenance Cost (2022\$/kBtu/h)	2	2	2	2	2	3	1	3	1	3	1	3

- 1. Commercial gas-fired instantaneous water heaters are categorized into two groups: tankless water heater and hot water supply boiler. Tankless units are similar in design to residential tankless units. The hot water supply boiler has a much higher input and is similar in design to boilers. The large variation of total input capacity and design causes a large range of costs. The range of retail, installed, and maintenance costs represent the differences in design, as well as the cost ranges arising from replacement versus new construction markets.
- 2. High efficiency was determined based on DOE's CCD. The most efficient tankless water heater has a thermal efficiency of 96%. The most efficient hot water supply boiler has a thermal efficiency of 99%.
- 3. Maintenance consists replacement of miscellaneous components such as gaskets and sealants. Condensing units have an additional cost for replacement of condensate neutralizer media every two years. Note:

For the installed base, current standard, and typical costs, low values represent costs for tankless water heaters in the replacement market while high values represent costs for hot water supply boilers in the replacement and new construction market. The range of costs for the High values are estimated costs for hot water supply boilers in the replacement and new construction market. ENERGY STAR V. 2.0 went into effect in October 2018.

Commercial Gas-Fired Instantaneous Water Heaters

- Storage Capacity < 10 gallons and ≥ 10 gallons
- Federal standard:
 - Minimum thermal efficiency: 80%
 - Maximum standby loss (Btu/h): Input Rate/800 + 110 x (Rated Volume) $^{1/2}$
- ENERGY STAR requirements:
 - Minimum thermal efficiency: 94%
- Wall-mounted ("tankless") units typically do not exceed ~400,000 Btu/h and are similar in design to residential tankless units. Floor-mounted units ("circulating" or "volume" water heaters) are similar in design to boilers and can have input capacities in the millions of Btu/h. Floor-mounted units are typically installed with a storage tank.
- Despite high available input capacities, some installations use multiple units staged together, which may have reliability and/or efficiency benefits.
- Similar to storage water heaters, higher efficiencies are achieved with condensing operation, which requires a
 condensing heat exchanger and inducer fan or power burner. Some units include both non-condensing and
 condensing heat exchangers, while others include a single condensing heat exchanger.
- When replacing a storage water heater with an instantaneous water heater, there may be significant additional costs to upsize the gas supply line and change the venting.

Commercial Gas-Fired Instantaneous Water Heaters

Annual shipments for gas-fired instantaneous tankless water heaters have gradually increased since 2000 while those for gas-fired instantaneous hot water supply boiler water heaters peaked in 2008 and have been decreasing since then, recently stabilizing around 10,000 annual shipments.

Commercial Gas-Fired Instantaneous Water Heater Unit Shipments (thousands) --- Hot Water Supply Boiler

Source: CWH EERE 2022 NOPR

Commercial Solar Water Heaters

DATA	2012	2018	20	22	2023	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 4.0	ENERGY STAR V. 5.0	Typical	Typical	Typical
Typical Capacity (sq. ft.) ¹	85	85	85	85	85	85	85	85
Typical Capacity (m ²)	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90
Typical Capacity (Input) (kBtu/h) – North	5.05	5.05	5.05	5.05	5.05	5.05	5.05	5.05
Typical Capacity (Input) (kBtu/h) – South	6.74	6.74	6.74	6.74	6.74	6.74	6.74	6.74
Solar Uniform Energy Factor (SUEF) ²	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Average Life (y)	20	20	20	20	20	20	20	20
Retail Equipment Cost (2022\$) ³	10,470	10,470	10,280	10,280	10,280	10,280	10,280	10,280
Total Installed Cost (2022\$) ³	14,180	14,180	12,640	12,640	12,640	12,640	12,640	12,640
Total Installed Cost (2022\$/kBtu/h) – North	936	936	834	834	834	834	834	834
Total Installed Cost (2022\$/kBtu/h) – South	702	702	626	626	626	626	626	626
Annual Maintenance Cost (2022\$) ⁴	100	100	100	100	100	100	100	100
Annual Maintenance Cost (2022\$/kBtu/h) - North	7	7	7	7	7	7	7	7
Annual Maintenance Cost (2022\$/kBtu/h) - South	5	5	5	5	5	5	5	5

- 1. Typical capacity refers to the solar collector panel area. It was determined using the SRCC database as the average value of the largest bin (in terms of capacity) with the greatest number of units.
- 2. In 2020, the efficiency metric for solar water heaters changed from SEF to SUEF. There is no equation or scaling factor readily available to translate SEF to SUEF. Accordingly, for the 2012 and 2018 installed base, SUEF was determined using the 2020 ENERGY STAR data set assuming the typical SEF/SUEF value was similar between 2012-2020. For 2022 and beyond, due to lack of SUEF data, it is assumed that a typical electric backup unit would meet the ENERGY STAR criteria. ENERGY STAR specifies a minimum SUEF of 3.0 for electric backup units and 1.8 for gas backup units.
- 3. Costs are for an indirect (active closed loop) system, including tank and backup heater. Smaller capacity/cost systems are typical for southern & western states (>two-third of the current market). Higher capacity/cost systems are required in colder/cloudier regions. The 2012 and 2018 installed base costs are updated from EIA Technology Forecast Updates (2018) to 2022\$.
- 4. Annual maintenance is expected to be 0.5% to 1% of the total installation.

Note:

ENERGY STAR V. 4.0 went into effect in January 2022. ENERGY STAR V. 5.0 will go into effect in April 2023 but the ENERGY STAR criteria for solar water heaters will remain the same in ENERGY STAR V. 5.0.

Commercial Solar Water Heaters

- In 2020, a diverse group of stakeholders from the solar thermal industry developed the SUEF Specification for solar water heaters. The goal of this specification is to align with the UEF metric used by DOE for other water heating technologies.
- SUEF is also the metric used by the current ENERGY STAR Specification, and it replaced the SEF metric.
- EIA Technology Forecast Updates (2018) presented results using SEF and solar fraction (SF). SEF is currently not used in either the ENERGY STAR or SRCC databases; accordingly, this report presents results according to SUEF. SF is the portion of the total conventional hot water heating load (delivered energy and tank standby losses). SF varies from 0 to 1.0. Typical solar fraction values are 0.5–0.75.
- There is no equation or scaling factor readily available to translate SEF to SUEF. Accordingly, for the 2012 and 2018 installed base, SUEF was determined using the 2020 ENERGY STAR data set assuming the typical SEF/SUEF value was similar between 2012-2020. For 2022 and beyond, SUEF is the average SUEF for solar water heaters with a "high-usage" draw pattern from the current ENERGY STAR qualified product list.
- Commercial solar water heaters are typically custom designed for a specific installation.
- Commercial solar water heaters may include backup heating, from sources such as electric resistance or hydronic heat (supplied from a gas-fired boiler or geothermal heat pump).
- Storage volumes of tanks for commercial solar water heaters can span from 140 gallons to over 2,000 gallons.
- SRCC's OG-300 can be used to certify commercial systems, but most commercial systems are larger and unique; this certification program is mostly used for residential solar water heaters.
 - Many incentive programs require that solar collectors for commercial systems be certified to SRCC's certification program for collectors, OG-100.

Final

Return to Table of Content

Commercial Cooking Products

Commercial Natural Gas Range with Griddle and Oven

	2012	2018	2022			2023	20	30	2040		2050	
DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.2 ¹	High	ENERGY STAR V. 3.0 ²	Typical	High	Typical	High	Typical	High
Griddle - Cooking Energy Efficiency (%)	30	30	40	38	69	NA	40	69	40	69	40	69
Oven - Cooking Energy Efficiency (%)	35	35	35	46	69	49	35	69	35	69	35	69
Range - Cooking Energy Efficiency (%)	30	30	30	NA	40	NA	30	40	30	40	30	40
Combined Energy Efficiency (%) ³	31	31	35	NA	58	NA	35	58	35	58	35	58
Griddle - Normalized Idle Energy Rate (Btu/h/ft²)	3,000	3,000	3,000	2,650	1,724	NA	3,000	1,724	3,000	1,724	3,000	1,724
Oven - Idle Energy Rate (Btu/h)	18,000	18,000	18,000	12,000	3,516	9,500	18,000	3,516	18,000	3,516	18,000	3,516
Range - Idle Energy Rate (Btu/h)	3,600	3,600	3,600	NA	1,900	NA	3,600	1,900	3,600	1,900	3,600	1,900
Combined Idle Energy Rate (Btu/h) ³	10,350	10,350	10,350	NA	4,178	NA	10,350	4,178	10,350	4,178	10,350	4,178
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁴	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760
Total Installed Cost (2022\$)	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940
Total Installed Cost (2022\$/kBtu/h)	864	864	864	NA	2,140	NA	864	2,140	864	2,140	864	2,140
Annual Maintenance Cost (2022\$) ⁵	-	-	-	_	-	-	-	-	-	-	-	_
Annual Maintenance Cost (2022\$/kBtu/h)	-	_	-	_	-	-	-	-	-	-	-	_

- 1. ENERGY STAR does not cover combination products that include griddles, ranges, and ovens in one single package. The ENERGY STAR levels provided here reflect specifications for individual products. Range tops are not covered by ENERGY STAR.
- 2. ENERGY STAR V. 3.0 updated the requirements for commercial ovens from V. 2.2, effective January 2023. Data shown is reflective of a standard full-size convection oven that holds 5 or more pans.
- 3. Combined energy efficiency and combined idle energy rate are calculated as a weighted average of each component using typical daily operating hours sourced from Food Service Technology Center (FSTC). Typical daily operating hours are assumed to be 12 hours for the griddle component, 8 hours for the oven component, and 12 hours for the range component.
- 4. Products in the commercial cooking market generally do not scale in price with relation to cooking efficiency. Distributors also do not provide this information.
- 5. Maintenance costs are negligible.

Note:

ENERGY STAR V. 2.2 went into effect in October 2015. ENERGY STAR V. 3.0 went into effect in January 2023.

Commercial Electric Range with Griddle and Oven

	2012	2018	2022			2023	2030		2040		2050	
DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.2 ¹	High	ENERGY STAR V. 3.0 ²	Typical	High	Typical	High	Typical	High
Griddle - Cooking Energy Efficiency (%)	65	70	72	70	91	NA	72	91	72	91	72	91
Oven - Cooking Energy Efficiency (%)	65	65	65	71	86	76	65	86	65	86	65	86
Range - Cooking Energy Efficiency (%)	75	75	75	NA	87	NA	75	87	75	87	75	87
Combined Energy Efficiency (%) ³	69	71	71	NA	88	NA	71	88	71	88	71	88
Griddle - Normalized Idle Energy Rate (kW/ft²)	0.44	0.34	0.30	0.32	0.21	NA	0.30	0.21	0.30	0.21	0.30	0.21
Oven - Idle Energy Rate (kW)	1.5	1.5	1.5	1.6	0.6	1.4	1.5	0.6	1.5	0.6	1.5	0.6
Range - Idle Energy Rate (kW) ⁴	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Combined Idle Energy Rate (kW) ³	1.7	1.4	1.3	1.4	0.8	NA	1.3	0.8	1.3	0.8	1.3	0.8
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁵	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230
Total Installed Cost (2022\$)	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410
Total Installed Cost (2022\$/kBtu/h)	2,019	2,362	2,533	2,375	4,423	NA	2,533	4,423	2,533	4,423	2,533	4,423
Annual Maintenance Cost (2022\$) ⁶	-	_	-	-	-	-	-	_	_	-	_	_
Annual Maintenance Cost (2022\$/kBtu/h)	-	_	-	-	_	_	_	_	-	_	_	_

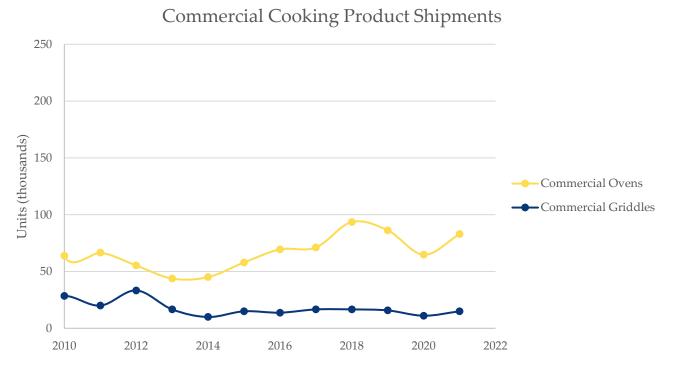
- 1. ENERGY STAR does not cover combination products that include griddles, ranges, and ovens in one single package. The ENERGY STAR levels provided here reflect specifications for individual products. Range tops are not covered by ENERGY STAR.
- 2. ENERGY STAR V. 3.0 updated the requirements for commercial ovens from V. 2.2, effective January 2023. Data shown is reflective of a standard full-size convection oven that holds 5 or more pans.
- 3. Combined energy efficiency and combined idle energy rate are calculated as a weighted average of each component using typical daily operating hours sourced from FSTC. Typical daily operating hours are assumed to be 12 hours for the griddle component, 8 hours for the oven component, and 12 hours for the range component.
- 4. No data on electric range top idle energy rates.
- 5. Products in the commercial cooking market generally do not scale in price with relation to cooking efficiency. Distributors also do not provide this information.
- 6. Maintenance costs are negligible.

Note:

Commercial Ranges with Griddle and Oven

- Combined product that typically includes 2-6 range tops, a 24 in. x 24 in. griddle surface, and one or two half- or full-size ovens.
- Combined product is not covered by ENERGY STAR. However, the individual product ENERGY STAR V. 2.2 specifications are provided below.

Product	ENERGY STAR V. 2.2 Requirements	Gas	Electric		
Griddle	Cooking Energy Efficiency	≥ 38%	≥ 70%		
	Normalized Idle Energy Rate	\leq 2,650 Btu/h per ft ²	\leq 0.320 kW per ft ²		
	Cooking Energy Efficiency	≥ 46%	≥71%		
Oven	Idle Energy Rate	≤ 12,000 Btu/h	Half size: ≤1.00 kW Full size: ≤1.60 kW		


- ENERGY STAR does not provide certification for range tops.
- There are no Federal standards for commercial cooking products.
- Product pricing in this market do not scale with efficiency, but rather depend on a number of other factors such as brand name, aesthetics, and additional features.

Commercial Ranges with Griddle and Oven

• ENERGY STAR V. 3.0 requirements for commercial ovens went into effect in January 2023:

Product	ENERGY STAR Requirements	Gas	Electric
	Cooking Energy Efficiency	≥ 49%	Half size: ≥ 71% Full size: ≥ 76%
Oven	Idle Energy Rate	≤ 9,500 Btu/h	Half size: ≤1.00 kW Full size ≥ 5 Pans: ≤1.40 kW Full size ≤ 5 Pans: ≤1.00 kW

Commercial oven shipments have gradually increased since 2013, decreasing recently, in 2020. Commercial griddle shipments have remained steady since 2014.

Source: ENERGY STAR (Unit Shipment Data)

Commercial Hot Food Holding Cabinets – Small

	2012	2018	2022				20	30	2040		2050	
DATA	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Interior Volume (ft³)¹	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
Maximum Idle Energy Rate (W) ²	312	312	312	312	168	168	312	168	312	168	312	168
Annual Energy Use (kWh/y) ³	1,025	1,025	1,025	1,025	552	552	1,025	552	1,025	552	1,025	552
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁴	3,200	3,200	3,200	3,200	3,800	3,800	3,200	3,800	3,200	3,800	3,200	3,800
Total Installed Cost (2022\$) ⁵	3,200	3,200	3,200	3,200	3,800	3,800	3,200	3,800	3,200	3,800	3,200	3,800
Total Installed Cost (2022\$/kBtu/h)	8,016	8,016	8,016	8,016	17,677	17,677	8,016	17,677	8,016	17,677	8,016	17,677
Annual Maintenance Cost (2022\$) ⁵	_	_	_	-	_	-	-	-	-	-	-	_
Annual Maintenance Cost (2022\$/kBtu/h)	-	_	_	_	-	-	-	-	-	-	-	_

- 1. Interior volume is characterized by the product size classes reported by ENERGY STAR. The small size class covers units with interior volume less than 13 ft³. Interior volume for the small size class was determined based on the units in the ENERGY STAR database, accessed February 2023.
- 2. Maximum idle energy rate is a function of interior volume. For the small size class, ENERGY STAR and high values were determined for a representative 7.8 ft³ using the ENERGY STAR database, accessed February 2023. The typical value was assumed to be equivalent to the state standard for a representative 7.8 ft³ unit.
- 3. Annual energy use is determined using the latest FEMP data from December 2021, which assumes that a typical 22.4 ft³ commercial hot food holding cabinet uses an average of 9 hours per day and 365 days per year. The small size class is assumed to use the same number of annual usage hours as the medium size class.
- 4. Retail equipment costs were determined using distributor information for undercounter, half-size, and full-size hot food holding cabinets.
- 5. Additional installation costs and maintenance costs are negligible.

Note:

ENERGY STAR V. 2.0 went into effect in October 2011 and was revised in December 2022. Massachusetts, Nevada, and Rhode Island state standards have adopted the ENERGY STAR V. 2.0 criteria that went into effect in October 2011. The majority of state standards (California, Colorado, Connecticut, DC, Maryland, New Hampshire, Oregon, Rhode Island, Vermont, and Washington) implement the ENERGY STAR V. 1.0 specification that went into effect in August 2003, which is recorded in the table. ENERGY STAR V. 1.0 specifies a maximum idle energy rate of 40 W per cubic foot of interior volume.

Commercial Hot Food Holding Cabinets – Medium

	2012	2018		20	22		203	30	2040		2050	
DATA	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Interior Volume (ft³)¹	21.4	21.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4
Maximum Idle Energy Rate (W) ²	900	856	896	896	299	298	896	298	896	298	896	298
Annual Energy Use (kWh/y) ³	2,957	2,812	2,943	2,943	982	979	2,943	979	2,943	979	2,943	979
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁴	2,940	4,530	4,600	4,600	5,000	5,000	4,600	5,000	4,600	5,000	4,600	5,000
Total Installed Cost (2022\$) ⁵	2,940	4,530	4,600	4,600	5,000	5,000	4,600	5,000	4,600	5,000	4,600	5,000
Total Installed Cost (2022\$/kBtu/h)	2,553	4,136	4,012	4,012	13,078	13,113	4,012	13,113	4,012	13,113	4,012	13,113
Annual Maintenance Cost (2022\$) ⁵	-	-	-	-	-	-	-	-	-	-	-	_
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	-	-	-	-	-	-	-	-	_	_

- 1. Interior volume is characterized by the product size classes reported by ENERGY STAR. The medium size class covers units with interior volume between 13 ft³ to 28 ft³. For the medium size class, the interior volume increase from 21.4 ft³ to 22.4 ft³ in 2022 reflects the current representative product volume reported by FEMP, last updated December 2021.
- 2. Maximum idle energy rate is a function of interior volume. For the medium size class, the maximum idle energy rate for 2022 onward is reflective of a representative 22.4 ft³ unit, using the latest FEMP data from December 2021.
- 3. Annual energy use is determined using the latest FEMP data from December 2021, which assumes that a typical 22.4 ft³ commercial hot food holding cabinet uses an average of 9 hours per day and 365 days per year.
- 4. Retail equipment costs were determined using distributor information for undercounter, half-size, and full-size hot food holding cabinets.
- 5. Additional installation costs and maintenance costs are negligible.

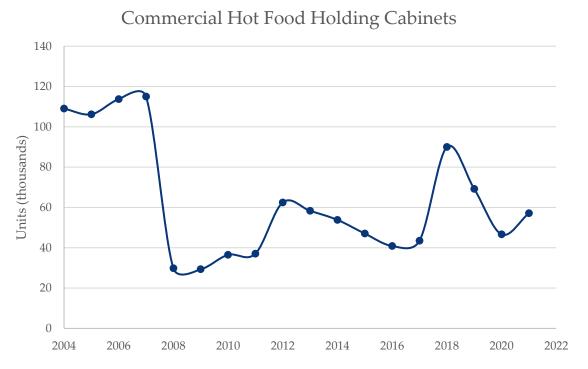
Note:

ENERGY STAR V. 2.0 went into effect in October 2011 and was revised in December 2022. Massachusetts, Nevada, and Rhode Island state standards have adopted the ENERGY STAR V. 2.0 criteria that went into effect in October 2011. The majority of state standards (California, Colorado, Connecticut, DC, Maryland, New Hampshire, Oregon, Rhode Island, Vermont, and Washington) implement the ENERGY STAR V. 1.0 specification that went into effect in August 2003, which is recorded in the table. ENERGY STAR V. 1.0 specification that went into effect in August 2003, which is recorded in the table.

Commercial Hot Food Holding Cabinets – Large

	2012	2018	2022				2030		2040		2050	
DATA	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Interior Volume (ft³)¹	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0
Maximum Idle Energy Rate (W) ²	1,333	1,333	1,760	1,333	400	310	1,333	310	1,333	310	1,333	310
Annual Energy Use (kWh/y) ³	4,380	4,380	5,782	4,380	1,314	1,018	4,380	1,018	4,380	1,018	4,380	1,018
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁴	5,500	5,500	5,500	5,500	6,000	6,000	5,500	6,000	5,500	6,000	5,500	6,000
Total Installed Cost (2022\$) ⁵	5,500	5,500	5,500	5,500	6,000	6,000	5,500	6,000	5,500	6,000	5,500	6,000
Total Installed Cost (2022\$/kBtu/h)	3,224	3,224	2,442	3,224	11,723	15,126	3,224	15,126	3,224	15,126	3,224	15,126
Annual Maintenance Cost (2022\$) ⁵	-	-	_	-	_	-	-	-	-	-	-	_
Annual Maintenance Cost (2022\$/kBtu/h)	-	_	_	_	-	-	-	-	-	-	-	_

- 1. Interior volume is characterized by the product size classes reported by ENERGY STAR. The large size class covers units with interior volume greater than or equal to 28 ft³. Interior volume for the large size class was determined based on the units in the ENERGY STAR database, accessed February 1, 2023.
- 2. Maximum idle energy rate is a function of interior volume. For the large size class, ENERGY STAR and high values were determined using the ENERGY STAR database, and the typical value uses the assumption that ENERGY STAR units are reported to be 70% more efficient than typical units.
- 3. Annual energy use is determined using the latest FEMP data from December 2021, which assumes that a typical 22.4 ft³ commercial hot food holding cabinet uses an average of 9 hours per day and 365 days per year. The large size class is assumed to use the same number of annual usage hours as the medium size class.
- 4. Retail equipment costs were determined using distributor information for undercounter, half-size, and full-size hot food holding cabinets.
- 5. Additional installation costs and maintenance costs are negligible.


Note:

ENERGY STAR V. 2.0 went into effect in October 2011 and was revised in December 2022. Massachusetts, Nevada, and Rhode Island state standards have adopted the ENERGY STAR V. 2.0 criteria that went into effect in October 2011. The majority of state standards (California, Colorado, Connecticut, DC, Maryland, New Hampshire, Oregon, Rhode Island, Vermont, and Washington) implement the ENERGY STAR V. 1.0 specification that went into effect in August 2003, which is recorded in the table. ENERGY STAR V. 1.0 specifies a maximum idle energy rate of 40 W per cubic foot of interior volume.

Commercial Hot Food Holding Cabinets

- Hot food holding cabinets are used in commercial kitchens to keep food warm until it is served.
- While available in many shapes and sizes, interior volumes around 21.4 ft³ were reported as typical in many settings in EIA Technology Forecast Updates (2018). FEMP currently lists 22.4 ft³ as a representative unit size.
- Annual unit energy consumption can range from < 1,000 to > 30,000 kWh/y, depending on size, efficiency, and usage.
- Energy performance metric is "Idle Energy Consumption Rate" in Watts, measured using ASTM Standard F2140-11.
- There are no Federal standards for hot food holding cabinets, but seven States have identical standards.
 - The first State standard took effect in California in 2006; this standard is now considered the typical or "baseline" product. It is also equivalent to the ENERGY STAR V. 1.0 Specification that went into effect in August 2003.
 - ENERGY STAR V. 2.0 went into effect in October 2011.
- Maximum Idle Energy Consumption Rate for products $12 \le V < 28$:
 - State standards: $\leq 40 \times V$ (baseline)
 - ENERGY STAR V. 2.0: \leq 2.0 × V + 254 (about 65% below baseline) where V is interior volume in ft³.
- The most efficient products are about 80% below baseline.
- Energy savings achieved with insulation, automatic door closers, magnetic door gaskets, and Dutch doors (half-doors).

Commercial hot food holding cabinet shipments peaked in 2007 at 115,000 units, followed by a peak of 90,000 units in 2019.

Source: ENERGY STAR (Unit Shipment Data)

<u>Return to Table of Conte</u>

Appendix A Data Sources

Guidehouse 1676 International Drive McLean, VA 22102

And

Leidos 11951 Freedom Drive Reston, VA 20190

Return to Table of Content

Residential Space Heating and Cooling

Residential Gas-Fired Furnaces (North)

	2015	2020		20)22		2030	2040	2050				
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR (North) V. 4.1	High	Typical / High						
Typical Input Capacity (kBtu/h)					Reside	ntial Furnace	aces EERE 2022 NOPR						
AFUE (%)		CFR	DOE CCD STAR DOE CCD Residential Furnaces EERE 2022 NOPR V. 4.1										
Electric Consumption (kWh/y)		ll Furnaces E 2016											
Average Life (y)					Reside	ntial Furnace	s EERE 2022 NOPR						
Retail Equipment Cost (2022\$)													
Total Installed Cost (2022\$)		l Furnaces E 2016		Residential Furnaces EERE 2022 NOPR									
Annual Maintenance Cost (2022\$)													

Residential Gas-Fired Furnaces (Rest of Country)

	2015	2020		20)22		2030	2040	2050			
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR (ROC) V. 4.1	High	Typical / High					
Typical Input Capacity (kBtu/h)				Residential Furnaces EERE 2022 NOPR								
AFUE (%)		CFR	DOE CCD ENERGY STAR DOE CCD Residential Furnaces EERE 2022 NOPR V. 4.1									
Electric Consumption (kWh/y)		l Furnaces 2016				Residen	tial Furnaces EERE 2022	2 NOPR				
Average Life (y)					Resider	ntial Furnace	s EERE 2022 NOPR					
Retail Equipment Cost (2022\$)												
Total Installed Cost (2022\$)		l Furnaces 2016	Residential Furnaces EERE 2022 NOPR									
Annual Maintenance Cost (2022\$)												

Residential Oil-Fired Furnaces

	2015	2020		20	22		2030	2040	2050					
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.1	High	Typical / High							
Typical Input Capacity (kBtu/h)		Residential Furnaces EERE 2011												
AFUE (%)		CFR DOE CCD STAR DOE CCD V. 4.1												
Electric Consumption (kWh/y)														
Average Life (y)														
Retail Equipment Cost (2022\$)					Resi	dential Furn	aces EERE 2011							
Total Installed Cost (2022\$)														
Annual Maintenance Cost (2022\$)														

Residential Gas-Fired Boilers

	2015	2020		20	22		2030	2040	2050				
SOURCES	Installed Base	Installed Base	I vnical STAK High I vnical / High										
Typical Input Capacity (kBtu/h)			Boilers EERE 2022 Preliminary Analysis										
AFUE (%)			Boilers EERE 2022 reliminary Analysis DOE CCD ENERGY STAR V. 3.0 Boilers EERE 2022 Preliminary Analysis										
Electric Consumption (kWh/y)			V. 3.0										
Average Life (y)	Boilers EERE 2016												
Retail Equipment Cost (2022\$)					Во	ilers EERE 2	2022 Preliminary Analy	sis					
Total Installed Cost (2022\$)			Boners LERE 2022 Fremmary Thiarysis										
Annual Maintenance Cost (2022\$)													

Residential Oil-Fired Boilers

	2015	2020		20	22		2030	2040	2050				
SOURCES	Installed Base	Installed Base	I vnical STAK High I vnical / High										
Typical Input Capacity (kBtu/h)			Boilers EERE 2022 Preliminary Analysis										
AFUE (%)			Boilers EERE 2022 reliminary Analysis DOE CCD ENERGY STAR V. 3.0 Boilers EERE 2022 Preliminary Analysis										
Electric Consumption (kWh/y)			V. 3.0										
Average Life (y)	Boilers EERE 2016												
Retail Equipment Cost (2022\$)					Во	ilers EERE 2	2022 Preliminary Analy	sis					
Total Installed Cost (2022\$)			Boners LERE 2022 Fremmary Thiarysis										
Annual Maintenance Cost (2022\$)													

Residential Electric Resistance Furnaces

	2015	2020	20	22	2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical		Typical	
Typical Input Capacity (kBtu/h)		Distril	outors				
AFUE (%)		DOE / A	SHRAE				
Average Life (y)		Distril	outors			0.11	
Retail Equipment Cost (2022\$)	EIA Technology	Gordian's RSMe	ans Data – Buildi	ng Construction		Guidehouse	
Total Installed Cost (2022\$)	Forecast Updates (2018)		ts 2023 / Guideho				
Annual Maintenance Cost (2022\$)		Guidehouse					

Residential Electric Resistance Unit Heaters

COLINGES	2015	2020	2022	2030	2040	2050		
SOURCES	Installed Base	Installed Base	Typical		Typical			
Typical Capacity (kBtu/h)	Distri	butors	Utilities/Distributors					
Efficiency (%)	DO	OE .	DOE					
Average Life (y)			Guidehouse		Guidehouse			
Retail Equipment Cost (2022\$)	Cuide	house	Distributors	Guidenouse				
Total Installed Cost (2022\$)	Guide	nouse	Home Remodeling Service					
Annual Maintenance Cost (2022\$)			Guidehouse					

Residential Central Air Conditioners – North (Not Hot-Dry or Hot-Humid)

	2015	2020		20)22			2023		2030	2040	2050
SOURCES	Installed Base Base Current Standard Typical Typical STAR V. 5.0 ENERGY STAR High Standard V. 6.1 ENERGY STAR High V. 6.1											
Typical Input Capacity (kBtu/h)		CAC and HP EERE 2016										
SEER		CAC and HP EERE 2016 / Guidehouse CFR CCD CCD CCD CCD CAC and STAR HP EERE RESNET HP EERE V. 5.0 2016 CAC and CAC and HP EERE CCD CAC and STAR HP EERE CCD CCD CCD CCD CCD CCD CCD CCD CCD CC										
SSER2		CAC and ENERGY RESNET HP EERE STAR RESNET 2016 V. 5.0 2016 CAC and ENERGY HP EERE V. 6.1										
Average Life (y)				CAC as	nd HP EEI	RF 2016					Guidehouse	
Retail Equipment Cost (2022\$)			Cric u		XL 2010						
Total Installed Cost (2022\$)		CAC and HP EERE 2016 / Less (2021)										
Annual Maintenance Cost (2022\$)	CAC and HP EERE 2016											

Residential Central Air Conditioners – South (Hot-Dry and Hot-Humid)

	2015	2020		20)22			2023		2030	2040	2050	
SOURCES	Installed Base		Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	High	Typical / High			
Typical Input Capacity (kBtu/h)		CAC and HP EERE 2016											
SEER	CAC and 2016 / Gu		(HR	DOE CCD	ENERGY STAR V. 5.0	CAC and HP EERE 2016		NET	CAC and HP EERE 2016				
SSER2		CAC and ENERGY RESNET HP EERE STAR RESNET 2016 V. 5.0											
Average Life (y)				CAC α	nd HP EEI	DE 2016					Guidehouse		
Retail Equipment Cost (2022\$)			CAC a	na Fir Eei	XE 2010							
Total Installed Cost (2022\$)	CAC and HP EERE 2016 / Less (2021)												
Annual Maintenance Cost (2022\$)	CAC and HP EERE 2016												

Residential Room Air Conditioners

	2015	2020		20	22		2030		2040		2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.2	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	Distri	butors					RAC EERE	2022 NOPR				
CEER (Btu/Wh)	Guide	house	CFR	DOE CCD	ENERGY STAR V. 4.2	DOE CCD	RAC EERE 2022 NOPR	DOE CCD	RAC EERE 2022 NOPR	DOE CCD	RAC EERE 2022 NOPR	DOE CCD
Average Life (y)												
Retail Equipment Cost (2022\$)	RAC EERE					PAC.	EEDE 2022 N	JODD				
Total Installed Cost (2022\$)	2011		RAC EERE 2022 NOPR									
Annual Maintenance Cost (2022\$)												

Residential Portable Air Conditioners

	2015	2020	20)22	20	25	20	030	20	40	20	50	
SOURCES	Installed Base	Installed Base	Typical	High	New Standard	High	Typical	High	Typical	High	Typical	High	
Typical Capacity (kBtu/h)													
CEER													
Average Life (y)													
Retail Equipment Cost (2022\$)		PAC EERE 2020/Guidehouse											
Total Installed Cost (2022\$)		PAC EERE 2020/Guidehouse											
Annual Maintenance Cost (2022\$)													

Residential Swamp Coolers

COLIDORG	2015	2020	20	22	20	30	2040		2050	
SOURCES	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
CFM	D.,	o du at I itawatu	mo / Cui dahar							
Power (Hp)	PTO	oduct Literatu	re / Guidenoi	ise						
Average Life (y)	7	ΓLC Plumbing	; / Guidehous	e			C. i la	.		
Retail Equipment Cost (2022\$)							Guide	house		
Total Installed Cost (2022\$)		iterature / Gor Construction C								
Annual Maintenance Cost (2022\$)										

Residential Air-Source Heat Pumps

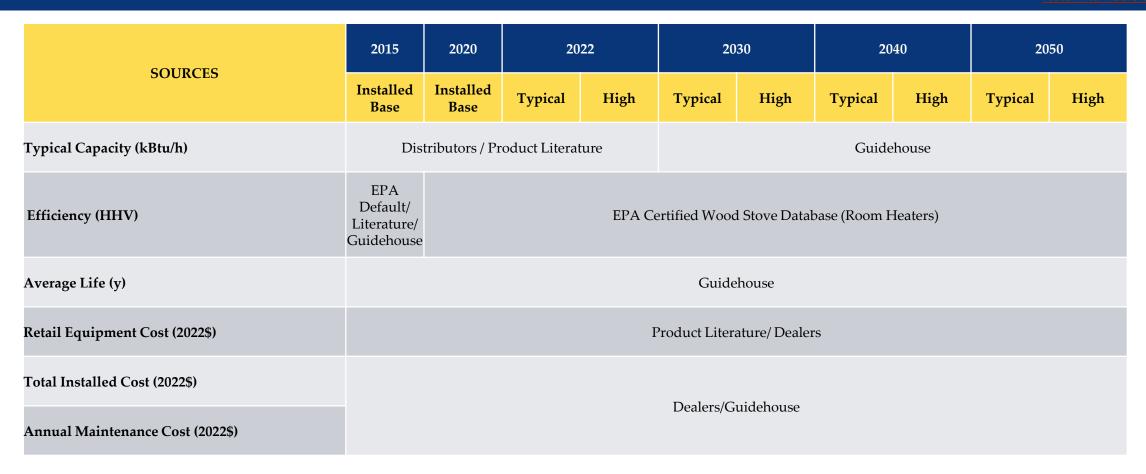
	2015	2020		20	022			20	23		2030	2040	2050			
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	ENERGY STAR Cold Climate Criteria	High	5	Гурісаl/High	1			
Typical Capacity (kBtu/h)						CACs and H	IPs EERE 201	6 Direct Fin	al Rule							
SEER (Cooling)																
HSPF (Heating)	EERE 20 Final	nnd HPs 16 Direct Rule/ ehouse		DOE CCD/ Guidehouse	ENERGY STAR V. 5.0	CACs and HPs EERE 2016 Direct Final Rule	CACs and HPs EERE 2016 Direct Final Rule/ Guidehouse	ENERGY STAR V. 6.1	ENERGY STAR V. 6.1	CACs and HPs EERE 2016 Direct Final Rule	CACs and HPs EERE 2016 Direc Final Rule/Guidehouse					
Average Life (y)																
Retail Equipment Cost (2022\$)	CACs and HPs EERE 2016 Direct Final Rule Guidehouse															
Total Installed Cost (2022\$)				CACS	and FIFS EE	IKE 2016 DIFE	ect rinai Kule				Guidenouse					
Annual Maintenance Cost (2022\$)																

Residential Ductless Mini-Split Air-Source Heat Pumps

SOURCES	2015	2020	2022		203	0	204	0	2050	0	
SOURCES	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High	
Typical Input Capacity (kBtu/h)											
SEER		A LIDI/C: A	a h awaa								
EER		AHRI/Guid	enouse								
HSPF							C: 4-1				
Average Life (y)	CACs a	nd HPs EERE 20	16 Direct Final R	ule			Guideh	iouse			
Retail Equipment Cost (2022\$)	Gordian's RSMe	eans Data – Build	ling Construction	Costs 2023							
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)	CACs a	nd HPs EERE 20	16 Direct Final R	ule							

Residential Ground-Source Heat Pumps

	2015	2020		20)22		20	30	20	40	20	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.2	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	Heat Pur 2015 Final	rce Unitary nps EERE Rule / DOE CD										
COP (Heating)	AHRI	AHRI Database/										
EER (Cooling)	Database	DOE CCD										
Average Life (y)							Guide	house				
Retail Equipment Cost (2022\$)		se / Water- nitary Heat										
Total Installed Cost (2022\$)	Pumps E	ERÉ 2015 Rule										
Annual Maintenance Cost (2022\$)												


Residential Natural Gas Heat Pumps

SOURCES	2015	2020	2022	2030	2040	2050	
SOURCES	Install	ed Base		Тур	oical		
Typical Capacity (kBtu/h)	Manuf	acturer					
COP (Heating)							
COP (Cooling)	Product l	Literature					
Annual Electric Use (kWh/y)				Cuide	chouse		
Average Life (y)	Guide	ehouse		Guide	riouse		
Retail Equipment Cost (2022\$)	PE	ERC					
Total Installed Cost (2022\$)	Cuida	ehouse					
Annual Maintenance Cost (2022\$)	Guide	enouse					

Residential Cordwood Stoves

	2015	2020	20	22	20	30	20	40	205	50
SOURCES	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	Dis	tributors / Pr	oduct Literat	ure			Guide	house		
Efficiency (Non-Catalytic) (HHV)	Guidehouse			EPA Ca	artified Wood	I Stova Datak	nasa (Room H	Joators)		
Efficiency (Catalytic) (HHV)	/ Literature EPA Certified Wood Stove Database (Room Heaters)									
Average Life (y)					Guide	house				
Retail Equipment Cost (2022\$)				I	Product Liter	ature/Dealer	s			
Total Installed Cost (2022\$)	Dealers Dealers/Guidehouse									
Annual Maintenance Cost (2022\$)	Dealers/Guidehouse									

Residential Wood Pellet Stoves

Residential Water Heating

Residential Gas-Fired Storage Water Heaters

	2015	2020		2	2022		2023	20	30	20	40	205	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.0	High	ENERGY STAR V. 5.0	Typical	High	Typical	High	Typical	High
Typical Capacity (gal)	Guidehouse	CWH EERE 2010 Final Rule /AHRI		CWH EER	E 2022 Prel	liminary Analy	ysis						
Uniform Energy Factor	Guidenouse	DOF CCD	Analysis STAR Preliminary STAR Analysis										
Average Life (y)	CWH EERE Rul												
Retail Equipment Cost (2022\$)	Distributors	CWH EERE 2010 Final Rule								Gu	ndenouse		
Total Installed Cost (2022\$)		CWH EERE 2010 Final Rule	CWH EERE 2022 Preliminary Analysis RE 2010 tal Rule										
Annual Maintenance Cost (2022\$)	CWH EERE Rul												

Residential Oil-Fired Water Heaters

COMPORT	2015	2020		2022		2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High		Typical / High	
Typical Capacity (gal)	AHRI	CWH EERE 2010 Final Rule/AHRI						
Uniform Energy Factor	Guidehouse AHRI/DOE CCD CWH EERE 2022 Preliminary Analysis Guidehouse CWH EERE 2010 Final							
Average Life (y)								
Retail Equipment Cost (2022\$)								
Total Installed Cost (2022\$)	Rule							
Annual Maintenance Cost (2022\$)								

Residential Electric Resistance Storage Water Heaters

COLIDERS	2015	2020		2022		20	30	20	40	205	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (gal)	AHRI	CWH EERE 2010 Final Rule/AHRI									
Uniform Energy Factor	Guidehouse	AHRI/ DOE CCD									
Average Life (y)			CWH EI	ERE 2022 Pre	eliminary				1		
Retail Equipment Cost (2022\$)	CWH EER	E 2010 Final		Analysis	J			Guide	nouse		
Total Installed Cost (2022\$)	Ri	ıle									
Annual Maintenance Cost (2022\$)											

Residential Heat Pump Water Heaters

	2015	2020		2022		20	30	204	4 0	209	50
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Capacity (gal)		AHRI	CWH EE	RE 2022 Pre Analysis	eliminary						
Uniform Energy Factor	Guidehouse	DOE CCD	CWH EERE 2022 Preliminary Analysis	ENERGY STAR	CWH EERE 2022 Preliminary Analysis						
Average Life (y)	CWH EERI Ru	E 2010 Final ile	·								
Retail Equipment Cost (2022\$)	CWH EERE 2010 Final Rule	Distributors		RE 2022 Pr∈	eliminary						
Total Installed Cost (2022\$)	CWH EERI			Analysis		minary					
Annual Maintenance Cost (2022\$)	Ru	ıle									

Residential Solar Water Heaters

	2015	2020	202	22	2030	2040	2050
SOURCES	Installed Base	Installed Base	ENERGY STAR V. 4.0	Typical	Typical	Typical	Typical
Typical Capacity (sq. ft.)	SPCC / Co	uidehouse	ENERG	Y STAR			
Solar Uniform Energy Factor (SUEF)	SRCC / G	uidenouse	DC	DE			
Average Life (y)		DOE / Gu	uidehouse			Guidehouse	
Retail Equipment Cost (2022\$)		Forecast Updates				Guidenouse	
Total Installed Cost (2022\$)	(20	018)	Building Construction Costs 2023				
Annual Maintenance Cost (2022\$)	Guide	ehouse	DOE				

Residential Gas-Fired Instantaneous Water Heaters

	2015	2020		2	022		2023	20	30	20	40	205	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.0	High	ENERGY STAR V. 5.0	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	AHRI	CWH EERE 2010 Final Rule /AHRI		CWH EERE	2022 Prelim	inary Analys	is						
Uniform Energy Factor	Guidehouse	DOE CCD	CCD CWH EERE 2022 ENERGY 2022 ENERGY STAR Preliminary Analysis STAR Preliminary Analysis Guidehouse										
Average Life (y)													
Retail Equipment Cost (2022\$)	CWH EERE		010 Final CWH EERE 2022 Preliminary Analysis										
Total Installed Cost (2022\$)	Ru	le	CWII EERE 2022 I Tellillillary Allarysis										
Annual Maintenance Cost (2022\$)													

Residential Electric Instantaneous Water Heaters

COLIDATE	2015	2020		2022		20	30	20	40	205	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)			CWH EE	ERE 2022 Pre Analysis	liminary						
Uniform Energy Factor				ERE 2022 Pre alysis/DOE C							
Average Life (y)	Guide	house						Guide	house		
Retail Equipment Cost (2022\$)			Gordian's RSMeans Data Construction Costs					Guidenouse			
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)				Guidehouse							

Residential Appliances

Residential Refrigerator-Freezers (Top)

	2015	2020	2020 2022				2030		2040		2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)		RF EER	E 2021 Preli	minary Ana	ılysis / Guid	ehouse						
Energy Consumption (kWh/y)		DOE CCD/ Guidehouse	CFR	DOE CCD	ENERGY STAR	DOE CCD						
Average Life (y)	RF EERE						D	E FEDE 202	1 D. 1' '	. A 1	/C : 1.1	
Retail Equipment Cost (2022\$)	2011 / Guidehouse		C 0001 D 1	· •	1	1	K	F EEKE 202	I Preliminai	y Analysis	/ Guidehous	6e
Total Installed Cost (2022\$)		KF EEK	RF EERE 2021 Preliminary Analysis / Guidehouse									
Annual Maintenance Cost (2022\$)												

Residential Refrigerator-Freezers (Side)

	2015	2020		20	22		2030		2040		2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)		RF EERI	E 2021 Preli:	minary Ana	ılysis / Guid	lehouse						
Energy Consumption (kWh/y)		DOE CCD/ Guidehouse	CFR	DOE CCD								
Average Life (y)	RF EERE											
Retail Equipment Cost (2022\$)	2011 / Guidehouse		7 2021 D!:	A	1:- / C: 1	- h	RF EERE 2021 Preliminary Analysis / Guidehouse					se
Total Installed Cost (2022\$)		KF EEKI	RF EERE 2021 Preliminary Analysis / Guidehouse									
Annual Maintenance Cost (2022\$)												

Residential Refrigerator-Freezers (Bottom)

	2015	2020	020 2022				2030		2040		2050		
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High	
Typical Capacity (ft ³)		RF EER	E 2021 Prelii	minary Ana	ılysis / Guid								
Energy Consumption (kWh/y)		DOE CCD/ Guidehouse	CFR	DOE CCD	ENERGY STAR	DOE CCD							
Average Life (y)	RF EERE						D	E EEDE 202	1 D	Al:a	/ Cari dala asse		
Retail Equipment Cost (2022\$)	2011 / Guidehouse		RF EERE 2021 Preliminary Analysis / RF EERE 2021 Preliminary Analysis / Guidehouse								/ Guiaenous	se	
Total Installed Cost (2022\$)		Kr EEK											
Annual Maintenance Cost (2022\$)													

Residential Freezers (Chest)

	2015	2020		2022		2030	2040	2050		
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High					
Typical Capacity (ft³)		E 2011 / ehouse		Preliminary 021/DOE CC						
Energy Consumption (kWh/y)	Guide	ehouse	RF EERE Preliminary Analysis 2021	RF EERE Preliminary Analysis 2021/DOE CCD						
Average Life (y)					RF EERE Preliminary Analysis 2021		Guidehouse			
Retail Equipment Cost (2022\$)		E 2011 /		reliminary	RF EERE					
Total Installed Cost (2022\$)	Guidehouse		Analysis 2021		Preliminary Analysis 2021/DOE					
Annual Maintenance Cost (2022\$)	enance Cost (2022\$)				CCD					

Residential Freezers (Upright)

	2015	2022			2022		2030	2040	2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	Y High	Typical / High		h	
Typical Capacity (ft³)		RE 2011/ ehouse	RF EERE	Preliminary	Analysis 20					
Energy Consumption (kWh/y)	Guide	ehouse	RF EERE RF EERE Preliminary Preliminary Analysis 2021 Analysis 2021 DOE CCD RF EERE Preliminary ENERGY STAR DOE CCD							
Average Life (y)						RF EERE Preliminary Analysis 2021		Guidehouse		
Retail Equipment Cost (2022\$)		E 2011 /	RE FERE Prol	liminary Ana	dveje 2021	RF EERE				
Total Installed Cost (2022\$)	Guidehouse		RF EERE Preliminary Analysis 2021			Preliminary Analysis 2021/				
Annual Maintenance Cost (2022\$)						DOE CCD				

Residential Natural Gas Cooktops

	2015	2020 2022			2030	2040	2050		
SOURCES	Installed Base Typical High				Typical / High				
Typical Capacity (kBtu/h)		Distributors / Pr	oduct Literature						
Integrated Annual Energy Consumption (kBtu/y) Guidehouse / Consumer Cooking Products EERE 2016 SNOPR									
Cooking Efficiency (%)		Guide	house						
Average Life (y)	Consum	ner Cooking Pro	ducts EERE 2020) NOPD		Guidehouse			
Retail Equipment Cost (2022\$)	Consumer Coo	oking Products I	EERE 2016 SNOI	PR / Consumer					
Total Installed Cost (2022\$)	Co	ooking Products	EERE 2020 NOI	PD					
Annual Maintenance Cost (2022\$)	Guidehouse / Consumer Cooking Products EERE 2016 SNOPR								

Residential Natural Gas Ovens

	2015	2020	2022		2030	2040	2050	
SOURCES	Installed Base	Installed Base	Typical	High		Typical / High		
Typical Capacity (kBtu/h)	Consumer Co	ooking Products Litera		PR / Product				
Typical Cavity Volume (ft³)	Consumer Cooking							
Integrated Annual Energy Consumption (kBtu/y)	Products EERE		NOPD	S LLIKE 2020				
Cooking Efficiency (%)		Guide	house					
Average Life (y)	Consumer Cooking Products EERE 2020 NOPD		ooking Product	s EERE 2020	Guidehouse			
Retail Equipment Cost (2022\$)	Consumer Cooking	NOPD						
Total Installed Cost (2022\$)	Products EERE 2016 SNOPR							
Annual Maintenance Cost (2022\$)	Guidehouse / C	Consumer Cookii	ng Products EEF	RE 2016 SNOPR				

Residential Natural Gas Ranges

	2015	2020	20	22	2030	2040	2050
SOURCES	Installed Base	Installed Base	Typical	High		Typical / High	
Typical Capacity of Cooktop Component (kBtu/h)	D	istributors / Pro	duct Literature				
Typical Capacity of Oven Component (kBtu/h)	Consumer Coo	king Products E Literat		PR / Product			
Typical Cavity Volume of Oven Component (ft ³)	Consumer Cooking Products EERE 2020 NOPD						
Integrated Annual Energy Consumption (kBtu/y)	Guidehouse / Consumer Cooking Products EERE 2016 SNOPR	Consumer C	ooking Product NOPD	s EERE 2020		Guidehouse	
Average Life (y)	Consumer Cooking Products EERE 2020 NOPD						
Retail Equipment Cost (2022\$)	Guidehouse / Dis			Data – Building			
Total Installed Cost (2022\$)		Construction	Costs 2023				
Annual Maintenance Cost (2022\$)	Guidehouse / Co	nsumer Cooking	g Products EER	E 2016 SNOPR			

Residential Electric Cooktops

	2015	2020	20	22	2030	2040	2050			
SOURCES	Installed Base	Installed Base	Typical	High		Typical / High				
Typical Capacity (W)	Consumer Cooking Products EERE 2016 SNOPR / Distributors									
Integrated Annual Energy Consumption (kWh/y)										
Average Life (y)	Consum	aar Caaking Pra	duata EEDE 2020	NODD		Guidehouse				
Retail Equipment Cost (2022\$)	Consum	ner Cooking Prod	uucis EERE 2020	THOI D		Guidenouse				
Total Installed Cost (2022\$)										
Annual Maintenance Cost (2022\$)	Guidehouse / Consumer Cooking Products EERE 2016 SNOPR									

Residential Electric Ovens

	2015	2020	20	22	2030	2040	2050
SOURCES	Installed Base	Installed Base	Typical	High		Typical / High	
Typical Capacity (W)	Consumer Cool	king Products El	ERE 2016 SNOP	R / Distributors			
Typical Cavity Volume (ft³)	Consumer Cooking						
Integrated Annual Energy Consumption (kWh/y)	Products EERE						
Average Life (y)	Consumer Cooking Products EERE 2020 NOPD		ooking Product NOPD	s EERE 2020		Guidehouse	
Retail Equipment Cost (2022\$)	Consumer Cooking						
Total Installed Cost (2022\$)	Products EERE 2020 NOPD						
Annual Maintenance Cost (2022\$)	Guidehouse / C	onsumer Cookii	ng Products EEF	RE 2016 SNOPR			

Residential Electric Ranges

	2015	2020	20	22	2030	2040	2050
SOURCES	Installed Base	Installed Base	Typical	High		Typical / High	
Typical Capacity of Cooktop Component (W)	Consumor Cool	lein a Dua des ata El	EDE 2017 CNOD	D / Distributors			
Typical Capacity of Oven Component (W)	Consumer Coo.	king Products El	ERE 2016 SNOP.	X / Distributors			
Typical Cavity Volume of Oven Component (ft ³)	Consumer Cooking						
Integrated Annual Energy Consumption (kWh/y)	Products EERE						
Average Life (y)	Consumer Cooking Products EERE 2020 NOPD		ooking Product NOPD	s EERE 2020		Guidehouse	
Retail Equipment Cost (2022\$)	Consumer						
Total Installed Cost (2022\$)	Cooking Products EERE 2020 NOPD						
Annual Maintenance Cost (2022\$)	Guidehouse / C	Consumer Cookir	ng Products EEF	E 2016 SNOPR			

Residential Electric Clothes Dryers

	2015	2020		20)22		2030	2040	2040
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 1.1	High		Typical / High	
Typical Capacity (ft³)			DOE CCD			Guidehouse / DOE CCD / ENERGY STAR			
CEF, D1 (lb/kWh)	Consumer Clothes Clothes Clothes Clothes Clothes Clothes Clothes								
CEF, D2 (lb/kWh)	Dryers EERE DOE CCD Clothes Dryers EERE 2022 NOPR / Guidehouse Clothes DOE CCD STAR V. 1.1 ENERGY STAR								
Average Life (y)		Consum	er Clothes Dry	yers EERE 201	22 NOPR			Guidehouse	
Retail Equipment Cost (2022\$)	Co	onsumer Clot	hes Dryers EE	RE 2022 NOI	ıse				
Total Installed Cost (2022\$)			-						
Annual Maintenance Cost (2022\$)		Consum	er Clothes Dry	yers EERE 202					

Residential Natural Gas Clothes Dryers

	2015	2020		20)22		2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 1.1	High		Typical / High	
Typical Capacity (ft ³)	DOE CCD								
CEF, D1 (lb/kWh)	Consumer Clothes		Clark		ENEDGY				
CEF2, D2 (lb/kWh)	Dryers EERE 2022 NOPR / Guidehouse	DOE CCD	Clothes Dryers EERE 2022 NOPR	DOE CCD	ENERGY STAR V. 1.1	DOE CCD			
Average Life (y)		Consum	er Clothes Dr	yers EERE 20	22 NOPR			Guidehouse	
Retail Equipment Cost (2022\$)	Co	onsumer Clot	hes Dryers EE	RE 2022 NOI	PR / Guidehou	se			
Total Installed Cost (2022\$)									
Annual Maintenance Cost (2022\$)		Consum	er Clothes Dr	yers EERE 20	22 NOPR				

Residential Clothes Washers (Front)

	2015	2020		20)22		2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 8.1	High		Typical / High	
Typical Capacity (ft³)	Guidehouse		DOE CCD		DOE CCD				
Integrated Modified Energy Factor (ft³/kWh/cycle)		DOE CCD / Guidehouse	RCW EERE 2021	DOE CCD	ENERGY	DOE CCD			
Integrated Water Factor (gal/cycle/ft³)	Guidehouse Preliminary STAR V. 8.1 Analysis								
Average Life (y)		RCW	EERE 2021 Pr	eliminary Ar					
Water Consumption (gal/cycle)									
Hot Water Energy (kWh/cycle)		Cuidabausa	/ DCW/ EEDE	2021 Prolimir	any Analysia			Guidehouse	
Machine Energy (kWh/cycle)		Guidenouse	/ RCW EERE	2021 FTeIIIIII	iary Anarysis				
Dryer Energy (kWh/cycle)									
Retail Equipment Cost (2022\$)	EIA Technology	RCW	EERE 2021 Pr	eliminary Ar	alysis/ Distrib	utors			
Total Installed Cost (2022\$)	Forecast Updates RCW EERE 2021 Preliminary Analysis/ Guidehouse (2018)								
Annual Maintenance Cost (2022\$)		RCW EERE 2	2021 Prelimina	ary Analysis /	Guidehouse				

Residential Clothes Washers (Top)

	2015	2020		20)22		2030	2040	2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 8.1	High		Typical / High		
Typical Capacity (ft ³)	Guidehouse	Guidehouse	DOE CCD		DOE CCD	DOE CCD				
Integrated Modified Energy Factor (ft³/kWh/cycle)	AHAM/	RCW EE		DOE CCD	ENERGY	DOE CCD				
Integrated Water Factor (gal/cycle/ft ³)	Guidehouse	Preliminar	y Analysis		STAR V. 8.1					
Average Life (y)		RCW	EERE 2021 P	reliminary Ar	nalysis					
Water Consumption (gal/cycle)		RCW EERE 2	2021 Prelimin	ary Analysis ,	Guidehouse					
Hot Water Energy (kWh/cycle) Machine Energy (kWh/cycle) Dryer Energy (kWh/cycle)	Guidehouse						Guidehouse			
Retail Equipment Cost (2022\$)	EIA Technology Forecast	RCW	EERE 2021 Pr	reliminary An	alysis / Guide	house				
Total Installed Cost (2022\$)	Updates (2018)	es es								
Annual Maintenance Cost (2022\$)		RCW EERE 2	2021 Prelimin	ary Analysis ,						

Residential Dishwashers

	2015	2020		20	22		2023	2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 6.0	High	ENERGY STAR V. 7.0		Typical / High	
Typical Annual Energy Use (kWh/y)		Guidehouse / DOE CCD		Guidehouse / DOE CCD		DW EERE 2022	ENERGY			
Water Consumption (gal/cycle)	EERE 2012 Final Rule	/ ENERGY STAR	CFR	/ ENERGY STAR	STAR	Preliminary Analysis	STAR			
Water Heating Energy Use (kWh/y)	AHAM 2014 / DW EERE 2012 Final Rule	DW EERE 2016 Direct Final Rule							Guidehouse	
Average Life (y)		2016 Direct Guidehouse		DW EERE 20)22 Prelimir	nary Analysis				
Retail Equipment Cost (2022\$)		DW EERE								
Total Installed Cost (2022\$)	Rule	2016 Direct Final Rule								

Return to Table of Content

Commercial Space Heating and Cooling

Commercial Gas-Fired Furnaces

	2012	2018		2022		2	2023	2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	New Standard	Typical		Typical	
Typical Input Capacity (kBtu/h)	AHRI	CWAF EERE 2015		DOE	CCD					
Thermal Efficiency (%)		DOE CCD	CFR	DOE	CCD	CFR				
Typical Output Capacity (kBtu/h)			Guide	house						
Average Life (y)								Guide	house	
Retail Equipment Cost (2022\$)								Guide	nouse	
Total Installed Cost (2022\$)			CWAF E	ERE 2015						
Total Installed Cost (2022\$/kBtu/h)										
Annual Maintenance Cost (2022\$)										
Annual Maintenance Cost (2022\$/kBtu/h)										

Commercial Oil-Fired Furnaces

	2012	2018	2022			2	023	2030	2040	2050
SOURCES	Installed Base		Current Standard		High	New Standard	Typical		Typical/High	
Typical Input Capacity (kBtu/h)	AHRI	DOE		DOE	CCD					
Thermal Efficiency (%)		CCD	10 CFR 431.77	DOE	CCD	10 CFR 431.77				
Typical Output Capacity (kBtu/h)			Guide	house						
Average Life (y)									Guidehouse	
Retail Equipment Cost (2022\$)									Guidenouse	
Total Installed Cost (2022\$)			CWAF E	ERE 2015						
Total Installed Cost (2022\$/kBtu/h) Annual Maintenance Cost (2022\$)										
Annual Maintenance Cost (2022\$/kBtu/h)										

Commercial Electric Resistance Heaters

COLIDORS	20	12	20	18	20	22	20	30	2040		20	50
SOURCES	Small	Large	Small	Large	Small	Large	Small	Large	Small	Large	Small	Large
Typical Capacity (kBtu/h)		I	Distributors	/Guidehous	e							
Efficiency (%)			Guideho	use/DOE								
Average Life (y)	Technolo	ogy Cost and		ce File for C 2010	ommercial l	Model for						
Retail Equipment Cost (2022\$)					Gordian's	RSMeans			Cuida	ehouse		
Total Installed Cost (2022\$)	EIA Tecl	hnology For	ecast Updat	tes (2018)	Data – E Construct	Building tion Costs			Guide	enouse		
Total Installed Cost (2022\$/kBtu/h)					20	23						
Annual Maintenance Cost (2022\$)			Ci 1.	h								
Annual Maintenance Cost (2022\$/kBtu/h)			Guide	ehouse								

Commercial Electric Boilers

SOURCES	2012	2018	2022	2030	2040	2050	
SOURCES	Installed Base	Installed Base			Typical		
Typical Capacity (kW)	BSR	IA			Guidehouse		
Efficiency (%)			EERE/	Guidehouse			
Average Life (y)	ASHRAE 2007 HVAC Applications	ASHRAE 2015 HVAC Applications	ASHRAE 2019 HVAC Applications				
Retail Equipment Cost (2022\$)			Gord	dian's RSMeans Da	nta – Building Cons Guidehouse	struction Costs 2023 /	
Total Installed Cost (2022\$)			Gordian's RSMeans Data – Building Construction Costs 2023				
Total Installed Cost (2022\$/kBtu/h)	EIA Technology Fore	Forecast Updates (2018)					
Annual Maintenance Cost (2022\$)			EIA Toolog alogy Foregot Undates (2019)			stoc (2018)	
Annual Maintenance Cost (2022\$/kBtu/h)			EIA Technology Forecast Updates (2018)				

Commercial Gas-Fired Boilers

COLINGES	2012	2018		2022			2023		20)30	20	40	205	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	New Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	Guidehouse					Com	m. Package	ed Boilers	s EERE 202	20				
Thermal Efficiency (%)	ASHRAE Standard 90.1-2004 / Guidehouse	Comm. Packaged Boilers EERE 2020 / Guidehouse		OE CCD			(Comm. P	ackaged B	oilers EER	E 2020/Gui	dehouse		
Average Life (y)	Comm. Heating, AC, WH EERE 2009													
Retail Equipment Cost (2022\$)	EIA Technology													
Total Installed Cost (2022\$)	Forecast Updates					Com	m. Package	ed Boiler	s EERE 202	20				
Total Installed Cost (2022\$/kBtu/h)	(2018)													
Annual Maintenance Cost (2022\$)	Comm. Heating,													
Annual Maintenance Cost (2022\$/kBtu/h)	AC, WH EERE 2009													

Commercial Oil-Fired Boilers

agun gra	2012	2018		2022			2023		20	030	2040		205	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	New Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	Guidehouse					Com	m. Package	ed Boilers	s EERE 202	20				
Thermal Efficiency (%)	ASHRAE Standard 90.1-2004 / Guidehouse	Comm. Packaged Boilers EERE 2020 / Guidehouse		OE CCD			(Comm. P	ackaged B	oilers EER	E 2020/Gui	dehouse		
Average Life (y)	Comm. Heating, AC, WH EERE 2009													
Retail Equipment Cost (2022\$)	EIA Technology													
Total Installed Cost (2022\$)	Forecast					Com	m. Package	ed Boilers	s EERE 202	20				
Total Installed Cost (2022\$/kBtu/h)	Updates (2018)													
Annual Maintenance Cost (2022\$)	Comm. Heating,													
Annual Maintenance Cost (2022\$/kBtu/h)	AC, WH EERE 2009													

Commercial Centrifugal Chillers (Water-Cooled)

2012	2018		2022		203	30	20	40	20	50
Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High	Typical	High	Typical	High	Typical	High
	IPCC/AR	B/TEAP/Guio	dehouse							
ASHRAE 90.1-										
2010/FEMP/ eSource/ Product Literature	AS	SHRAE 90.1-2	019/Product	Lit						
2007 ASHRAE Applications Handbook				oook A37			Guide	house		
EIA										
Forecast	Gordian's R			Construction						
Updates (2018)										
	Guideho	ouse/Alabama	ı Power							
	ASHRAE 90.1- 2010/FEMP/ eSource/ Product Literature 2007 ASHRAE Applications Handbook EIA Technology Forecast Updates	Installed Base IPCC/AR ASHRAE 90.1- 2010/FEMP/ eSource/ Product Literature 2007 ASHRAE Applications Handbook EIA Technology Forecast Updates (2018) Installed Base IPCC/AR AS Gordian's R	Installed Base IPCC/ARB/TEAP/Guide ASHRAE 90.1-2010/FEMP/eSource/Product Literature 2007 ASHRAE Applications Handbook EIA Technology Forecast Updates (2018) GIPCC/ARB/TEAP/Guide 90.1-2010/FEMP/ASHRAE ASHRAE Applications Tabel Gordian's RSMeans Data Costs	Installed Base Installed Base IPCC/ARB/TEAP/Guidehouse ASHRAE 90.1- 2010/FEMP/ eSource/ Product Literature 2007 ASHRAE Applications Handbook EIA Technology Forecast Updates Installed Base 90.1-2019 ASHRAE 90.1-2019/Product 1000	Installed Base	Installed Base Base 90.1-2019 Typical High Typical IPCC/ARB/TEAP/Guidehouse ASHRAE 90.1-2010/FEMP/ eSource/ Product Literature 2007 ASHRAE Applications Handbook EIA Technology Forecast Updates (2018) Gordian's RSMeans Data – Building Construction Costs 2023	Installed Base	Installed Base Installed Base Mase Superior Typical High High High Typical High High	Installed Base 90.1-2019 Typical High Typical High Typical High IPCC/ARB/TEAP/Guidehouse ASHRAE 90.1-2010/FEMP/ eSource/ Product Literature 2007 ASHRAE Applications Handbook EIA Technology Forecast Updates (2018) Gordian's RSMeans Data – Building Construction Costs 2023 Typical High Typical High Typical High Typical High Typical Guidehouse	Installed Base Installed Base Suite Suit

Commercial Reciprocating Chillers (Air-Cooled Only)

	2012	2018		2022		200	30	20	40	205	50
SOURCES	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (tons)	BSRIA/D	DEER		Guidehouse							
Efficiency (kW/ton)	ASHRAE 90.1- 2010/DEER/ FEMP/Product Literature	ASHRAE 90.1-2016 (>150 TR)	ACLIDAE	00.1.2010	Due des et I :t						
СОР	ASHRAE 90.1- 2010/DEER/ FEMP/Product Literature	ASHRAE 90.1-2016 (>150 TR)	ASHRAE	90.1-2019	Product Lit						
Average Life (y)	Manufacturers	2015 AS	HRAE Applica Tab		oook A37			Guide	house		
Retail Equipment Cost (2022\$/ton)											
Total Installed Cost (2022\$/ton)	EIA Technolog Updates (SMeans Data ruction Cost							
Total Installed Cost (2022\$/kBtu/h)											
Annual Maintenance Cost (2022\$/ton)		0.111									
Annual Maintenance Cost (2022\$/kBtu/h)		Guideho	ehouse/Alabama Power								

Commercial Screw Chillers (Air-Cooled Only)

	2012	2018		2022		2030	2040	2050			
SOURCES	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High		Typical/High				
Typical Capacity (tons)			Guidehouse								
Efficiency (kW/ton)				ASHRAE 90.1-							
СОР	Guidehouse	ASHRAE 90.1- 2016 (>150 TR)			Product Lit						
Average Life (y)	Manufacturers		Facilit	iesNet							
Retail Equipment Cost (2022\$/ton)										
Total Installed Cost (2022\$/ton)							Guidehouse				
Total Installed Cost (2022\$/kBtu/h)		logy Forecast es (2018)		RSMeans Data on Costs 2023 / C							
Annual Maintenance Cost (2022\$/ton)		Cuidal	a ou co / A labama	Dozuzon							
Annual Maintenance Cost (2022\$/kBtu/h)		Guider	nouse/Alabama	ı rower							

Commercial Scroll Chillers (Air-Cooled Only)

	2012	2018		2022			2030	2030 2040		
SOURCE	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High			Typical / High		
Typical Capacity (tons)		Guidel	nouse/Manufa	cturers						
Efficiency [full-load/IPLV] (kW/ton)			ASHRAE							
COP [full-load/IPLV]	Guidehouse	Product Lit/ Guidehouse	90.1-2019 (>150 TR)	Product Lit/ Guidehouse	Product Lit					
COI [IUII-IUUU/II LV]			(>150 TK)							
Average Life (y)		1	Manufacturers Guidehouse							
Retail Equipment Cost (2022\$/ton)								Guidehouse		
Total Installed Cost (2022\$/ton)		logy Forecast es (2018)		RSMeans Data on Costs 2023 /						
Total Installed Cost	Opuate	es (2016)	Constructio	II Costs 2023 /	Guidenouse					
(2022\$/kBtu/h) Annual Maintenance Cost										
(2022\$/ton)		Cuidob	ouse/Alabama	a Posszor						
Annual Maintenance Cost (2022\$/kBtu/h)		Guiden	ouse/Alabam	a i owei						

Commercial Gas-Fired Chillers (Water-Cooled, Direct-Fired Only)

	20	12	20	18		20	22		2030	2040	2050		
SOURCES	Installed Base: Absorption	Installed Base: Engine- Driven	Installed Base: Absorption	Installed Base: Engine- Driven	ASHRAE 90.1-2019 Absorption		Absorption	Engine- Driven	Absor	rption/Engine-D	riven		
Typical Capacity (tons)				BSRIA/D	istributors								
COP [full-load]					ASHRAE								
COP [IPLV]		iterature/ house	Produ	ıct Lit	90.1-2019 Direct-fired Double Effect	CA Title 24 Gas Engine Standard		ıct Lit					
Average Life (y)	Applio Hand	SHRAE cations book/ butors	20	015 ASHRA	E Applicatio	ns Handboo	ok A37 Table	4		Guidehouse			
Retail Equipment Cost (2022\$/ton) Total Installed Cost	EIA Tec	hnology For	ecast Update	es (2018)		an's RSMea							
(2022\$/ton) Total Installed Cost (2022\$/kBtu/h)		0,7	1	,	Constr	uction Costs	3 2023 / Guid	ehouse					
Annual Maintenance Cost (2022\$/ton)			Gı	uidehouse/ <i>/</i>	Alabama Pow	ver .							
Annual Maintenance Cost (2022\$/kBtu/h)	Guidehouse/Alabama Power												

Commercial Rooftop Air Conditioners

	2012	2018		20	22			20	23		20	30	20	40	20	50
SOURCES	Installed Base		Current Standard	IVnical	ENERGY STAR V. 3.1	High	New Standard	Typical	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Output Capacity (kBtu/h)	AHRI / Guidehouse				CUA	C EERE	2016									
Part Load Efficiency (IEER)	(CUAC EE	RE 2016		ENERGY STAR	CU	AC EERE	2016	ENERGY STAR	CUAC EERE 2016		CUAC	EERE 201	16 / Gui	dehouse	
Efficiency (EER)		CUAC EERE 2016 / Guidehouse														
Efficiency Conversion		Calculated														
Average Life (y)							CUAC	C EERE 20)16							
Retail Equipment Cost (2022\$) Total Installed Cost (2022\$)	Distributors / Guidehouse / DEER, 2008							CUAC E	ERE 2016							
Total Installed Cost (2022\$/kBtu/h)							Ca	lculated								
Annual Maintenance Cost (2022\$)		CUAC EERE 2016														
Annual Maintenance Cost (2022\$/kBtu/h)							Ca	lculated								

Commercial Gas-Fired Engine-Drive Rooftop Air Conditioners

SOURCES	2012	2018	2022	2030	2040	2050			
SOURCES	Insta	alled Base		Тур	pical				
Typical Capacity (tons)									
Heating COP				Cuide	ehouse				
Cooling COP				Guide	eriouse				
Average Life (y)									
Retail Equipment Cost (\$/ton)	EIA Technology I	Forecast Updates (2018)							
Total Installed Cost (\$/ton)									
Total Installed Cost (\$/kBtu/h)			Gordian's RSMeans Data – Building Construction Costs 2023 / Guidehouse						
Annual Maintenance Cost (2022\$)									
Annual Maintenance Cost (2022\$/kBtu/h)									

Commercial Rooftop Heat Pumps

	2012	2018		202	2			2023		203	0	204	0	205	0
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.1	High	New Standard	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)				EECU	HP EERE 201	6									
Part Load Efficiency (IEER)		HP EERE 201	16 / Guideho	use	ENERGY STAR	CUHP	EERE 2016	ENERGY STAR	CUHP EERE		CUHP	EERE 2016	6 / Guido	ehouse	
COP (Heating)					SIAK			SIAK	2016						
Average Life (y)															
Retail Equipment Cost (2022\$)															
Total Installed Cost (2022\$)	EIA														
Total Installed Cost (2022\$/kBtu/h)	Technology Forecast Updates						CUH	IP EERE 2016	6						
Annual Maintenance Cost (2022\$)	(2018)														
Annual Maintenance Cost (2022\$/kBtu/h)															

Commercial Ground-Source Heat Pumps

a over ove	2012	2018		2022		20	030	20	40	20	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	U.S. DOE/EIA	Water-So		Heat Pumps al Rule	s EERE 2015						
COP (Heating)	Cod dala socia		ATIDI	Deteless							
EER (Cooling)	Guidehouse		АПКІ	Database							
Average Life (y)	Guidehouse / V	Vater-Sourc	e Unitary He Rule	eat Pumps EI	ERE 2015 Final						
Retail Equipment Cost (2022\$)	Distributors/G uidehouse										
Total Installed Cost (2022\$)	U.S. DOD/IGSHPA							Guid	lehouse		
Total Installed Cost (2022\$/kBtu/h)	/MA DOER/CEFIA/ ASHRAE		urce Unitary	Heat Pump	s 2015 EERE						
Annual Maintenance Cost (2022\$)	Geothermal Heat Pump Consortium,			/ Guidehous							
Annual Maintenance Cost (2022\$/kBtu/h)	Inc. (U.S. DOE Contract DE- FG07- 95ID13347)										

Packaged Terminal Air Conditioners

COMPCEC	2012	2018		2022		20	30	20	40	208	50
SOURCES	Installed Base	Installed Base	Current Standard Typical High			Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)											
Efficiency (EER)											
Efficiency											
Average Life (y)											
Retail Equipment Cost (2022\$)		PTAC & P	THP EERE 2	022 NOPD			PTAC & PT	ΓHP EERE 20	22 NOPD / (Guidehouse	
Total Installed Cost (2022\$)											
Total Installed Cost (2022\$/kBtu/h)											
Annual Maintenance Cost (2022\$)											
Annual Maintenance Cost (2022\$/kBtu/h)											

Packaged Terminal Heat Pumps

COMPONS	2012	2018	8 2022				2030		2040		2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High	
Typical Capacity (kBtu/h)												
Efficiency (EER)												
Efficiency												
COP (Heating)												
Average Life (y)			TI ID EEDE A	022 NODD				ELID EEDE 20	022 NODD //	C: 1.1		
Retail Equipment Cost (2022\$)		PIAC	THP EERE 2	UZZ NOPD			PIAC & P.	ΓHP EERE 20	122 NOPD / (Juidenouse		
Total Installed Cost (2022\$)												
Total Installed Cost (2022\$/kBtu/h)												
Annual Maintenance Cost (2022\$)												
Annual Maintenance Cost (2022\$/kBtu/h)												

Commercial Water Heating

Commercial Gas-Fired Storage Water Heaters

	2012	2018		202	22		20	30	20	40	205	50	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High	
Typical Storage Capacity (gal)	-		CWH EERE 2022 NOPR										
Typical Input Capacity (kBtu/h)	EIA Technology												
Thermal Efficiency (%)	Forecast Updates (2018)	DOE CCD / Guidehouse											
Average Life (y)					C	WH EERE 20)22 NOPR						
Retail Equipment Cost (2022\$)													
Total Installed Cost (2022\$/kBtu/h)													
Annual Maintenance Cost (2022\$)					CWH E	ERE 2022 NC)PR						
Annual Maintenance Cost (2022\$/kBtu/h)													
Annual Maintenance Cost (2022\$/kBtu/h)													

Commercial Electric Resistance Storage Water Heaters

COLINGES	2012	2018	202	2	2030	2040	2050		
SOURCES	Installed Base	Installed Base	Current Standard	Typical		Typical			
Typical Storage Capacity (gal)	Product Literature / Guidehouse								
Typical Input Capacity (kW)	Product	CW	H EERE 2016 NO	PR					
Typical Input Capacity (kBtu/h)	Literature								
Thermal Efficiency (%)		Guide	house						
Average Life (y)		CWH EERE	2016 NOPR		Guidehouse				
Retail Equipment Cost (2022\$)									
Total Installed Cost (2022\$)	CMILLEEDE 2017								
Total Installed Cost (2022\$/kBtu/h)	CWH EERE 2016 NOPR / Guidehouse		H EERE 2016 NO	PR					
Annual Maintenance Cost (2022\$)	Guidenouse								
Annual Maintenance Cost (2022\$/kBtu/h)									

Commercial Heat Pump Water Heaters

a o v m o v a	2012	2018	2	2022	2030	2040	2050			
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.0	Typical	Typical	Typical			
Water Flow Rate (gal/min)										
Typical Output Capacity (kW)	Distributors	/Guidehouse								
Typical Output Capacity (kBtu/h)	Distributors	/Guidenouse								
Coefficient of Performance (COP _h)										
Average Life (y)	EERE/Gu	ıidehouse	Guidehouse							
Retail Equipment Cost (2022\$)					Guidenouse					
Total Installed Cost (2022\$)		Forecast Updates (18)								
Total Installed Cost (2022\$/kBtu/h)										
Annual Maintenance Cost (2022\$)	Cuida	ehouse								
Annual Maintenance Cost (2022\$/kBtu/h)	Guiae	enouse								

Commercial Oil-Fired Storage Water Heaters

COLIDATE	2012	2018		2022		2030	2050			
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High					
Typical Storage Capacity (gal)	AHRI /	AHRI/		DOE CCD/Guidehouse						
Typical Input Capacity (kBtu/h)	Guidehouse		DOE CCD/	Guidenouse						
Thermal Efficiency (%)	Guide	ehouse	CFR DOE CCD							
Average Life (y)	Commercial H	leating, Air Condi	tioning and Wate	r Heating Equipm	ent EERE 2001					
Retail Equipment Cost (2022\$)										
Total Installed Cost (2022\$)										
Total Installed Cost (2022\$/kBtu/h)		Dist	ributors / Guideh							
Annual Maintenance Cost (2022\$)										
Annual Maintenance Cost (2022\$/kBtu/h)										

Commercial Electric Booster Water Heaters

SOURCES	2012	2018	2022	2030	2040	2050				
SOURCES	Installed Base	Installed Base	Typical	Typical	Typical	Typical				
Typical Capacity (gal)										
Typical Output Capacity (kBtu/h)										
Thermal Efficiency (%)										
Average Life (y)										
Retail Equipment Cost (2022\$)			Product Literatu	ıre / Guidehouse						
Total Installed Cost (2022\$)										
Total Installed Cost (2022\$/kBtu/h)										
Annual Maintenance Cost (2022\$)										
Annual Maintenance Cost (2022\$/kBtu/h)										

Commercial Gas-Fired Booster Water Heaters

COLINGEG	2012	2018	20	22	2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	Typical	Typical	Typical
Typical Capacity (gal)							
Typical Output Capacity (kBtu/h)							
Thermal Efficiency (%)							
Average Life (y)							
Retail Equipment Cost (2022\$)			Produc	t Literature / Guid	lehouse		
Total Installed Cost (2022\$)							
Total Installed Cost (2022\$/kBtu/h)							
Annual Maintenance Cost (2022\$)							
Annual Maintenance Cost (2022\$/kBtu/h)							

Commercial Gas-Fired Instantaneous Water Heaters

	2012	2018		20)22		20	30	20	40	205	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)			DOE	CCD					DOE CCD /	C : 1.1		
Thermal Efficiency (%)	Guidehouse	e/DOE CCD	DOE	CCD	ENERGY STAR	DOE CCD			DOE CCD /	Guidenous	2	
Average Life (y)												
Retail Equipment Cost (2022\$)												
Total Installed Cost (2022\$)						CIAIL FEDE	2022 NODD					
Total Installed Cost (2022\$/kBtu/h)						CWH EERE	2022 NOPR					
Annual Maintenance Cost (2022\$)												
Annual Maintenance Cost (2022\$/kBtu/h)												

Commercial Solar Water Heaters

COLIDORS	2012	2018	20	22	2023	2030	2040	2050			
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 4.0	ENERGY STAR V. 5.0	Typical	Typical	Typical			
Typical Capacity (sq. ft.)											
Typical Capacity (m ²)		CD	RCC / Guidehou								
Typical Capacity (Input) (kBtu/h) - North		SIN.									
Typical Capacity (Input) (kBtu/h) - South											
Solar Uniform Energy Factor (SUEF)		ENERC	GY STAR / Guid								
Average Life (y)		SR	RCC / Guidehou	se							
Retail Equipment Cost (2022\$)	EIA Technol	ogy Forecast	Gordian's	RSMeans Data -	- Building	Guidehouse					
Total Installed Cost (2022\$)	Update	es (2018)	Construction	on Costs 2023 / C	Guidehouse						
Total Installed Cost (2022\$/kBtu/h) - North			Guidehouse								
Total Installed Cost (2022\$/kBtu/h) - South			Guidenouse								
Annual Maintenance Cost (2022\$)											
Annual Maintenance Cost (2022\$/kBtu/h) - North		DOE / Guidehouse									
Annual Maintenance Cost (2022\$/kBtu/h) - South											

Commercial Cooking Products

Final

Commercial Natural Gas Range with Griddle and Oven

	2012	2018		2022		2023	2030	2040	2050			
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.2	High	ENERGY STAR V. 3.0		Typical/High				
Griddle - Cooking Energy Efficiency (%)			ENERGY	ENERGY	ENERGY	NA						
Oven - Cooking Energy Efficiency (%)	Guidehouse	FSTC	STAR / FSTC	STAR	STAR	ENERGY STAR						
Range - Cooking Energy Efficiency (%)			FEMP / CEC	NA	FEMP / CEC	NA						
Combined Energy Efficiency (%)			Guidehou	se / FSTC								
Griddle - Normalized Idle Energy Rate (Btu/h/ft²)	Guidehouse	FSTC	ENERGY STAR / FSTC	ENERGY	ENERGY	NA						
Oven - Idle Energy Rate (Btu/h)	FE	MP	ENERGY STAR	STAR	STAR	ENERGY STAR						
Range - Idle Energy Rate (Btu/h)		FSTC		NA	FSTC	NA	Guidehous					
Combined Idle Energy Rate (Btu/h)		G	uidehouse / FS]	ΓC / Distribut	ors							
Average Life (y)			FS7	ГС								
Retail Equipment Cost (2022\$)			Distrik	outors								
Total Installed Cost (2022\$)												
Total Installed Cost (2022\$/kBtu/h)			FSTC / Gu									
Annual Maintenance Cost (2022\$)			Tion									
Annual Maintenance Cost (2022\$/kBtu/h)			FST									

Final

Commercial Electric Range with Griddle and Oven

	2012	2018		2022		2023	2030	2040	2050		
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.2	High	ENERGY STAR V. 3.0		Typical/High			
Griddle - Cooking Energy Efficiency (%)			FSTC / ENERGY	ENERGY	ENERGY	NA					
Oven - Cooking Energy Efficiency (%)	Guidehouse	FSTC	STAR / Guidehouse	STAR	STAR	ENERGY STAR					
Range - Cooking Energy Efficiency (%)			Guidenouse	NA	CEC	NA					
Combined Energy Efficiency (%)			Guidehou	se / FSTC							
Griddle - Normalized Idle Energy Rate (kW/ft²)	Cod dalana	FSTC	FSTC / ENERGY	ENERGY	ENERGY	NA					
Oven - Idle Energy Rate (kW)	Guidehouse	rarc	STAR / Guidehouse	STAR	STAR	ENERGY STAR		Callibration			
Range - Idle Energy Rate (kW)			N.	A			Guidehouse				
Combined Idle Energy Rate (kW)		Gı	uidehouse / FS	ΓC / Distribute	ors						
Average Life (y)			FS	ГС							
Retail Equipment Cost (2022\$)			Distrib	outors							
Total Installed Cost (2022\$)											
Total Installed Cost (2022\$/kBtu/h)			FSTC / Gu	iidehouse							
Annual Maintenance Cost (2022\$)											
Annual Maintenance Cost (2022\$/kBtu/h)			FS	ГС							

Commercial Hot Food Holding Cabinets – Small

	2012	2018		20)22		2030	2040					
SOURCES	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical/High						
Interior Volume (ft³)]	FEMP / ENE	RGY STAR									
Maximum Idle Energy Rate (W)	CEE / Guidehouse	FEMP	ASAP	ASAP / ENERGY STAR	ENERGY STAR V. 2.0	FEMP / ENERGY STAR							
Annual Energy Use (kWh/y)			FEN	/ID									
Average Life (y)			PEN	VII									
Retail Equipment Cost (2022\$)	Distribut	ors / ENER	GY STAR Sa	avings Calc	ulator / Gui	dehouse	Guidehouse						
Total Installed Cost (2022\$)			Cuidal	.									
Total Installed Cost (2022\$/kBtu/h)			Guidel	nouse									
Annual Maintenance Cost (2022\$) Annual Maintenance Cost			FST	ГС									
(2022\$/kBtu/h)													

Commercial Hot Food Holding Cabinets – Medium

	2012	2018		20)22		2030	2040						
SOURCES	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical/High							
Interior Volume (ft³)]												
Maximum Idle Energy Rate (W)	CEE / Guidehouse	FEMP	ASAP	ASAP / ENERGY STAR	ENERGY STAR V. 2.0	FEMP / ENERGY STAR								
Annual Energy Use (kWh/y)			FEN	/ID										
Average Life (y)			PEN	VII										
Retail Equipment Cost (2022\$)	Distribut	ors / ENER	GY STAR Sa	avings Calc	ulator / Gui	dehouse	Guidehouse							
Total Installed Cost (2022\$)			Cui dal	.										
Total Installed Cost (2022\$/kBtu/h)			Guidel	nouse										
Annual Maintenance Cost (2022\$) Annual Maintenance Cost (2022\$/kBtu/h)			FST	ГС										

Commercial Hot Food Holding Cabinets – Large

	2012	2018		20)22		2030	2040					
SOURCES	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical/High						
Interior Volume (ft³)]	FEMP / ENE	RGY STAR									
Maximum Idle Energy Rate (W)	CEE / Guidehouse	FEMP	ASAP	ASAP / ENERGY STAR	ENERGY STAR V. 2.0	FEMP / ENERGY STAR							
Annual Energy Use (kWh/y)			FEN	/ID									
Average Life (y)			PEN	VII									
Retail Equipment Cost (2022\$)	Distribut	ors / ENER	GY STAR Sa	avings Calc	ulator / Gui	dehouse	Guidehouse						
Total Installed Cost (2022\$)			Cuidal	.									
Total Installed Cost (2022\$/kBtu/h)			Guidel	nouse									
Annual Maintenance Cost (2022\$) Annual Maintenance Cost			FST	ГС									
(2022\$/kBtu/h)													

Final

<u>Return to Table of Conte</u>

Appendix B References

Guidehouse 1676 International Drive McLean, VA 22102

And

Leidos 11951 Freedom Drive Reston, VA 20190

- AHRI. Air Conditioners Monthly Shipments, Retrieved August 2022 from: https://ahrinet.org/statistics
- AHRI. Furnaces Historical Data, Retrieved August 2022 from: https://ahrinet.org/statistics
- Alabama Power (n.d.). Chillers: Compare Maintenance Costs. Retrieved September 2017 from:
 http://www.alabamapower.com/business/ways-to-save/chillers-space-cooling-options/compare-maintenance-costs.html
- ASAP. Hot Food Holding Cabinets. Retrieved October 2022 from https://appliance-standards.org/product/hot-food-holding-cabinets
- ASHRAE. (2004). ASHRAE Standard 90.1-2004. ASHRAE, Inc.
- ASHRAE. (2007). ANSI/ASHRAE/IESNA Standard 90.1-2007. ASHRAE, Inc.
- ASHRAE. (2016). ANSI/ASHRAE/IESNA Standard 90.1-2016. ASHRAE, Inc.
- ASHRAE. (2019). ANSI/ASHRAE/IESNA Standard 90.1-2019. ASHRAE, Inc.
- ASHRAE. (2015). 2015 ASHRAE Handbook HVAC Applications. ASHRAE Inc.
- Building Services Research and Information Association & Ducker Research Company. (1997, 1998). U.S. Market for Central Plant Air Conditioning; Market for Ducted Warm Air Central Heating; U.S. Market for Hydronic Heating and Burners; U.S. Water Heating Market; U.S. Unitary and Close Control Air Conditioning.
- California Energy Commission. (2019). Building Energy Efficiency Standards for Residential and Nonresidential Buildings.
- CEC. (n.d.). California Energy Commission Appliance Efficiency Database. Retrieved 2004, September 2010, June 2013, and October 2022 from: http://www.appliances.energy.ca.gov/AdvancedSearch.aspx

- CEE. (2009). "Commercial Hot Food Holding Cabinets Program Guide." Consortium for Energy Efficiency. April 2009.
- CFR. (n.d.). National energy conservation standards authorized under the Energy Policy and Conservation Act of 1975 (EPCA) and codified in the Code of Federal Regulations (CFR).
- DOE. (n.d.). *Estimating the Cost and Energy Efficiency of a Solar Water Heater*. Retrieved October 2022 from https://energy.gov/energysaver/estimating-cost-and-energy-efficiency-solar-water-heater
- DOE. (n.d.). Solar Water Heaters. Retrieved October 2022 from https://energy.gov/energysaver/solar-water-heaters
- Distributors. (n.d.). Guidehouse online research and discussions with distributors (e.g., Grainger, Home Depot, Lowe's, Sears, and others).
- EERE. (2001). Energy Efficiency Program for Commercial and Industrial Equipment; Efficiency Standards for Commercial Heating, Air Conditioning and Water Heating Equipment; Final Rule.
- EERE. (2007). Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces and Boilers; Final Rule.
- EERE. (2008). Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers; Direct Final Rule.
- EERE. (2009). Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment; Final Rule.
- EERE. (2010). Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters; Final Rule.

- EERE. (2011). Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and Room Air Conditioners; Direct Final Rule.
- EERE. (2011). Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners and Heat Pumps; Direct Final Rule.
- EERE. (2011). Energy Conservation Program: Standards for Residential Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule.
- EERE. (2012). Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers; Direct Final Rule.
- EERE. (2014). Energy Conservation Standards for Residential/Consumer Clothes Dryers.
- EERE. (2014). Energy Conservation Standards for Residential Conventional Cooking Products (Ovens).
- EERE. (2014). Energy Conservation Standards for Residential Furnaces.
- EERE. (2015). Energy Efficiency Program For Consumer Products And Commercial And Industrial Equipment: Commercial Warm Air Furnaces.
- EERE. (2015). Final Rule Technical Support Document: Energy Efficiency Program for Small, Large, and Very Large Commercial Package Air Conditioners.
- EERE. (2016). Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces; Direct final rule and Technical Support Document.
- EERE. (2016). Energy Conservation Program: Energy Conservation Standards for Residential Boilers.

- EERE. (2016). Final Rule Technical Support Document: Energy Efficiency Program for Residential Central Air Conditioners and Heat Pumps.
- EERE. (2016). Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Water Heating Equipment: Notice of Proposed Rulemaking.
- EERE. (2017). Energy Conservation Standards for Residential Clothes Washers.
- EERE. (2020). Energy Conservation Program: Energy Conservation Standards for Commercial Packaged Boilers; Final rule
- EERE. (2020). Energy Conservation Program: Energy Conservation Standards for Portable Air Conditioners.
- EERE. (2020). Final Rule Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Portable Air Conditioners.
- EERE. (2021). Energy Conservation Program: Energy Conservation Standards for Refrigerators, Refrigerator-Freezers, and Freezers.; Preliminary Analysis
- EERE. (2021). Energy Conservation Program: Product Classes for Residential Dishwashers, Residential Clothes Washers, and Consumer Clothes Dryers.
- EERE. (2022). Energy Conservation Program: Energy Conservation Standards for Residential Boilers; Preliminary Analysis.
- EERE. (2022). Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Notice of Proposed Rulemaking.
- EERE (2022). Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Determination.

- EERE (2022). Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters;
 Preliminary Analysis.
- EERE (2022). Energy Conservation Program: Energy Conservation Standards for Commercial Water Heating Equipment; Notice of Proposed Rulemaking.
- EIA Technology Forecast Updates Residential and Commercial Building Technologies. (2018). Retrieved August 2022 from: https://www.eia.gov/analysis/studies/buildings/equipcosts/pdf/appendix-a.pdf
- ENERGY STAR Savings Calculator (n.d.). "Savings Calculator for ENERGY STAR Qualified Commercial Kitchen Equipment." U.S. EPA and DOE. Retrieved June 2013 from http://www.energystar.gov/index.cfm?c=bulk_purchasing.bus_purchasing
- ENERGY STAR. (n.d.). Retrieved June 2013, September 2017, and October 2022, from ENERGY STAR Products: http://www.energystar.gov/index.cfm?c=products.pr find es products
- EPA. USEPA Certified Wood Stove Database. Retrieved August 2022 from: https://cfpub.epa.gov/oarweb/woodstove/index.cfm?fuseaction=app.search
- FacilitiesNet. (2009). Properly Diagnosing Chiller Life Cycles. Retrieved September 2017 from: http://www.facilitiesnet.com/hvac/article/Properly-Diagnosing-Chiller-Life-Cycles--10645
- FEMP. (2012). "Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets." Retrieved June 2013 from: http://www1.eere.energy.gov/femp/technologies/printable_versions/eep_hot_food.html
- FEMP. (2016, August). Purchasing Energy-Efficient Air-Cooled Chillers. Retrieved September 2017, from FEMP Technologies: https://www1.eere.energy.gov/femp/technologies/eep_ac_chillers.html

- FEMP. (2016, August). Purchasing Energy-Efficient Water-Cooled Electric Chillers. Retrieved September 2017, from FEMP Technologies: https://energy.gov/eere/femp/purchasing-energy-efficient-water-cooled-electric-chillers
- FEMP. (2020, June). Purchasing Energy-Efficient Air-Cooled Electric Chillers. Retrieved September 2022, from FEMP Technologies: https://energy.gov/eere/femp/purchasing-energy-efficient-air-cooled-electric-chillers
- FEMP. (2020, June). Purchasing Energy-Efficient Water-Cooled Electric Chillers. Retrieved September 2022, from FEMP Technologies: https://energy.gov/eere/femp/purchasing-energy-efficient-water-cooled-electric-chillers
- FEMP. (2021, December). Purchasing Energy-Efficient Hot Food Holding Cabinets. Retrieved October 2022 from FEMP Technologies: https://www.energy.gov/eere/femp/purchasing-energy-efficient-hot-food-holding-cabinets
- FSTC. (n.d.). Appliance Reports, Rangetop Performance Reports. Retrieved December 2017, from: https://fishnick.com/publications/appliancereports/rangetops/
- FSTC. (n.d.). Appliance Reports, Griddle Performance Reports. Retrieved December 2017, from: https://fishnick.com/publications/appliancereports/griddles/
- Gordian's RSMeans Data Building Construction Costs 2023. Copyright RSMeans and Gordian. 30 Patewood Dr. Suite 350, Greenville, SC, 29615; All rights reserved.
- Guidehouse. (n.d.). In-House Expertise.
- Less et. al. (2021). The Cost of Decarbonization and Energy Upgrade Retrofits for US Homes. Retrieved February 2023 from: https://eta-publications.lbl.gov/sites/default/files/final_walker the cost_of_decarbonization_and_energy.pdf
- IGSPHA. (n.d.). International Ground-Source Heat Pump Association. Retrieved 2007 from www.igshpa.okstate.edu

- International Ground-Source Heat Pump Association (IGSHPA) Conference Proceedings. (2012, October). Measuring the Costs & Benefits of Nationwide Geothermal Heat Pump (GHP) Deployment A Progress Report. Retrieved June 2013, from IGSHPA: <a href="http://www.igshpa.okstate.edu/membership/members_only/proceedings/2012/10-3-2012-0130-Session-C-Measuring-the-Costs-&-Benefits-of-Nationwide-Geothermal-Heat-Pump-(GHP)-Deployment-A-Progress-Report.pdf
- Manufacturers. (n.d.). Guidehouse discussions with product manufacturers.
- Product Literature. (n.d.). Literature from manufacturers and experts on specific products.
- Propane Education and Research Council (PERC). (2007). Assessment of Propane Fired Gas Air Conditioning, Heat Pumping and Dehumidification Technologies, Products, Markets and Economics
- Residential Energy Services Network. Draft PDS-01, MINHERS Addendum 71, SEER2/HSPF2 Conversions. Retrieved February 2023 from: https://www.resnet.us/about/standards/minhers/draft-pds-01-minhers-addendum-71-seer2-hspf2-conversions/
- Solar Rating and Certification Corporation (SRCC). (n.d.) Solar Uniform Energy Factor Specification. Retrieved October 2022 from: https://solar-rating.org/resources/suef/
- Technology Cost and Performance File for Commercial Model for AEO2010. (2009). (E. Boedecker, Compiler)
- U.S. Department of Energy's Compliance Certification Database. Retrieved August 2022 to February 2023 from: http://www.regulations.doe.gov/certification-data/

APPENDIX B

EIA - Technology Forecast Updates – Residential and Commercial Building Technologies – Advanced Case

Presented to:

U.S. Energy Information Administration

Prepared by:

Guidehouse

1676 International Drive McLean, VA 22102

And

Leidos

11951 Freedom Drive Reston, VA 20190

March 3, 2023

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

March 2023

Table of Contents

Final

<u>Objective</u>	5	Residential Gas-Fired Water Heater	57
<u>Methodology</u>	6	Residential Oil-Fired Water Heater	60
Advanced Case Assumptions	7	Residential Electric Resistance Water Heater	63
<u>Definitions</u>	8	Residential Electric Heat Pump Water Heater	66
Market Transformation	9	Residential Solar Water Heater	69
		Residential Gas-Fired Instantaneous Water Heater	72
Residential Gas-Fired Furnaces (North)	11	Residential Electric Instantaneous Water Heater	75
Residential Gas-Fired Furnaces (Rest of Country)	12		
Residential Oil-Fired Furnaces	15	Residential Refrigerator/Freezer (Top-Mount)	78
Residential Gas-Fired Boilers	18	Residential Refrigerator/Freezer (Side-Mount)	79
Residential Oil-Fired Boilers	21	Residential Refrigerator/Freezer (Bottom-Mount)	80
Residential Electric Furnaces	24	Residential Freezers (Chest)	84
Residential Electric Resistance Heaters	26	Residential Freezers (Upright)	85
Residential Central Air Conditioners (North)	28	Residential Natural Gas Cooktops	88
Residential Central Air Conditioners (South)	29	Residential Natural Gas Ovens	89
Residential Room Air Conditioners	32	Residential Natural Gas Ranges	90
Residential Portable Air Conditioners	35	Residential Electric Cooktops	93
Residential Swamp Coolers	38	Residential Electric Ovens	94
Residential Air-Source Heat Pumps	40	Residential Electric Ranges	95
Residential Ductless Mini-Split Air-Source Heat Pumps	44	Residential Clothes Dryers (Electric)	98
Residential Ground-Source Heat Pumps	46	Residential Clothes Dryers (Gas)	99
Residential Natural Gas Heat Pumps	48	Residential Clothes Washers (Front-Loading)	102
Residential Cordwood Stoves	50	Residential Clothes Washers (Top-Loading)	103
Residential Wood Pellet Stoves	53	Residential Dishwashers	106

Table of Contents

TT • 1	1
Final	
TILL	4

Commercial Gas-Fired Furnaces	110	Commercial Electric Booster Water Heater	159
Commercial Oil-Fired Furnaces	114	Commercial Gas-Fired Booster Water Heater	160
Commercial Electric Resistance Heaters	116	Commercial Gas-Fired Instantaneous Water Heater	162
Commercial Electric Boilers	118	Commercial Solar Water Heater	165
Commercial Gas-Fired Boilers	120		
Commercial Oil-Fired Boilers	123	Commercial Gas Range with Griddle and Oven	168
Commercial Centrifugal Chillers	126	Commercial Electric Range with Griddle and Oven	169
Commercial Reciprocating Chillers	128	Commercial Hot Food Holding Cabinet - Small	173
Commercial Screw Chillers	130	Commercial Hot Food Holding Cabinet - Medium	174
Commercial Scroll Chillers	132	Commercial Hot Food Holding Cabinet - Large	175
Commercial Gas Fired Chillers	134		
Commercial Rooftop Air Conditioners	136	<u>Data Sources</u>	A-1
Commercial Gas-Fired Engine-Driven Rooftop Air Conditioners	138	References	B-1
Commercial Rooftop Heat Pumps	140		
Commercial Ground-Source Heat Pumps	142		
Packaged Terminal Air Conditioners	144		
Packaged Terminal Heat Pumps	146		
Commercial Gas-Fired Water Heater	149		
Commercial Electric Resistance Water Heater	152		
Commercial Heat Pump Water Heater	155		
Commercial Oil-Fired Water Heater	157		

The objective of this study is to develop baseline and projected performance/cost characteristics for residential and commercial end-use equipment.

- Installed base in 2012 and 2018 (for commercial products) or 2015 and 2020 (for residential products) and current market (2022)
 - Review literature, standards, installed base, contractor, and manufacturer information
 - Provide a relative comparison and characterization of the cost/efficiency of a generic product
- Forecast of technology improvements that are projected to be available through 2050
 - Review trends in standards, product enhancements, and Research and Development (R&D)
 - Project impact of product improvements and enhancement to technology

The performance/cost characterization of end-use equipment developed in this study will assist EIA in projecting national primary energy consumption.

Input from industry stakeholders, including government, R&D organizations, and manufacturers, was used to project product enhancements concerning equipment performance and cost attributes.

- Technology forecasting involves many uncertainties.
- Technology developments impact performance and cost forecasts.
- Varied sources ensure a balanced view of technology progress and the probable timing of commercial availability.
- Only currently published efficiency standards and regulations are considered when predicting technology developments; unpublished future regulatory action is not predicted.
- All costs are shown in 2022 dollars (2022\$).
- Ranges, when given, represent the span of typical values for a given parameter (e.g., installed cost for equipment meeting the federal standard) not the highest and lowest available on the market.

Advanced Case Assumptions

The Advanced Case and Reference Case both assume current level of effort for standards. However, the Advanced Case assumes an increase in market incentive and federal R&D. The general approach for the Advanced Case is outlined below.

- The Advanced Case considers future changes to product groups such as:
 - Product or component changes that are fully developed but have not yet been commercialized
 - Expected incremental improvements in existing technologies due to increased R&D
 - Increased adoption of existing higher efficiency technology options due to increased market incentives
- The Advanced Case did *not* include future changes to product groups that are due to:
 - Prototype technology changes or products that are in preliminary research that may have performance improvements but have only been demonstrated in theoretical calculations

The following tables represent the current and projected efficiencies for residential and commercial building equipment ranging from the installed base in 2012 and 2018 (for commercial products) or 2015 and 2020 (for residential products) to the highest efficiency equipment that is expected to be commercially available by 2050, assuming incremental adoption. Below are definitions for the terms used in characterizing the status of each technology.

- <u>Installed Base:</u> Efficiency values are for those units installed and "in use" in that year. Cost values are for the typical new unit sold in that year.
- <u>Current Standard:</u> The minimum efficiency (or maximum energy use) that is required (allowed) by current U.S. Department of Energy (DOE) standards, when applicable.
- <u>ENERGY STAR</u>: The minimum efficiency that is required (or maximum energy use allowed) to meet the ENERGY STAR criteria, when applicable. The performance data that are presented are representative of certified products that just meet current ENERGY STAR specifications.
- <u>Typical:</u> Efficiency and cost values are for the average, or "typical," product being sold in the particular timeframe. This may represent either the shipments-weighted average product performance or the most common product on the market.
- <u>High:</u> Efficiency and cost values are for the product with the highest efficiency available in the particular timeframe.

Market Transformation

The market for the reviewed products has changed since this analysis was previously conducted.¹ These changes are noted and reflected in the efficiency and cost characteristics.

- In some categories the typical new product purchased today is more efficient than the average product in the installed base in 2012 (commercial) or 2015 (residential):
 - Residential sector: boilers, central air conditioners, room air conditioners, gas-fired furnaces (North), gas-fired furnaces (Rest of Country), oil-fired furnaces, electric resistance furnaces, heat pump water heaters, gas-fired instantaneous water heaters, natural gas cooktops, natural gas ovens, refrigerator-freezers, freezers, clothes dryers, clothes washers, and dishwashers
 - Commercial sector: gas-fired furnaces, oil-fired boilers, commercial rooftop heat pumps, commercial ground-source heat pumps, gas-fired instantaneous water heater, natural gas and electric ranges, griddles, and ovens
- More stringent Federal standards have taken effect for the following products:
 - Gas-fired and oil-fired boilers in 2021
 - Rooftop air conditioners and rooftop heat pumps in 2018
- Federal standards are slated to take effect in the coming years for the following products:
 - Central air conditioners, residential air-source heat pumps, gas-fired furnaces, oil-fired furnaces, gas-fired boilers, oil-fired boilers, rooftop air conditioners, and rooftop heat pumps in 2023
 - Portable air conditioners in 2025
- ENERGY STAR continues to raise the bar with revised criteria for:
 - Central air conditioners, residential air-source heat pumps, rooftop air conditioners, rooftop heat pumps, residential water heaters, and dishwashers in 2023

Final

Return to Table of Content

Residential Space Heating and Cooling

Residential Gas-Fired Furnaces (North)

Sa	me as Reference Case												
		2015	2020		20	22		2030		2040		2050	
	DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR (North) V. 4.1	High	Typical	High	Typical	High	Typical	High
	Typical Input Capacity (kBtu/h) ¹	80	80	80	80	80	80	80	80	80	80	80	80
	AFUE (%)	80	80	80	90	95	99	95	99	95	99	95	99
	Electric Consumption (kWh/y) ²	374	374	386	636	631	725	631	725	631	725	631	725
	Avvauga I : fa (v.) ³	17	17	17	17	17	17	17	17	17	17	17	17
	Average Life (y) ³	26	26	26	26	26	26	26	26	26	26	26	26
	Retail Equipment Cost (2022\$)	1,300	1,300	1,080	1,200	1,220	1,390	1,220	1,390	1,220	1,390	1,220	1,390
	Total Installed Cost (2022\$)	2,880	2,880	3,690	4,130	4,150	4,320	4,150	4,320	4,150	4,320	4,150	4,320
	Annual Maintenance Cost (2022\$)	60	60	120	130	130	130	130	130	130	130	130	130

- 1. Typical input capacity is represented in terms of thousand British thermal units (kBtu) per hour (i.e., kBtu/h).
- 2. Electric consumption, represented in terms of kilowatt hours per year (kWh/y), accounts for the electricity consumption of components such as the furnace fan, draft inducer, and the ignitor. In some high efficiency products, this component also includes auxiliary equipment, such as condensate pumps and heat tape.
- 3. In the Residential Furnaces EERE 2022 Notice of Proposed Rulemaking (NOPR) Technical Support Document (TSD), an average lifetime of 22.5 years is calculated for gas-fired furnaces (North). Lifetime range was calculated using the Weibull Distribution in the Residential Furnaces EERE 2022 NOPR.

Note:

Models on the market can be either weatherized or non-weatherized. The majority (74%) are non-weatherized, and the values in the table use only non-weatherized data.

Electric consumption and cost values for 2022 and beyond are for a national sample and use the Residential Furnaces EERE 2022 NOPR Life-Cycle-Cost (LCC) spreadsheet.

Electric consumption and costs for the 2030, 2040, and 2050 high values are estimated based on the maximum-efficiency level analyzed in Residential Furnaces EERE 2022 NOPR, which is 98% annual fuel utilization efficiency (AFUE). The current standard went into effect in November 2015.

ENERGY STAR V. 4.1 went into effect in February 2013.

The range for average life represents the span of typical values.

Residential Gas-Fired Furnaces (Rest of Country)

Sa	me as Reference Case												
	,	2015	2020		20)22		2030		2040		2050	
	DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR (ROC) V. 4.1	High	Typical	High	Typical	High	Typical	High
	Typical Input Capacity (kBtu/h)	80	80	80	80	80	80	80	80	80	80	80	80
	AFUE (%)	80	80	80	90	90	99	95	99	95	99	95	99
	Electric Consumption (kWh/y) ¹	279	279	386	636	636	725	631	725	631	725	631	725
	Average Life (y) ²	16	16	16	16	16	16	16	16	16	16	16	16
	Average Life (y)	25	25	25	25	25	25	25	25	25	25	25	25
	Retail Equipment Cost (2022\$)	1,260	1,260	1,080	1,200	1,200	1,390	1,220	1,390	1,220	1,390	1,220	1,390
	Total Installed Cost (2022\$)	2,380	2,380	3,690	4,130	4,130	4,320	4,150	4,320	4,150	4,320	4,150	4,320
	Annual Maintenance Cost (2022\$)	40	40	120	130	130	130	130	130	130	130	130	130

- 1. Electric consumption accounts for the electricity consumption of components such as the furnace fan, draft inducer, and the ignitor. In some high efficiency products, this component also includes auxiliary equipment, such as condensate pumps and heat tape.
- 2. In the Residential Furnaces EERE 2022 NOPR, an average lifetime of 21.5 years is calculated for gas-fired furnaces (Rest of Country). Lifetime range was calculated using the Weibull Distribution in the Residential Furnaces EERE 2022 NOPR.

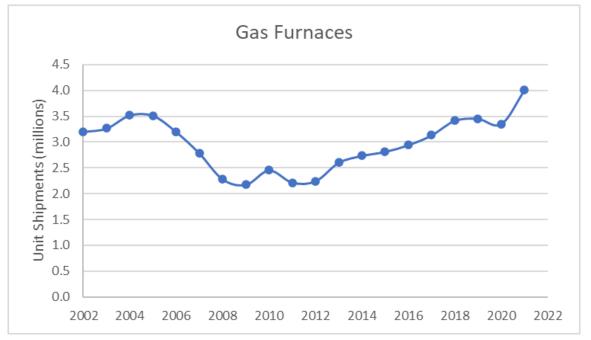
Note:

Models on the market can be either weatherized or non-weatherized. The majority (74%) are non-weatherized, and the values in the table use only non-weatherized data.

Electric consumption and cost values for 2022 and beyond are for a national sample and use the Residential Furnaces EERE 2022 NOPR LCC spreadsheet.

Electric consumption and costs for the 2030, 2040, and 2050 high values are estimated based on the maximum-efficiency level analyzed in Residential Furnaces EERE 2022 NOPR, which is 98% AFUE.

The current standard went into effect in November 2015.


ENERGY STAR V. 4.1 went into effect in February 2013.

The range for average life represents the span of typical values.

Residential Gas-Fired Furnaces

- Current Federal standards for non-weatherized gas furnaces:
 - AFUE $\geq 80\%$
- ENERGY STAR V. 4.1 criteria for gas furnaces:
 - South: AFUE \geq 90%
 - North: AFUE \geq 95%
 - Furnaces must be equipped with electronically commutated fan motor and have less than or equal to 2.0% air leakage
- Most efficient unit currently available: 99.0% AFUE. The current market is nearly evenly split between non-condensing units (AFUE≤82%) and condensing units (AFUE≥90%).
- The maximum AFUE for non-condensing gas furnaces is 82%; above this level, the potential for exhaust gas condensation increases. This condensate is corrosive and requires cost restrictive corrosion resistant venting.
- High-efficiency condensing furnaces typically have high-grade stainless steel (AL 29-4C) heat exchangers.
- Many condensing furnaces are available as direct vent and sealed combustion systems, which do not use room air for combustion, but instead draw combustion air directly from outdoors.
- Depending on the location of the home, piping materials in use, and other considerations, condensing furnaces may need an acid neutralizer and/or lift pump for the condensate.
- Furnaces may contain permanent split capacitor (PSC) fan motors or electronically commutated motors (ECMs). The type of motor affects the electrical consumption of the furnace as well as the seasonal energy efficiency ratio (SEER) / energy efficiency ratio (EER) of the associated air conditioner.
 - The 2016 Energy Conservation Standards for Residential Furnace Fans Final Rule requires that all furnaces use ECM fans.
 - Most non-weatherized gas furnaces employ ECMs and can fully modulate rather than cycling on and off. Because they
 modulate, there is an increase in total fan-on time.

Annual shipments reached 3.5 million units in 2005 and then declined each year until 2009, leveling off at about 2.25 million units. Since 2012, shipments have increased steadily and reached a peak of 4.0 million units in 2021.

Source: Air-Conditioning, Heating, and Refrigeration Institute (AHRI)

Residential Oil-Fired Furnaces

Same as Refere	ence Case /												
		2015	2020		20)22		203	30	204	40	20	50
	DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.1	High	Typical	High	Typical	High	Typical	High
Typical Input	Capacity (kBtu/h)	105	105	105	105	105	105	105	105	105	105	105	105
AFUE (%)		83	83	83	85	85	97	85	97	85	97	85	97
Electric Consu	umption (kWh/y) ¹	477	477	477	466	466	410	466	410	466	410	466	410
A T'C ()2	(\ ²	20	20	20	20	20	20	20	20	20	20	20	20
Average Life ((y)	33	33	33	33	33	33	33	33	33	33	33	33
Datail Equipm	nent Cost (2022\$)	2,620	2,620	2,620	2,650	2,650	3,170	2,650	3,170	2,650	3,170	2,650	3,170
кетап Ецигрп	ient Cost (2022 5)	3,450	3,450	3,450	3,490	3,490	4,090	3,490	4,090	3,490	4,090	3,490	4,090
Total Installac	1 Cost (2022¢)	3,250	3,250	3,250	3,480	3,480	5,140	3,480	5,140	3,480	5,140	3,480	5,140
Total Installed Cost (2022\$)	6,520	6,520	6,520	6,820	6,820	10,110	6,820	10,110	6,820	10,110	6,820	10,110	
Annual Maint	tenance Cost (2022\$)	80	80	80	80	80	240	80	240	80	240	80	240

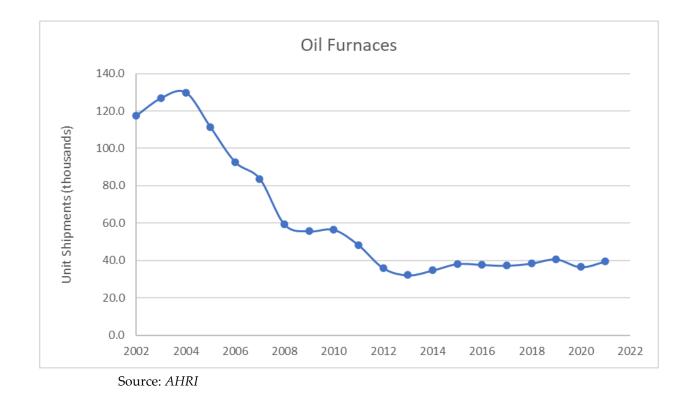
^{1.} Electric consumption accounts for the electricity consumption of components such as the furnace fan, draft inducer, and the ignitor. In some high efficiency products, this component also includes auxiliary equipment, such as condensate pumps and heat tape.

2. Lifetime range was calculated using the Weibull Distribution in Residential Furnaces EERE 2011.

Note:

The current standard went into effect in May 2013.

ENERGY STAR V. 4.1 went into effect in February 2013.


Ranges represent the span of typical values for a given parameter.

Residential Oil-Fired Furnaces

- Current Federal standards:
 - AFUE ≥ 83%
 - ≤ 11 watts of electrical power when in standby and off modes (non-weatherized models only)
- ENERGY STAR V. 4.1 criteria: AFUE ≥ 85%
- Since the latent heat content of oil is lower than that for either propane or natural gas, oil-fired appliances can typically operate at a higher AFUE rating than comparable gas-fired appliances before condensation issues arise.
- Most efficient unit currently available: 96.7% AFUE condensing units with tiny market share (<1%), due to market acceptance issues.
- Condensate from condensing oil furnaces is typically even more corrosive than that of gas-fired systems due to the higher sulfur content in fuel oil. Hence, condensing oil furnaces also likely require the use of an acid neutralizer.
- Oil-fired furnaces, like gas-fired furnaces, achieve condensing conditions through the use of a secondary heat exchanger. Typically, these secondary heat exchangers use a high-grade stainless steel (AL 29-4C).
- Sooting is an issue for all oil-fired appliances, but secondary heat exchangers, with their narrow passages, are even more prone to be plugged by soot. Because of this, condensing oil furnaces typically require frequent cleaning and maintenance.

Residential Oil-Fired Furnaces

Annual shipments declined rapidly after 2004, likely due, at least in part, to an increase in fuel oil prices, which more than tripled from 2002 to 2008. Since 2012 shipments have largely leveled off.

17

Residential Gas-Fired Boilers

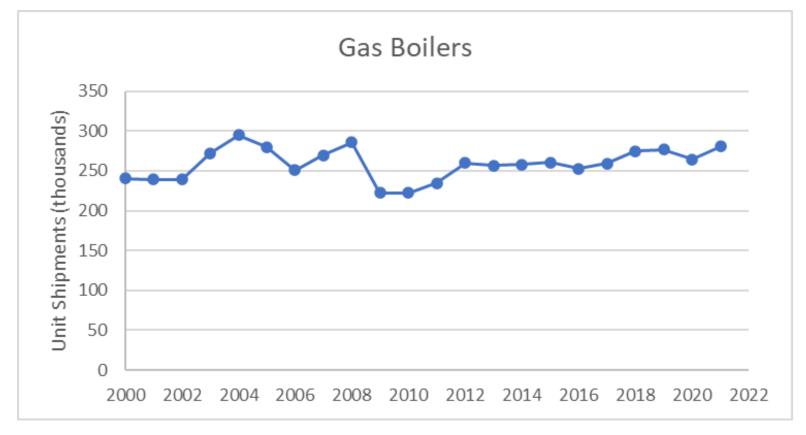
Same	e as Reference Case												
		2015	2020 ¹		20	22		2030 ²		2040 ²		2050 ²	
	DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.0	High	Typical	High	Typical	High	Typical	High
Ty	pical Input Capacity (kBtu/h)	100	100	100	100	100	100	100	100	100	100	100	100
AF	UE (%)	82	95	84	95	90	96	95	96	95	96	95	96
Ele	ectric Consumption (kWh/y) ³	197	506	282	506	527	502	506	502	506	502	506	502
Δ ***	oraga Lifa (v)	20	20	20	20	20	20	20	20	20	20	20	20
AV	erage Life (y)	30	30	30	30	30	30	30	30	30	30	30	30
Re	tail Equipment Cost (2022\$)	2,540	2,890	1,820	2,890	2,440	3,670	2,890	3,670	2,890	3,670	2,890	3,670
То	tal Installed Cost (2022\$)	7,760	5,940	8,700	5,940	6,700	6,710	5,940	6,710	5,940	6,710	5,940	6,710
An	nual Maintenance Cost (2022\$) ⁴	110	160	150	160	160	160	160	160	160	160	160	160

- 1. The 2020 AFUE is estimated based on EERE 2022 preliminary analysis, which estimates that gas-fired boilers with the highest market share in 2020 have an AFUE of 95%.
- 2. The 2030, 2040, 2050 projections are estimated based on the EERE 2022 preliminary analysis, which notes that majority of the market is expected to be condensing, if new standards are not implemented. The EERE 2022 preliminary analysis estimates a minimum efficiency of 95% AFUE for condensing units.
- 3. Electric Consumption accounts for the electricity consumption of auxiliary electrical components including circulating pump, the boiler pump (condensing boilers only), the draft inducer (if present), and the ignitor. It also accounts for the electricity consumption of auxiliary equipment such as a condensate pump and heat tape, which are sometimes installed with higher efficiency boilers. Additionally, it accounts for the additional cooling load due to heat loss from the boiler and water heater as a result of water heating during the cooling season.
- 4. Maintenance cost is the routine annual cost to the consumer of general maintenance for product operation. Maintenance cost is higher for condensing boilers for the inspection of condensate system and replacement of condensate neutralizer filter.

Note:

The current standard went into effect in January 2021.

ENERGY STAR V. 3.0 went into effect in December 2013.


Water boilers considered. Steam boilers also exist but make up a small percentage of the market.

The range for average life represents the span of typical values.

Residential Gas-Fired Boilers

- Federal standard for gas-fired hot-water boilers (more common than steam):
 - AFUE $\geq 84\%$
 - Standard went into effect on January 21, 2021
- ENERGY STAR criteria: AFUE ≥ 90%
- Most efficient gas-fired boiler available: 96.4% AFUE
- Gas-fired boilers have lost market share to furnaces and heat pumps over the past 30 years.
- U.S. gas hot water boiler sales are split approximately 60/40 between condensing and non-condensing.¹ Condensing boilers typically have heat exchangers made of stainless steel, and non-condensing boilers typically have heat exchangers made of cast iron.
- Typically, condensing boilers are low-mass in construction with modulating burners, variable-speed inducer fan systems or sealed powered direct-vent combustion, multiple sensor technologies, and electronic ignition and control.
- Due to incentives and market pressure, the U.S. boiler industry has been shifting towards also providing condensing boilers. Most of these boilers are private-labeled products sourced from Europe, where the hydronic market is much bigger and condensing appliances are much more common and/or required by law.
- Most value-added components for condensing boilers are sourced abroad, even when the condensing boiler is assembled in North America (e.g., heat exchanger, gas valve, burner, sensors, and/or controls).

Annual shipments had a significant decrease following the 2009 financial crisis and a steady recovery in the years since.

Source: Boilers EERE 2022 Preliminary Analysis

Residential Oil-Fired Boilers

Typical AFUE and costs increase to ENERGY STAR levels. High AFUE and costs increase to condensing units.

DATA	2015	2020 ¹	2022				2030 ²		2040 ²		2050 ²	
	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.0	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	140	140	140	140	140	140	140	140	140	140	140	140
AFUE (%)	84	86	86	86	87	88	87	95	87	95	87	95
Electric Consumption (kWh/y) ³	230	310	310	310	307	305	307	265	307	265	307	265
Average Life (y) ⁴	18	18	18	18	18	18	18	18	18	18	18	18
	28	28	28	28	28	28	28	28	28	28	28	28
Retail Equipment Cost (2022\$)	4,850	3,590	3,590	3,590	3,680	3,770	3,680	6,890	3,680	6,890	3,680	6,890
Total Installed Cost (2022\$)	9,800	5,510	5,510	5,510	5,600	5,690	5,600	11,910	5,600	11,910	5,600	11,910
Annual Maintenance Cost (2022\$) ⁴	160	170	170	170	170	170	170	170	170	170	170	170

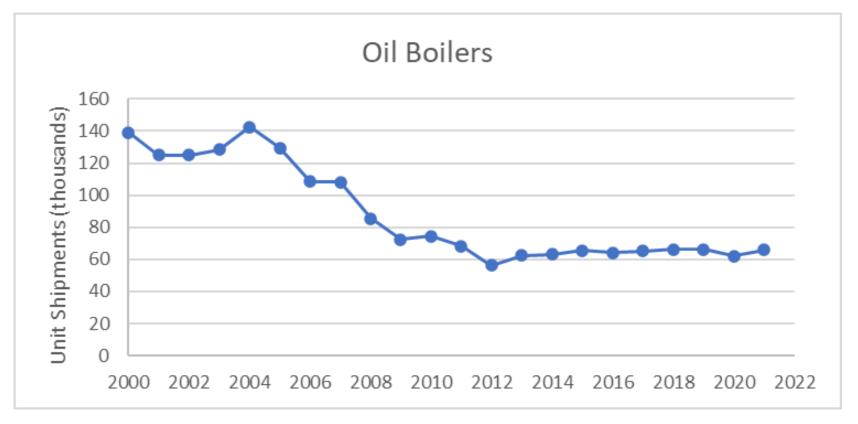
- 1. The 2020 AFUE is estimated based on EERE 2022 preliminary analysis, which estimates that oil-fired boilers with the highest market share in 2020 have an AFUE of 86%.
- 2. The 2030, 2040, 2050 projections are estimated based on the EERE 2022 preliminary analysis, which notes that majority of the market is expected to be at 86% AFUE, if new standards are not implemented.
- 3. Electric Consumption accounts for the electricity consumption of auxiliary electrical components including circulating pump, the ignitor, condensate pump, and heat tape, which are sometimes installed with higher efficiency boilers. Additionally, it accounts for the additional cooling load due to heat loss from the boiler and water heater as a result of water heating during the cooling season.
- 4. Maintenance cost is the routine annual cost to the consumer of general maintenance for product operation.

Note:

The current standard went into effect in January 2021.

ENERGY STAR V. 3.0 went into effect in December 2013.

Water boilers considered. Steam boilers also exist but make up a small percentage of the market.


The range for average life represents the span of typical values.

Residential Oil-Fired Boilers

- Federal standard for oil-fired hot-water boilers (more common than steam):
 - AFUE ≥ 86%
 - Standard went into effect on January 21, 2021
- ENERGY STAR criteria: AFUE ≥ 87%
- Most efficient oil-fired boiler available: 88% AFUE
- Since the latent heat content of oil is lower than that for either propane or natural gas, oil-fired appliances can typically operate at a higher AFUE rating than comparable gas-fired appliances before condensation issues arise.
- Oil boilers have heat exchangers made of cast iron or steel.
- No condensing oil-fired boilers currently exist in the U.S. market. The high sulfur content in fuel-oil causes heat exchanger fouling if the flue gases from an oil-fired boiler were to condense. As a result, condensing oil-fired boilers would require more frequent maintenance and repair, if installed.
- Advanced Case: Increased incentives move typical efficiency products to ENERGY STAR levels by 2030. The current typical efficiency product is at 86% AFUE, while ENERGY STAR is at 87%, with only a small difference in costs. It is expected that with more market incentives, manufacturers will produce more products that can be ENERGY STAR certified at the 87% level.
- Advanced Case: High efficiencies expected to be at 95% AFUE for condensing oil-fired boilers. These models are already seen in Europe and would be expected to re-enter the U.S. market as well.

Residential Oil-Fired Boilers

Annual shipments declined rapidly after 2004, likely due, at least in part, to an increase in fuel oil prices, which more than tripled from 2002 to 2008. Since 2012 shipments have largely leveled off.

Source: Boilers EERE 2022 Preliminary Analysis

Residential Electric Resistance Furnaces

Same as Reference Case **DATA** Current **Installed Base Installed Base Typical Typical Typical Typical** Standard Typical Input Capacity (kBtu/h) AFUE (%) Average Life (y) Retail Equipment Cost (2022\$)1 Total Installed Cost (2022\$)1 1,290 1,290 1,480 1,480 1,480 1,480 1,480 Annual Maintenance Cost (2022\$)1

Note:

^{1.} Costs for a 100% AFUE unit are assumed to be equal to the costs of a 98% AFUE unit.

The current standard went into effect in January 1992.

The range for average life represents the span of typical values.

Residential Electric Resistance Furnaces

- Federal standards for electric furnaces:
 - AFUE ≥ 78%
 - Standby and off mode power consumption ≤ 10 watts
- According to preliminary Residential Energy Consumption Survey (RECS) data released May 2022, electric central warm-air furnaces are the main source of space heating in approximately 17.5 million U.S. homes or about 14%.
- Electric furnaces range in capacity from 10 to 25 kW (34 to 85 kBtu/h), with 20 kW (68 kBtu/h) being the typical for units on the market.
- Electric resistance furnaces are considered near 100% efficient because there is no flue heat loss, and any jacket losses are contained within the home.
 - ASHRAE Standard 103, the test method for furnaces incorporated by reference into the federal test procedure, specifies that for electric furnaces AFUE = $100 1.7 \, x$ jacket losses. Jacket losses can be determined either through testing or assumed to be 1%. Thus, the minimum AFUE of electric furnaces is 98.3%.

Residential Electric Resistance Unit Heaters

ame as Reference Case	2015	2020	2022	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Typical Capacity (kBtu/h)	3.5	3.5	5.1	5.1	5.1	5.1
Efficiency (%)	100	100	100	100	100	100
Average Life (y) ¹	15	15	15	15	15	15
Average Life (y)	30	30	30	30	30	30
Retail Equipment Cost (2022\$) ²	90	90	85	85	85	85
Retail Equipment Cost (2022\$)	240	240	340	340	340	340
Total Installed Cost (2022\$) ³	150	150	390	390	390	390
Total Histalieu Cost (2022¢)	320	320	1,190	1,190	1,190	1,190
Annual Maintenance Cost (2022\$) ⁴	-	-	-	-	-	-

- 1. Assumes similar lifetime to Electric Furnaces on the basis that both products have heating elements that burn out and lead to product failure.
- 2. The lower bound of the equipment costs represents the average retail price listed at the typical capacity for electric baseboard heaters through a retailer website. The upper bound represents the average retail price for compact recessed electric wall heaters at the same capacity.
- 3. Range represents the estimated minimum and maximum installation costs.
- 4. Maintenance costs are negligible.

Residential Electric Resistance Unit Heaters

- Electric resistance unit heaters include electric wall and baseboard heaters. Plug-in space heaters are not included.
- There are currently no federal efficiency requirements for electric resistance unit heaters.
- According to preliminary RECS data released May 2022, electric resistance unit heaters are the main source of space heating in approximately 8.25 million U.S. homes or about 7%.
- Electric heaters range in capacity from 500 to 2,500 watts (1.7 to 8.5 kBtu/h), with 1,500 watts (5.1 kBtu/h) being the most typical for units on the market.
- Electric resistance heating is considered 100% energy efficient; all incoming electric energy is converted to heat.

Residential Central Air Conditioners – North (Not Hot-Dry or Hot-Humid)

Higher typical efficiencies with the same costs as ref. case despite increased efficiency.

	2015	2020		20)22			2023		203	30	204	40	20	50
DATA	Installed Base		Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
SEER ¹	12.5	13.9	13.0	14.1	15.0	17.0	14.1	16.0	17.0	15.0	17.0	15.5	17.0	15.5	17.0
SEER2 ²	11.9	13.2	NA	13.4	NA	16.2	13.4	15.2	16.2	14.3	16.2	14.7	16.2	14.7	16.2
Avonago I ifa (v)	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Average Life (y)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	2,410	2,670	2,580	2,700	3,110	3,950	2,680	3,750	3,950	2,760	3,950	2,760	3,950	2,760	3,950
Total Installed Cost (2022\$)	4,000	4,300	5,250	5,320	5,520	5,980	5,310	5,880	5,980	5,350	5,980	5,350	5,980	5,350	5,980
Annual Maintenance Cost	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
(2022\$) ³	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150

- 1. Values shown are for split-system units in the 36 kBtu/h (3-ton) size class. Costs and efficiency levels are for "coil-only" systems, meaning they do not include a blower. Note blower-coil systems were analyzed for residential air-source heat pumps, which is why the "High" SEER levels are higher for heat pumps than for air conditioners.
- 2. In 2023, new energy conservation standards for Residential Central Air Conditioners and Heat Pumps took effect. The new standards specify a different metric for central air conditioners (SEER2). SEER to SEER2 conversions were determined using <a href="telegoogle-central-left-seed-align: central-left-seed-align: centr
- 3. Annual maintenance include preventative maintenance and services provided by HVAC professionals for maintaining product operation. Examples include, calibrate and level thermostat, clean filters, clean indoor and condenser coil, flush/treat condensate drain with anti-algae, inspect condenser coil, monitor operating pressure of refrigerant, inspect fan blade, etc.

Note:

The previous standard went into effect in January 2015. The current standard went into effect in January 2023. ENERGY STAR V. 5.0 went into effect in September 2015. ENERGY STAR V. 6.1 went into effect in January 2023. Ranges represent the span of typical values for a given parameter.

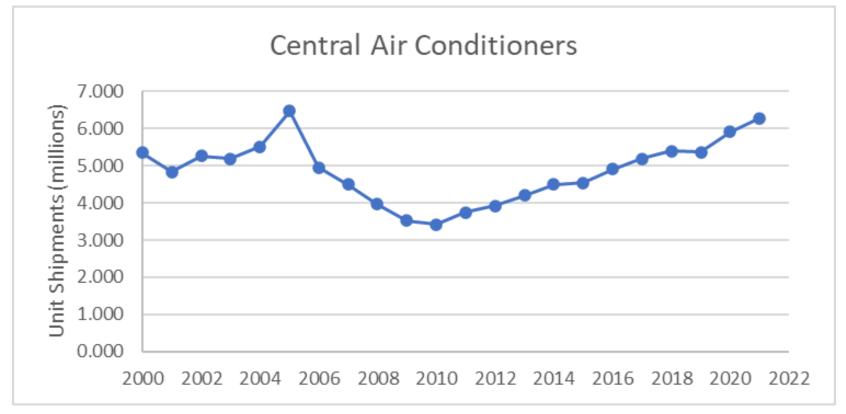
Residential Central Air Conditioners – South (Hot-Dry and Hot-Humid)

Higher typical efficiencies with the same costs as ref. case despite increased efficiency.

	2015	2020		20	22			2023		20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Ivnical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
SEER ¹	13.0	14.4	14.0	14.6	15.0	17.0	15.1	16.0	17.0	15.5	17.0	16.0	17.0	16.0	17.0
SEER2 ²	12.4	13.7	NA	13.9	NA	16.2	14.3	15.2	16.2	14.7	16.2	15.2	16.2	15.2	16.2
Arrawaga I ifa (rv)	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Average Life (y)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	2,410	2,760	2,680	2,850	3,110	3,950	3,110	3,750	3,950	3,190	3,950	3,190	3,950	3,190	3,950
Total Installed Cost (2022\$)	4,000	4,390	5,310	5,390	5,520	5,980	5,520	5,880	5,980	5,570	5,980	5,570	5,980	5,570	5,980
Annual Maintenance Cost	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
$(2022\$)^3$	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150

- 1. Values shown are for split-system units in the 36 kBtu/h (3-ton) size class. Costs and efficiency levels are for "coil-only" systems, meaning they do not include a blower. Note blower-coil systems were analyzed for residential air-source heat pumps, which is why the "High" SEER levels are higher for heat pumps than for air conditioners.
- 2. In 2023, new energy conservation standards for Residential Central Air Conditioners and Heat Pumps took effect. The new standards specify a different metric for central air conditioners (SEER2). SEER to SEER2 conversions were determined using the RESNET website.
- 3. Annual maintenance include preventative maintenance and services provided by HVAC professionals for maintaining product operation. Examples include, calibrate and level thermostat, clean filters, clean indoor and condenser coil, flush/treat condensate drain with anti-algae, inspect condenser coil, monitor operating pressure of refrigerant, inspect fan blade, etc.

Note:


The previous standard went into effect in January 2015. The current standard went into effect in January 2023. ENERGY STAR V. 5.0 went into effect in September 2015. ENERGY STAR V. 6.1 went into effect in January 2023. Ranges represent the span of typical values for a given parameter.

Residential Central Air Conditioners

- The previous standards took effect in 2015; amended standards for all product classes went into effect in January 2023.
 - Amended standards are based on new metrics (SEER2, EER2).
 - SEER2 values are generally expected to be lower than SEER because a higher external static pressure is required during testing, which reduces measured performance.
- Systems installed in the Southwest (CA, AZ, NM, and NV) must also meet an EER standard that varies by cooling capacity and system configuration.
- Advanced Case: Due to increases in R&D, improvements in current technology (e.g., more cost-effective variable speed technology) are expected to increase efficiency without substantially increasing costs.

Residential Central Air Conditioners

Annual shipments spiked at 6.5 million units in 2005 at the peak of the housing boom and just before more stringent Federal standards took effect in 2006. Annual shipments have been steadily increasing since 2010 and have almost reached the previous high in 2021.

Source: AHRI

Residential Room Air Conditioners

Increased efficiency with corresponding cost increases.

mercuscus emercus man servespe	2015	2020		20)22		20 3	30^{2}	20 4	10 ²	20	50 ²
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.2	High ¹	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	10	10	10	10	10	10	10	10	10	10	10.0	10.0
CEER (Btu/Wh)	10.9	10.9	10.9	12.0	12.0	15.7	16.0	16.5	17.0	17.5	17.5	18.0
Average Life (v)	6	6	6	6	6	6	6	6	6	6	6	6
Average Life (y)	13	13	13	13	13	13	13	13	13	13	13	13
Patail Fassimment Coat (2022¢)	560	330	330	340	340	450	450	450	460	460	470	470
Retail Equipment Cost (2022\$)	710	480	480	480	480	590	590	590	610	610	620	620
Total Installed Cost (2022¢)	640	490	490	490	490	600	600	600	610	610	630	630
Total Installed Cost (2022\$)	830	630	630	640	640	750	750	750	760	760	770	770
Annual Maintenance Cost (2022\$) ³	0	0	0	0	0	0	0	0	0	0	0	0

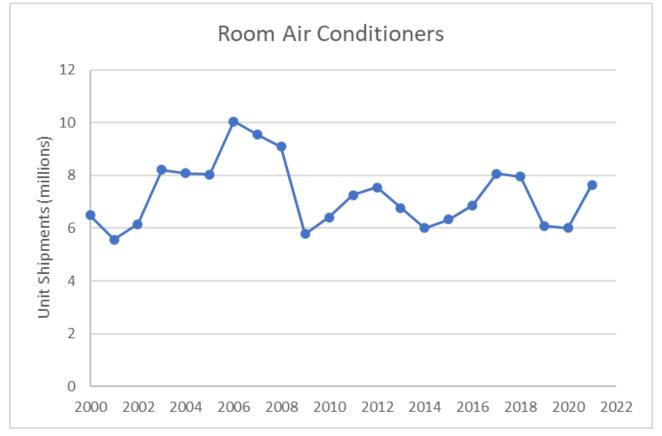
- 1. RAC EERE 2022 NOPR has analysis for combined energy efficiency ratio (CEER) of 16 Btu/Wh, which represents variable speed room air conditioners. However, maximum CEER identified in DOE's Compliance Certification Database (CCD) in August 2022 was 15.7 Btu/Wh. Accordingly, the high CEER is estimated to be 15.7 for 2022 and beyond. Cost values for a representative unit with a CEER of 16 Btu/Wh were used.
- 2. The 2030, 2040, 2050 projections are estimated based on RAC EERE 2022 NOPR, which notes that in the absence of no new standards, room air conditioners with a CEER of 12 Btu/Wh are expected to have the maximum market share.
- 3. Maintenance costs are negligible per RAC EERE 2011 and RAC EERE 2022 NOPR.

Note:

All values are for the most common product class, Product Class 3 (without reverse cycle, with louvered sides, and 8,000 to 13,999 Btu/h).

The current standard went into effect in June 2014.

ENERGY STAR V. 4.2 went into effect in October 2015.


Ranges represent the span of typical values for a given parameter (for example, installed cost for equipment meeting the federal standard) not the highest and lowest available on the market.

Residential Room Air Conditioners

- Analyzed the most common type of room air conditioners: louvered sides (window air conditioners) without reverse cycle and having cooling capacity of 8,000–13,999 Btu/h (DOE Product Class 3).
- Federal standards for Product Class 3:
 - CEER ≥ 10.9 (beginning June 1, 2014)
- CEER incorporates energy use in cooling mode and standby and off modes.
- ENERGY STAR V. 4.2 criteria for Product Class 3:
 - CEER ≥ 12.0 (effective October 26, 2015)
- Efficiency improvements in room air conditioners are attained by:
 - Higher efficiency compressor and fan motors (including variable speed motors), and
 - An increased heat transfer area in the evaporator and condenser using larger heat exchangers, finer fin spacing, micro-channel heat exchangers, and similar design options.
- Advanced Case: Due to increases in R&D, improvements in current technology (e.g., more efficient motors and compressors, larger cross-section heat exchangers, adoption of variable speed technologies) are expected to increase efficiency with corresponding increases in cost.

Residential Room Air Conditioners

Annual shipments dropped sharply in 2009, likely due to the recession and an unusually cool summer in the Northeast. Sales have largely leveled off in the years since, fluctuating between 6 and 8 million.

Source: RAC EERE 2022 NOPR

Residential Portable Air Conditioners

Increased efficiency with corresponding cost increases. /

	2015	2020	202	22 ⁴	20	25	20	30	20	40	20	50
DATA	Installed Base	Installed Base	Typical	High⁵	New Standard	High⁵	Typical	High⁵	Typical	High⁵	Typical	High⁵
Typical Capacity (kBtu/h) ¹	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6
CEER ²	5.6	5.6	5.5	7.6	6.7	7.6	7.8	8.8	8.9	10.1	10.2	11.6
Average Life (y)	7	7	7	7	7	7	7	7	7	7	7	7
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$)	700	700	700	810	760	810	810	810	820	820	830	830
Total Installed Cost (2022\$) ³	700	700	700	810	760	810	810	810	820	820	830	830
Annual Maintenance Cost (2022\$) ³	0	0	0	0	0	0	0	0	0	0	0	0

- 1. All values are for the average capacity for single-duct and dual-duct portable air conditioners available on the market.
- 2. CEER is calculated for typical capacity using the equation provided in PAC EERE 2020.
- 3. Installation and maintenance costs are negligible.
- 4. The 2022 Typical estimates are based on PAC EERE 2020, which estimated majority of the market to be at EL1 in 2022 for the no-new standards case, which translates to a CEER of 5.5 for this analysis.
- 5. All High values are based on the most-efficient models available in the market, as specified in PAC EERE 2020.

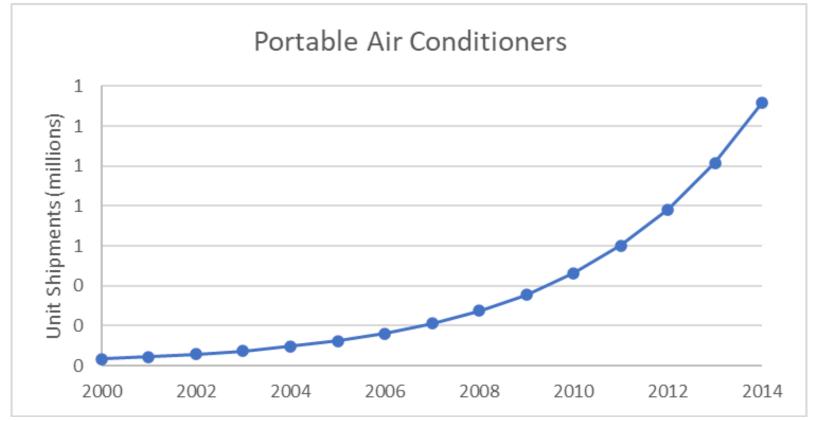
Note:

A final rule for portable air cleaners published in January 2020 with an effective date of January 2025.

Costs are interpolated from the costs presented in PAC EERE 2020.

Range for lifetime represents typical values.

Residential Portable Air Conditioners


- A final rule establishing new energy conservation standards for portable air conditioners published in January 2020 with an effective date of January 2025.
- The final rule outlined an equation-based conservation standard (in CEER) for both single-duct and dual-duct portable ACs, based on the seasonally adjusted cooling capacity (SACC)

Minimum CEER =
$$PR \times \frac{SACC}{(3.7117 \times SACC^{0.6384})}$$

- Efficiency improvements in portable air conditioners are attained by:
 - Higher efficiency compressor and fan motors (including variable speed motors), and
 - An increased heat transfer area in the evaporator and condenser using larger heat exchangers, finer fin spacing, micro-channel heat exchangers, and similar design options.
- Advanced Case: Due to increases in R&D, improvements in current technology (e.g., more efficient motors and compressors, larger cross-section heat exchangers, adoption of variable speed technologies) are expected to increase efficiency with corresponding increases in cost.

Residential Portable Air Conditioners

Annual shipments have seen an exponential growth through 2014. Shipments data since 2014 is not publicly available but it is expected that portable air conditioners shipments may have increased in recent years in response to indoor air quality concerns following COVID-19.

Source: PAC EERE 2020

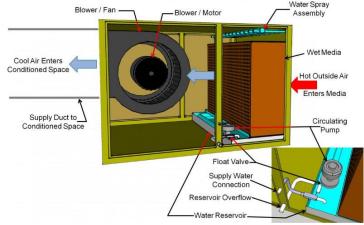
Residential Swamp Coolers

Same as reference case

D. T.	2015	2020	20	22	20	30	20	40	20	50
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Air Flow Rate (CFM)	3,800	3,800	3,800	4,700	3,800	4,700	3,800	4,700	3,800	4,700
Power (Hp)	1/3	1/3	1/3	1/2	1/3	1/2	1/3	1/2	1/3	1/2
Average Life (y) ¹	10	10	10	10	10	10	10	10	10	10
Average Life (y)	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$)	960	960	960	1,100	960	1,100	960	1,100	960	1,100
Total Installed Cost (2022\$)	1,360	1,360	1,360	1,540	1,360	1,540	1,360	1,540	1,360	1,540
Annual Maintenance Cost (2022\$)	330	330	330	330	330	330	330	330	330	330

^{1.} Average lifetime provided by major swamp cooler installer in the U.S. Southwest.

Note:


Efficiency values were determined based on a sample of window-mounted swamp coolers. Lifetime range represents span of typical values.

Residential Swamp Coolers

- Evaporative cooling (i.e., "swamp coolers") is a technology that takes advantage of water evaporation to cool incoming air. Energy is required to change water from a liquid to a vapor (i.e., the heat of vaporization), and in doing so, temperature of the air is reduced. Evaporative cooling is best suited for hot, dry climates.
- Swamp coolers come in a variety of different configurations, including centrally ducted units that are mounted outside a building or roof; window evaporative coolers that are window-mount units that pull in warm outdoor air, pass it through wet media to remove heat, and blow out the cooled air; or portable plug-in units. Window units were considered for this analysis due to the high model share count on distributor websites.
- The U.S. Environmental Protection Agency (EPA) has cautioned against using swamp coolers in wildfire-impacted areas in smoky conditions because it can result in more smoke bring brought inside.
- Swamp coolers are not a DOE-covered product.

• Swamp cooler metrics include power of the fan/blower, measured in horsepower (hp), and air flow rate, measured in

cubic feet per minute (CFM).

Single-inlet direct swamp cooler. Source: <u>PNNL</u>

Residential Air-Source Heat Pumps

Higher typical efficiencies with the same costs as reference case despite increased efficiency

	2015	2020		202	22			2023	3		20 3	80	204	.0	205	0
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	ENERGY STAR Cold Climate Criteria	High ⁴	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
SEER (Cooling) ¹	13.1	15.3	14.0	15.3	15.0	22.6	15.0	16.0	NA	22.6	16.5	22.6	17.0	22.6	17.5	22.6
SEER2 ²	12.4	14.5	NA	14.5	NA	21.5	14.3	15.2	15.2	21.5	15.7	21.5	16.2	21.5	16.6	21.5
HSPF (Heating) ¹	7.9	8.6	8.2	8.6	8.5	12.4	8.8	9.2	NA	12.4	9.3	12.4	9.3	12.4	9.4	12.4
HSPF2 ²	6.7	7.3	NA	7.3	NA	10.6	7.5	7.8	8.1	10.6	7.9	10.6	7.9	10.6	8.0	10.6
Average Life (y)	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3
Retail Equipment Cost (2022\$) ¹	3,290	4,270	3,970	4,270	4,110	6,740	4,110	4,380	4,380	6,740	4,380	6,740	5,000	6,740	5,100	6,740
Total Installed Cost (2022\$)1	5,790	6,880	6,730	6,880	6,810	8,620	6,810	6,940	6,940	8,620	6,940	8,620	7,240	8,620	7,330	8,620
Annual Maintenance Cost	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
(2022\$) ³	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150

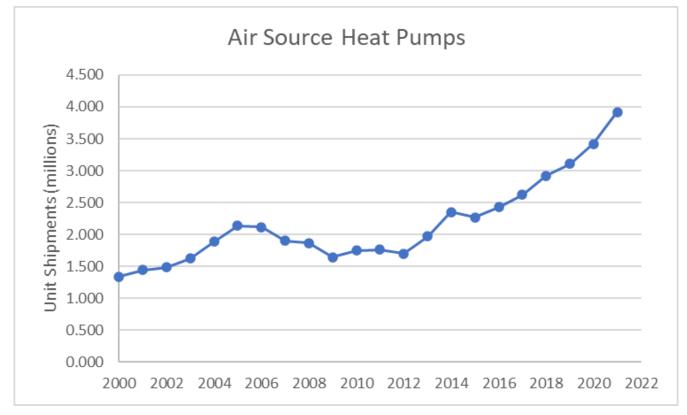
- 1. Values shown are for split-system units in the 36 kBtu/h (3-ton) size class. Costs and efficiency levels are for "blower-coil" systems, meaning they include a blower. Note coil-only systems were analyzed for residential central air conditioners, which is why the "High" SEER levels are higher for heat pumps than for air conditioners.
- 2. In 2023, new energy conservation standards for Residential Central Air Conditioners and Heat Pumps took effect. The new standards specify different metrics for Air-Source Heat Pumps (SEER2 and heating seasonal performance factor 2 (HSPF2)). SEER to SEER2 and HSPF to HSPF2 conversions were determined using the RESNET website.
- 3. Annual maintenance include preventative maintenance and services provided by HVAC professionals for maintaining product operation. Examples include, calibrate and level thermostat, clean filters, clean indoor and condenser coil, flush/treat condensate drain with anti-algae, inspect condenser coil, monitor operating pressure of refrigerant, inspect fan blade, etc.
- 4. High costs derived from developing a cost-efficiency curve between retail/installed costs and SEER.

Note:

The previous standard went into effect in January 2015. The current standard went into effect in January 2023.

ENERGY STAR V. 5.0 went into effect in September 2015. ENERGY STAR V. 6.1 went into effect in January 2023.

Ranges represent the span of typical values for maintenance costs.


Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.88, 2, 1).

Residential Air-Source Heat Pumps

- The previous standards took effect in 2015; amended standards for all product classes went into effect in January 2023.
 - Amended standards are based on new metrics (SEER2, EER2, HSPF2).
 - SEER2 values are generally expected to be lower than SEER because a higher external static pressure is required during testing, which reduces measured performance.
- High efficiency cooling does not necessarily correlate with high efficiency heating. The range of SEER–HSPF combinations is very broad.
- Heat pumps are generally sized to meet the cooling load of the house. When the heating load exceeds heat pump heating capacity, electric resistance heat is used to supplement.
- Variable-speed compressors improve efficiency of heat pumps by reducing cyclic losses and by operating above their nominal speed, boosting heating capacity, and reducing the need for supplementary electric resistance heat.
- In addition to meeting the SEER2 and HSPF2 requirements, air source heat pumps must demonstrate low ambient performance to earn the Cold Climate designation by meeting the following:
 - Coefficient of Performance (COP) at 5 degrees Fahrenheit (°F) ≥ 1.75, measured in accordance with Appendix M1 H4₂ test
 - Percent of Heating Capacity at 5 °F ≥ 70% of that at 47 °F, with the 5 °F capacity measured per Appendix M1 H4 $_2$ test and the 47 °F capacity measured as the nominal heating capacity per Appendix M1 (i.e., from the Appendix M1 H1 $_N$ test for units having a variable-speed compressor where the compressor speed shall be the maximum speed that the system controls would operate at 47 °F, otherwise from the Appendix M1 H1 $_2$ test)
 - Perform a controls verification procedure (CVP) to confirm that the above performance metrics measured at the Appendix M1 low ambient test point at 5 °F are achieved by the native controls operating as they would in a customer's home
- Advanced Case: Due to increases in R&D, improvements in current technology (e.g., more cost-effective variable speed technology) are expected to increase efficiency without substantially increasing costs.

Residential Air-Source Heat Pumps

From 2000 to 2005 annual shipments increased nearly 60% to 2.1 million units, then dropped and leveled off around 1.7 million units. In 2014 annual shipments surpassed the 2005 peak and have been increasing uniformly since then.

Source: AHRI

Residential Central Air Conditioners and Air-Source Heat Pumps

- Principal energy efficiency drivers for central air conditioners and heat pumps:
 - Heat exchanger (surface area, number of tube rows)
 - Compressor (type and single-stage vs. two-stage vs. variable-speed operation)
 - Fan motor choices (PSC vs. ECM fan motors on inside and outside)
 - Control choices (i.e., piston, thermal, and electronic expansion valves)
- When the heat pump or air conditioner's capacity exceeds the heating or cooling load, the unit starts and stops more frequently, causing wear and tear on the components and an overall loss of efficiency. Multi-stage and/or variable-speed compressors can help, as does sophisticated refrigerant management.
- Typical high-efficiency unit (≥ 16 SEER) has very large heat exchanger, ECM evaporator fan motor, and two-stage scroll compressor.
- Variable-speed compressor technology typically leads to a significant SEER boost, making possible high-SEER condensing units with smaller heat exchangers, and thus, smaller enclosures.
- Efficiency levels > 21 SEER made possible through combining existing large heat exchangers with variable-speed compressors, ECM fan motors, and electronic expansion valves.

Residential Ductless Mini-Split Air-Source Heat Pumps

Same as reference case

DATA	2015	2020	20	22	20	30	204	4 0	20	50
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h) ¹	12	12	12	12	12	12	12	12	12	12
SEER	16.0	16.0	21.9	33.1	21.9	33.1	21.9	33.1	21.9	33.1
EER	12.5	12.5	13.0	19.1	13.0	19.1	13.0	19.1	13.0	19.1
HSPF	10.0	10.0	11.1	14.0	11.1	14.0	11.1	14.0	11.1	14.0
Average Life (y) ²	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3
Retail Equipment Cost (2022\$)	1,580	1,580	1,580	1,580	1,580	1,580	1,580	1,580	1,580	1,580
Total Installed Cost (2022\$)	2,030	2,030	2,030	2,030	2,030	2,030	2,030	2,030	2,030	2,030
Annual Maintenance Cost (2022\$) ³	100	100	100	100	100	100	100	100	100	100

- 1. Representative capacity determined from most frequent capacity in AHRI database
- 2. Assumed same lifespan and maintenance cost as air-source heat pumps given the technology is similar between air-source and ductless mini-split heat pumps, and ductwork itself is not expected to fail.
- 3. Annual maintenance covers the same services identified for air-source heat pumps.

Note:

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.88, 2, 1).

Residential Ductless Mini-Split Air-Source Heat Pumps

- Ductless systems can be useful in "spot cooling" certain high-use areas of a home, such as a living room, bedroom, or
 office.
- Mini-split heat pumps are generally more efficient (often > 20 SEER) and smaller in cooling capacity (often ≤ 24 kBtu/h) compared to split-system heat pumps.
 - A mini-split heat pump could be equal in capacity and efficiency to a split-system heat pump as there are no inherent design changes between split-system and mini-split heat pumps, aside from the ductwork. Mini-split heat pumps tend to be more efficient and smaller in capacity due to their prevalence for spot cooling, but the same technologies are used between the two product categories.
- Due to the similarities in design, cost estimations were determined based on smaller capacity (24 kBtu/h) split-system heat pumps and Gordian's RSMeans Data Building Construction Costs 2023. Efficiency data was analyzed using the AHRI directory, which provides disaggregation of data on the basis of ducted and ductless heat pumps.
- Annual maintenance covers the same services identified for air-source heat pumps.

Residential Ground-Source Heat Pumps

Same typical efficiencies with the lower costs as ref. case despite same efficiency.

	2015	2020		20	22		203	30	204	40	205	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.2	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	36	36	36	36	36	36	36	36	36	36	36	36
COP (Heating) ¹	3.1	3.7	3.2	3.6	3.6	4.5	3.6	4.5	3.6	4.5	3.6	4.5
EER (Cooling) ²	13.3	17.3	14.1	17.3	17.1	22.0	17.3	22.0	17.3	22.0	17.3	22.0
Avorago I ifa (v)	8	8	8	8	8	8	8	8	8	8	8	8
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	4,650	5,470	4,820	5,470	5,410	6,530	4,920	5,880	4,920	5,880	4,920	5,880
T-t-1 I (2000¢)	14,060	14,880	14,230	14,880	14,880	15,940	13,390	14,350	13,390	14,350	13,390	14,350
Total Installed Cost (2022\$)	22,290	23,120	22,470	23,120	23,120	24,170	20,810	21,750	20,810	21,750	20,810	21,750
Annual Maintenance Cost (2022\$)	90	90	90	90	90	90	90	90	90	90	90	90

- 1. COP values listed are assessed at a "ground loop" test condition, which is representative of closed loop ground source heat pumps (GSHP) operating conditions. However, DOE sets standards at a "water loop" test condition. The AHRI directory lists COP ratings at both sets of test conditions and is used to convert between them where necessary.
- 2. EER values listed are assessed at a full-load "ground loop" test condition, which is representative of closed loop GSHP operating conditions. However, DOE sets standards at a full-load "water loop" test condition. The AHRI directory lists EER ratings at all sets of test conditions and is used to convert between them where necessary.

Note:

Residential and commercial GSHPs are very similar - the main difference in data presented is the different capacity (3-ton vs. 4-ton) and slightly higher installation costs for commercial GSHP. DOE does not distinguish between residential and commercial units in its regulations.

Current standards went into effect on October 9, 2015. COP and EER ratings are converted from the "water loop" test condition to "ground loop." ENERGY STAR V. 3.2 went into effect January 1, 2012.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (17.04, 1.64, 1).

Residential Ground-Source Heat Pumps

- Heating COP does not correlate with cooling EER.
- The ENERGY STAR criteria for water-to-air ground-source heat pumps are:

Туре	Heating COP	Cooling EER
Closed Loop	3.6	17.1
Open Loop	4.1	21.1
Direct Expansion	3.6	16

- The most common GSHP is a closed-loop system in which water or an anti-freeze solution is circulated through plastic pipes buried underground. Open loop systems that employ ground water or surface water (e.g., open well, pond, lake) are used in some parts of the country, but water supply and water quality issues impose limitations on such applications.
- Installation cost is for a closed loop system and includes necessary accessories. The ground loop heat exchanger represents a majority of the installation cost. Installed costs for these systems vary widely.
- Variable speed ECMs improve performance on high-end models.
- Advanced Case: GSHP are already highly efficient and have not changed much in terms of efficiency in recent years. With increased R&D, it is anticipated that the equipment and installation costs will be reduced over time, but efficiency will likely stay the same.

Residential Natural Gas Heat Pumps

Same as reference case						
DATA	2015	2020	2022	2030	2040	2050
Dilli	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Typical Capacity (kBtu/h)	60	60	60	60	60	60
COP (Heating)	1.3	1.3	1.3	1.3	1.3	1.3
COP (Cooling)	0.6	0.7	0.7	0.7	0.7	0.7
Annual Electric Use (kWh/y) ¹	1,500	1,500	1,500	1,500	1,500	1,500
Average Life (y) ²	12	12	12	12	12	12
Average Life (y)	18	18	18	18	18	18
Retail Equipment Cost (2022\$) ²	12,940	12,940	12,940	12,940	12,940	12,940
Retail Equipment Cost (2022\$)	14,350	14,350	14,350	14,350	14,350	14,350
Total Installed Cost (2022\$) ²	14,700	14,700	14,700	14,700	14,700	14,700
Total Histalieu Cost (2022p)	17,290	17,290	17,290	17,290	17,290	17,290
Annual Maintenance Cost (2022\$)	200	200	200	200	200	200

^{1.} Annual electric use accounts for the electricity consumption of components such as the heat pump fan. Note:

Ranges represent the span of typical values observed in the market.

Residential Natural Gas Heat Pumps

- Residential natural gas heat pumps are not currently subject to DOE regulations. The California Energy Commission's (CEC) Title 24, Part 6 Section 112 does indicate cooling efficiency requirements for natural gas heat pumps.
- Natural gas heat pumps are much more popular in other parts of the world, such as Europe. Gas-fired cooling equipment currently comprises less than 1% of the residential air conditioning/heat pump market in the U.S.
- Currently, Robur is the predominant manufacturer of residential-sized natural gas heat pumps with sales operations in the U.S.. Robur units are 5-ton nominal cooling capacity, a size typically associated with larger homes. Since only one product is available, no mid-level or high efficiency categories are included in this analysis.
- The data represents air-source absorption heat pumps. Gas engine-driven vapor compression heat pumps are available in other parts of the world; York formerly offered the Triathlon gas engine-driven heat pump in the U.S. It is possible to couple either technology to the ground (ground-source) rather than the atmosphere (air-source).
- The absorption heat pump is a gas-fired, ammonia-water absorption cycle, combined with a high-efficiency low-pressure boiler integrated into one outdoor unit.
- The cooling efficiency of a gas-fired air-source absorption heat pump is considerably lower than for an electric air-source heat pump. Heating efficiency of an air-source heat pump (electric or gas-fired absorption) decreases as outdoor temperature decreases; however, the gas-fired absorption heat pump recovers waste heat from the combustion process to improve heating efficiency.

Residential Cordwood Stoves

Same as reference case

	2015 ¹	2020 ²	202	22 ³	20	30^4	204	40^4	205	50^4
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	50	50	50	50	50	50	50	50	50	50
Efficiency (Non-Catalytic) (HHV) ⁵	63	71	71	80	71	80	71	80	71	80
Efficiency (Catalytic) (HHV) ⁵	72	76	76	81	76	81	76	81	76	81
A T'C ()	12	12	12	12	12	12	12	12	12	12
Average Life (y)	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$) (Non- Catalytic)	2,880	1,670	1,670	2,300	1,670	2,300	1,670	2,300	1,670	2,300
Retail Equipment Cost (2022\$) (Catalytic)	3,540	3,040	3,040	3,830	3,040	3,830	3,040	3,830	3,040	3,830
Total Installed Cost (2022\$) (Non- Catalytic) ⁶	8,290	7,090	7,090	7,710	7,090	7,710	7,090	7,710	7,090	7,710
Total Installed Cost (2022\$) (Catalytic) ⁶	8,950	8,460	8,460	9,240	8,460	9,240	8,460	9,240	8,460	9,240
Annual Maintenance Cost (2022\$) (Non- Catalytic) ⁷	190	190	190	190	190	190	190	190	190	190
Annual Maintenance Cost (2022\$) (Catalytic) ⁷	280	280	280	280	280	280	280	280	280	280

- 1. For 2015, assumed EPA default efficiencies, which were used by EPA to approximate the efficiency of stoves before the 2015 EPA rule required efficiency testing.
- 2. For 2020, assumed same efficiencies as estimated for 2022 given the most recent EPA rule went into effect in May 2020.
- 3. The 2022 High value is the highest EPA certified efficiency. The 2022 Typical value is the average of EPA certified efficiencies.
- 4. For 2030-2050, it is assumed that the same conditions as current would persist because no impending efficiency requirements are expected from EPA, given recency of 2020 rulemaking and current market factors.
- 5. Efficiency includes combustion and heat transfer efficiency and is based on the higher heating value (HHV) of the fuel.
- 6. Installed costs include the cost of hearth and stainless-steel chimney liner materials and labor.
- 7. For catalytic stoves, annual maintenance cost includes periodic cost of replacing the catalytic combustor.

Note:

The range for average life represents the span of typical values.

Residential Cordwood Stoves

- Residential cordwood stoves that must meet EPA particulate limits fall into two broad classes based on whether they use a catalyst for air treatment. Catalytic wood stoves use a catalytic combustor to reduce emissions from the combustion air. Non-catalytic wood stoves use baffles and introduce secondary air above the flames to enable more complete combustion and reduce emissions.
- In 2015, EPA published an update to its New Source Performance Standards (NSPS), decreasing the emissions limit (previously set by 1988 EPA rule) to 4.5 grams per hour (g/h) for both catalytic and non-catalytic stoves. The new rule did <u>not</u> institute efficiency standards but required that manufacturers test and certify the efficiency of their stoves. This standard took full effect on January 1, 2016.
- In 2020, the NSPS limit for new room heaters was lowered to 2.5 g/h if tested with cord wood.
- Prior to the 2015 rule, manufacturers could either submit efficiency data from laboratory testing or certify with the default efficiency value designated by EPA. EPA's default efficiency values were 63% for non-catalytic wood stoves and 72% for catalytic wood stoves. Under this system, few manufacturers submitted efficiency test data to EPA.
- Multiple test standards are commonly used to assess stove efficiency, and data from product literature does not generally identify the efficiency test method.
- It is not possible to determine performance trends based on construction or configuration (e.g., cast iron vs. plate steel, powered blowers vs. no blowers, etc.) trends in specific equipment type or construction based on published efficiencies. Further, EPA certification data shows no significant relationship between emissions and heating efficiency.
- Cordwood stoves require chimneys for venting combustion gases. Whether conventional masonry chimneys are used or metal chimney liners, these add considerable cost to the overall system. Accordingly, installed costs can be twice that of the wood stove itself.

Residential Cordwood Stoves

Cordwood stove shipments have averaged 123,000 per year since 1999 and have fluctuated approximately in accordance with fuel oil costs.

Source: HPBA, no post-2012 sales data was publicly available at time of publication.

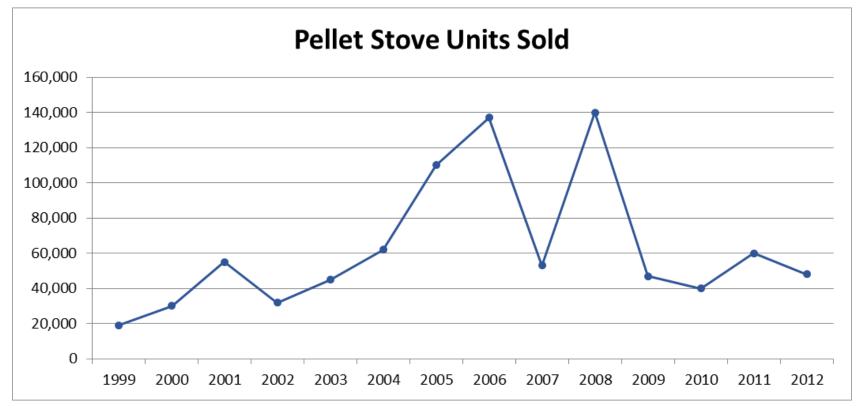
Final

Residential Wood Pellet Stoves

Same as reference case

	2015 ¹	2020 ²	2022 ³		2030^4		2040^4		2050^4	
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	50	50	50	50	50	50	50	50	50	50
Efficiency (HHV) ⁵	70	73	73	85	73	85	73	85	73	85
Annual Electricity Consumption (kWh) ⁶	600	600	600	600	600	600	600	600	600	600
verage Life (y)	12	12	12	12	12	12	12	12	12	12
	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	3,900	3,120	3,120	4,000	3,120	4,000	3,120	4,000	3,120	4,000
Total Installed Cost (2022\$) ⁷	5,550	4,520	4,520	5,400	4,520	5,400	4,520	5,400	4,520	5,400
Annual Maintenance Cost (2022\$)	310	310	310	310	310	310	310	310	310	310

- 1. For 2015, assumed EPA default efficiencies, which were used by EPA to approximate the efficiency of stoves before the 2015 EPA rule required efficiency testing.
- 2. For 2020, assumed same efficiencies as estimated for 2022 given the most recent EPA rule went into effect in May 2020.
- 3. The 2022 High value is the highest EPA certified efficiency. The 2022 Typical value is the average of EPA certified efficiencies.
- 4. For 2030-2050, it is assumed that the same conditions as current would persist because no impending efficiency requirements are expected from EPA, given recency of 2020 rulemaking and current market factors.
- 5. Efficiency includes combustion and heat transfer efficiency and is based on the HHV of the fuel.
- 6. The annual electric consumption estimates assume 6 months/year @ 100kW/mo based on DOE estimates.
- 7. Installed cost includes cost of hearth and vent pipe materials and labor.


Note:

The range for average life represents the span of typical values.

Residential Wood Pellet Stoves

- In 2015, EPA published an update to its NSPS, limiting emissions for wood pellet stoves to 4.5 g/h. Prior to the 2015 EPA rule, most pellet stoves were exempt from EPA's NSPS requirements. The new rule did <u>not</u> institute efficiency standards but required that manufacturers test and certify the efficiency of their stoves. This standard took full effect on January 1, 2016.
- Prior to the 2015 rule, manufacturers could either submit efficiency data from laboratory testing or certify with the default efficiency value designated by EPA. EPA's default efficiency values were 63% for non-catalytic wood stoves and 72% for catalytic wood stoves. Under this system, few manufacturers submitted efficiency test data to EPA.
- Multiple test standards are commonly used to assess stove efficiency and data from product literature does not generally identify the efficiency test method.
- It is not possible to determine performance trends based on construction or configuration (e.g., cast iron vs. plate steel, powered blowers vs. no blowers, etc.) trends in specific equipment type or construction based on published efficiencies. Further, EPA certification data shows no significant relationship between emissions and heating efficiency.
- Wood pellet stoves may be able to be direct vented to the outdoors, eliminating the need for a chimney. This reduces the overall system cost as compared to a cord wood stove. However, they do use electricity to power the pellet feeder, the combustion air fan, and the blower. In the event of a power outage, a pellet stove can not operate without some back-up source of electricity (e.g., battery).

Wood pellet stove shipments grew substantially in the 2005 – 2008 time period but have averaged only 40,000 – 60,000 units since that time.

Source: HPBA, no post-2012 sales data was publicly available at time of publication.

Final

Return to Table of Content

Residential Water Heating

Residential Gas-Fired Storage Water Heaters

Increased typical efficiencies with associated increase in costs to reflect condensing units.

	· · · · · · · · · · · · · · · · · · ·	2015	2020	2022				2023	2030		2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.0	High	ENERGY STAR V. 5.0	Typical	High	Typical	High	Typical	High	
-	Typical Capacity (gal)	40	40	40	40	40	40	40	40	40	40	40	40	40
	Jniform Energy Factor (UEF) ¹	0.58	0.63	0.61	0.61	0.66	0.84	0.83	0.78	0.84	0.78	1.33	0.78	1.33
,	Average Life (y)	13	13	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
]	Retail Equipment Cost	590	880	420	420	490	720	700	420	720	420	720	420	720
	2022\$)	650	1,410	990	990	1,110	1,650	1,590	990	1,650	990	1,650	990	1,650
,	Γotal Installed Cost (2022\$)	1,240	1,650	740	740	800	1,140	1,130	740	1,140	740	1,140	740	1,140
		1,240	2,880	1,690	1,690	1,850	3,130	3,160	1,690	3,130	1,690	3,130	1,690	3,130
	Annual Maintenance Cost 2022\$) ²	20	20	20	20	20	20	20	20	20	20	20	20	20

- 1. Analysis is based on an average of medium and high draw pattern units, as this is most reflective of the market.
- 2. Maintenance includes manufacturer recommendation for the water heater to be drained and flushed annually to minimize deposition of sediment, maintain operating efficiency, and prolong product life. Available evidence indicates that this is performed in 10% of households.

Note:

Ranges represent the span of typical values.

Current standards went into effect April 16, 2015.

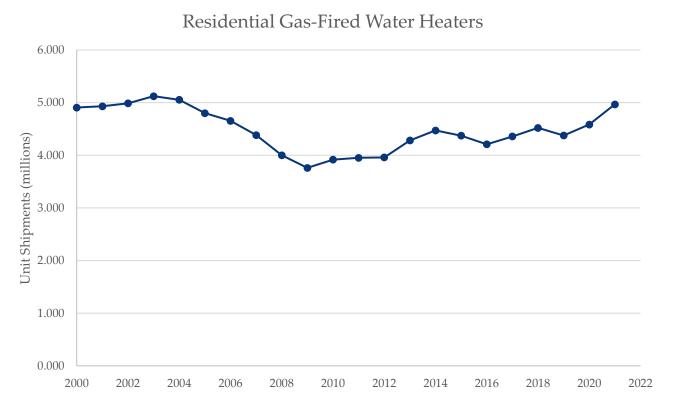
ENERGY STAR V. 4.0 went into effect January 5, 2022

ENERGY STAR V. 5.0 will go into effect April 18, 2023

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.1, 1.76, 1).

Residential Gas-Fired Storage Water Heaters

The equations for Federal Standards and the voluntary ENERGY STAR requirements, if applicable, are:


Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes	ENERGY STAR
	Very Small	UEF=0.3456-(0.002*Gal)	No models on the market	NA
≥ 20 gal and ≤	Low	UEF=0.5982-(0.0019*Gal)	0.54 for a 29-gallon water heater	NA
55 gal	Medium	UEF=0.6483-(0.0017*Gal)	0.58 for a 38-gallon water heater	0.64
_	High	UEF=0.692-(0.0013*Gal)	0.64 for a 48-gallon water heater	0.68
	Very Small	UEF=0.647-(0.0006*Gal)	No models on the market	NA
> 55 gal and ≤	Low	UEF=0.7689-(0.0005*Gal)	No models on the market	NA
100 gal	Medium	UEF=0.7897-(0.0004*Gal)	No models on the market	0.78
	High	UEF=0.8072-(0.0003*Gal)	No models on the market	0.80

- There are currently no models on the market above 55 gallons (gal) due to the high UEF, which would require using condensing or gas-fired heat pump (e.g., absorption) technology to achieve.
- The cost of installation is typically \$600 to \$1200, which exceeds that of electric water heaters. This difference can be attributed to multiple differences; for example, gas-fired heaters require an extra 1.5 hours of labor for 2 plumbers.
- Condensing units are high efficiency and use PVC venting instead of stainless-steel. Condensing units also use an electrical supply for electronic ignition and power venting. Some building codes require condensate neutralizer filters.
- Advanced Case: Condensing gas-fired storage water heaters are expected to dominate the market by 2030, with corresponding price increases.

Residential Gas-Fired Storage Water Heaters

re to a now platoau at

Shipments were flat at 5 million units per year through 2004, then declined gradually over 5 years to a new plateau at 4 million units until rising again back to 5 million units in 2021.

Source: AHRI

Residential Oil-Fired Water Heaters

Sa	me as Reference Case											
		2015	2020		2022		203	30	204	40	20	50
	DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
-	Гурісаl Capacity (gal)	32	32	32	32	32	32	32	32	32	32	32
	Uniform Energy Factor ¹	0.51	0.67	0.64	0.66	0.68	0.66	0.68	0.66	0.68	0.66	0.68
_	Average Life (y)	13	13	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
	Retail Equipment Cost (2022\$)	1,590	1,880	1,380	1,400	1,480	1,400	1,480	1,400	1,480	1,400	1,480
	Xetan Equipment Cost (2022\$)	1,710	2,410	2,810	2,870	3,030	2,870	3,030	2,870	3,030	2,870	3,030
	Γotal Installed Cost (2022\$)	2,350	2,650	2,620	2,650	2,730	2,650	2,730	2,650	2,730	2,650	2,730
	Total Installed Cost (2022\$)	2,470	3,350	4,050	4,120	4,280	4,120	4,280	4,120	4,280	4,120	4,280
	Annual Maintenance Cost (2022\$) ²	210	210	210	210	210	210	210	210	210	210	210

- 1. Analysis is based on an average of medium and high draw pattern units, as this is most reflective of the market.
- 2. Oil-fired storage water heaters are typically cleaned and maintained under maintenance contracts. The annual cost of typical maintenance is based on maintenance contract prices from different oil-fired product suppliers as specified in the CWH EERE 2022 Preliminary Analysis.

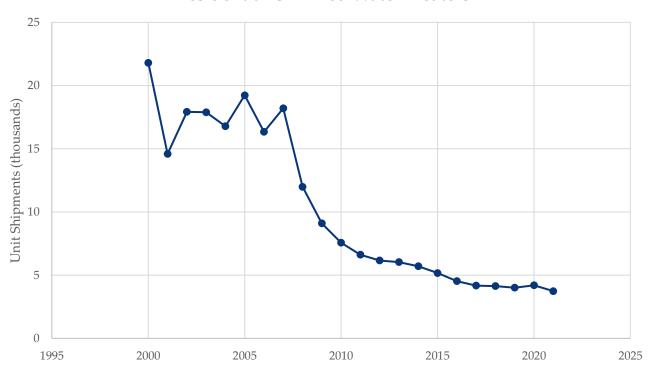
Note:

Ranges represent span of typical values.

Current standards went into effect April 16, 2015.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (16.2, 1.70, 1).

Residential Oil-Fired Water Heaters


• The equations for Federal Standards and the voluntary ENERGY STAR requirements, if applicable, are:

Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes	ENERGY STAR
	Very Small	UEF=0.2509-(0.0012*Gal)	No models on the market	NA
6.50 1	Low	UEF=0.533-(0.0016*Gal)	No models on the market	NA
≤ 50 gal	Medium	UEF=0.6078-(0.0016*Gal)	No models on the market	NA
	High	UEF=0.6815-(0.0014*Gal)	0.64 for a 29-gallon water heater	NA

- There are no ENERGY STAR requirements for oil-fired storage water heaters.
- Annual shipments of residential oil-fired storage water heaters are approximately 4,000, which is less than 1% of shipments of residential gas-fired storage water heaters.
- Oil-fired storage water heaters often have smaller tanks with larger input ratings relative to natural gas-fired and electric storage water heaters.
- No condensing residential oil-fired storage water heaters currently exist in the U.S. market. Condensing oil-fired water
 heaters are generally not considered technologically feasible because the sulfur content in fuel oil leads to the
 condensate becoming corrosive.
- Residential oil-fired water heaters utilize power burners and have at least some level of electrical power consumption.
- The most efficient models on the market use a proprietary "turbo-flue" design to increase heat transfer to water.

Shipments peaked at about 22,000 units in 2000 and have decreased since then, with an exponential decay occurring since 2007. Only about 4,000 units were shipped in 2021.

Residential Oil-Fired Water Heaters

Source: CWH EERE 2022 Preliminary Analysis

Residential Electric Resistance Storage Water Heaters

Same as Refe	erence Case											
	DATA		2020		2022		203	30	204	10	209	50
	DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Cap	eacity (gal)	50	50	50	50	50	50	50	50	50	50	50
Uniform En	ergy Factor ¹	0.88	0.93	0.92	0.92	0.93	0.92	0.93	0.92	0.93	0.92	0.93
Average Life	e (y)	13	13	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1
Datati Facili		290	350	330	330	600	330	600	330	600	330	600
Ketaii Equip	oment Cost (2022\$)	530	650	760	760	850	760	850	760	850	760	850
T-1-1 I1-11	1-1 C+ (2022¢)	590	710	500	500	550	500	550	500	550	500	550
Total Install	led Cost (2022\$)	940	1,290	1,310	1,310	1,430	1,310	1,430	1,310	1,430	1,310	1,430
Annual Mai	intenance Cost (2022\$)²	20	20	20	20	20	20	20	20	20	20	20

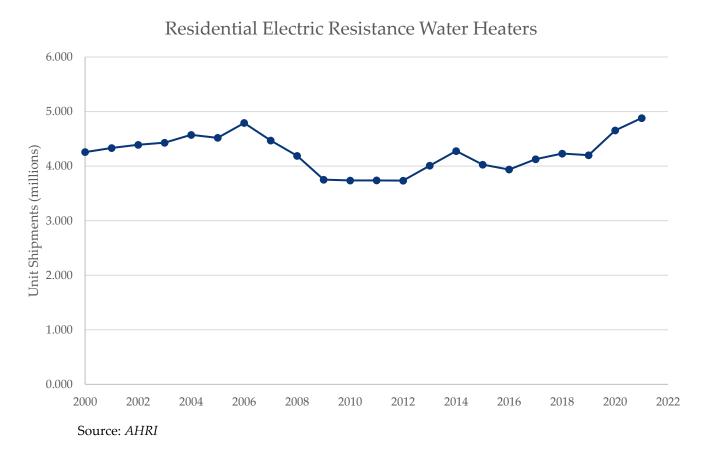
- 1. Beginning in 2016, the efficiency metric for water heaters changed from energy factor (EF) to UEF based on DOE test procedures. The UEF values for the installed base in 2015 are converted values equivalent to 0.90 EF. Analysis is based on an average of low and medium draw pattern units, as this is most reflective of the market.
- 2. Similar to gas-fired and oil-fired storage water heaters, manufacturers recommend that electric storage water heaters be drained and flushed annually to minimize deposition of sediment, maintain operating efficiency, and prolong product life. The available evidence indicates that this practice is done in 10% of households.

Note:

Ranges represent span of typical values.

Current standards went into effect April 16, 2015.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.7, 1.57, 1).


Residential Electric Resistance Storage Water Heaters

• The equations for Federal Standards and the voluntary ENERGY STAR requirements, if applicable, are:

Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes	ENERGY STAR
	Very Small	UEF=0.8808-(0.0008*Gal)	No models on the market	2.00
≥ 20 gal and	Low	UEF=0.9254-(0.0003*Gal)	0.92 for a 27-gallon water heater	2.00
≤ 55 gal	Medium	UEF=0.9307-(0.0002*Gal)	0.92 for a 45-gallon water heater	2.00
	High	UEF=0.9349-(0.0001*Gal)	0.93 for a 50-gallon water heater	2.00
\ FF 1 1	Very Small	UEF=1.9236-(0.0011*Gal)	No models on the market	2.20
> 55 gal and	Low	UEF=2.0440-(0.0011*Gal)	No models on the market	2.20
≤ 120 gal	Medium	UEF=2.1171-(0.0011*Gal)	2.05 for a 58-gallon water heater	2.20
	High	UEF=2.2418-(0.0011*Gal)	2.15 for a 80-gallon water heater	2.20

- The federal standards for residential electric storage water heaters apply to both electric resistance storage water heaters and heat pump water heaters.
 - The Federal standard levels for the ≤ 55-gallon range are achievable through electric resistance and heat pump technology.
 - The Federal standards for the > 55-gallon range and all ENERGY STAR levels are only achievable through heat pump technology.
- Typical storage volumes range from 25-55 gallons for electric resistance storage water heaters and 45-80 gallons for heat pump water heaters (HPWHs).

Shipments peaked in 2006 then dropped a total of 22 percent over three years. Shipments have gradually increased since then and were at the highest level in 2021.

Residential Heat Pump Water Heaters

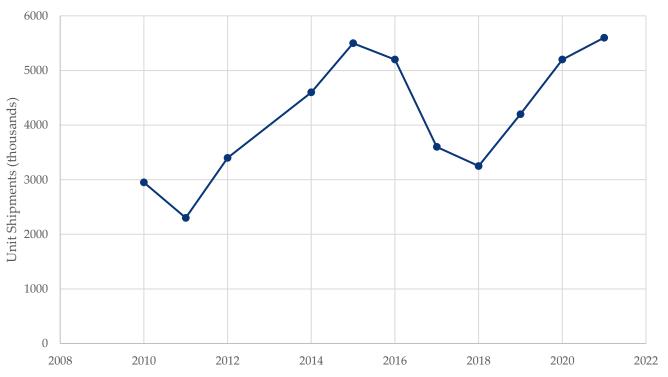
Sa	me as Reference Case											
		2015	2020		2022		203	30	20	40	20	50
	DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
•	Гурісаl Capacity (gal)	50	50	50	50	50	50	50	50	50	50	50
	Uniform Energy Factor ¹	2.05	3.28	3.33	3.30	3.73	3.33	3.73	3.33	3.73	3.33	3.73
	Average Life (y)	13	13	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1
-	Retail Equipment Cost (2022\$) ²	1,290	1,410	630	630	670	630	670	630	670	630	670
	Retail Equipment Cost (2022\$)	1,650	1,760	1,440	1,440	1,670	1,370	1,590	1,300	1,510	1,240	1,430
,	Гotal Installed Cost (2022\$) ²	1,710	1,880	870	870	980	870	980	870	980	870	980
	Total Histalieu Cost (20229)	2,940	3,000	2,230	2,230	2,450	2,120	2,330	2,010	2,210	1,910	2,100
	Annual Maintenance Cost (2022\$) ³	20	20	20	20	20	20	20	20	20	20	20

- 1. Analysis is based on an average of low and medium draw pattern units, as this is most reflective of the market.
- 2. It is expected that costs for HPWHs will decrease over time as these products become more common. This analysis estimates these cost decreases for the higher range of costs.
- 3. For heat pump water heater design options, DOE assumed higher maintenance cost to take into account annual cleaning of the air filter, preventative maintenance cost to check the evaporator and refrigeration system, inspection of the condensate withdrawal system, and replacement of the condensate neutralizer filter, if applicable. However, this maintenance is estimated to occur in only 10% of households, so overall maintenance cost is similar to that of other electric resistance water heaters.

Note:

Ranges represent span of typical values.

ENERGY STAR V. 4.0 went into effect January 5, 2022.


Assume same lifetime as electric resistance water heaters.

Residential Heat Pump Water Heaters

- Technology improvements have advanced efficiency and reliability, but the high first-cost and lack of awareness among consumers and contractors still precludes high-volume market penetration.
- New Federal standards that came into effect in April 2015 effectively mandate heat pump technology for electric storage water heaters with storage volume > 55 gallons.
- Integrated models are the most common configuration for residential HPWHs. Several major water heater manufacturers produce such models, and other competitors offer integrated or add-on units (for existing electric or indirect storage water heaters).
- Sales are estimated to be driven partly by rebates and tax credits at the utility, local, state, and Federal level.
- Resistive heating elements are virtually 100% efficient, but there is a jump in efficiency when heat pump technology is adopted because heat pumps' COP are usually between 2.5 and 4.
- Heat pumps raise the water temperature more slowly than resistive heating elements, so most models use backup resistive elements along with the heat pump when hot water demand is high. Most HPWHs allow the consumer to control whether resistive elements are used in periods of high demand (e.g., "hybrid mode" or "heat pump only mode").

Shipments make up a small portion of electric resistance heaters, with a peak of only about 5,500 units, occurring in both 2015 and 2021.

Residential Heat Pump Water Heaters

Source: ENERGY STAR

Residential Solar Water Heaters

Same as Reference Case							
	2015	2020	20	22	2030	2040	2050
DATA	Installed Base	Installed Base	ENERGY STAR V. 4.0	Typical	Typical	Typical	Typical
Typical Capacity (ft ²) ¹	42	42	40	40	40	40	40
Typical Capacity (it)	65	65	54.4	54.4	54.4	54.4	54.4
Solar Uniform Energy Factor (SUEF) ²	3.0	3.0	3.0	99.0	99.0	99.0	99.0
Average Life (y)	15	15	15	15	15	15	15
Average Life (y)	30	30	30	30	30	30	30
Retail Equipment Cost (2022\$)	7,710	7,710	6,430	6,430	6,430	6,430	6,430
Total Installed Cost (2022\$)	10,650	10,650	8,060	8,060	8,060	8,060	8,060
Annual Maintenance Cost (2022\$) ³	80	80	80	80	80	80	80

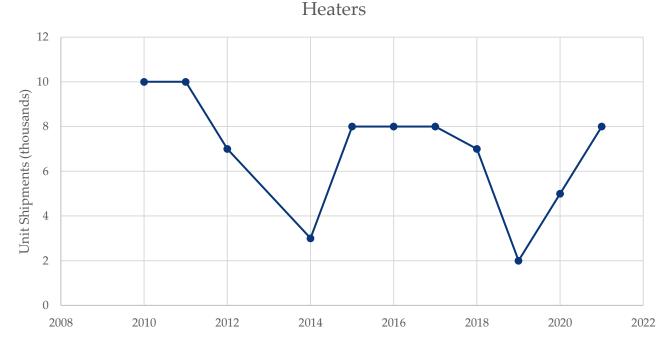
- 1. Capacity selections are based on the range observed from medium draw units in the ENERGY STAR database. Medium draw represented the largest portion of units.
- 2. An SUEF of 3.0 is the required threshold for ENERGY STAR certification, yet a value of 99 was the most common observed SUEF among medium draw units. Note that an SUEF of 99 indicates that no backup heating was required for the applicable draw pattern, and all energy was provided by the solar collector. Since SUEF is a measure of hot water energy out divided by electrical or gas backup energy in, it will be infinite for cases where the collector provides all the hot water needed for the draw pattern the Solar Rating and Certification Corporation's (SRCC's) OG-300 software is written to assign an SUEF of 99 to this case.
- 3. Annual maintenance is expected to be 0.5% to 1% of the total installation for 2022, 2030, 2040, and 2050.

Note:

ENERGY STAR V. 4.0 went into effect January 5, 2022.

Residential Solar Water Heaters

Solar water heaters are not subject to federal energy conservation standards. The ENERGY STAR requirements are:


Applicable Products	Backup Fuel	ENERGY STAR Requirement	Test Method
7A711 - 1	Gas	SUEF≥3.0	ICC 900/SRCC 300-2020 Solar Thermal System Standard,
Whole-home	Tloobui a	SEF ≥ 1.8	Appendix A: Solar Uniform Energy Factor Procedure for
solar units	Electric	SEF ≥ 1.8	Solar Water Heating Systems

- Solar water heaters can be either active or passive. An active system uses an electric pump to circulate the heat transfer fluid; a passive system has no pump. Most solar water heaters in the U.S. are the active type.
- Solar water heaters are also characterized as open loop (also called "direct") or closed loop (also called "indirect"). An open-loop system circulates household (potable) water through the collector. A closed-loop system uses a heat transfer fluid (water or diluted antifreeze, for example) to collect heat and a heat exchanger to transfer the heat to household water. Direct systems were observed as the most common product type and subject of this analysis.
- In 2020, stakeholders from the solar thermal industry developed the Solar Uniform Energy Factor (SUEF) Specification for solar water heaters to align with the UEF metric used by DOE for other water heating technologies.
- SUEF is also the metric used by the current ENERGY STAR Specification, and it replaced the Solar Energy Factor (SEF)
 metric.
- Over two-third of the current solar water heater market is in the southern or western U.S. (including Hawaii). A collector area of 42 square feet (ft²) would be typical for these areas. Colder areas of the U.S. would require a larger collector (e.g., 65 ft²).
- Installed costs are higher for colder areas where larger collectors are required. Costs also vary widely depending on collector quality, type of system, and site-specific characteristics.

Residential Solar Water Heaters

The shipments data below only represents ENERGY STAR-certified solar water heaters, as ENERGY STAR did not provide a market penetration rate. Solar water heaters have a small market share, with only 10,000 shipments at the peak in 2010 and 2011.

Shipments of ENERGY STAR-Certified Residential Solar Water

Source: *ENERGY STAR*

Residential Gas-Fired Instantaneous Water Heaters

Higher typical efficiency product with the same costs as ref. case despite increased efficiency

riigher typical emolency (2015	2020		2022			2023	203	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.0	High	ENERGY STAR V. 5.0	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	199	199	199	199	199	199	199	199	199	199	199	199	199
Uniform Energy Factor (UEF) ¹	0.81	0.89	0.81	0.92	0.87	0.97	0.95	0.96	0.97	0.96	0.97	0.96	0.97
Average Life (y)	19	19	20	20	20	20	20	20	20	20	20	20	20
Patril Farriage and Coat (2022)	1,410	1,180	430	580	580	610	610	580	610	580	610	580	610
Retail Equipment Cost (2022\$)	1,760	1,410	1,020	1,360	1,350	1,430	1,430	1,360	1,430	1,360	1,430	1,360	1,430
Total Installed Cost (2022\$)	2,590	1,760	920	1,070	950	1,090	1,090	1,070	1,090	1,070	1,090	1,070	1,090
Total Installed Cost (2022\$)	3,820	3,350	2,860	3,160	3,140	3,230	3,220	3,160	3,230	3,160	3,230	3,160	3,230
Annual Maintenance Cost (2022\$) ²	90	90	90	90	90	90	90	90	90	90	90	90	90

- 1. Analysis is based on an average of low, medium, and high draw pattern units, as this is most reflective of the market.
- 2. Annual maintenance includes deliming to minimize deposition of sediment in the heat exchanger, maintain operating efficiency and prolong product life. Also includes additional tasks, including inspection of the ignition device, gas valve, controls, thermostat, and venting.

Note:

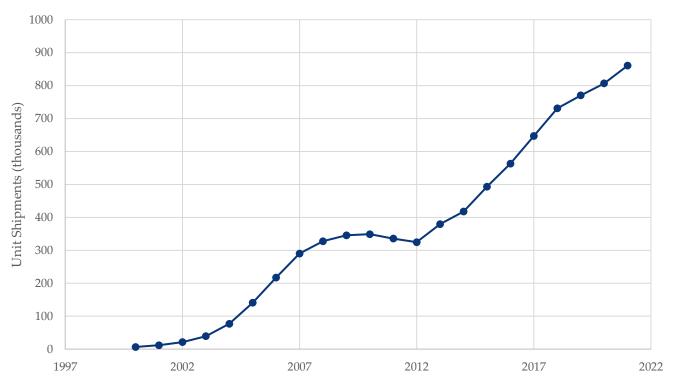
Current standards went into effect April 16, 2015.

ENERGY STAR V. 4.0 went into effect January 5, 2022.

ENERGY STAR V. 5.0 will go into effect April 18, 2023.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (21.3, 1.76, 1).

Residential Gas-Fired Instantaneous Water Heaters


• The equations for Federal Standards and the voluntary ENERGY STAR requirements, if applicable, are:

Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes	ENERGY STAR
	Very Small	UEF=0.80	No models on the market	0.87
<2 gal and	Low	UEF=0.81	No models on the market	0.87
>50,000 Btu/h	Medium	UEF=0.81	0.81	0.87
	High	UEF=0.81	0.81	0.87

- The ENERGY STAR levels require the use of condensing technology.
- All of the major water heater manufacturers now offer an instantaneous water heater model.
- The maintenance costs include cleaning the water inlet filter and the heat exchanger of mineral deposits and replacing the water valve approximately once every five years for all instantaneous water heaters.
- When replacing a storage water heater with an instantaneous water heater, there are significant additional costs to upsize the gas supply line to ¾ inch from the typical ½ inch and change the venting.
- Advanced Case: Increased market incentives are expected to drive further adoption of condensing products, thereby raising the typical efficiency, while increased R&D is expected to improve cost.

Shipments for Gas-Fired Instantaneous Water Heaters have grown steadily with nearly no shipments in 2000 and a peak of about 850,000 units in 2021.

Residential Gas-Fired Instantaneous Water Heaters

Source: CWH EERE 2022 Preliminary Analysis

Residential Electric Instantaneous Water Heaters

Sa	me as Reference Case											
		2015	2020		2022		20	30	20	40	20	50
	DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
	Representative Input Rate (kW)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
	Uniform Energy Factor (UEF) ¹	0.96	0.96	0.91	0.96	0.98	0.96	0.98	0.96	0.98	0.96	0.98
	Average Life (y)	20	20	20	20	20	20	20	20	20	20	20
	Retail Equipment Cost (2022\$)	260	260	260	260	260	260	260	260	260	260	260
,	Total Installed Cost (2022\$)	520	520	520	520	520	520	520	520	520	520	520
	Annual Maintenance Cost (2022\$) ²	90	90	90	90	90	90	90	90	90	90	90

- 1. Analysis is based on an average of low, medium, and very small draw pattern units, as this is most reflective of the market.
- 2. Annual maintenance costs not provided in CWH EERE 2022 Preliminary Analysis. Maintenance costs determined from the following calculation: GIWH (GSWH ESWH) i.e., the difference factor in maintenance between gas and electric storage heat pumps applied to gas instantaneous heat pumps.

Note:

Current standards went into effect April 16, 2015.

Assume same lifetime as gas-fired instantaneous water heaters.

Residential Electric Instantaneous Water Heaters

• The Federal standards are:

Volume Range	Draw Pattern	Federal standard ¹	Federal minimum UEF for typical sizes
J	Very Small	UEF=0.91	0.91
<01	Low	UEF=0.91	0.91
<2 gal	Medium	UEF=0.91	No models on the market
	High	UEF=0.92	No models on the market

- Electric instantaneous water heaters use electric resistance heating elements to heat water when there is a demand. Resistive heating elements are virtually 100% efficient, and the small storage capacities of these products means that they do not lose significant amounts of heat to the environment.
- The federal standards for these products require UEFs of 0.91 for very small, low, and medium draw pattern models and 0.92 for high draw pattern models.
- Most products currently on the market are in the very small draw pattern or the low draw pattern because electric resistance elements can only supply a limited quantity of heat on an instantaneous basis due to circuit amperage limitations.
- Many products are designed for point-of-use applications, such that the water heater only supplies water to one faucet or showerhead.

Residential Appliances

Residential Refrigerator-Freezers (Top)

Higher typical efficiencies with same costs as reference case despite increased efficiency

3 - 37	2015	2020		20	22		2030		2040		2050	
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)²	19	19	19	19	19	19	19	19	19	19	19	19
Energy Consumption (kWh/y) ³	512	401	411	401	370	358	370	358	370	358	370	358
Average Life (y)	15	15	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$)	670	750	740	750	760	760	750	760	750	760	750	760
Total Installed Cost (2022\$)	670	750	740	750	760	760	750	760	750	760	750	760
Annual Maintenance Cost (2022\$) ⁴	10	10	10	10	10	10	10	10	10	10	10	10

- 1. Product Class 3 is used for this analysis (Refrigerator-freezers—automatic defrost with top-mounted freezer without through-the-door ice service and all-refrigerator—automatic defrost).
- 2. The volume shown here is the nominal total volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. The 2015 installed base energy consumption value is based on an adjusted volume of 21 cubic feet (ft³). Energy consumption values for the 2020 installed base and 2022 and beyond are based on an adjusted volume of 22 ft³, representing the current market.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan, electronics, ice maker), not replaceable components (e.g., water filters).

Note:

Current standard went into effect in September 2014.

ENERGY STAR V. 5.1 went into effect in September 2014.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (10.26, 1.28, 5.13).

Residential Refrigerator-Freezers (Side)

Higher typical efficiencies with same costs as reference case despite increased efficiency

3 1 97 12 1 1 1 1	2015	2020		20)22		2030		2040		2050	
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft ³) ²	26	26	25	25	25	25	25	25	25	25	25	25
Energy Consumption (kWh/y) ³	893	693	705	693	635	610	635	610	635	610	635	610
Average Life (y)	15	15	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$)	1,400	1,130	1,130	1,130	1,160	1,470	1,130	1,470	1,130	1,470	1,130	1,470
Total Installed Cost (2022\$)	1,400	1,130	1,130	1,130	1,160	1,470	1,130	1,470	1,130	1,470	1,130	1,470
Annual Maintenance Cost (2022\$) ⁴	30	20	20	20	20	30	20	30	20	30	20	30

- 1. Product Class 7 is used for this analysis (Refrigerator-freezers—automatic defrost with side-mounted freezer with through-the-door ice service).
- 2. The volume shown here is the nominal total volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. Based on an adjusted volume of 32 ft³ for all analysis years.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan, electronics, ice maker), not replaceable components (e.g., water filters). Note:

Current standard went into effect in September 2014.

ENERGY STAR V. 5.1 went into effect in September 2014.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (10.26, 1.28, 5.13).

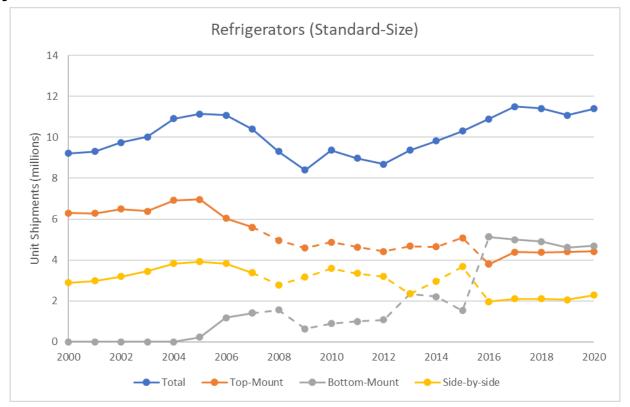
Residential Refrigerator-Freezers (Bottom)

Higher typical efficiencies with same costs as reference case despite increased efficiency

r ngrier typical emelenere in	2015	2020			22		2030		2040		2050	
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft ³) ²	19	19	19	19	19	19	19	19	19	19	19	19
Energy Consumption (kWh/y) ³	547	473	521	473	469	430	469	430	469	430	469	430
Average Life (y)	15	15	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$)	1,190	920	920	920	920	930	920	930	920	930	920	930
Total Installed Cost (2022\$)	1,190	920	920	920	920	930	920	930	920	930	920	930
Annual Maintenance Cost (2022\$) ⁴	30	20	20	20	20	20	20	20	20	20	20	20

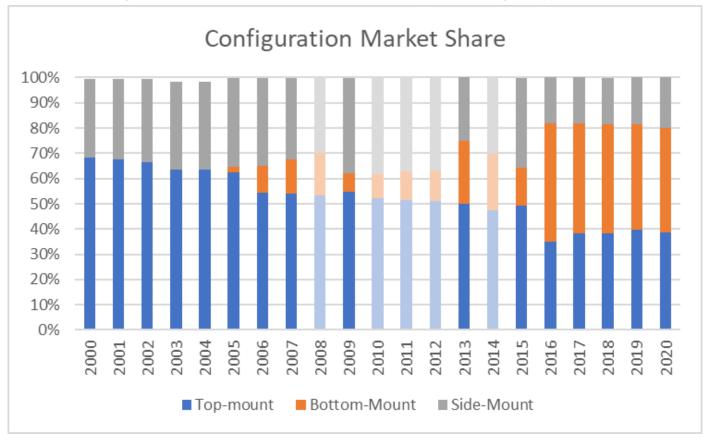
- 1. Product Class 5 is used for this analysis (Refrigerator-freezers—automatic defrost with bottom-mounted freezer without through-the-door ice service).
- 2. The volume shown here is the nominal total volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. Based on an adjusted volume of 23 ft³ for all analysis years.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan, electronics, ice maker), not replaceable components (e.g., water filters). Note:

Current standard went into effect in September 2014.


ENERGY STAR V. 5.1 went into effect in September 2014.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (10.26, 1.28, 5.13).

Residential Refrigerator-Freezers


- Current Federal standards¹:
 - Compliance required beginning September 15, 2014
 - Models divided into 32 product classes based on size (standard or compact), location of freezer (top, bottom, or side), type of defrost (automatic or manual), installation configuration (freestanding or built-in), and presence and configuration (through-the-door or inside cabinet) of automatic icemaker
 - Limits on annual electricity consumption expressed as functions of adjusted volume²
 - New product classes for built-in units
 - Amount by which standards are tightened varies by product class
- ENERGY STAR criteria limit annual electricity consumption to 10% less than the Federal standard
- Energy efficiency opportunities for refrigerators include:
 - More efficient compressor, including variable speed compressors
 - Brushless direct current (DC) fan motor (also known as ECM motor)
 - Variable defrost
 - Larger condenser
 - Dual evaporators
 - Vacuum-insulated panels
 - Refrigerants (Isobutane vs. R134a)
- Advanced Case: Increased market incentives will push product sales towards the ENERGY STAR level, but the technologies used to meet ENERGY STAR are already well-known and prices will likely not rise as manufacturing volumes increase at higher efficiencies.

Annual shipment volumes have rebounded from a sharp decline between 2006 and 2009, reaching approximately 11.4 million units in 2020.

Source: *Appliance Magazine; DOE's CCD, as of December 2017; ENERGY STAR Unit Shipment Data* (2017-2020); *Guidehouse analysis.* Dashed lines are a combination of interpolated and available data.

Bottom-mount units have gained market share, surpassing top-mount units since 2016.

Sources: RF EERE 2021 Preliminary Analysis; DOE's CCD, as of December 2017; Guidehouse analysis. Lightly shaded bars indicate interpolated data.

Residential Freezers (Chest)

Same as Reference Case											
,	2015	2020		2022		20	30	20	40	20	50
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft ³) ²	16	15	15	15	15	15	15	15	15	15	15
Energy Consumption (kWh/y) ³	360	297	297	297	287	297	287	297	287	297	287
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	510	590	680	680	690	680	690	680	690	680	690
Total Installed Cost (2022\$)	510	590	680	680	690	680	690	680	690	680	690
Annual Maintenance Cost (2022\$) ⁴	10	10	10	10	10	10	10	10	10	10	10

- 1. Product Class 10 is used for this analysis (Chest freezers and all other freezers except compact freezers).
- 2. The volume shown here is the nominal volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume (zero for freezers) plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. Based on an adjusted volume of 26 ft³, which is the average adjusted volume for units with a rounded total refrigerated volume of 15 ft³ per the DOE CCD.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan, electronics)

Note:

Current standard went into effect in September 2014.

ENERGY STAR excluded as no products at the typical capacity are ENERGY STAR compliant.

Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (21.96, 1.83, 1).

Residential Freezers (Upright)

Higher typical efficiencies with same costs as reference case despite increased efficiency

riighter typicar emelenelee man ea	2015	2020)22		2030		2040		2050	
DATA ¹	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft ³) ²	17	17	18	18	18	18	18	18	18	18	18	18
Energy Consumption (kWh/y) ³	615	446	497	493	448	441	448	441	448	441	448	441
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	690	880	830	830	830	830	830	830	830	830	830	830
Total Installed Cost (2022\$)	690	880	830	830	830	830	830	830	830	830	830	830
Annual Maintenance Cost (2022\$) ⁴	10	10	10	10	10	10	10	10	10	10	10	10

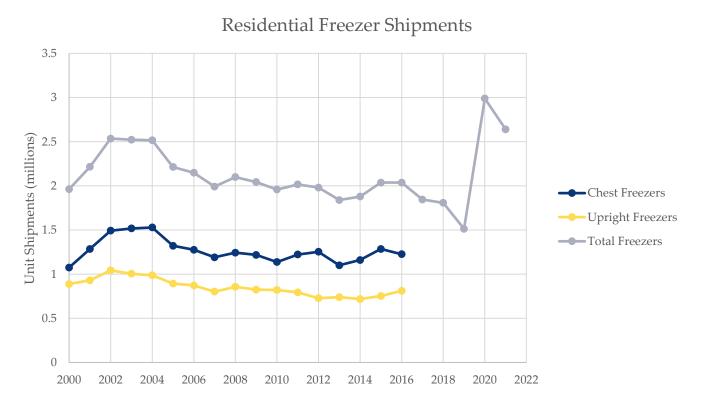
- 1. Product Class 9 is used for this analysis (Upright freezers with automatic defrost).
- 2. The volume shown here is the nominal volume, not the adjusted volume, which is used to determine compliance with standards. The adjusted volume is equal to the fresh food internal volume (zero for freezers) plus the freezer internal volume times an adjustment factor, which depends on the product type.
- 3. Based on an adjusted volume of 31 ft³, which is the average adjusted volume for units with a rounded total refrigerated volume of 18 ft³ per the DOE CCD.
- 4. Maintenance costs include cost of repairing integral components (e.g., compressor, evaporator fan electronics).

Note:

Current standard went into effect in September 2014.

ENERGY STAR V. 5.1 went into effect September 2014.

Assume same lifetime as chest freezers.


Residential Freezers

- Current Federal standards¹:
 - Compliance required beginning September 15, 2014
 - Models divided into 10 product classes based on size (standard or compact), orientation (chest or upright), type of defrost (automatic or manual), installation configuration (freestanding or built-in), and presence of automatic icemaker
 - Current analysis focuses on the two representative product classes analyzed in the recent rulemaking, chest and upright freezers.
 - Limits on annual electricity consumption expressed as functions of adjusted volume²
 - Chest freezers and all other freezers except compact freezers (PC 9): 9.88AV + 143.7
 - Upright freezers with automatic defrost (PC 10): 12.43AV + 326.1
- ENERGY STAR criteria limit annual electricity consumption to 10% less than the Federal standard
 - No ENERGY STAR compliant products at the typical capacity for chest freezers
- Energy efficiency opportunities for freezers include:
 - Higher efficiency and/or variable-speed compressor systems
 - Larger heat exchangers
 - Permanent-magnet fan motor systems (vs. shaded pole motor (SPM) and PSC fan motors)
 - Demand defrost systems
 - Vacuum-insulated panels
 - Thicker insulation (though at a loss of consumer utility)
 - Refrigerants (Isobutane vs. R134a)
 - Variable anti-sweat heating
 - Use of forced convection condenser (for upright freezers)
- Advanced Case: Increased market incentives will push product sales of upright freezers towards the ENERGY STAR level, but the technologies used to meet ENERGY STAR are already well-known and prices will likely not rise as manufacturing volumes increase at higher efficiencies. Unlikely to occur for chest freezers due to such a low existing market penetration of ENERGY STAR products.

¹Energy Conservation Standards for Residential Refrigerators, Refrigerator-Freezers, and Freezers. 10 CFR 430.32(a).

 $^{^{2}}$ Adjusted Volume (AV) = (Fresh Volume) + 1.76 × (Freezer Volume).

Shipment volumes held steady between 2007 to 2016 at about 2 million units per year. Shipments jumped to 3 million units in 2020. Chest freezers represent about 60% of the market.

Sources: Appliance Magazine from 2000 to 2016; ENERGY STAR from 2017 to 2021

Residential Natural Gas Cooktops

ame as Reference Case												
	2015	2020	20	2022		2030		40	2050			
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High		
Typical Capacity (kBtu/h)	9	9	9	9	9	9	9	9	9	9		
Typical Capacity (KBtW/II)	23	23	23	23	23	23	23	23	23	23		
Integrated Annual Energy Consumption (kBtu/y) ¹	1,061	914	914	730	914	730	914	730	914	730		
Cooking Efficiency (%)	40	45	45	52	45	52	45	52	45	52		
Average Life (y)	15	15	15	15	15	15	15	15	15	15		
Retail Equipment Cost (2022\$) ²	290	310	310	330	310	330	310	330	310	330		
Total Installed Cost (2022\$) ²	420	460	460	480	460	480	460	480	460	480		
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-		

- 1. Although there is no performance standard in effect, the test procedure metric has changed from Cooking Efficiency (%) to Integrated Annual Energy Consumption (IAEC) (kBtu/h). The Consumer Cooking Products EERE 2020 notice of proposed determination (NOPD) used for 2020 and beyond in this analysis also determined IAEC using a different test procedure than the Consumer Cooking Products EERE 2016 SNOPR.
- 2. Equipment and installed costs are for cooktops only (not combined range units).
- 3. Annual maintenance costs are negligible.

Note:

The range for typical capacity represents the span of typical values.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (14.56, 5.73).

Residential Natural Gas Ovens

came as Reference Case										
	2015	2020	20	22	20	30	20	40	20	50
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Trunical Consister (LDts://s)	16	16	16	16	16	16	16	16	16	16
Typical Capacity (kBtu/h)	18	18	18	18	18	18	18	18	18	18
Typical Cavity Volume (ft³)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Typical Cavity volume (it)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Integrated Annual Energy Consumption (kBtu/y) ¹	2,038	1,960	1,960	1,831	1,960	1,831	1,960	1,831	1,960	1,831
Cooking Efficiency (%)	6.6	6.9	6.9	7.3	6.9	7.3	6.9	7.3	6.9	7.3
Average Life (y)	15	15	15	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$) ²	740	770	770	810	770	810	770	810	770	810
Total Installed Cost (2022\$) ²	870	920	920	950	920	950	920	950	920	950
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-

- 1. Although there is no performance standard in effect, the test procedure metric has changed from Cooking Efficiency (%) to IAEC (kBtu/y). The 2015 IAEC value is reflective of freestanding standard gas ovens, which was previously determined to be the most representative product class. IAEC for 2020 and beyond is reflective of freestanding self-clean gas ovens, which is the product class that makes up the majority of historical and projected gas oven shipments.
- 2. Equipment and installed costs are for ovens only (not combined ranges). Costs are reflective of freestanding self-clean oven units with single oven component, which represent the majority of the market.
- 3. Maintenance costs are negligible.

Note:

Ranges represent the span of typical values for a given parameter.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (14.56, 5.73).

Residential Natural Gas Ranges

Same as Reference Case	2015	2020	20		20	20	20	40	2050		
DATA			20	ZZ	20	30	20	40	203	DU	
DAIA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High	
Typical Capacity of Cooktop Component	9	9	9	9	9	9	9	9	9	9	
(kBtu/h)	23	23	23	23	23	23	23	23	23	23	
Typical Capacity of Oven Component	16	16	16	16	16	16	16	16	16	16	
(kBtu/h)	18	18	18	18	18	18	18	18	18	18	
Typical Cavity Volume of Oven	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Component (ft ³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Integrated Annual Energy Consumption (kBtu/y) ¹	3,099	2,874	2,874	2,561	2,874	2,561	2,874	2,561	2,874	2,561	
Average Life (y)	15	15	15	15	15	15	15	15	15	15	
Retail Equipment Cost (2022\$) ²	750	770	770	850	770	850	770	850	770	850	
Total Installed Cost (2022\$) ²	900	920	920	1,000	920	1,000	920	1,000	920	1,000	
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-	

- 1. IAEC of a natural gas range is calculated as the sum of the IAEC for a natural gas cooktop and natural gas oven. IAEC of the oven component is reflective of freestanding self-clean gas ovens, which represent the majority of the market. The 2015 IAEC value of the oven component is reflective of freestanding standard gas ovens, which was previously determined to be the most representative product class.
- 2. Retail and installed cost are reflective of a typical unit with standard 30-inch width and 4 to 5 cooking top heating elements. Based on data from DOE rulemakings, Gordian's RSMeans Data Building Construction Costs 2023, and distributors, total installed cost is estimated to be around \$150 more than retail equipment cost.
- 3. Maintenance costs are negligible.

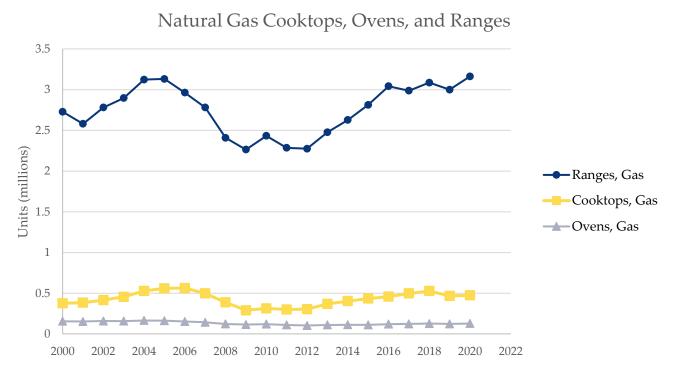
Note:

Ranges represent the span of typical values for a given parameter.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (14.56, 5.73).

Residential Natural Gas Cooktops, Ovens, and Ranges

- DOE analyzes cooktops and ovens separately, although they are often sold together in a single unit that combines both a
 cooktop and an oven into a product referred to as a range.
- Since January 1, 1990, gas cooking products with an electrical supply cord have been required to not be equipped with a constant burning pilot light. This requirement extended to gas cooking products without an electrical supply cord, as of April 9, 2012.
- DOE published a final rule in 2009¹ in which it determined that no standard for cooking efficiency would be cost-justified.
- DOE initiated a standards rulemaking in 2014 to consider amended standards for cooking products, including gas cooktops and ovens².
- On September 2, 2016, DOE proposed performance-based standards for gas cooktops and ovens that would take effect in 2020, if adopted.
- DOE established the new IAEC metric, in kBtu/y, to replace cooking efficiency (%).
- On December 14, 2020, DOE initially determined that amended energy conservation standards for consumer conventional cooking products would not be economically justified and would not result in significant conservation of energy³.
- On February 2, 2023, DOE proposed new and amended energy conservation standards for consumer conventional cooking products⁴.
- The IAEC of a range is calculated as the sum of the IAECs for cooktops and ovens. However, retail and installation costs for a range are similar to the cost of an oven.


¹Energy Conservation Standards for Certain Consumer Products (Dishwashers, Dehumidifiers, Microwave Ovens, and Electric and Gas Kitchen Ranges and Ovens) and for Certain Commercial and Industrial Equipment (Commercial Clothes Washers); Final Rule. 74 FR 16040.

²Energy Conservation Standards for Residential Conventional Cooking Products; Supplemental notice of proposed rulemaking (SNOPR). 81 FR 60784.

³Energy Conservation Standards for Consumer Conventional Cooking Products; Notice of proposed determination (NOPD). 85 FR 80982.

⁴Energy Conservation Standards for Consumer Conventional Cooking Products; SNOPR. 88 FR 6818.

Shipments have been rising since 2012. In 2020, gas range shipments surpassed the peak reached in 2005.

Source: Appliance Magazine and Consumer Cooking Products EERE 2022 SNOPR

Residential Electric Cooktops

ame as Reference Case											
	2015	2020	20	22	2030		20	40	2050		
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High	
Typical Capacity (W)	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	
Typical Capacity (W)	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700	
Integrated Annual Energy Consumption (kWh/y) ¹	155	155	155	119	155	119	155	119	155	119	
Average Life (y)	17	17	17	17	17	17	17	17	17	17	
Retail Equipment Cost (2022\$) ²	470	470	470	810	470	810	470	810	470	810	
Total Installed Cost (2022\$) ²	620	620	620	1,230	620	1,230	620	1,230	620	1,230	
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-	

- 1. Although there is no performance standard in effect, the test procedure metric has changed from Cooking Efficiency (%) to IAEC (kBtu/y). IAEC was determined using DOE rulemaking data for the most representative product class, electric smooth element cooking tops, which covers cooking tops with electric resistance heating elements and cooking tops with induction heating elements.
- 2. Equipment and installed costs are for cooktops only (not combined range units). Costs were determined using DOE rulemaking data for the most representative product class, electric smooth cooking tops, which includes cooking tops with electric resistance heating elements and cooking tops with induction heating elements. A high-end unit with induction technology is expected to have a greater retail equipment cost and greater installation cost in order to implement this technology.
- 3. Maintenance costs are negligible.

Note:

The range for typical capacity represents the span of typical values.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (16.88, 6.99).

Residential Electric Ovens

Same as Reference Case													
	2015	2020	20	22	20	30	20	40	20	50			
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High			
Typical Capacity (W)	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000			
Typical Capacity (VV)	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400			
Typical Cavity Volume (ft³)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0			
Typical Cavity Volume (it)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0			
Integrated Annual Energy Consumption (kWh/y) ¹	355	355	355	278	355	278	355	278	355	278			
Average Life (y)	17	17	17	17	17	17	17	17	17	17			
Retail Equipment Cost (2022\$) ²	630	630	630	730	630	730	630	730	630	730			
Total Installed Cost (2022\$) ²	770	770	770	870	770	870	770	870	770	870			
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-			

- 1. Although there is no performance standard in effect, the test procedure metric has changed from Cooking Efficiency (%) to IAEC (kBtu/y). IAEC was determined using DOE rulemaking data for freestanding electric self-clean ovens, which represent the majority of the market.
- 2. Equipment and installed costs are for ovens only (not combined ranges). Costs are reflective of freestanding self-clean oven units with single oven component, which represent the majority of the market.
- 3. Maintenance costs are negligible.

Note:

Ranges represent the span of typical values for a given parameter.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (16.88, 6.99).

Final

Residential Electric Ranges

Same as Reference Case	2015	2020	20	22	20	30	20	40	20	50
DATA	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity of Cooktop Component	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200
(W)	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700	3,700
Typical Capacity of Oven Component	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
(W)	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400
Typical Cavity Volume of Oven	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Component (ft³)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Integrated Annual Energy Consumption (kWh/y) ¹	510	510	510	397	510	397	510	397	510	397
Average Life (y)	17	17	17	17	17	17	17	17	17	17
Retail Equipment Cost (2022\$) ²	630	630	630	900	630	900	630	900	630	900
Total Installed Cost (2022\$) ²	770	770	770	1,050	770	1,050	770	1,050	770	1,050
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-

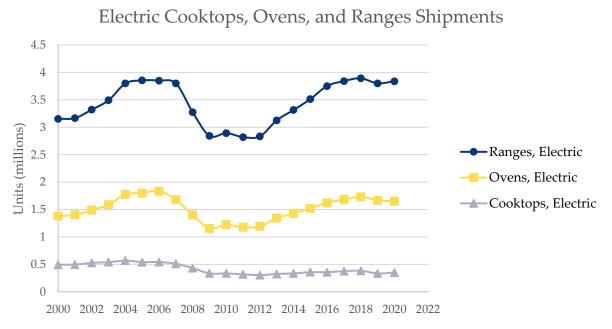
- 1. IAEC of an electric range is calculated as the sum of the IAEC for an electric cooktop and an electric oven. IAEC of the electric cooktop component was determined using DOE rulemaking data for the most representative product class, electric smooth element cooking tops, which covers cooking tops with electric resistance heating elements and cooking tops with induction heating elements. IAEC of the electric oven component was determined using DOE rulemaking data for freestanding electric self-clean ovens, which represent the majority of the market.
- 2. Retail and installed cost are reflective of standard units that are 30-inch wide and have 4 to 5 cooking top heating elements. Based on data from DOE rulemakings, Gordian's RSMeans Data Building Construction Costs 2023, and distributors, total installed cost is estimated to be around \$140 more than retail equipment cost for a typical unit, and \$150 more than retail equipment cost for a high-end unit. A high-end unit with an induction cooking top component is expected to have a greater retail equipment cost and greater installation cost in order to implement this technology.
- 3. Maintenance costs are negligible.

Note:

Ranges represent the span of typical values for a given parameter.

Average life is determined using a Weibull distribution characterized by the following scale (α) and shape (β) parameters: (16.88, 6.99).

Residential Electric Cooktops, Ovens, and Ranges


- DOE analyzes cooktops and ovens separately, although they are often sold together in a single unit that combines both a cooktop and an oven into a product referred to as a range.
- DOE initiated a standards rulemaking in 2014 to consider amended standards for cooking products, including electric cooktops and ovens¹.
- On September 2, 2016, DOE proposed performance-based standards for electric cooktops and ovens that would take effect in 2020 if adopted.
- DOE established the new IAEC metric, in kWh/y, to replace cooking efficiency (%).
- On December 14, 2020, DOE initially determined that amended energy conservation standards for consumer conventional cooking products would not be economically justified and would not result in a significant conservation of energy².
- On February 2, 2023, DOE proposed new and amended energy conservation standards for consumer conventional cooking products³.
- The IAEC of a range is calculated as the sum of the IAECs for cooktops and ovens. However, retail and installation costs for a range are similar to the cost of an oven.

¹Energy Conservation Standards for Residential Conventional Cooking Products; Supplemental notice of proposed rulemaking (SNOPR). 81 FR 60784.

²Energy Conservation Standards for Consumer Conventional Cooking Products; Notice of proposed determination (NOPD). 85 FR 80982.

³Energy Conservation Standards for Consumer Conventional Cooking Products; SNOPR. 88 FR 6818.

Shipments of electric cooking products reached a peak in 2006. Shipments of ranges and ovens have been rising again since 2012. In 2018, electric range shipments surpassed the peak reached in 2006.

Source: Consumer Cooking Products EERE 2022 SNOPR

Residential Clothes Dryers (Electric)

Higher typical efficiency product with the same costs as ref. case despite increased efficiency.

опуртов от	2015	2020		20)22		203	30	204	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 1.1 ¹	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)	7.4	7.4	7.4	7.4	7.4	4.5	7.4	4.5	7.4	4.5	7.4	4.5
Combined Energy Factor, D1 (lb/kWh) ²	3.59	3.73	3.73	3.73	NA	3.93	3.73	3.93	3.73	3.93	3.73	3.93
Combined Energy Factor, D2 (lb/kWh) ²	3.59	3.93	3.73	3.93	3.93	11.00	5.34	11.00	6.48	11.00	7.38	11.00
A	8	8	8	8	8	8	8	8	8	8	8	8
Average Life (y)	18	18	18	18	18	18	18	18	18	18	18	18
Retail Equipment Cost (2022\$)	580	580	580	580	580	980	580	980	580	980	580	980
Total Installed Cost (2022\$)	710	710	710	710	710	1,110	710	1,110	710	1,110	710	1,110
Annual Maintenance Cost (2022\$) ³	-	-	-	-	-	-	-	-	-	-	-	-

- 1. ENERGY STAR V. 1.1 applies to vented and ventless standard electric clothes dryers.
- 2. The efficiency metric changed from EF to combined energy factor (CEF) in 2015. The 2015 Installed Base CEF data accounts for units tested to appendix D1 and appendix D2, because data specific to each appendix is not available for that year.
- 3. Maintenance costs are negligible. DOE estimated that on average 2.7 percent of electric and 3.3 percent of gas residential clothes dryers are repaired each year. (EERE 2014) Note:

DOE test procedures for consumer clothes dryers appear at title 10 of the Code of Federal Regulations part 430, subpart B, appendix D1 and appendix D2. The second test method, appendix D2, was finalized in a final rule published by DOE on August 14, 2013. For current standard testing, units must be tested according to either the appendix D1 or the appendix D2 test method. ENERGY STAR V. 1.1 requires certified units to be tested according to the appendix D2 test method. The appendix D1 and appendix D2 test methods determine CEF differently. The current standard went into effect in January 2015.

ENERGY STAR V. 1.1 went into effect in May 2017.

The range for average life represents the span of typical values.

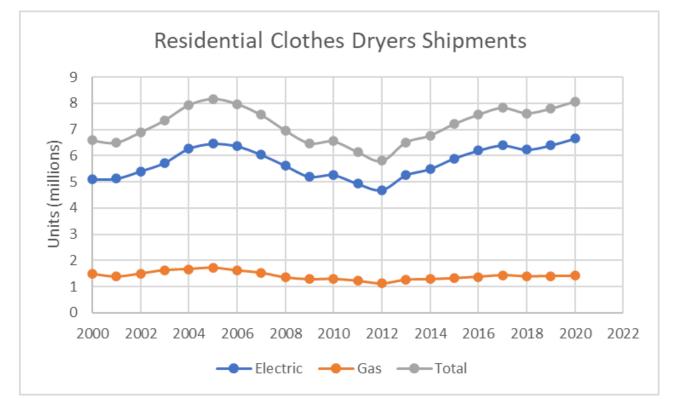
Residential Clothes Dryers (Gas)

Same as Reference Case												
	2015	2020		20	22		20	30	204	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 1.1 ¹	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
Combined Energy Factor, D1 (lb/kWh) ²	3.18	3.30	3.30	3.30	NA	3.48	3.30	3.48	3.30	3.48	3.30	3.48
Combined Energy Factor, D2 (lb/kWh) ²	3.18	3.48	3.30	3.48	3.48	3.50	3.48	3.50	3.48	3.50	3.48	3.50
Average Life (y)	8	8	8	8	8	8	8	8	8	8	8	8
Avelage life (y)	18	18	18	18	18	18	18	18	18	18	18	18
Retail Equipment Cost (2022\$)	660	670	660	670	670	670	670	670	670	670	670	670
Total Installed Cost (2022\$)	860	870	870	870	870	870	870	870	870	870	870	870
Annual Maintenance Cost (2022	\$) ³ -	-	-	-	-	-	-	-	-	-	-	-

- 1. ENERGY STAR V. 1.1 applies to vented and ventless standard electric clothes dryers.
- 2. The efficiency metric changed from EF to CEF in 2015. The 2015 Installed Base CEF data accounts for units tested to appendix D1 and appendix D2, because data specific to each appendix is not available for that year.
- 3. Maintenance costs are negligible. DOE estimated that on average 2.7 percent of electric and 3.3 percent of gas residential clothes dryers are repaired each year. (EERE 2014) Note:

DOE test procedures for consumer clothes dryers appear at title 10 of the Code of Federal Regulations part 430, subpart B, appendix D1 and appendix D2. The second test method, appendix D2, was finalized in a final rule published by DOE on August 14, 2013. For current standard testing, units must be tested according to either the appendix D1 or the appendix D2 test method. ENERGY STAR V. 1.1 requires certified units to be tested according to the appendix D2 test method. The appendix D1 and appendix D2 test methods determine CEF differently. The current standard went into effect in January 2015.

ENERGY STAR V. 1.1 went into effect in May 2017.


The range for average life represents the span of typical values.

Residential Clothes Dryers

- Current standards¹ in effect since 2015:
 - For standard-size electric units : CEF ≥ 3.73 pound per kilowatt hours (lb/kWh)
 - For gas units: $CEF \ge 2.30 \text{ lb/kWh}$
 - Units may be tested according to the test method in appendix D1 or appendix D2, which was finalized in 2013.
- The main differences between appendix D1 and appendix D2 are:
 - Appendix D2 includes test methods that more accurately measure the effects of automatic cycle termination and that may result in differences in the total measured energy consumption of the test cycle as compared to the test methods in appendix D1.
 - Appendix D2 contains instructions for the testing of timer dryers, which include a lower final moisture content (FMC) of the test load as compared to the version of appendix D1 used for the 2011 rulemaking analysis.
- Efficiency improvement technologies for clothes dryers include:
 - Multi-step or modulating heat
 - Higher efficiency drum motors
 - Inlet air pre-heat
 - Better control systems for cycle termination
 - Heat pump (for electric clothes dryers)
- EPA developed ENERGY STAR V. 1.1, which became effective in 2017 and requires units to be tested according to the test method in appendix D2.
- Standard-size heat pump clothes dryers with CEF values up to 11.0 are currently available in the U.S. market. High initial cost has limited market penetration, but some utilities are offering rebates to support market penetration.
- Advanced Case: Due to increases in market incentives, the residential electric clothes dryers market will see an increase in adoption of heat pump dryers that improve the typical efficiency products.

¹Energy Conservation Standards for Consumer Clothes Dryers. 10 CFR 430.32(h).

Shipment volumes have been on the rise since 2012. Gas dryers continue to account for about one-fifth of the market.

Source: Consumer Clothes Dryers EERE 2022 NOPR

Residential Clothes Washers (Front)

Same as Reference Case												
	2015	2020		20)22		203	30	204	40	208	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 8.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)	3.7	4.1	3.4	4.5	4.5	5.0	4.5	5.0	4.5	5.0	4.5	5.0
Integrated Modified Energy Factor (ft ³ /kWh/cycle) ¹	2.16	2.76	1.84	2.76	2.76	3.10	2.76	3.10	2.76	3.10	2.76	3.10
Integrated Water Factor (gal/cycle/ft³)²	4.7	3.2	4.7	3.2	3.2	2.7	3.2	2.7	3.2	2.7	3.2	2.7
Arramaga Lifa (r)	6	6	6	6	6	6	6	6	6	6	6	6
Average Life (y)	17	17	17	17	17	17	17	17	17	17	17	17
Water Consumption (gal/cycle)	17	14	16	14	14	14	14	14	14	14	14	14
Hot Water Energy (kWh/cycle)	0.21	0.17	0.36	0.12	0.12	0.13	0.12	0.13	0.12	0.13	0.12	0.13
Machine Energy (kWh/cycle)	0.17	0.14	0.15	0.12	0.12	0.17	0.12	0.17	0.12	0.17	0.12	0.17
Dryer Energy (kWh/cycle)	1.31	1.24	1.34	1.17	1.17	1.56	1.17	1.56	1.17	1.56	1.17	1.56
Retail Equipment Cost (2022\$)	735	1,000	705	930	930	950	930	950	930	950	930	950
Total Installed Cost (2022\$)	915	1,175	880	1,130	1,130	1,150	1,130	1,150	1,130	1,150	1,130	1,150
Annual Maintenance Cost (2022\$)	15	15	15	15	15	15	15	15	15	15	15	15

^{1.} The efficiency metric changed from Modified Energy Factor to Integrated Modified Energy Factor (IMEF) in 2015.

Note:

The current standard went into effect in January 2018.

ENERGY STAR V. 8.1 went into effect in February 2018.

The range for average life represents the span of typical values.

^{2.} The efficiency metric changed from Water Factor to Integrated Water Factor (IWF) in 2015.

Residential Clothes Washers (Top)

Sar	ne as Reference Case												
		2015	2020		20	22		200	30	20	40	208	50
	DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 8.1	High	Typical	High	Typical	High	Typical	High
	Гурісаl Capacity (ft³)	3.3	3.4	3.5	3.5	4.4	5.5	3.5	5.5	3.5	5.5	3.5	5.5
	ntegrated Modified Energy Factor ft³/kWh/cycle)¹	1.14	1.57	1.57	1.57	2.06	2.76	1.57	2.76	1.57	2.76	1.57	2.76
	ntegrated Water Factor gal/cycle/ft³)²	9.2	6.5	6.5	6.5	4.3	3.2	6.5	3.2	6.5	3.2	6.5	3.2
	Avramaga Lifa (v.)	6	6	6	6	6	6	6	6	6	6	6	6
1	Average Life (y)	17	17	17	17	17	17	17	17	17	17	17	17
1	Water Consumption (gal/cycle)	30	22	23	23	19	18	23	18	23	18	23	18
]	Hot Water Energy (kWh/cycle)	0.90	0.39	0.41	0.41	0.38	0.24	0.41	0.24	0.41	0.24	0.41	0.24
I	Machine Energy (kWh/cycle)	0.25	0.13	0.14	0.14	0.12	0.13	0.14	0.13	0.14	0.13	0.14	0.13
]	Oryer Energy (kWh/cycle)	1.73	1.63	1.68	1.68	1.64	1.61	1.68	1.61	1.68	1.61	1.68	1.61
]	Retail Equipment Cost (2022\$)	590	590	520	520	640	725	520	725	520	725	520	725
-	Γotal Installed Cost (2022\$)	765	765	715	715	840	920	715	920	715	920	715	920
1	Annual Maintenance Cost (2022\$)	15	15	15	15	15	15	15	15	15	15	15	15

^{1.} The efficiency metric changed from Modified Energy Factor to IMEF in 2015.

Note:

The current standard went into effect in January 2018.

ENERGY STAR V. 8.1 went into effect in February 2018.

The range for average life represents the span of typical values.

^{2.} The efficiency metric changed from Water Factor to IWF in 2015.

Residential Clothes Washers

- The analysis treats front- and top-loading models separately due to their different energy use characteristics.
- Federal standards¹ for standard-capacity clothes washers ($\geq 1.6 \text{ ft}^3$):

	Integrated Mod	ified Energy Factor	Integrated	Water Factor
	Top-Loading	Front-Loading	Top-Loading	Front-Loading
Current DOE Standard (effective 1/1/2018)	≥ 1.57	≥ 1.84	≤ 6.5	≤ 4.7
Current ENERGY STAR V. 8.1 (effective 4/22/2021)	≥ 2.06	≥ 2.76	≤ 4.3	≤ 3.2

- In 2020, about 40% of top-loading models and almost all front-loading models achieved the ENERGY STAR level.
- Energy efficiency improvement technologies for clothes washers include:
 - Higher efficiency motors and higher spin speeds
 - Better load sensing for adaptive water fill control
 - Reduced water temperature and quantity, while providing equivalent cleaning and rinsing performance
- Maintenance costs include replacement or repair of the drain pump, control board, motor, rubber gaskets, or control panel knobs.
- The products on the market with the highest IMEF have significantly larger capacity and therefore use more energy per cycle than typical, smaller capacity products but still perform more efficiently on a per volume basis.

Shipments have been on the rise since 2012 and reached a peak of about 10 million in 2020. Since 2012, top-loading and front-loading units represent approximately 75% and 25% of shipments, respectively.

Source: AHAM Shipment Data; RCW EERE 2021 Preliminary Analysis

Residential Dishwashers

Sai	me as Reference Case													
		2015	2020		20	22		2023	20	30	20	40	20	50
	DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 6.0	High	ENERGY STAR V. 7.0	Typical	High	Typical	High	Typical	High
	Гуріcal Annual Energy Use (kWh/y)	295	270	307	270	270	225	240	240	225	240	225	240	225
,	Water Consumption (gal/cycle)	4.25	3.50	5.00	3.50	3.50	2.40	3.20	3.20	2.40	3.20	2.40	3.20	2.40
,	Water Heating Energy Use (kWh/y) ¹	154	125	176	123	123	84	112	123	84	123	84	123	84
	Average Life (y)	15	15	15	15	15	15	15	15	15	15	15	15	15
]	Retail Equipment Cost (2022\$)	440	380	310	340	340	500	430	340	500	340	500	340	500
	Total Installed Cost (2022\$)	840	570	490	520	520	690	610	520	690	520	690	520	690
ļ	Annual Maintenance Cost (2022\$) ²	-	-	-	-	-	-		-	-	-	-	-	-

- 1. Refers to that portion of "Typical Annual Energy Use" that is the energy used to heat water in a separate water heater before it enters the dishwasher. The energy used to heat water inside the dishwasher cannot be disaggregated from the total.
- 2. Maintenance costs are negligible.

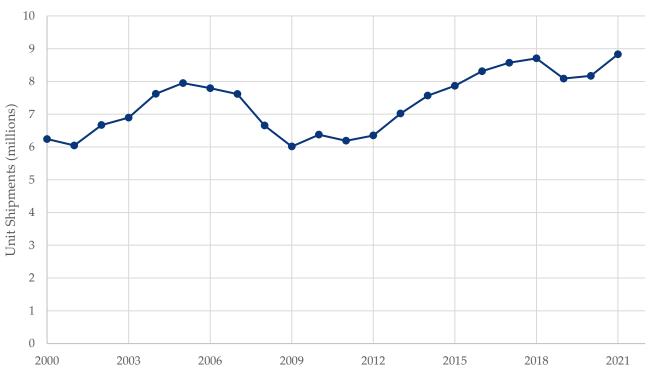
Note:

All values in table reflect 215 cycles/year according to the current test procedure at 10 CFR 430 Appendix C1.

The current standard went into effect in May 2013.

ENERGY STAR V. 6.0 went into effect in January 2016.

ENERGY STAR V. 7.0 will go into effect in July 2023.


Average life is determined using a Weibull distribution characterized by the following scale (α), shape (β), and delay (θ) parameters: (15.9, 1.8, 1).

Residential Dishwashers

- Performance criteria for standard-capacity dishwashers (assumes 215 cycles/year):
 - Federal Standards:
 - May 30, 2013: ≤ 307 kWh/y, ≤ 5.0 gal/cycle (DOE Direct Final Rule, published May 2012)
 - ENERGY STAR Criteria:
 - Jan. 29, 2016: \leq 270 kWh/y (5% allowance for connected), \leq 3.5 gal/cycle (V. 6.0)
 - July 19, 2023: ≤ 240 kWh/y, ≤ 3.2 gal/cycle (V. 7.0, effective August 2023)
- ENERGY STAR has maintained a very high market share for several years (93% in 2021), so sales-weighted average efficiency has tracked ENERGY STAR levels.
 - Due to the historically high market penetration of ENERGY STAR products, it is expected that manufacturers will make the necessary adjustments so ENERGY STAR V. 7.0 levels will be typical in future projections.
- Test procedures:
 - Accounts for motor, dryer, booster heater (if present), and hot water from separate water heater, as well as standby and off-mode energy.
 - ENERGY STAR established a cleaning performance test method. While cleaning performance reporting is currently optional, V. 7.0 requires a cleaning index of 65 or higher for ENERGY STAR certification.
 - In January 2023, DOE established a test procedure at Appendix C2, which would go into effect at the time of any amended energy conservation standards. Appendix C2 establishes a minimum cleaning index threshold of 70 as a condition for a valid test cycle. The cleaning index threshold of 70 established by DOE is equivalent to the cleaning index threshold of 65 specified in ENERGY STAR V. 7.0.
- Efficiency improvement technologies for dishwashers include:
 - Better soil sensing
 - Control strategies
 - Water distribution (small pipes, fine filter, small sump, multiple spray arms, alternating water use) and controls (flow meter, temperature sensor)
 - Inline water heater (to minimize sump volume)
 - Separate drain pump, high-efficiency, variable-speed circulation pump motor
 - Condensation drying (rather than power dry)

Shipments increased steadily from the early 1990s until the 2008-2009 recession. Shipments have resumed similar growth since then.

Source: DW EERE 2022 Preliminary Analysis

Final

Return to Table of Content

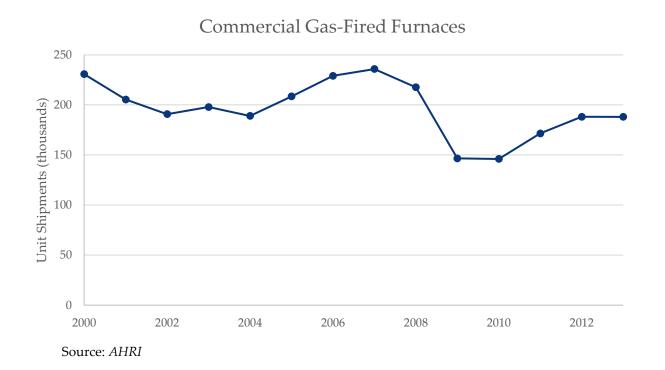
Commercial Space Heating and Cooling

Commercial Gas-Fired Furnaces

High thermal efficiency increase is possible with increased costs.

	2012	2018		2022		20:	23 ¹	2030	2040	2050
DATA	Installed Base	Installed Base	Current Standard	Typical	High	New Standard	Typical	Typical	Typical	Typical
Typical Input Capacity (kBtu/h) ²	400	400	250	250	250	250	250	250	250	250
Thermal Efficiency (%) ³	80	80	80	81	81	81	81	95	81	95
Typical Output Capacity (kBtu/h)	320	320	200	203	203	203	203	238	203	238
Average Life (y)	23	23	23	23	23	23	23	23	23	23
Retail Equipment Cost (2022\$)	1,230	1,230	1,230	1,260	1,260	1,260	1,260	3,340	1,260	3,340
Total Installed Cost (2022\$)	2,540	2,540	2,540	2,580	2,580	2,580	2,580	5,230	2,580	5,230
Total Installed Cost (2022\$/kBtu/h)	6	6	10	10	10	10	10	21	10	21
Annual Maintenance Cost (2022\$)	200	200	200	200	200	200	200	210	200	210
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	1	1	1	1	1	1	1	1

- 1. In 2023, the new Energy Conservation Standards for Commercial Warm Air Furnaces (CWAF) took effect. These projections reflect the 2023 minimum thermal efficiency requirement for gas-fired furnaces, 81%
- 2. When this analysis was previously conducted in EIA Technology Forecast Updates (2018), a typical input capacity of 400 kBtu/h was listed. An updated typical input capacity value of 250 kBtu/h was determined through an evaluation of the units in the DOE CCD as of August 2022. CWAF EERE 2015 also listed a representative input capacity of 250 kBtu/h.
- 3. DOE's efficiency metric for commercial furnaces accounts only for flue losses, not jacket losses.


Note:

The previous standard went into effect in January 1994. The current standard went into effect in January 2023.

Commercial Gas-Fired Furnaces

- Until 2022, the Federal standard required minimum 80% thermal efficiency. This metric, more commonly called "combustion efficiency" in other contexts, accounts only for flue losses, not jacket losses.
 - The Federal standard applied to all units manufactured on or after January 1, 1994, with maximum rated heat input ≥ 225,000 Btu per hour.
 - On January 1, 2023, the minimum Federal standard increased to 81% thermal efficiency.
- ASHRAE Standard 90.1, which is used as a commercial building code in many states, stipulates that furnaces that are not within the conditioned space shall not have jacket losses exceeding 0.75% of the input rating.
- Commercial furnaces are typically non-condensing with thermal efficiencies ranging from 80% to 81%. Condensing commercial furnaces, which can achieve up to 95% thermal efficiency, were previously introduced to the market but are not currently available due to cost and reliability concerns. The highest thermal efficiency included in DOE's CCD at this time is 81%.
- Besides capacity, commercial units can differ from residential furnaces in terms of the control system (i.e., integration with a Building Management System, twinning, or other staging strategies). Commercial systems may also use a heat recovery system to pre-heat inlet air.
- Advanced Case: Increased high efficiencies are feasible due to market incentives to re-introduce condensing commercial gas-fired furnaces through additional investment, research, and development. No significant changes otherwise.

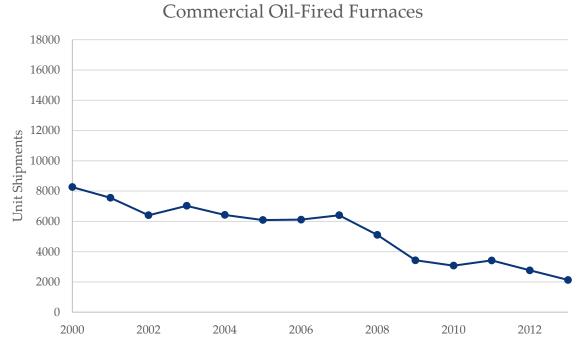
Annual shipments reached a peak of 235.9 thousand units in 2007. Following a decline in shipments after 2007, shipments increased to 188.1 thousand units in 2013. Shipment data after 2013 is not available.

Commercial Oil-Fired Furnaces

Same as Reference Case												
	2012	2018		2022		2023 ¹	20	30	204	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	High	New Standard	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	400	400	250	250	250	250	250	250	250	250	250	250
Thermal Efficiency (%) ²	81	82	81	82	85	82	82	85	82	85	82	85
Typical Output Capacity (kBtu/h)	324	328	203	205	213	205	205	213	205	213	205	213
Average Life (y)	23	23	23	23	23	23	23	23	23	23	23	23
Retail Equipment Cost (2022\$)	5,500	5,560	5,500	5,560	6,020	5,560	5,560	6,020	5,560	6,020	5,560	6,020
Total Installed Cost (2022\$)	7,740	7,810	7,740	7,810	8,380	7,810	7,810	8,380	7,810	8,380	7,810	8,380
Total Installed Cost (2022\$/kBtu/h)	24	24	38	38	39	38	38	39	38	39	38	39
Annual Maintenance Cost (2022\$)	360	360	360	360	370	360	360	370	360	370	360	370
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	2	2	2	2	2	2	2	2	2	2

^{1.} In 2023, the new Energy Conservation Standards for CWAF took effect. These projections reflect the 2023 minimum thermal efficiency requirement for oil-fired furnaces, 82%.

Note:


The previous standard went into effect in January 1994. The current standard went into effect in January 2023.

^{2.} DOE's efficiency metric for commercial furnaces accounts only for flue losses, not jacket losses.

Commercial Oil-Fired Furnaces

- Until 2022, the Federal standard required minimum 81% thermal efficiency. This metric, more commonly called "combustion efficiency" in other contexts, accounts only for flue losses, not jacket losses.
 - The Federal standard applied to all units manufactured on or after January 1, 1994, with maximum rated heat input ≥ 225,000 Btu per hour.
 - On January 1, 2023, the minimum Federal standard increased to 82% thermal efficiency.
- ASHRAE Standard 90.1, which is used as a commercial building code in many states, stipulates that furnaces that are not within the conditioned space shall not have jacket losses exceeding 0.75% of the input rating.
- Commercial oil-fired furnaces have thermal efficiencies ranging from 81% to 85% and are non-condensing (i.e., not designed for condensation of flue gases).
- Besides capacity, commercial units can differ in terms of the control system (i.e., integration with a Building Management System, twinning, or other staging strategies). Commercial systems may also use a heat recovery system to pre-heat inlet air.
- The maintenance cost estimate assumes two cleanings per year.

Annual shipments for commercial oil-fired furnaces have steadily decreased over time to 2,127 units in 2013. Shipment data after 2013 is not available.

Commercial Electric Resistance Heaters

Sar	ne as Reference Case												
		20	12	20	18	20	22	20	30	20	40	208	50
	DATA	Installed Base: Small	Installed Base: Large	Installed Base: Small	Installed Base: Large	Small	Large	Small	Large	Small	Large	Small	Large
7	Гурісаl Capacity (kBtu/h) ¹	17	170	17	170	17	170	17	170	17	170	17	170
1	Efficiency (%)	100	100	100	100	100	100	100	100	100	100	100	100
1	Average Life (y)	18	18	18	18	18	18	18	18	18	18	18	18
1	Retail Equipment Cost (2022\$)	1,000	6,320	1,000	6,320	500	4,630	500	4,630	500	4,630	500	4,630
7	Γotal Installed Cost (2022\$)	1,240	7,470	1,240	7,470	660	5,470	660	5,470	660	5,470	660	5,470
7	Total Installed Cost (2022\$/kBtu/h)	73	44	73	44	39	32	39	32	39	32	39	32
1	Annual Maintenance Cost (2022\$) ²	-	-	-	-	-	-	-	-	-	-	-	-
	Annual Maintenance Cost 2022\$/kBtu/h)	-	-	-	-	-	-	-	-	-	-	-	-

Capacity is output.
 Annual Maintenance Cost is negligible.

Commercial Electric Resistance Heaters

- This analysis examined standard suspended electric wall and ceiling unit heaters, which are more common in commercial settings than baseboard electric heaters that were considered for the residential analysis.
- Electric unit heaters range in capacity from 2 to 100 kW (7 to 340 kBtu/h), with 5 to 50 kW (17 to 170 kBtu/h) being the most typical units on the market.
- Electric resistance heaters are considered near 100% efficient because there is no heat loss through ducts or combustion.
- Installation time and costs are estimated to be minimal.

Commercial Electric Boilers

Same as Reference Case

	2012	2018	2022	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Typical Capacity (kW) ¹	165	165	165	165	165	165
Efficiency (%)	98	98	98	98	98	98
Average Life (y)	15	15	15	15	15	15
Retail Equipment Cost (2022\$) ²	11,620	11,590	9,790	9,790	9,790	9,790
Total Installed Cost (2022\$) ²	17,500	13,820	11,950	11,950	11,950	11,950
Total Installed Cost (2022\$/kBtu/h)	31	25	21	21	21	21
Annual Maintenance Cost (2022\$) ²	170	130	130	130	130	130
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	-	-	-	-

- 1. Capacity is output.
- 2. Retail and installed costs for 2022 and forecasts for 2030 and beyond are based on Gordian's RSMeans Data Building Construction Costs 2023. Maintenance costs are same as EIA Technology Forecast Updates (2018), updated to reflect 2022\$. The costs shown are for one 165kW unit, which would equate to a steady load of approximately 550,000 Btu/h. Annual maintenance in a typical application would include draining the unit for removal of any accumulated scale or sludge buildup.

Commercial Electric Boilers

- There are currently no federal standards associated with electric boilers.
- The costs shown are for one 165kW unit, which would equate to a steady load of approximately 550,000 Btu/h.
- Service life is determined mainly by water quality. Water conditioning (e.g., filters, softeners, de-alkalizers, chemical feeders) may be necessary for a given application.
- Annual maintenance in a typical application would include draining the unit for removal of any accumulated scale or sludge buildup.
- Minor end-use inefficiencies for electric boilers result from heat loss through the boiler (jacket losses).

Commercial Gas-Fired Boilers

Higher typical efficiencies with corresponding cost increases

D.T.	2012	2018		2022		2023			2030		2040		2050	
DATA	Installed Base	Installed Base	Current Standard ¹	Typical	High	New Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	800	800	800	800	800	800	800	800	800	800	800	800	800	800
Thermal Efficiency (%) ²	77	85	80	85	99	84	85	99	93	99	95	99	95	99
Average Life (y)	30	25	25	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	15,530	25,910	19,150	25,910	42,670	24,320	25,910	42,670	37,860	42,670	38,950	42,670	38,950	42,670
Total Installed Cost (2022\$)	24,600	38,330	30,470	38,330	55,230	35,650	38,330	55,230	50,410	55,230	51,510	55,230	51,510	55,230
Total Installed Cost (2022\$/kBtu/h)	40	56	48	56	70	53	56	70	68	70	68	70	68	70
Annual Maintenance Cost (2022\$) ³	1,710	2,100	2,100	2,100	2,140	2,100	2,100	2,140	2,140	2,140	2,140	2,140	2,140	2,140
Annual Maintenance Cost (2022\$/kBtu/h)	3	3	3	3	3	3	3	3	3	3	3	3	3	3

- 1. The standard level shown here is for small (300 kBtu/h to 2500 kBtu/h) gas-fired hot water commercial packaged boilers, which are the most common type of boilers available on the market.
- 2. DOE's efficiency metric for most boiler types accounts for both flue and jacket losses; previously it did not. DOE continues to uses a combustion efficiency metric instead, for hot water boilers with heat input > 2,500,000 Btu/h.
- 3. Maintenance costs for 2018 and post-2018 are based on Commercial Packaged Boilers EERE 2020. The annualized maintenance costs estimated in the final rule differ for condensing vs. non-condensing boilers. Appendix 8E of the Commercial Packaged Boilers EERE 2020 TSD provides additional information on how the values are calculated.

Note:

The previous standard went into effect in March 2012.

The current standard went into effect in January 2023.

In December 2016, DOE issued a final rule titled Energy Conservation Program: Energy Conservation Standards for Commercial Packaged Boilers. This rule published in January 2020 with an effective date for January 2023.

Commercial Gas-Fired Boilers

- Commercial packaged gas-fired boilers are classified by:
 - Heat input capacity
 - Produce steam or hot water
 - Draft type (natural draft or not) for steam boilers
- The most common type of commercial gas-fired boilers are small gas-fired hot water boilers with 300,000-2,500,000 Btu/h rated heat input.
- Similar technologies to those used in the residential gas-fired boilers market can be leveraged in the commercial arena. The higher efficiency units typically include electronic ignition, power burners, and improved heat exchangers. Some gas-fired boilers also condense water vapor from the flue gases to improve heating efficiency.
- DOE published a final rule for commercial packaged boilers in January 2020 that updated the efficiency ratings of gas-fired commercial packaged boilers beginning January 2023.
- Advanced Case: Condensing gas-fired boilers are expected to dominate the market by 2030, with corresponding price increases.

Shipments of commercial gas-fired boilers peaked in 2000 and have been steadily declining since 2010. Shipment data after 2013 is not available.

Source: Commercial Packaged Boilers EERE 2020

Commercial Oil-Fired Boilers

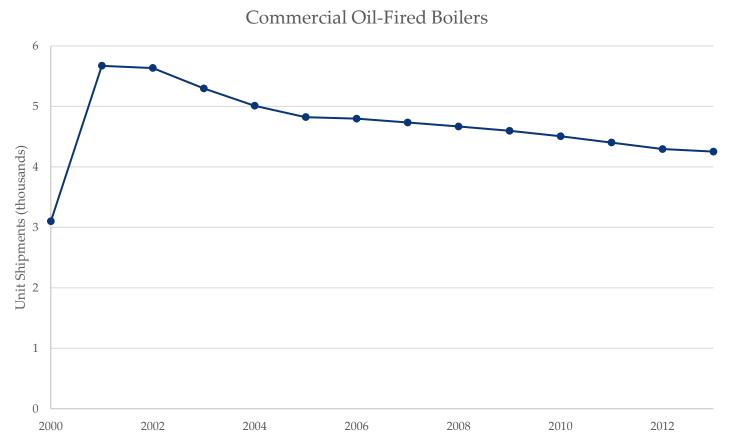
Higher typical efficiencies with same costs as reference case despite increased efficiency

DATA	2012	2018		2022	-		2023		20	30	2040		2050	
DATA	Installed Base	Installed Base	Current Standard ¹	Typical	High	New Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Input Capacity (kBtu/h)	1,200	800	800	800	800	800	800	800	800	800	800	800	800	800
Thermal Efficiency (%) ²	81	85	82	85	97	87	87	97	92	97	92	97	92	97
Average Life (y)	30	25	25	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$)	16,830	26,810	23,190	26,810	51,480	29,730	29,730	51,480	29,730	51,480	29,730	51,480	29,730	51,480
Total Installed Cost (2022\$)	22,000	37,240	33,100	37,240	62,910	40,160	40,160	62,910	40,160	62,910	40,160	62,910	40,160	62,910
Total Installed Cost (2022\$/kBtu/h)	23	55	50	55	81	58	58	81	55	81	55	81	55	81
Annual Maintenance Cost (2022\$) ³	1,710	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690	2,690
Annual Maintenance Cost (2022\$/kBtu/h)	2	4	4	4	3	4	4	3	4	3	4	3	4	3

- 1. The standard level shown here is for small (300 kBtu/h to 2500 kBtu/h) oil-fired hot water commercial packaged boilers, which are the most common type of boilers available on the market.
- 2. DOE's efficiency metric for most boiler types accounts for both flue and jacket losses; previously it did not. DOE continues to uses a combustion efficiency metric instead, for hot water boilers with heat input > 2,500,000 Btu/h.
- 3. Maintenance costs for 2018 and post-2018 are based on Commercial Packaged Boilers EERE 2020. The annualized maintenance costs estimated in the final rule differ for condensing vs. non-condensing boilers. Appendix 8E of the Commercial Packaged Boilers EERE 2020 TSD provides additional information on how the values are calculated.

Note:

The previous standard went into effect in March 2012.


The current standard went into effect in January 2023.

In December 2016, DOE issued a final rule titled Energy Conservation Program: Energy Conservation Standards for Commercial Packaged Boilers. This rule published in January 2020 with an effective date for January 2023.

Commercial Oil-Fired Boilers

- Commercial packaged oil-fired boilers are classified by:
 - Heat input capacity
 - Produce steam or hot water
- The most common type of commercial oil-fired boilers are small hot water boilers with 300,000-2,500,000 Btu/h rated heat input.
- The higher efficiency units typically include improved heat exchangers, and multi-step or variable-output power burners.
- DOE published a final rule for commercial packaged boilers in January 2020 that updated the efficiency ratings of oil-fired commercial packaged boilers beginning January 2023.
- Advanced Case: Increased adoption of condensing oil-fired boilers by 2030. However, due to low demand and a shrinking market, costs are expected to remain the same.

Shipments of commercial oil-fired boilers peaked in 2001 and have been decreasing since then.

Source: Commercial Packaged Boilers EERE 2020

Commercial Centrifugal Chillers (Water-Cooled)

Higher typical efficiencies with same costs as reference case despite increased efficiency

DATA	2012	2018	2022 ²			20	30	2040		2050	
	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (tons) ¹	400	400	400	400	400	400	400	400	400	400	400
	600	600	600	600	600	600	600	600	600	600	600
Efficiency [full-load] (kW/ton)	0.66	0.53	0.56	0.52	0.45	0.48	0.42	0.45	0.41	0.44	0.40
Efficiency [IPLV] (kW/ton)	0.61	0.37	0.50	0.31	0.30	0.30	0.28	0.29	0.26	0.28	0.25
COP [full-load]	5.4	6.6	6.3	6.8	7.8	7.3	8.4	7.8	8.6	8.0	8.8
COP [IPLV]	5.9	9.5	7.0	11.3	11.7	11.7	12.6	12.1	13.5	12.6	14.1
Average Life (y)	25	25	25	25	25	25	25	25	25	25	25
Retail Equipment Cost (2022\$/ton)	380	500	480	500	680	590	760	660	780	690	810
Total Installed Cost (2022\$/ton)	440	560	480	560	740	640	820	720	840	740	870
Total Installed Cost (2022\$/toll)	500	590	540	590	760	670	830	740	860	760	880
Total Installed Cost (2022\$/kBtu/h)	39	48	43	48	63	55	69	61	71	63	73
Annual Maintenance Cost (2022\$/ton)	30	30	30	30	30	30	30	30	30	30	30
Annual Maintenance Cost (2022\$/ton)	40	40	40	40	40	40	40	40	40	40	40
Annual Maintenance Cost (2022\$/kBtu/h)	3	3	3	3	3	3	3	3	3	3	3

- 1. Capacity is output.
- 2. ASHRAE 90.1 data are for units larger than 400 tons and for full-load optimized applications (Path A in ASHRAE 90.1-2019). Typical and high efficiency levels are determined based on the range of products currently available on the market.

Note:

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the integrated part-load value (IPLV)) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value.

ASHRAE 90.1 went into effect in October 2019.

Ranges represent the span of typical values for a given parameter.

Commercial Centrifugal Chillers (Water-Cooled)

- ASHRAE 90.1-2019 stipulates minimum efficiencies for centrifugal chillers separately from positive displacement water-cooled chillers. They are separated into 5 size categories, with categories divided at: 150, 300, 400, and 600 tons; ASHRAE 90.1-2019 also distinguishes between whether the unit will be optimized for full-load (Path A) or part-load operation (Path B). Data here are for Path A; a Path B chiller may have slightly high full-load consumption in exchange for much lower part-load consumption. For example, for a 600-ton unit:
 - Path A: \geq 0.56 kW/ton full-load and \geq 0.50 kW/ton IPLV
 - Path B: \geq 0.585 kW/ton full-load and \geq 38 kW/ton IPLV
- Federal Energy Management Program (FEMP) recommendations, last updated in 2020, match ASHRAE 90.1-2019.
- The highest efficiency centrifugal chillers incorporate some of the following:
 - Variable speed drive (VSD) compressors
 - Dedicated heat recovery (heat pump chiller)
 - Magnetic bearing technology (oil-free operation)
 - Greater heat exchanger surface areas; enhanced tube configurations (counterflow)
 - Optimized fluid flow velocities
 - High efficiency electric motors
 - Improved turbomachinery design, resulting in higher compressor efficiency
 - Better piping and valving, including electronic expansion valves
 - Evaporative condenser for the heat rejection equipment
- Installed costs vary widely depending on equipment needed for installation (e.g., crane) and size of system. This is a mature market with centrifugal chillers representing 75% of commercial chiller sales larger than 200 tons.
- Water-cooled chiller ratings do not include energy consumption of the cooling tower and therefore are not directly comparable to rating for air-cooled chillers. Water-cooled centrifugal chillers were selected for analysis due to a higher model share on the AHRI directory in comparison to air-cooled chillers.
- Advanced Case: Due to increases in R&D, improvements in current technology are expected to increase efficiency without substantially increasing costs.

Commercial Reciprocating Chillers (Air-Cooled Only)

Same as Reference Case											
	2012	2018	20222			20	30	2040		2050	
DATA	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High	Typical	High	Typical	High	Typical	High
T 1.10 1.4 1.1	100	100	100	100	100	100	100	100	100	100	100
Typical Capacity (tons) ¹	200	200	200	200	200	200	200	200	200	200	200
Efficiency [full-load] (kW/ton)	1.26	1.19	1.19	1.15	1.00	1.15	1.00	1.15	1.00	1.15	1.00
Efficiency [IPLV] (kW/ton)	1.13	0.86	0.86	0.86	0.80	0.80	0.79	0.80	0.79	0.80	0.79
COP [full-load]	2.8	3.0	3.0	3.0	3.5	3.1	3.5	3.1	3.5	3.1	3.5
COP [IPLV]	3.1	4.1	4.1	4.1	4.5	4.4	4.5	4.4	4.5	4.4	4.5
Average Life (y)	20	20	20	20	20	20	20	20	20	20	20
Potoil Equipment Cost (2022¢/ton)	725	820	820	820	1,030	820	1,030	820	1,030	820	1,030
Retail Equipment Cost (2022\$/ton)	600	730	730	730	880	730	880	730	880	730	880
Total Installed Cost (2022\$/ton)	800	880	880	880	1,180	880	1,180	880	1,180	880	1,180
Total Histalieu Cost (2022\$/toti)	700	760	760	760	1,090	760	1,090	760	1,090	760	1,090
Total Installed Cost (2022\$/kBtu/h)	63	68	68	68	95	68	95	68	95	68	95
Annual Maintenance Cost (2022¢/tam)	45	45	50	50	50	45	50	45	50	45	50
Annual Maintenance Cost (2022\$/ton)	25	25	30	30	30	25	30	25	30	25	30
Annual Maintenance Cost (2022\$/kBtu/h)	3	3	3	3	3	3	3	3	3	3	3

- 1. Capacity is output.
- 2. ASHRAE 90.1 data are for units larger than 150 tons and for full-load optimized applications (Path A in ASHRAE 90.1-2019). Typical and high efficiency levels are determined based on the range of products currently available on the market.

Note:

This analysis covers air-cooled chillers only.

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the IPLV) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value.

ASHRAE 90.1 went into effect in October 2019.

Ranges represent the span of typical values for a given parameter.

Commercial Reciprocating Chillers (Air-Cooled Only)

- Reciprocating chillers are most cost effective for small loads (30 to 150-ton range). However, reciprocating chiller market share continues to be supplanted by screw and scroll chillers. This trend has accelerated with the phase out of R-22, which was the refrigerant of choice for reciprocating products, which has in turn driven major manufacturers to replace their reciprocating product lines with scroll products (rather than redesign reciprocating products for new refrigerants). As a result, product options are very limited.
- Reciprocating chillers can be used in either air-cooled or water-cooled applications. Reciprocating chillers shown in the data are air-cooled. Air-cooled chillers are less efficient than the water-cooled models. Listed efficiencies include matched condensers and their associated energy use.
- ASHRAE 90.1-2019 stipulates minimum efficiencies for all air-cooled chillers together, including reciprocating chillers, while water-cooled chillers are separated by positive displacement (e.g., reciprocating) versus centrifugal models. Air-cooled chiller efficiencies are further split by size for more and less than 150 tons. ASHRAE 90.1-2019 also distinguishes between whether the unit will be optimized for full-load (Path A) or part-load operation (Path B). Data here are for Path A; a Path B chiller may have slightly lower full-load efficiency in exchange for much higher part-load efficiency. For example, for a 100-ton unit:
 - Path A: \geq 10.1 EER full-load and \geq 13.7 IPLV EER
 - Path B: \geq 9.7 EER full-load and \geq 15.8 IPLV EER
- FEMP (2022) recommendations for air-cooled chillers are:
 - Path A (<150 tons): \geq 10.89 EER full-load and \geq 13.7 IPLV EER
 - Path B (<150 tons): $\geq 9.7 \text{ EER full-load}$ and $\geq 16.86 \text{ IPLV}$ EER (same as 90.1-2019)
- The highest efficiency reciprocating chillers incorporate some of the following:
 - Multiple compressors for staged capacity control
 - Improved heat-exchangers

Commercial Screw Chillers (Air-Cooled Only)

Higher typical efficiencies with same costs as reference case despite increased efficiency

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Base	Installed Base	ASHRAE 90.1-2019 ¹	Typical	High	Typical	High	Typical	High	Typical	High
Tomical Canadity (tana)	100	100	100	100	100	100	100	100	100	100	100
Typical Capacity (tons)	300	300	300	300	300	300	300	300	300	300	300
Efficiency [full-load] (kW/ton)	1.26	1.18	1.19	1.15	0.92	1.11	0.91	0.99	0.86	0.93	0.77
Efficiency [IPLV] (kW/ton)	1.13	0.84	0.86	0.81	0.55	0.77	0.53	0.65	0.49	0.61	0.43
COP [full-load]	2.8	3.0	3.0	3.1	3.8	3.2	3.9	3.6	4.1	3.8	4.6
COP [IPLV]	3.1	4.2	4.1	4.4	6.4	4.5	6.6	5.4	7.2	5.7	8.2
Average Life (y)	20	20	20	20	20	20	20	20	20	20	20
Patril Facility and Cast (20226/15-11)	760	970	1,130	1,130	1,230	1,140	1,230	1,180	1,250	1,200	1,270
Retail Equipment Cost (2022\$/ton)	620	850	770	770	870	780	870	820	890	840	910
Tatal Installed Cost (20226/ton)	910	1,150	1,250	1,250	1,350	1,260	1,350	1,300	1,370	1,320	1,390
Total Installed Cost (2022\$/ton)	850	940	820	820	920	830	920	870	940	890	960
Total Installed Cost (2022\$/kBtu/h)	73	87	86	86	95	87	95	90	96	92	98
Annual Maintenance Cost (2022\$/ton)	50	50	50	50	50	50	50	50	50	50	50
Annual Maintenance Cost (20225/ton)	20	20	20	20	20	20	20	20	20	20	20
Annual Maintenance Cost (2022\$/kBtu/h)	3	3	3	3	3	3	3	3	3	3	3

^{1.} ASHRAE 90.1 data for units larger than 150 tons and for full-load optimized applications (Path A in ASHRAE 90.1-2019). Note:

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the IPLV) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value. ASHRAE 90.1 went into effect in October 2019.

Ranges represent the span of typical values for a given parameter.

Commercial Screw Chillers (Air-Cooled Only)

- Screw chillers are common in 150 to 500-ton capacities but are most cost effective for small (<300 tons) loads; screw chillers dominate the current market for small to mid-size chillers.
- Screw chillers can be used in either air-cooled or water-cooled applications. Screw chillers shown in the data are air-cooled. Air-cooled chillers are less efficient than the water-cooled models. Listed efficiencies include matched condensers and their associated energy use.
- ASHRAE 90.1-2019 stipulates minimum efficiencies for all air-cooled chillers together, including screw chillers, while water-cooled chillers are separated by positive displacement (e.g., screw) versus centrifugal models. Air-cooled chiller efficiencies are further split by size for more and less than 150 tons. ASHRAE 90.1-2019 also distinguishes between whether the unit will be optimized for full-load (Path A) or part-load operation (Path B). Data here are for Path A; a Path B chiller may have slightly lower full-load efficiency in exchange for much higher part-load efficiency. For example, for a ≥ 150-ton unit:
 - Path A: \geq 10.1 EER full-load and \geq 14.0 IPLV EER
 - Path B: \geq 9.7 EER full-load and \geq 16.1 IPLV EER
- FEMP recommendations for air-cooled chillers (updated June 2020) are:
 - Path A (\geq 150 tons): \geq 10.7 EER full-load and \geq 14.0 IPLV EER
 - Path B (\geq 150 tons): \geq 9.7 EER full-load and \geq 16.4 IPLV EER
- The highest efficiency screw chillers incorporate some of the following:
 - Variable speed compressors and/or multiple compressors
 - Economizers
 - Improved heat-exchangers
- Advanced Case: Due to increases in R&D, improvements in current technology are expected to increase efficiency without substantially increasing costs.

Commercial Scroll Chillers (Air-Cooled Only)

Higher typical efficiencies with same costs as reference case despite increased efficiency

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Base	Installed Base	ASHRAE 90.1-2019 ¹	Typical	High	Typical	High	Typical	High	Typical	High
T	50	50	50	50	50	50	50	50	50	50	50
Typical Capacity (tons)	140	140	140	140	140	140	140	140	140	140	140
Efficiency [full-load] (kW/ton)	1.23	1.16	1.19	1.15	1.07	1.08	1.03	1.04	0.99	0.99	0.94
Efficiency [IPLV] (kW/ton)	0.99	0.77	0.88	0.77	0.70	0.71	0.66	0.69	0.63	0.67	0.60
COP [full-load]	2.9	3.0	3.0	3.1	3.3	3.3	3.4	3.4	3.6	3.6	3.7
COP [IPLV]	3.7	4.6	4.0	4.6	5.0	5.0	5.3	5.1	5.6	5.3	5.8
Average Life (y)	20	20	20	20	20	20	20	20	20	20	20
P-t-11 F-11 mm - nt C-11 (20220/1-11)	680	1,000	1,060	1,060	1,160	1,120	1,160	1,150	1,200	1,200	1,240
Retail Equipment Cost (2022\$/ton)	560	820	530	530	630	590	630	620	670	670	710
T-1-1 I 1-11-1 (1 (2022#/1)	970	1,210	1,170	1,170	1,270	1,230	1,270	1,260	1,310	1,310	1,350
Total Installed Cost (2022\$/ton)	850	970	860	860	960	920	960	950	1,000	1,000	1,040
Total Installed Cost (2022\$/kBtu/h)	76	91	85	85	93	90	93	92	96	96	100
Amusel Maintenance Cost (20226/1-1-)	60	60	60	60	60	60	60	60	60	60	60
Annual Maintenance Cost (2022\$/ton)	40	40	40	40	40	40	40	40	40	40	40
Annual Maintenance Cost (2022\$/kBtu/h)	4	4	4	4	4	4	4	4	4	4	4

^{1.} ASHRAE 90.1 data for units less than 150 tons and for full-load optimized applications (Path A in ASHRAE 90.1-2019). Note:

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the IPLV) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value. ASHRAE 90.1 went into effect in October 2019.

Ranges represent the span of typical values for a given parameter.

Commercial Scroll Chillers (Air-Cooled Only)

- Scroll chillers range in size from ~20 tons to ~200 tons and can be used in either air-cooled or water-cooled applications. They are the most common type of chiller for small chiller plants. The scroll chillers shown in the data are air-cooled, which is most common. Air-cooled chillers are less efficient than the water-cooled models. Listed efficiencies include matched condensers and their associated energy use.
- ASHRAE 90.1-2019 stipulates minimum efficiencies for all air-cooled chillers together, including scroll chillers, while water-cooled chillers are separated by positive displacement (e.g., scroll) versus centrifugal models. Air-cooled chiller efficiencies are distinct for more and less than 150 tons. ASHRAE 90.1-2019 also distinguishes between whether the unit will be optimized for full-load (Path A) or part-load operation (Path B). Data here are for Path A; a Path B chiller may have slightly lower full-load efficiency in exchange for much higher part-load efficiency. For example, for a 100-ton unit:
 - Path A: \geq 10.1 EER full-load and \geq 13.7 IPLV EER
 - Path B: \geq 9.7 EER full-load and \geq 15.8 IPLV EER
- FEMP recommendations for air-cooled chillers (updated June 2020) are:
 - Path A (< 150 tons): \geq 10.7 EER full-load and \geq 13.7 IPLV EER
 - Path B (< 150 tons): \geq 9.7 EER full-load and \geq 15.9 IPLV EER
- The highest efficiency scroll chillers incorporate some of the following:
 - Multiple compressors for staged capacity control
 - Improved heat-exchangers
 - Variable speed compressor (or other modulation controls)
- With the phase out of R-22, manufacturers have replaced many of their small reciprocating chiller products with equivalent scroll products, making them a primary choice for small tonnage applications.
- Advanced Case: Due to increases in R&D, improvements in current technology are expected to increase efficiency without substantially increasing costs.

Commercial Gas-Fired Chillers (Water-Cooled, Direct-Fired Only)

Same as Reference Case

	20	12	20	18		20)22		20	30	204	40	205	50
DATA	Installed Base: Absorption	Installed Base: Engine- Driven	Installed Base: Absorption	Installed Base: Engine- Driven	ASHRAE 90.1-2019 Absorption	_	Absorption	Engine- Driven	Absorption	Engine- Driven	Absorption	Engine- Driven	Absorption	Engine- Driven
Typical Capacity	150	150	150	150	150	150	150	150	150	150	150	150	150	150
(tons) ¹	1,500	400	1,500	400	1,500	400	1,500	400	1,500	400	1,500	400	1,500	400
COP [full-load]	1.1	1.7	1.2	1.7	1.0	1.2	1.2	1.7	1.3	1.8	1.4	1.8	1.4	1.8
COP [IPLV]	NA	NA	1.6	2.6	1.0	2.0	1.6	2.6	1.6	2.6	1.6	2.6	1.6	2.6
Average Life (y)	23	25	23	25	23	25	23	25	23	25	23	25	23	25
Retail Equipment	1,060	1,000	1,060	1,000	1,200	1,000	1,200	1,000	1,200	1,000	1,200	1,000	1,200	1,000
Cost (2022\$/ton)	880	880	880	880	870	880	870	880	870	880	870	880	870	880
Total Installed Cost	1,290	1,240	1,180	1,240	1,110	1,240	1,110	1,240	1,110	1,240	1,110	1,240	1,110	1,240
(2022\$/ton)	1,000	1,000	1,000	1,000	850	1,000	850	1,000	850	1,000	850	1,000	850	1,000
Total Installed Cost (2022\$/kBtu/h)	95	93	91	93	82	93	82	93	82	93	82	93	82	93
Annual	40	60	40	60	40	60	40	60	40	60	40	60	40	60
Maintenance Cost (2022\$/ton)	20	40	20	40	20	40	20	40	20	40	20	40	20	40
Annual Maintenance Cost (2022\$/kBtu/h)	3	4	3	4	3	4	3	4	3	4	3	4	3	4

1. Capacity is output.

Note:

This analysis assumes a water-cooled chiller; both gas-fired chiller types (absorption and engine-driven) are shown. COP values for double-effect absorption chillers are shown.

For most chillers (including those in single-chiller applications and for peaking units in multi-chiller applications), the seasonal performance (represented by the IPLV) is more indicative of annual expected performance than the full-load performance; performance of baseload chillers in multi-chiller applications, which typically operate at full-load, are well represented by the full-load efficiency value. ASHRAE 90.1 went into effect in October 2019.

CA Title 24 went into effect in January 2020.

Ranges represent the span of typical values for a given parameter.

Commercial Gas-Fired Chillers (Water-Cooled, Direct-Fired Only)

- Gas-fired chillers are available as either air-cooled (~25-50 tons) or water-cooled (150+ tons). This analysis covers only water-cooled chillers of two varieties: absorption and engine-driven vapor compression (direct-fired only; indirect steam or hot water driven units are excluded).
- Direct gas firing provides high enough temperatures to operate double effect absorption chillers, which operate at a 50-60% higher COP than single effect systems. Triple effect chillers, though not commercially available, can boost cooling COP 30-50% beyond double effect chillers. Some companies have worked on prototype direct-fired triple effect absorption chillers, but prohibitively high cost of advanced high heat/corrosion-resistant materials required for triple effect absorption chillers suggests that this technology will not likely have an impact on the market in the near-term.
- Gas-fired engine-driven chillers pair conventional vapor compression systems (typically screw or centrifugal compressors) with natural gas powered-reciprocating engines. They exhibit higher peak cooling COP than absorbers, and engine modulation results in better part-load performance. Future efficiency improvements for engine-driven chillers are not anticipated. Engine-driven chillers allow the opportunity to recover waste heat for useful purposes.
- Maintenance costs for engine-driven chillers are higher than for other chillers because they include all the typical components of a vapor compression chiller in addition to an engine; the engine maintenance costs vary depending on the annual run hours of the unit.
- Limited sales data suggest that the U.S. market for gas-fired chillers is very limited and is mostly for replacement units, not for new installations. Recent increases in electric chiller efficiency have narrowed the operating cost differential with gas chillers. Asia has the majority of the global gas-fired chiller market.
- Gas-fired chiller installations are particularly valuable in locations where electric rates are high and gas prices are low (i.e., low spark spread), where digester or landfill gas sources are available, or where waste heat sources are available (e.g., an industrial process or microturbine CHP system) that could be used with a hybrid direct/indirect-fired absorption chiller to offset the use of natural gas.

Commercial Rooftop Air Conditioners

Higher efficiencies with same costs as reference case despite increased efficiency

	2012	2018		202	22 ⁴			20	23		20	30	204	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.1	High	New Standard	Typical	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Output Capacity (kBtu/h)	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
Part Load Efficiency (IEER) ¹	12.4	12.9	12.9	12.9	14.0	23.3	14.8	14.8	18.0	23.3	16.0	23.3	16.5	23.3	17.5	23.3
Efficiency (EER) ²	10.6	11.5	11.5	11.5	12.2	12.8	12.2	12.2	12.7	12.8	12.6	12.8	12.6	12.8	12.7	12.8
Efficiency Conversion	3.6	3.8	3.8	3.8	4.1	6.8	4.3	4.3	5.3	6.8	4.7	6.8	4.8	6.8	5.1	6.8
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	7,760	8,280	8,280	8,280	9,090	12,210	9,490	9,490	10,340	12,210	9,590	12,210	9,590	12,210	9,590	12,210
Total Installed Cost (2022\$)	10,350	11,870	11,870	11,870	13,020	17,600	13,560	13,560	14,970	17,600	13,720	17,600	13,720	17,600	13,720	17,600
Total Installed Cost (2022\$/kBtu/h)	115	132	132	132	145	196	151	151	166	196	152	196	152	196	152	196
Annual Maintenance Cost (2022\$) ³	370	370	370	370	370	370	370	370	370	370	370	370	370	370	370	370
Annual Maintenance Cost (2022\$/kBtu/h)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4

- 1. Values shown are for air-cooled small commercial packaged air conditioners with either electric resistance heating or no heating within the same enclosure. DOE published a direct final rule for commercial packaged air conditioners and heat pumps in January 2016 with initial standards becoming effective in 2018 and additional standards becoming effective in 2023. As part of this rulemaking, DOE changed the regulated metric from EER to integrated energy efficiency ratio (IEER).
- 2. DOE investigated the relationship between IEER and EER. Because the relationship between IEER and EER is weak, this analysis estimates EER values based on the average of the values seen at a given IEER.
- 3. Examples of annual maintenance services include, check tensions, condition, and alignment of belts and adjust as necessary; lubricate shaft and motor bearings; replace air filters; clean coils, drain pan and piping, blowers, fan motors as required; check refrigerant pressure and compressor oil level; etc.
- 4. The 2022 typical efficiency is based on the average IEER from DOE's CCD. The 2022 high efficiency is based on the most-efficient model in DOE's CCD, but costs are estimated based on the most efficient unit analyzed in CUAC EERE 2016, which had an IEER of 21.5.

Note:

EER is the ratio of the cooling capacity (in Btu/h) to the power input (in watts) and provides a measure of the efficiency of equipment operating at full load (i.e., 100 percent cooling capacity) in high-ambient-temperature conditions (i.e., 95 °F). IEER is a single number part-load efficiency based on weighting of EER at various load capacities. Efficiency Conversion is the conversion of IEER from a [(Btu/h)/W] metric to a metric in the same units.

The previous standard went into effect in January 2018. The current standard went into effect in January 2023. ENERGY STAR V. 3.1 went into effect in January 2018. ENERGY STAR V. 4.0 went into effect in January 2023.

136

Commercial Rooftop Air Conditioners

Air-Cooled Commercial Packaged Air Conditioners

Cooling Capacity (kBtu/h)	Heating Type	Federal Standard Effective 1/1/2018 Min. IEER	Federal Standard Effective 1/1/2023 Min. IEER
Small	Electric resistance or none	12.9	14.8
(≥65 and < 135)	Any other type	12.7	14.6
Large	Electric resistance or none	12.4	14.2
(≥ 135 and < 240)	Any other type	12.2	14.0

- This analysis focused on small air-cooled commercial packaged rooftop air conditioners (90 kBtu/h or 7.5 tons), though there are also standards for many other types of commercial air conditioners.
- Amended standards in terms of IEER for all equipment classes took effect in January 2018. More stringent standards in terms of IEER for all equipment classes took effect in January 2023.
- Advanced Case: Due to increases in R&D, improvements in current technology (e.g., more cost-effective variable speed technology) are expected to increase efficiency without substantially increasing costs.

Commercial Gas-Fired Engine-Drive Rooftop Air Conditioners

Same as Reference Case						
DATA	2012 ¹	2018	2022	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Typical Capacity (tons)	18	11	11	11	11	11
Heating COP	1.4	1.4	1.4	1.4	1.4	1.4
Cooling COP	0.9	1.2	1.2	1.2	1.2	1.2
Average Life (y)	15	15	15	15	15	15
Retail Equipment Cost (\$/ton)	3,350	2,820	3,710	3,710	3,710	3,710
Total Installed Cost (\$/ton)	3,820	3,290	4,110	4,110	4,110	4,110
Total Installed Cost (\$/kBtu/h)	318	274	343	343	343	343
Annual Maintenance Cost (2022\$)	70	70	70	70	70	70
Annual Maintenance Cost (2022\$/kBtu/h)	6	6	6	6	6	6

^{1.} The 2012 typical capacity and cooling COP were estimated as a simple average between obsolete pre-2003 units and 2013 units, which first became available in 2010; this assumes that each vintage represents about half of the installed base.

Note:

Only one product was available in 2012; the market has grown slightly in years since. Typical capacity and COP for 2018 and later are averages of units available as of 2017.

Commercial Gas-Fired Engine-Drive Rooftop Air Conditioners

- There are only a few gas-fired engine-driven rooftop units currently available in the U.S. market. The first unit was introduced in 2010. It is an 11-ton packaged heat pump with dual scroll compressors, variable refrigerant flow, and a variable speed supply fan. Engine coolant heat recovery improves the heating mode COP.
- There are currently no Federal requirements on gas-fired engine-driven rooftop air conditioners or heat pumps.
- Annual sales of the engine-driven rooftop heat pump are estimated at less than 5,000 units per year.

Commercial Rooftop Heat Pumps

Higher efficiencies with same costs as reference case despite increased efficiency

	2012	2018		20	22			2023		20	30	2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.1	High	New Standard	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
Part Load Efficiency (IEER) ¹	12.0	11.3	12.2	14.3	12.8	20.3	14.1	15.3	20.3	14.4	20.3	15.3	20.3	15.3	20.3
EER	10.2	11.2	11.3	11.5	11.8	13.0	12.0	11.8	13.0	11.7	13.1	11.7	13.1	11.7	13.1
COP (Heating)	3.3	3.3	3.3	3.4	3.4	3.7	3.4	3.5	3.7	3.4	3.7	3.5	3.7	3.5	3.7
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	7,490	7,490	9,000	10,250	9,370	12,920	10,160	10,600	12,920	10,290	12,920	10,600	12,920	10,600	12,920
Total Installed Cost (2022\$)	9,340	9,340	12,900	14,940	13,530	18,860	14,810	15,510	18,860	15,000	18,860	15,510	18,860	15,510	18,860
Total Installed Cost (2022\$/kBtu/h)	104	104	143	166	150	210	165	172	210	167	210	172	210	172	210
Annual Maintenance Cost (2022\$)	380	380	380	380	380	380	380	380	380	380	380	380	380	380	380
Annual Maintenance Cost (2022\$/kBtu/h)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4

^{1.} Values shown are for air-cooled small commercial packaged heat pumps with either electric resistance heating or no heating within the same enclosure. DOE published a direct final rule for commercial packaged air conditioners and heat pumps in January 2016 with initial standards becoming effective in 2018 and additional standards becoming effective in 2023. As part of this rulemaking, DOE changed the regulated metric from EER to IEER.

Note:

The previous standard went into effect in January 2018. The current standard went into effect in January 2023. ENERGY STAR V. 3.1 went into effect in January 2018. ENERGY STAR V. 4.0 went into effect in January 2023.

Commercial Rooftop Heat Pumps

Air-Cooled Commercial Packaged Heat Pumps

Cooling Capacity (kBtu/h)	Heating Type	Federal Standard Effective 1/1/2018 Min. IEER	Federal Standard Effective 1/1/2023 Min. IEER
Small	Electric resistance or none	12.2	14.1
(≥65 and < 135)	Any other type	12.0	13.9
Large	Electric resistance or none	11.6	13.5
(≥ 135 and < 240)	Any other type	11.4	13.3

- This analysis focused on small air-cooled commercial packaged rooftop heat pumps (90 kBtu/h or 7.5 tons), though there are also standards for many other types of commercial heat pumps.
- Amended standards in terms of IEER for all equipment classes took effect in 2018. More stringent standards in terms of IEER for all equipment classes took effect in 2023.
- Advanced Case: Due to increases in R&D, improvements in current technology (e.g., more cost-effective variable speed technology) are expected to increase efficiency without substantially increasing costs.

Commercial Ground-Source Heat Pumps

Same efficiencies with lower costs than reference case despite same efficiency

Came emolendes with lower cost	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	48	48	48	48	48	48	48	48	48	48	48
COP (Heating) ¹	3.1	3.7	3.2	3.5	3.6	3.5	3.6	3.5	3.6	3.5	3.6
EER (Cooling) ²	12.7	17.4	14.1	17.0	21.6	17.0	21.6	17.0	21.6	17.0	21.6
A	8	8	8	8	8	8	8	8	8	8	8
Average Life (y)	21	21	21	21	21	21	21	21	21	21	21
Retail Equipment Cost (2022\$)	10,470	6,470	5,590	6,470	7,880	6,470	7,880	6,470	7,880	6,470	7,880
T-1-1 I1-11-1 (1 (2022¢)	19,760	18,230	17,350	18,230	19,650	16,410	17,690	16,410	17,690	16,410	16,410
Total Installed Cost (2022\$)	44,820	26,520	25,580	26,520	27,880	23,870	25,090	23,870	25,090	23,870	23,870
Total Installed Cost (2022\$/kBtu/h)	673	466	447	466	495	420	446	420	446	420	420
Annual Maintenance Cost (2022\$)	180	180	180	180	180	180	180	180	180	180	180
Annual Maintenance Cost (2022\$/kBtu/h)	4	4	4	4	4	4	4	4	4	4	4

- 1. COP values listed are assessed at a "ground loop" test condition, which is representative of closed loop GSHP operating conditions. However, DOE sets standards at a "water loop" test condition. The AHRI directory lists COP ratings at both sets of test conditions and is used to convert between them where necessary.
- 2. EER values listed are assessed at a full-load "ground loop" test condition, which is representative of closed loop GSHP operating conditions. However, DOE sets standards at a full-load "water loop" test condition. The AHRI directory lists EER ratings at all sets of test conditions and is used to convert between them where necessary.

Note:

Residential and commercial GSHPs are very similar - the main difference in data presented is the different capacity (3-ton vs. 4-ton) and slightly higher installation costs for commercial GSHP. DOE does not distinguish between residential and commercial units in its regulations.

Commercial Ground-Source Heat Pumps

- The most common commercial ground-source heat pump systems are closed-loop in which water or anti-freeze solution is circulated through plastic pipes buried underground. Commercial water-to-air heat pumps (WAHPs) range in size from 1 ton or less to over 500 tons depending on whether a distributed or centralized architecture is used. Distributed systems are more prevalent.
- Most geothermal WAHPs are rated for capacity and efficiency based on the ISO 13256-1 standard. Heating and cooling efficiency measurements under this standard include input energy for fans and pumps on a proportional basis that only includes that power required to transport air and liquid through the heat pump. The reason for this method is to simplify comparisons between heat pumps and to allow equipment to be optimized for real world conditions without suffering rating penalties. Real world energy use will exceed ratings predictions as a result of higher fluid static pressure requirements.
- ISO 13256-1 cooling rating conditions require 77 °F entering water temperature and 80.6 °F entering air temperature. More typical peak design criteria would be 80-90 °F entering water temperature and 75 °F entering air temperature. As a result, ISO 13256-1 rated cooling efficiency would be higher than typical design peak operation.
- Some WAHPs include efficiency data for a part-load operating condition as allowed by ISO 13256-1 for multiple stage or variable speed compressors. No seasonal energy efficiency metric (analogous to SEER or IEER) currently applies to WAHPs. The annual performance of a geothermal WAHP system can vary more widely than for other system types due to the large influence of ground loop design and characteristics.
- The ENERGY STAR criteria for ground-source heat pumps apply only to residential applications.
- Installation cost is for a closed loop system and includes necessary accessories. The ground loop heat exchanger and distribution pumping systems represent a majority of the installation cost.
- Low end WAHPs utilize single stage compressors. Higher efficiency units incorporate multiple stage or variable speed compressor controls to improve efficiency as well as humidity and temperature control. Variable speed ECM fan motors also improve overall energy efficiency.
- Advanced Case: Ground-source heat pumps are already highly efficient and have not changed much in terms of efficiency in recent years. With increased R&D, it is anticipated that the equipment and installation costs will be reduced over time, but efficiency will likely stay the same.

Packaged Terminal Air Conditioners

Same as Reference Case 2012 2018 2022 2030 2040 2050 **DATA Installed Installed** Current **Typical** High² High High **Typical** High **Typical Typical** Standard Base Base Typical Capacity (kBtu/h)¹ 9 9 9 9 9 9 9 9 9 Efficiency (EER) 11.3 11.3 11.3 11.3 13.1 11.3 13.1 11.3 13.1 11.3 13.1 **Efficiency** 3.3 3.3 3.3 3.3 3.8 3.3 3.8 3.3 3.8 3.3 3.8 Average Life (y) 8 8 8 8 8 8 8 8 Retail Equipment Cost (2022\$) 1,460 1,460 1,460 1,460 1,560 1,460 1,560 1,460 1,560 1,460 1,560 1,840 **Total Installed Cost (2022\$)** 1,740 1,740 1,740 1,740 1,840 1,740 1,840 1,740 1,740 1,840 Total Installed Cost (2022\$/kBtu/h) 193 193 193 193 204 193 204 193 204 193 204 **Annual Maintenance Cost (2022\$)** 70 70 70 70 70 70 70 70 70 70 70 **Annual Maintenance Cost** 8 8 8 8 8 8 8 8 8 8 8

The current standard went into effect in January 2017.

(2022\$/kBtu/h)

^{1.} Typical capacity is representative of units with the most shipments. It was also the representative cooling capacity for DOE's analysis in packaged terminal air conditioners (PTAC) and packaged terminal heat pumps (PTHP) EERE 2022 NOPD.

^{2.} High values for 2022 and beyond are based on the max-tech level from PTAC & PTHP EERE 2022 NOPD. Note:

Packaged Terminal Air Conditioners

- PTAC are a self-contained, ductless air conditioning system used for commercial applications.
- Analysis was conducted for the standard equipment class at the representative cooling capacity of 9000 Btu/h.

Cooling Capacity (kBtu/h)	Equipment Size	Equipment Class	Federal Standard EER
		< 7000	11.9
PTAC	Standard	≥7,000 Btu/h and ≤15,000 Btu/h	14.0 – (0.3 x Cap)
		> 15,000 Btu/h	9.5

Packaged Terminal Heat Pumps

Higher efficiencies with the same costs as ref. case despite increased efficiency

J	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Base	Installed Base	Current Standard	Typical ²	High ³	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h) ¹	9	9	9	9	9	9	9	9	9	9	9
Efficiency (EER)	11.3	11.3	11.3	11.3	13.1	11.5	13.1	12.0	13.1	12.4	13.1
Efficiency	3.3	3.3	3.3	3.3	3.8	3.4	3.8	3.5	3.8	3.6	3.8
COP (Heating)	3.2	3.2	3.2	3.2	3.6	3.3	3.6	3.4	3.6	3.5	3.6
Average Life (y)	8	8	8	8	8	8	8	8	8	8	8
Retail Equipment Cost (2022\$)	1,620	1,620	1,620	1,620	1,720	1,630	1,720	1,630	1,720	1,630	1,720
Total Installed Cost (2022\$)	1,910	1,910	1,910	1,910	2,010	1,910	2,010	1,910	2,010	1,910	2,010
Total Installed Cost (2022\$/kBtu/h)	212	212	212	212	223	212	223	212	223	212	223
Annual Maintenance Cost (2022\$)	70	70	70	70	70	70	70	70	70	70	70
Annual Maintenance Cost (2022\$/kBtu/h)	8	8	8	8	8	8	8	8	8	8	8

- 1. Typical capacity is representative of units with the most shipments. It was also the representative cooling capacity for DOE's analysis in PTAC & PTHP EERE 2022 NOPD.
- 2. Typical values for 2022 and beyond are based on the efficiency level that has the largest market share per PTAC & PTHP EERE 2022 NOPD.
- 3. High values for 2022 and beyond are based on the max-tech level from PTAC & PTHP EERE 2022 NOPD.

Note:

The current standard went into effect in October 2012.

Packaged Terminal Heat Pumps

- PTHP are self-contained heat pumps primarily used for commercial applications.
- Analysis was conducted for the standard equipment class at the representative cooling capacity of 9000 Btu/h.

Cooling Capacity (kBtu/h)	Equipment Size	Equipment Class	Federal Standard EER	Federal Standard COP
		< 7000	11.9	3.3
PTHP	Standard	≥7,000 Btu/h and ≤15,000 Btu/h	14.0 – (0.3 x Cap)	3.7 – (0.052 x Cap)
		> 15,000 Btu/h	9.5	2.9
		< 7000	9.3	2.7
PTHP	Non-Standard	≥7,000 Btu/h and ≤15,000 Btu/h	10.8 – (0.213 x Cap)	2.9 – (0.026 x Cap)
		> 15,000 Btu/h	7.6	2.5

• Advanced Case: Due to increases in R&D, improvements in current technology (e.g., more cost-effective variable speed technology) are expected to increase efficiency without substantially increasing costs.

Final

Return to Table of Content

Commercial Water Heating

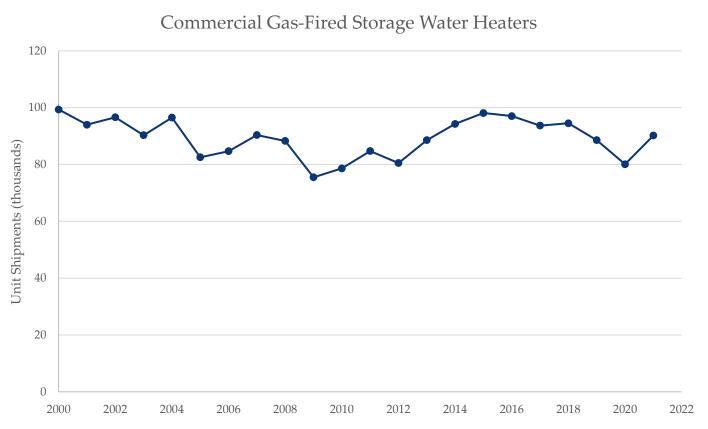
Commercial Gas-Fired Storage Water Heaters

Same as Reference Case													
		2012	2018	2022				2030		2040		2050	
	DATA	Installed Base	Installed Base	Current Standard	Typical	STAR V. 2.0	High	Typical	High	Typical	High	Typical	High

DATA	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Typical Storage Capacity (gal)	100	100	100	100	100	100	100	100	100	100	100	100
Typical Input Capacity (kBtu/h)	199	199	199	199	199	199	199	199	199	199	199	199
Thermal Efficiency (%) ¹	81	82	80	82	94	99	95	99	95	99	95	99
Average Life (y)	13	10	10	10	10	10	10	10	10	10	10	10
D 4 '15 ' 4 (2022th)	3,870	3,890	3,850	3,890	4,180	4,290	4,200	4,290	4,200	4,290	4,200	4,290
etail Equipment Cost (2022\$)	5,170	5,200	5,140	5,200	5,530	5,650	5,550	5,650	5,550	5,650	5,550	5,650
T (11 (11 1 C ((20224)	5,170	5,190	5,140	5,190	6,630	6,730	6,640	6,730	6,640	6,730	6,640	6,730
Total Installed Cost (2022\$)	8,440	8,460	8,410	8,460	8,590	8,710	8,610	8,710	8,610	8,710	8,610	8,710
Total Installed Cost (2022\$/kBtu/h)	42	42	43	42	41	39	40	39	40	39	40	39
Annual Maintenance Cost (2022\$) ²	320	320	320	320	330	330	330	330	330	330	330	330
Annual Maintenance Cost (2022\$/kBtu/h)	2	2	2	2	2	2	2	2	2	2	2	2

- 1. Different levels of standby loss were not included in this analysis.
- 2. Maintenance consists of sediment and scale removal once or twice per year and replacement of miscellaneous components such as gaskets and sealants. Condensing units have an additional cost for replacement of condensate neutralizer media every two years.

The current standard went into effect in October 2015.


ENERGY STAR V. 2.0 went into effect in October 2018.

The range of retail and installed costs represent the range from replacement market to new construction market.

Commercial Gas-Fired Storage Water Heaters

- Input capacity > 155 kBtu/h and storage capacity ≤ 140 gal
- Federal standard:
 - Minimum thermal efficiency: 80%
 - Maximum standby loss (Btu/h) : Input Rate/ $800 + 110 \times (Rated Volume)^{1/2}$
- ENERGY STAR requirements:
 - Minimum thermal efficiency: 94%
 - Maximum standby loss (Btu/h): $0.84 \times [(Input Rate/800) + 110 \times (Rated Volume)^{1/2}]$
- Baseline units are typically constructed similarly to residential units, though with higher input capacities (and often higher storage volumes).
- High-efficiency units include condensing heat exchangers (typically stainless or enameled steel) to extract additional heat by condensing water vapor in flue gases. Condensing units also include an inducer fan system or power burner. The heat exchanger is typically contained within the tank, but some designs consist of an external heating module attached to a storage tank. Condensing units are expected to be the majority market share by 2030.
- Maintenance consists of sediment and scale removal once or twice per year and replacement of miscellaneous components such as gaskets and sealants. Condensing units have an additional cost for replacement of condensate neutralizer media every two years.

Annual shipments have fluctuated from 99,000 units in 2000 to 75,000 units in 2009, back to 99,000 units in 2015 and gradually decreasing since then until 2020.

Source: CWH EERE 2022 NOPR and AHRI

Commercial Electric Resistance Storage Water Heaters

Same as Reference Case

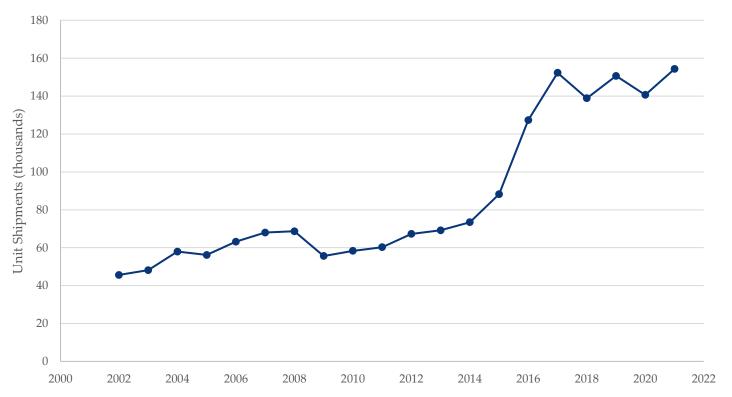
D. I.T.	2012	2018	20	22	2030	2040	2050
DATA	Installed Base	Installed Base	Current Standard	Typical	Typical	Typical	Typical
Typical Storage Capacity (gal)	119	119	119	119	119	119	119
Typical Input Capacity (kW) ¹	18	18	18	18	18	18	18
Typical Input Capacity (kBtu/h)	60	60	60	60	60	60	60
Thermal Efficiency (%)	98	98	98	98	98	98	98
Average Life (y)	12	12	12	12	12	12	12
Patail Fassimment Coat (2022¢)	3,180	3,180	3,180	3,180	3,180	3,180	3,180
Retail Equipment Cost (2022\$)	3,750	3,750	3,750	3,750	3,750	3,750	3,750
Total Installed Cost (2022\$)	4,460	4,460	4,460	4,460	4,460	4,460	4,460
Total Histalieu Cost (2022\$)	4,690	4,690	4,690	4,690	4,690	4,690	4,690
Total Installed Cost (2022\$/kBtu/h)	76	76	76	76	76	76	76
Annual Maintenance Cost (2022\$)	50	50	50	50	50	50	50
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	1	1	1	1	1

^{1.} Different levels of standby loss were not included in this analysis.

Note:

No new standards rulemaking has been initiated for commercial electric resistance water heaters since CWH EERE 2016 NOPR. Accordingly, the results are the same as EIA Technology Forecast Updates (2018), updated to 2022\$.

The range of retail equipment and installed costs represents the range from replacement market to new construction market.


Commercial Electric Resistance Storage Water Heaters

- Federal standard:
 - Maximum standby loss (%/h): 0.30 + 27/Measured Storage Volume
 - Minimum thermal efficiency: no standard, but all units have an efficiency \geq 98%
- Storage capacity: typically, 50 to 120 gallons, though smaller and larger units exist for specialized applications
- Commercial units are typically constructed similar to residential units, though with higher input capacities (and often higher storage volumes).
- There is very little variation in thermal efficiency on the market; variation in standby loss is typically due to tank design and insulation thickness.
- Maintenance consists of sediment and scale removal once or twice per year.

Commercial Electric Resistance Storage Water Heaters

Annual shipments increased by almost 50% between 2002 and 2008. After a small dip in shipments in 2009, annual shipments have increased by about 173% between 2009 and 2017, stabilizing between 140-150 thousand shipments per year since then.

Commercial Electric Resistance Water Heaters

Source: AHRI

Commercial Heat Pump Water Heaters

Higher typical efficiencies with the same costs as reference case despite increased efficiency

DATE	2012	2018	20)22	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.0	Typical	Typical	Typical
Water Flow Rate (gal/min) ¹	34	34	34	34	34	34	34
Typical Output Capacity (kW) ¹	50	50	50	50	50	50	50
Typical Output Capacity (kBtu/h)	171	171	171	171	171	171	171
Coefficient of Performance (COPh)	3.9	3.9	3.9	3.0	4	4.2	4.4
Average Life (y)	15	15	15	15	15	15	15
Retail Equipment Cost (2022\$) ²	55,406	55,406	55,406	55,406	55,406	55,406	55,406
Total Installed Cost (2022\$) ²	59,935	59,935	59,935	59,935	59,935	59,935	59,935
Total Installed Cost (2022\$/kBtu/h)	350	350	350	350	350	350	350
Annual Maintenance Cost (2022\$) ²	120	120	120	120	120	120	120
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	1	1	1	1	1

- 1. Water flow rate scales with typical capacity. The storage tanks must be purchased and installed separately from the HP unit. The typical output and flow rate provided are near the median of the products available on the market currently.
- 2. Costs are same as EIA Technology Forecast Updates (2018), updated to 2022\$. Updated representative costs for commercial heat pump water heaters are not available due to the extremely small market for these products.

Note:

ENERGY STAR V. 2.0 went into effect in October 2018.

Commercial Heat Pump Water Heaters

- Typical commercial HPWHs (CHPWHs) are add-on units designed to be used with a storage tank(s); integrated CHPWHs have emerged on the market (i.e., heat pump module and storage tank combined in one unit) in recent years.
- CHPWHs serve only a small portion of the commercial water heating (CWH) market, with the ENERGY STAR database listing only two manufacturers, each with one basic model listed.
- CHPWHs can extract heat from either air or water for heating potable water ("air-source" or "water-source"). The capacity of air-source CHPWHs falls at lower ambient air temperatures.
- Air-source CHPWHs cool the surrounding air, which can be desirable when installed indoors in applications with a year-round cooling load (e.g., a commercial kitchen).
- Output capacities for CHPWHs range from 17 kW to over 70 kW for air-source units and over 600 kW for water-source units.
- Some commercial applications require water as hot as 180 °F, such as dishwashing; however, most CHPWHs cannot deliver hot water at temperatures higher than 150 °F.
- There are no current Federal standards for CHPWHs, but DOE prescribes a test procedure for determining COP_h for CHPWHs.
- The most recent ENERGY STAR V. 2.0 specification for CWH equipment went into effect in October 2018. It specifies a COP_h level of 3.0 for CHPWHs.
- Advanced Case: Due to increases in R&D, improvements in current technology (e.g., more cost-effective variable speed technology) are expected to increase efficiency without substantially increasing costs.

Commercial Oil-Fired Storage Water Heaters

Same as Reference Case

arrie as Nererence Case											
	2012	2018		2022	2022		2030		2040		50
DATA	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Storage Capacity (gal)	70	85	85	85	85	85	85	85	85	85	85
Typical Input Capacity (kBtu/h)	300	300	300	300	300	300	300	300	300	300	300
Thermal Efficiency (%) ¹	79	81	80	81	82	81	82	81	82	81	82
Average Life (y)	13	13	13	13	13	13	13	13	13	13	13
Retail Equipment Cost (2022\$)	5,470	5,470	5,470	5,470	5,470	5,470	5,470	5,470	5,470	5,470	5,470
Total Installed Cost (2022\$)	6,120	6,120	6,120	6,120	6,120	6,120	6,120	6,120	6,120	6,120	6,120
Total Installed Cost (2022\$/kBtu/h)	26	25	26	25	25	25	25	25	25	25	25
Annual Maintenance Cost (2022\$)	200	200	200	200	200	200	200	210	210	210	210
Annual Maintenance Cost (2022\$/kBtu/h)	1	1	1	1	1	1	1	1	1	1	1

^{1.} Different levels of standby loss were not included in this analysis.

Note:

The commercial oil-fired water heaters market is very small; currently, there are only 4 basic models in DOE's CCD. DOE's rulemaking analysis for oil-fired water heaters has not been updated since 2001. The retail, installed, and maintenance costs have been updated from EIA Technology Forecast Updates (2018) to 2022\$.

The current standard went into effect in October 2015.

157

Commercial Oil-Fired Storage Water Heaters

- Input capacity > 155 kBtu/h and storage capacity ≤ 140 gal
- Federal standard:
 - Minimum thermal efficiency: 80%
 - Maximum standby loss (Btu/h) : Input Rate/ $800 + 110 \times (Rated Volume)^{1/2}$
- Condensing units do not exist, thus the highest thermal efficiency on the market is 82%.
- Commercial units are typically constructed similar to residential units, though with higher input capacities (and often higher storage volumes).
- Maintenance costs include sediment and scale removal once or twice per year.
- The market for commercial oil-fired storage water heaters is very small; shipments are approximately 3% of shipments for commercial gas-fired storage water heaters.

Commercial Electric Booster Water Heaters

Same as Reference Case

DATE	2012	2018	2022	2030	2040	2050
DATA	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Tomical Campaitre (cal)	6	6	6	6	6	6
Typical Capacity (gal)	16	16	16	16	16	16
Typical Output Capacity (kBtu/h)	1,374	1,374	1,374	1,374	1,374	1,374
Thermal Efficiency (%)	98	98	98	98	98	98
Avorago I ifo (v)	3	3	3	3	3	3
Average Life (y)	10	10	10	10	10	10
Potoil Fourier and Cook (2022¢)1	1,530	1,530	1,920	1,920	1,920	1,920
Retail Equipment Cost (2022\$) ¹	3,290	3,530	4,560	4,560	4,560	4,560
Total Installed Cost (2022\$) 1	1,730	1,730	2,120	2,120	2,120	2,120
Total Installed Cost (2022\$)	3,490	3,730	4,760	4,760	4,760	4,760
Total Installed Cost (2022\$/kBtu/h)	2	2	3	3	3	3
Annual Maintenance Cost (2022\$) ²	-	-	-	-	-	-
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	-	-	-	-

^{1.} The 2012 and 2018 installed base costs are the same as EIA Technology Forecast Updates (2018), updated to 2022\$. Retail costs for 2022 and later are based on the range of costs for products on the market today. Installed costs assume a \$200 installation price.

^{2.} Maintenance costs are negligible.

Commercial Gas-Fired Booster Water Heaters

Higher efficiencies with corresponding cost increases

Thigher emolenoide with derived perialing deat mare	2012	2018	20	22	2030	2040	2050
DATA	Installed Base	Installed Base	Current Standard	Typical	Typical	Typical	Typical
Transical Course its (call)	3	3	3	3	3	3	3
Typical Capacity (gal)	5	5	5	5	5	5	5
Typical Output Capacity (kBtu/h)	500	500	500	500	500	500	500
Thermal Efficiency (%) ¹	80	80	80	80	80	91	80
A-romana I :fa (-r)	5	5	5	5	5	5	5
Average Life (y)	10	10	10	10	10	10	10
Datail Equipment Coat (20220)2	5,530	5,760	7,130	7,130	7,130	9,500	7,130
Retail Equipment Cost (2022\$) ²	8,000	9,060	11,120	11,120	11,120	12,500	11,120
Total Installed Cost (2022\$) ²	5,830	6,060	7,430	7,430	7,430	9,800	7,430
Total Installed Cost (2022\$)	8,300	9,360	11,420	11,420	11,420	12,800	11,420
Total Installed Cost (2022\$/kBtu/h)	14	15	19	19	19	23	19
Annual Maintenance Cost (2022\$)	160	160	160	160	160	160	160
Annual Maintenance Cost (2022\$/kBtu/h)	0	0	0	0	0	0	0

- 1. While EIA Technology Forecast Updates (2018) included high values reflecting condensing models, models currently available in the market do not exceed 80% efficiency.
- 2. The 2012 and 2018 installed base costs are the same as EIA Technology Forecast Updates (2018), updated to 2022\$. Retail costs for 2022 and later are based on the range of costs for products on the market today. Installed costs assume a \$300 installation price.

Commercial Booster Water Heaters

- Booster water heaters are installed, often at the point of use, in series with the main service water heating system to boost service water temperatures. The main service water heating system may provide 110-140 °F water, and the booster water heater may increase that temperature to 180-195 °F. Typical commercial applications for booster water heaters include commercial dishwashers, laundromats, hospitals, and car washes.
- Commercial booster water heaters are regulated by DOE as either storage or instantaneous water heaters, depending on the ratio of input capacity to storage volume. Units with input capacity < 4,000 Btu/h per gallon of stored water are storage water heaters; all other units are instantaneous water heaters.
- DOE's regulations do not currently include standards for electric instantaneous water heaters, but standards are included for electric storage water heaters, gas-fired instantaneous water heaters, and gas-fired storage water heaters.
- Condensing gas-fired booster water heaters, those with an efficiency of 90% of more, were analyzed previously. There are no condensing units currently on the market. Condensing gas-fired booster water heaters can only operate if the incoming water temperature is below 130 °F so there is enough heat transfer to condense.
- Booster water heaters typically have short lifetimes because of high usage and extreme temperatures.
- Shipments are small due to the limited number of applications.
- Advanced Case: increased high efficiencies are possible due to market incentives to re-introduce condensing commercial gas-fired booster water heaters through additional investment, research, and development. No significant changes otherwise.

Commercial Gas-Fired Instantaneous Water Heaters

Same as Reference Case

	2012	2018		20)22		2030		2040		2050	
DATA	Installed Base	Installed Base	Current Standard	Typical	STAR V. 2.0	High ²	Typical	High	Typical	High	Typical	High
T	250	250	250	250	250	250	250	250	250	250	250	250
Typical Capacity (kBtu/h)	399	399	399	399	399	399	399	399	399	399	399	399
Thermal Efficiency (%)	80	92	80	92	94	99	96	99	96	99	96	99
A 7.6 ()	17	17	17	17	17	17	17	17	17	17	17	17
Average Life (y)	25	25	25	25	25	25	25	25	25	25	25	25
D 4 11	1,630	1,840	1,630	1,840	1,880	7,990	1,930	7,990	1,930	7,990	1,930	7,990
Retail Equipment Cost (2022\$) ¹	4,400	8,610	4,400	8,610	9,000	9,990	9,400	9,990	9,400	9,990	9,400	9,990
T . 11 . 11 1 C (2022)1	2,430	3,980	2,430	3,980	4,010	13,000	4,070	13,000	4,070	13,000	4,070	13,000
Total Installed Cost (2022\$) ¹	10,380	13,560	10,380	13,560	13,950	14,950	14,350	14,950	14,350	14,950	14,350	14,950
Total Installed Cost (2022\$/kBtu/h)	25	29	25	29	29	44	30	44	30	44	30	44
1 1 1 C (1/2022)3	90	100	90	100	100	820	100	820	100	820	100	820
Annual Maintenance Cost (2022\$) ³	760	820	760	820	820	830	830	830	830	830	830	830
Annual Maintenance Cost (2022\$/kBtu/h)	2	2	2	2	2	3	1	3	1	3	1	3

- 1. Commercial gas-fired instantaneous water heaters are categorized into two groups: tankless water heater and hot water supply boiler. Tankless units are similar in design to residential tankless units. The hot water supply boiler has a much higher input and is similar in design to boilers. The large variation of total input capacity and design causes a large range of costs. The range of retail, installed, and maintenance costs represent the differences in design, as well as the cost ranges arising from replacement versus new construction markets.
- 2. High efficiency was determined based on DOE's CCD. The most efficient tankless water heater has a thermal efficiency of 96%. The most efficient hot water supply boiler has a thermal efficiency of 99%.
- 3. Maintenance consists replacement of miscellaneous components such as gaskets and sealants. Condensing units have an additional cost for replacement of condensate neutralizer media every two years. Note:

For the installed base, current standard, and typical costs, low values represent costs for tankless water heaters in the replacement market while high values represent costs for hot water supply boilers in the replacement and new construction market. The range of costs for the High values are estimated costs for hot water supply boilers in the replacement and new construction market. ENERGY STAR V. 2.0 went into effect in October 2018.

Commercial Gas-Fired Instantaneous Water Heaters

- Storage Capacity < 10 gallons and ≥ 10 gallons
- Federal standard:
 - Minimum thermal efficiency: 80%
 - Maximum standby loss (Btu/h): Input Rate/800 + $110 \times (Rated Volume)^{1/2}$
- ENERGY STAR requirements:
 - Minimum thermal efficiency: 94%
- Wall-mounted ("tankless") units typically do not exceed ~400,000 Btu/h and are similar in design to residential tankless units. Floor-mounted units ("circulating" or "volume" water heaters) are similar in design to boilers and can have input capacities in the millions of Btu/h. Floor-mounted units are typically installed with a storage tank.
- Despite high available input capacities, some installations use multiple units staged together, which may have reliability and/or efficiency benefits.
- Similar to storage water heaters, higher efficiencies are achieved with condensing operation, which requires a
 condensing heat exchanger and inducer fan or power burner. Some units include both non-condensing and
 condensing heat exchangers, while others include a single condensing heat exchanger.
- When replacing a storage water heater with an instantaneous water heater, there may be significant additional costs to upsize the gas supply line and change the venting.

Commercial Gas-Fired Instantaneous Water Heaters

Annual shipments for gas-fired instantaneous tankless water heaters have gradually increased since 2000 while those for gas-fired instantaneous hot water supply boiler water heaters peaked in 2008 and have been decreasing since then, recently stabilizing around 10,000 annual shipments.

Commercial Gas-Fired Instantaneous Water Heater Unit Shipments (thousands) --- Hot Water Supply Boiler

Source: CWH EERE 2022 NOPR

Commercial Solar Water Heaters

Same as Reference Case

DATA	2012	2018	202	22	2023	2030	2040	2050	
DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 4.0	ENERGY STAR V. 5.0	Typical	Typical	Typical	
Typical Capacity (sq. ft.) ¹	85	85	85	85	85	85	85	85	
Typical Capacity (m ²)	7.90	7.90	7.90	7.90	7.90	7.90	7.90	7.90	
Typical Capacity (Input) (kBtu/h) – North	5.05	5.05	5.05	5.05	5.05	5.05	5.05	5.05	
Typical Capacity (Input) (kBtu/h) – South	6.74	6.74	6.74	6.74	6.74	6.74	6.74	6.74	
Solar Uniform Energy Factor (SUEF) ²	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Average Life (y)	20	20	20	20	20	20	20	20	
Retail Equipment Cost (2022\$) ³	10,470	10,470	10,280	10,280	10,280	10,280	10,280	10,280	
Total Installed Cost (2022\$) ³	14,180	14,180	12,640	12,640	12,640	12,640	12,640	12,640	
Total Installed Cost (2022\$/kBtu/h) – North	936	936	834	834	834	834	834	834	
Total Installed Cost (2022\$/kBtu/h) – South	702	702	626	626	626	626	626	626	
Annual Maintenance Cost (2022\$) ⁴	100	100	100	100	100	100	100	100	
Annual Maintenance Cost (2022\$/kBtu/h) - North	7	7	7	7	7	7	7	7	
Annual Maintenance Cost (2022\$/kBtu/h) - South	5	5	5	5	5	5	5	5	

- 1. Typical capacity refers to the solar collector panel area. It was determined using the SRCC database as the average value of the largest bin (in terms of capacity) with the greatest number of units.
- 2. In 2020, the efficiency metric for solar water heaters changed from SEF to SUEF. There is no equation or scaling factor readily available to translate SEF to SUEF. Accordingly, for the 2012 and 2018 installed base, SUEF was determined using the 2020 ENERGY STAR data set assuming the typical SEF/SUEF value was similar between 2012-2020. For 2022 and beyond, due to lack of SUEF data, it is assumed that a typical electric backup unit would meet the ENERGY STAR criteria. ENERGY STAR specifies a minimum SUEF of 3.0 for electric backup units and 1.8 for gas backup units.
- 3. Costs are for an indirect (active closed loop) system, including tank and backup heater. Smaller capacity/cost systems are typical for southern & western states (>two-third of the current market). Higher capacity/cost systems are required in colder/cloudier regions. The 2012 and 2018 installed base costs are updated from EIA Technology Forecast Updates (2018) to 2022\$.
- 4. Annual maintenance is expected to be 0.5% to 1% of the total installation.

Note:

ENERGY STAR V. 4.0 went into effect in January 2022. ENERGY STAR V. 5.0 will go into effect in April 2023 but the ENERGY STAR criteria for solar water heaters will remain the same in ENERGY STAR V. 5.0.

Commercial Solar Water Heaters

- In 2020, a diverse group of stakeholders from the solar thermal industry developed the SUEF Specification for solar water heaters. The goal of this specification is to align with the UEF metric used by DOE for other water heating technologies.
- SUEF is also the metric used by the current ENERGY STAR Specification, and it replaced the SEF metric.
- EIA Technology Forecast Updates (2018) presented results using SEF and solar fraction (SF). SEF is currently not used in either the ENERGY STAR or SRCC databases; accordingly, this report presents results according to SUEF. SF is the portion of the total conventional hot water heating load (delivered energy and tank standby losses). SF varies from 0 to 1.0. Typical solar fraction values are 0.5–0.75.
- There is no equation or scaling factor readily available to translate SEF to SUEF. Accordingly, for the 2012 and 2018 installed base, SUEF was determined using the 2020 ENERGY STAR data set assuming the typical SEF/SUEF value was similar between 2012-2020. For 2022 and beyond, SUEF is the average SUEF for solar water heaters with a "high-usage" draw pattern from the current ENERGY STAR qualified product list.
- Commercial solar water heaters are typically custom designed for a specific installation.
- Commercial solar water heaters may include backup heating, from sources such as electric resistance or hydronic heat (supplied from a gas-fired boiler or geothermal heat pump).
- Storage volumes of tanks for commercial solar water heaters can span from 140 gallons to over 2,000 gallons.
- SRCC's OG-300 can be used to certify commercial systems, but most commercial systems are larger and unique; this certification program is mostly used for residential solar water heaters.
 - Many incentive programs require that solar collectors for commercial systems be certified to SRCC's certification program for collectors, OG-100.

Return to Table of Content

Commercial Cooking Products

Commercial Natural Gas Range with Griddle and Oven

Higher typical efficiencies with the same costs as ref. case despite increased efficiency

•	2012	2018		2022		2023	20	30	204	40	20	50
DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.2 ¹	High	ENERGY STAR V. 3.0 ²	Typical	High	Typical	High	Typical	High
Griddle - Cooking Energy Efficiency (%)	30	30	40	38	69	NA	42	69	44	69	46	69
Oven - Cooking Energy Efficiency (%)	35	35	35	46	69	49	39	69	42	69	47	69
Range - Cooking Energy Efficiency (%)	30	30	30	NA	40	NA	33	40	36	40	39	40
Combined Energy Efficiency (%) ³	31	31	35	NA	58	NA	38	58	41	58	44	58
Griddle - Normalized Idle Energy Rate (Btu/h/ft²)	3,000	3,000	3,000	2,650	1,724	NA	2,700	1,724	2,450	1,724	2,200	1,724
Oven - Idle Energy Rate (Btu/h)	18,000	18,000	18,000	12,000	3,516	9,500	16,200	3,516	14,600	3,516	13,150	3,516
Range - Idle Energy Rate (Btu/h)	3,600	3,600	3,600	NA	1,900	NA	3,250	1,900	2,950	1,900	2,650	1,900
Combined Idle Energy Rate (Btu/h) ³	10,350	10,350	10,350	NA	4,178	NA	9,319	4,178	8,431	4,178	7,581	4,178
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁴	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760
Total Installed Cost (2022\$)	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940	8,940
Total Installed Cost (2022\$/kBtu/h)	864	864	864	NA	2,140	NA	959	2,140	1,060	2,140	1,179	2,140
Annual Maintenance Cost (2022\$) ⁵	_	_	-	_	-	_	-	_	_	_	-	_
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	-	_	-	-	-	-	-	-	-	_

- 1. ENERGY STAR does not cover combination products that include griddles, ranges, and ovens in one single package. The ENERGY STAR levels provided here reflect specifications for individual products. Range tops are not covered by ENERGY STAR.
- 2. ENERGY STAR V. 3.0 updated the requirements for commercial ovens from V. 2.2, effective January 2023. Data shown is reflective of a standard full-size convection oven that holds 5 or more pans.
- 3. Combined energy efficiency and combined idle energy rate are calculated as a weighted average of each component using typical daily operating hours sourced from Food Service Technology Center (FSTC). Typical daily operating hours are assumed to be 12 hours for the griddle component, 8 hours for the oven component, and 12 hours for the range component.
- 4. Products in the commercial cooking market generally do not scale in price with relation to cooking efficiency. Distributors also do not provide this information.
- 5. Maintenance costs are negligible.

Note:

ENERGY STAR V. 2.2 went into effect in October 2015. ENERGY STAR V. 3.0 went into effect in January 2023.

Commercial Electric Range with Griddle and Oven

Higher typical efficiencies with the same costs as ref. case despite increased efficiency

	2012	2018		2022		2023	20	30	204	10	205	50
DATA	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.2 ¹	High	ENERGY STAR V. 3.0 ²	Typical	High	Typical	High	Typical	High
Griddle - Cooking Energy Efficiency (%)	65	70	72	70	91	NA	74	91	76	91	78	91
Oven - Cooking Energy Efficiency (%)	65	65	65	71	86	76	67	86	69	86	71	86
Range - Cooking Energy Efficiency (%)	75	75	75	NA	87	NA	77	87	80	87	81	87
Combined Energy Efficiency (%) ³	69	71	71	NA	88	NA	73	88	76	88	77	88
Griddle - Normalized Idle Energy Rate (kW/ft²)	0.44	0.34	0.30	0.32	0.21	NA	0.29	0.21	0.28	0.21	0.27	0.21
Oven - Idle Energy Rate (kW)	1.5	1.5	1.5	1.6	0.6	1.4	1.4	0.6	1.3	0.6	1.2	0.6
Range - Idle Energy Rate (kW) ⁴	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Combined Idle Energy Rate (kW) ³	1.7	1.4	1.3	1.4	0.8	NA	1.3	0.8	1.2	0.8	1.1	0.8
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁵	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230	11,230
Total Installed Cost (2022\$)	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410	11,410
Total Installed Cost (2022\$/kBtu/h)	2,019	2,362	2,533	2,375	4,423	NA	2,662	4,423	2,805	4,423	2,964	4,423
Annual Maintenance Cost (2022\$)6	_	_	_	_	_	_	_	_	_	-	-	_
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	-	-	-	-	-	-	-	-	-	-

- 1. ENERGY STAR does not cover combination products that include griddles, ranges, and ovens in one single package. The ENERGY STAR levels provided here reflect specifications for individual products. Range tops are not covered by ENERGY STAR.
- 2. ENERGY STAR V. 3.0 updates the requirements for commercial ovens from V. 2.2, effective January 12, 2023. Data shown is reflective of a standard full-size convection oven that holds 5 or more pans.
- 3. Combined energy efficiency and combined idle energy rate are calculated as a weighted average of each component using typical daily operating hours sourced from FSTC. Typical daily operating hours are assumed to be 12 hours for the griddle component, 8 hours for the oven component, and 12 hours for the range component.
- 4. No data on electric range top idle energy rates.
- 5. Products in the commercial cooking market generally do not scale in price with relation to cooking efficiency. Distributors also do not provide this information.
- 6. Maintenance costs are negligible.

Note:

169

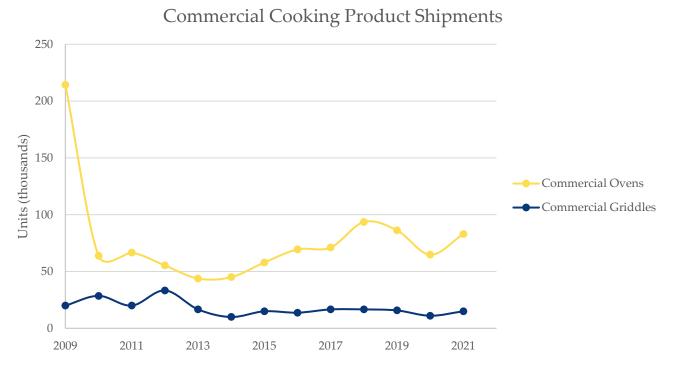
Commercial Ranges with Griddle and Oven

- Combined product that typically includes 2-6 range tops, a 24 in. x 24 in. griddle surface, and one or two half- or full-size ovens.
- Combined product is not covered by ENERGY STAR. However, the individual product ENERGY STAR V. 2.2 specifications are provided below.

Product	ENERGY STAR V. 2.2 Requirements	Gas	Electric
Griddle	Cooking Energy Efficiency	≥ 38%	≥ 70%
Gridale	Normalized Idle Energy Rate	\leq 2,650 Btu/h per ft ²	\leq 0.320 kW per ft ²
	Cooking Energy Efficiency	≥ 46%	≥ 71%
Oven	Idle Energy Rate	≤ 12,000 Btu/h	Half size: ≤1.00 kW Full size: ≤1.60 kW

- ENERGY STAR does not provide certification for range tops.
- There are no Federal standards for commercial cooking products.
- Product pricing in this market do not scale with efficiency, but rather depend on a number of other factors such as brand name, aesthetics, and additional features.

Commercial Ranges with Griddle and Oven


• ENERGY STAR V. 3.0 requirements for commercial ovens went into effect in January 2023:

Product	ENERGY STAR Requirements	Gas	Electric
	Cooking Energy Efficiency	≥ 49%	Half size: ≥ 71% Full size: ≥ 76%
Oven	Idle Energy Rate	≤ 9,500 Btu/h	Half size: ≤1.00 kW Full size ≥ 5 Pans: ≤1.40 kW Full size ≤ 5 Pans: ≤1.00 kW

• Advanced Case: Increased market incentives are expected to drive efficiency improvements. However, because cost does not scale with efficiency, there is no significant expected change in cost.

Commercial Ranges with Griddle and Oven

Commercial oven shipments have gradually increased since 2013, following a peak in 2009. Commercial griddle shipments have remained steady since 2014.

Source: ENERGY STAR (Unit Shipment Data)

Commercial Hot Food Holding Cabinets – Small

Higher typical efficiencies with the same costs as ref. case despite increased efficiency

	2012	2018		20	22		200	30	20	40	205	50
DATA	Installed Base	Installed Base	State Standards	Typical	STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Interior Volume (ft³)¹	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
Maximum Idle Energy Rate (W) ²	312	312	312	312	168	168	250	168	200	168	200	168
Annual Energy Use (kWh/y) ³	1,025	1,025	1,025	1,025	552	552	820	552	656	552	656	552
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁴	3,200	3,200	3,200	3,200	3,800	3,800	3,200	3,800	3,200	3,800	3,200	3,800
Total Installed Cost (2022\$) ⁵	3,200	3,200	3,200	3,200	3,800	3,800	3,200	3,800	3,200	3,800	3,200	3,800
Total Installed Cost (2022\$/kBtu/h)	8,016	8,016	8,016	8,016	17,677	17,677	10,020	17,677	12,524	17,677	12,524	17,677
Annual Maintenance Cost (2022\$) ⁵	-	-	_	-	_	-	_	-	_	-	-	_
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	_	-	_	-	_	-	-	-	-	_

- 1. Interior volume is characterized by the product size classes reported by ENERGY STAR. The small size class covers units with interior volume less than 13 ft³. Interior volume for the small size class was determined based on the units in the ENERGY STAR database, accessed February 2023.
- 2. Maximum idle energy rate is a function of interior volume. For the small size class, ENERGY STAR and high values were determined for a representative 7.8 ft³ using the ENERGY STAR database, accessed February 2023. The typical value was assumed to be equivalent to the state standard for a representative 7.8 ft³ unit.
- 3. Annual energy use is determined using the latest FEMP data from December 2021, which assumes that a typical 22.4 ft³ commercial hot food holding cabinet uses an average of 9 hours per day and 365 days per year. The small size class is assumed to use the same number of annual usage hours as the medium size class.
- 4. Retail equipment costs were determined using distributor information for undercounter, half-size, and full-size hot food holding cabinets.
- 5. Additional installation costs and maintenance costs are negligible.

Note:

ENERGY STAR V. 2.0 went into effect in October 2011 and was revised in December 2022. Massachusetts, Nevada, and Rhode Island state standards have adopted the ENERGY STAR V. 2.0 criteria that went into effect in October 2011. The majority of state standards (California, Colorado, Connecticut, DC, Maryland, New Hampshire, Oregon, Rhode Island, Vermont, and Washington) implement the ENERGY STAR V. 1.0 specification that went into effect in August 2003, which is recorded in the table. ENERGY STAR V. 1.0 specifies a maximum idle energy rate of 40 W per cubic foot of interior volume.

Commercial Hot Food Holding Cabinets – Medium

Higher typical efficiencies with the same costs as ref. case despite increased efficiency

	2012	2018		20	22		2030		2040		2050	
DATA	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Interior Volume (ft³)¹	21.4	21.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4
Maximum Idle Energy Rate (W) ²	900	856	896	896	299	298	717	298	573	298	459	298
Annual Energy Use (kWh/y) ³	2,957	2,812	2,943	2,943	982	979	2,355	979	1,884	979	1,507	979
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁴	2,940	4,530	4,600	4,600	5,000	5,000	4,600	5,000	4,600	5,000	4,600	5,000
Total Installed Cost (2022\$) ⁵	2,940	4,530	4,600	4,600	5,000	5,000	4,600	5,000	4,600	5,000	4,600	5,000
Total Installed Cost (2022\$/kBtu/h)	2,553	4,136	4,012	4,012	13,078	13,113	5,015	13,113	6,269	13,113	7,836	13,113
Annual Maintenance Cost (2022\$) ⁵	-	-	_	-	-	-	-	-	-	-	-	-
Annual Maintenance Cost (2022\$/kBtu/h)	_	_	_	_	-	-	_	-	-	-	_	_

- 1. Interior volume is characterized by the product size classes reported by ENERGY STAR. The medium size class covers units with interior volume between 13 ft³ to 28 ft³. For the medium size class, the interior volume increase from 21.4 ft³ to 22.4 ft³ in 2022 reflects the current representative product volume reported by FEMP, last updated December 2021.
- 2. Maximum idle energy rate is a function of interior volume. For the medium size class, the maximum idle energy rate for 2022 onward is reflective of a representative 22.4 ft³ unit, using the latest FEMP data from December 2021.
- 3. Annual energy use is determined using the latest FEMP data from December 2021, which assumes that a typical 22.4 ft³ commercial hot food holding cabinet uses an average of 9 hours per day and 365 days per year.
- 4. Retail equipment costs were determined using distributor information for undercounter, half-size, and full-size hot food holding cabinets.
- 5. Additional installation costs and maintenance costs are negligible.

Note:

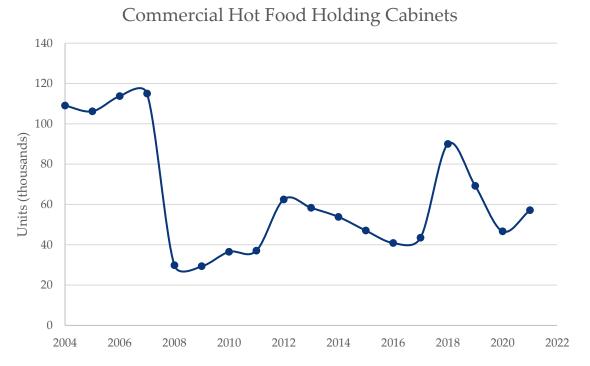
ENERGY STAR V. 2.0 went into effect in October 2011 and was revised in December 2022. Massachusetts, Nevada, and Rhode Island state standards have adopted the ENERGY STAR V. 2.0 criteria that went into effect in October 2011. The majority of state standards (California, Colorado, Connecticut, DC, Maryland, New Hampshire, Oregon, Rhode Island, Vermont, and Washington) implement the ENERGY STAR V. 1.0 specification that went into effect in August 2003, which is recorded in the table. ENERGY STAR V. 1.0 specifies a maximum idle energy rate of 40 W per cubic foot of interior volume.

Commercial Hot Food Holding Cabinets – Large

Higher typical efficiencies with the same costs as ref. case despite increased efficiency

	2012	2018		20	22		2030		2040		2050	
DATA	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Interior Volume (ft³)¹	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0
Maximum Idle Energy Rate (W) ²	1,333	1,333	1,760	1,333	400	310	1,067	310	853	310	683	310
Annual Energy Use (kWh/y) ³	4,380	4,380	5,782	4,380	1,314	1,018	3,504	1,018	2,803	1,018	2,243	1,018
Average Life (y)	12	12	12	12	12	12	12	12	12	12	12	12
Retail Equipment Cost (2022\$) ⁴	5,500	5,500	5,500	5,500	6,000	6,000	5,500	6,000	5,500	6,000	5,500	6,000
Total Installed Cost (2022\$) ⁵	5,500	5,500	5,500	5,500	6,000	6,000	5,500	6,000	5,500	6,000	5,500	6,000
Total Installed Cost (2022\$/kBtu/h)	3,224	3,224	2,442	3,224	11,723	15,126	4,030	15,126	5,037	15,126	6,296	15,126
Annual Maintenance Cost (2022\$) ⁵	_	_	_	-	_	-	_	_	_	-	-	_
Annual Maintenance Cost (2022\$/kBtu/h)	-	-	_	-	_	-	_	-	_	-	-	-

- 1. Interior volume is characterized by the product size classes reported by ENERGY STAR. The large size class covers units with interior volume greater than or equal to 28 ft³. Interior volume for the large size class was determined based on the units in the ENERGY STAR database, accessed February 1, 2023.
- 2. Maximum idle energy rate is a function of interior volume. For the large size class, ENERGY STAR and high values were determined using the ENERGY STAR database, and the typical value uses the assumption that ENERGY STAR units are reported to be 70% more efficient than typical units.
- 3. Annual energy use is determined using the latest FEMP data from December 2021, which assumes that a typical 22.4 ft³ commercial hot food holding cabinet uses an average of 9 hours per day and 365 days per year. The large size class is assumed to use the same number of annual usage hours as the medium size class.
- 4. Retail equipment costs were determined using distributor information for undercounter, half-size, and full-size hot food holding cabinets.
- 5. Additional installation costs and maintenance costs are negligible.


Note:

ENERGY STAR V. 2.0 went into effect in October 2011 and was revised in December 2022. Massachusetts, Nevada, and Rhode Island state standards have adopted the ENERGY STAR V. 2.0 criteria that went into effect in October 2011. The majority of state standards (California, Colorado, Connecticut, DC, Maryland, New Hampshire, Oregon, Rhode Island, Vermont, and Washington) implement the ENERGY STAR V. 1.0 specification that went into effect in August 2003, which is recorded in the table. ENERGY STAR V. 1.0 specifies a maximum idle energy rate of 40 W per cubic foot of interior volume.

Commercial Hot Food Holding Cabinets

- Hot food holding cabinets are used in commercial kitchens to keep food warm until it is served.
- While available in many shapes and sizes, interior volumes around 21.4 ft³ were reported as typical in many settings in EIA Technology Forecast Updates (2018). FEMP currently lists 22.4 ft³ as a representative unit size.
- Annual unit energy consumption can range from < 1,000 to > 30,000 kWh/y, depending on size, efficiency, and usage.
- Energy performance metric is "Idle Energy Consumption Rate" in Watts, measured using ASTM Standard F2140-11.
- There are no Federal standards for hot food holding cabinets, but seven States have identical standards.
 - The first State standard took effect in California in 2006; this standard is now considered the typical or "baseline" product. It is also equivalent to the ENERGY STAR V. 1.0 Specification that went into effect in August 2003.
 - ENERGY STAR V. 2.0 went into effect in October 2011.
- Maximum Idle Energy Consumption Rate for products $12 \le V < 28$:
 - State standards: $\leq 40 \times V$ (baseline)
 - ENERGY STAR V. 2.0: \leq 2.0 × V + 254 (about 65% below baseline) where V is interior volume in ft³.
- The most efficient products are about 80% below baseline.
- Energy savings achieved with insulation, automatic door closers, magnetic door gaskets, and Dutch doors (half-doors).
- Advanced Case: Increased market incentives are expected to drive efficiency improvements. However, because cost does not scale with efficiency, there is no significant expected change in cost.

Commercial hot food holding cabinet shipments peaked in 2007 at 115,000 units, followed by a peak of 90,000 units in 2019.

Source: ENERGY STAR (Unit Shipment Data)

<u>Return to Table of Conte</u>

Appendix A Data Sources

Guidehouse 1676 International Drive McLean, VA 22102

And

Leidos 11951 Freedom Drive Reston, VA 20190

Return to Table of Contents

Residential Space Heating and Cooling

Residential Gas-Fired Furnaces (North)

	2015	2020		20)22		2030	2040	2050		
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR (North) V. 4.1	High		Typical / High			
Typical Input Capacity (kBtu/h)					Resider	ntial Furnace	s EERE 2022 NOPR				
AFUE (%)		CFR		DOE CCD	ENERGY STAR V. 4.1	DOE CCD	Residential Furnaces EERE 2022 NOPR				
Electric Consumption (kWh/y)	Residentia EERE	l Furnaces 2016				Residen	tial Furnaces EERE 2022	2 NOPR			
Average Life (y)					Reside	ntial Furnace	s EERE 2022 NOPR				
Retail Equipment Cost (2022\$)											
Total Installed Cost (2022\$)	Residentia EERE	l Furnaces 2016				Residen	ential Furnaces EERE 2022 NOPR				
Annual Maintenance Cost (2022\$)											

Residential Gas-Fired Furnaces (Rest of Country)

	2015	2020		20)22		2030	2040	2050		
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR (ROC) V. 4.1	High		Typical / High			
Typical Input Capacity (kBtu/h)					Resider	ntial Furnace	s EERE 2022 NOPR				
AFUE (%)		CFR		DOE CCD	ENERGY STAR V. 4.1	DOE CCD	Residential Furnaces EERE 2022 NOPR				
Electric Consumption (kWh/y)		l Furnaces 2016				Residen	tial Furnaces EERE 2022	2 NOPR			
Average Life (y)					Resider	ntial Furnace	s EERE 2022 NOPR				
Retail Equipment Cost (2022\$)											
Total Installed Cost (2022\$)		l Furnaces 2016				Residen	ential Furnaces EERE 2022 NOPR				
Annual Maintenance Cost (2022\$)											

Residential Oil-Fired Furnaces

	2015	2020	2022				2030 2040 2050					
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.1	High		Typical / High				
Typical Input Capacity (kBtu/h)					Resi	dential Furn	aces EERE 2011					
AFUE (%)		CFR		DOE CCD	ENERGY STAR V. 4.1			DOE CCD				
Electric Consumption (kWh/y)												
Average Life (y)												
Retail Equipment Cost (2022\$)					Resi	dential Furn	aces EERE 2011					
Total Installed Cost (2022\$)												
Annual Maintenance Cost (2022\$)												

Residential Gas-Fired Boilers

	2015	2020	020 2022 2030 2040 2								
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.0	High		Typical / High			
Typical Input Capacity (kBtu/h)					Во	ilers EERE 2	2022 Preliminary Analy	sis			
AFUE (%)			ERE 2022 ry Analysis	DOE CCD	ENERGY STAR V. 3.0		Boilers EERE	2022 Preliminary Analy	sis		
Electric Consumption (kWh/y)											
Average Life (y)	Boilers EERE 2016										
Retail Equipment Cost (2022\$)					Во	ilers EERE 2	2022 Preliminary Analy	sis			
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)											

Residential Oil-Fired Boilers

	2015	2020			2022		2030	2040	2050		
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.0	High		Typical / High			
Typical Input Capacity (kBtu/h)			Boilers EEF	RE 2022 Prel	iminary An	alysis					
AFUE (%)			ERE 2022 cy Analysis	DOE CCD	ENERGY STAR V. 3.0	Boilers EERE 2022 Preliminary Analysis					
Electric Consumption (kWh/y)											
Average Life (y)	Boilers EERE 2016							Guidehouse			
Retail Equipment Cost (2022\$)			Boilers EEF	RE 2022 Prel	iminary An	alysis					
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)											

Residential Electric Resistance Furnaces

	2015	2020	20	22	2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical		Typical	
Typical Input Capacity (kBtu/h)		Distril	outors				
AFUE (%)		DOE / A					
Average Life (y)		Distril	outors			C :11	
Retail Equipment Cost (2022\$)	EIA Technology	Gordian's RSMe	ans Data – Buildi	ng Construction		Guidehouse	
Total Installed Cost (2022\$)	Forecast Updates (2018)	Cos					
Annual Maintenance Cost (2022\$)	nual Maintenance Cost (2022\$) Guidehouse						

Residential Electric Resistance Unit Heaters

COLIDERS	2015	2020	2022	2030	2040	2050
SOURCES	Installed Base	Installed Base	Typical		Typical	
Typical Capacity (kBtu/h)	Distri	butors	Utilities/Distributors			
Efficiency (%)	DO	OE	DOE			
Average Life (y)			Guidehouse		Guidehouse	
Retail Equipment Cost (2022\$)	Cuida	haves	Distributors		Guidenouse	
Total Installed Cost (2022\$)	Guide	ehouse	Home Remodeling Service			
Annual Maintenance Cost (2022\$)			Guidehouse			

Residential Central Air Conditioners – North (Not Hot-Dry or Hot-Humid)

	2015	2020		20)22			2023		2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	High		Typical / High	
Typical Input Capacity (kBtu/h)				CAC a	nd HP EEI	RE 2016						
SEER		AC and HP EERE 016 / Guidehouse CFR DOE CCD ENERGY CAC and STAR HP EERE V. 5.0 2016 CAC and ENERGY CAC and HP EERE 2016										
SSER2		CAC and ENERGY RESNET HP EERE STAR RESNET 2016 V. 5.0 2016 CAC and ENERGY HP EERE STAR RESNET 2016 V. 6.1										
Average Life (y)				CAC as	nd HP EEI		Guidehouse					
Retail Equipment Cost (2022\$)			Cric u		XL 2010						
Total Installed Cost (2022\$)		CAC and HP EERE 2016 / Less (2021)										
Annual Maintenance Cost (2022\$)	CAC and HP EERE 2016											

Residential Central Air Conditioners – South (Hot-Dry and Hot-Humid)

	2015	2020		20)22			2023		2030	2040	2050
SOURCES	Installed Base		Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	High		Typical / High	
Typical Input Capacity (kBtu/h)				CAC a	nd HP EEI	RE 2016						
SEER		C and HP EERE 6 / Guidehouse CFR COD ENERGY CAC and STAR HP EERE V. 5.0 2016 CAC and HP EERE 2016										
SSER2		CAC and ENERGY RESNET HP EERE STAR RESNET 2016 V. 6.1										
Average Life (y)				CAC	4 LID EEI	DE 2017					Guidehouse	
Retail Equipment Cost (2022\$)	CAC and HP EERE 2016										
Total Installed Cost (2022\$)		CAC and HP EERE 2016 / Less (2021)										
Annual Maintenance Cost (2022\$)		CAC and HP EERE 2016										

Residential Room Air Conditioners

	2015	2020		20	22		20	30	20	40	208	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.2	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	Distri	butors					RAC EERE	2022 NOPR				
CEER (Btu/Wh)	Guide	ehouse	ENERGY STAR DOE CCD V. 4.2									
Average Life (y)			V. 4.2									
Retail Equipment Cost (2022\$)	RAC EERE		DAG	EEDE 2022 N	JOPP				Guide	house		
Total Installed Cost (2022\$)	2011		RAC EERE 2022 NOPR									
Annual Maintenance Cost (2022\$)												

Residential Portable Air Conditioners

		2015	2020	20	22	20.	25	20	030	20	40	20	50
	SOURCES	Installed Base	Installed Base	Typical	High	New Standard	High	Typical	High	Typical	High	Typical	High
Typical	l Capacity (kBtu/h)												
CEER													
Averag	e Life (y)												
Retail I	Equipment Cost (2022\$)		PA	AC EERE 202	20/Guideho	use				Guide	house		
Total I	nstalled Cost (2022\$)												
Annua	l Maintenance Cost (2022\$)												

Residential Swamp Coolers

COMPONS	2015	2020	20	22	20	30	20	140	20.	50
SOURCES	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
CFM	D.									
Power (Hp)	Pr	oduct Literatu	ire / Guidenoi	ıse						
Average Life (y)	7	ΓLC Plumbing	g / Guidehous	e			C::L	1		
Retail Equipment Cost (2022\$)							Guiae	ehouse		
Total Installed Cost (2022\$)		iterature / Go Construction C								
Annual Maintenance Cost (2022\$)										

Residential Air-Source Heat Pumps

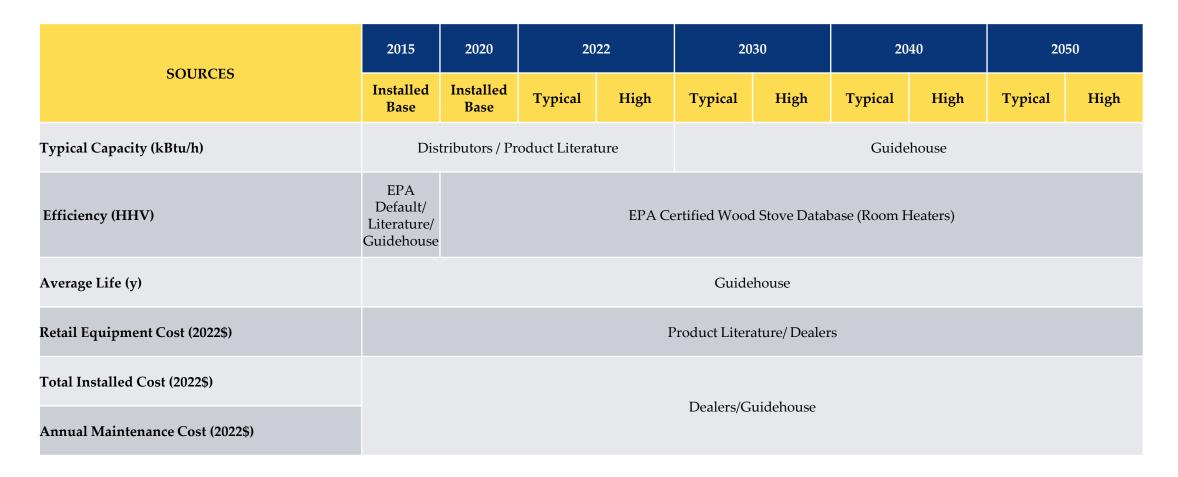
	2015	2020		20	022			20	23		2030	2040	2050				
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.0	High	New Standard	ENERGY STAR V. 6.1	ENERGY STAR Cold Climate Criteria	High	5	Гурісаl/Ніgh	1				
Typical Capacity (kBtu/h)						CACs and H	IPs EERE 201	6 Direct Fin	al Rule								
SEER (Cooling)																	
HSPF (Heating)	EERE 20 Final	and HPs 16 Direct Rule/ Phouse		DOE CCD/ Guidehouse	ENERGY STAR V. 5.0	CACs and HPs EERE 2016 Direct Final Rule	CACs and HPs EERE 2016 Direct Final Rule/ Guidehouse	ENERGY STAR V. 6.1	ENERGY STAR V. 6.1	CACs and HPs EERE 2016 Direct Final Rule	CACs and HPs EERE 2016 Direct Final Rule/Guidehouse						
Average Life (y)																	
Retail Equipment Cost (2022\$)	CACs and HPs EERE 2016 Direct Final Rule Guidehouse																
Total Installed Cost (2022\$)				CACS	and rips ee	IKE 2016 DIFE	ect rinai Kule				Guidehouse						
Annual Maintenance Cost (2022\$)																	

Residential Ductless Mini-Split Air-Source Heat Pumps

SOURCES	2015	2020	2022		203	0	204	0	205	0		
SOURCES	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High		
Typical Input Capacity (kBtu/h)												
SEER		AHRI/Guidehouse										
EER		AHRI/Guidehouse										
HSPF							Guideh					
Average Life (y)	CACs a	and HPs EERE 20	16 Direct Final R	ule	Guidenouse							
Retail Equipment Cost (2022\$)	Gordian's RSMe	eans Data – Build	ing Construction	Costs 2023								
Total Installed Cost (2022\$)	/ Guidehouse											
Annual Maintenance Cost (2022\$)	CACs and HPs EERE 2016 Direct Final Rule											

Residential Ground-Source Heat Pumps

	2015	2020		20)22		20	30	20	40	20	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.2	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	Heat Pur 2015 Final	rce Unitary nps EERE Rule / DOE CD										
COP (Heating)	AHRI	AHRI Database/										
EER (Cooling)	Database	DOE CCD										
Average Life (y)							Guide	house				
Retail Equipment Cost (2022\$)		se / Water- nitary Heat										
Total Installed Cost (2022\$)	Pumps E Final	ERE 2015 Rule										
Annual Maintenance Cost (2022\$)												


Residential Natural Gas Heat Pumps

SOURCES	2015	2020	2022	2030	2040	2050			
SOURCES	Installe	ed Base		Тур	oical				
Typical Capacity (kBtu/h)	Manufa	acturer							
COP (Heating)									
COP (Cooling)	Product I	Literature							
Annual Electric Use (kWh/y)									
Average Life (y)	Guide	house		Guidehouse					
Retail Equipment Cost (2022\$)	PE	RC							
Total Installed Cost (2022\$)	C:1-	house							
Annual Maintenance Cost (2022\$)	Guide	enouse							

Residential Cordwood Stoves

	2015	2020	20	22	20	30	204	40	205	50
SOURCES	Installed Base	Installed Base	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	Dis	tributors / Pr	oduct Literat	ure			Guidel	house		
Efficiency (Non-Catalytic) (HHV)	Guidehouse			EDA Co	utified Wood	l Stava Datak	agg (Pagm U	Iootoro)		
Efficiency (Catalytic) (HHV)	/ Literature EPA Certified Wood Stove Database (Room Heaters)									
Average Life (y)					Guide	house				
Retail Equipment Cost (2022\$)				I	Product Liter	ature/Dealer	S			
Total Installed Cost (2022\$)	Dealers Dealers/Guidehouse									
Annual Maintenance Cost (2022\$)	Dealers/Guidehouse									

Residential Wood Pellet Stoves

Residential Water Heating

Residential Gas-Fired Storage Water Heaters

	2015	2020	2022				2023	2030		2040		2050			
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.0	High	ENERGY STAR V. 5.0	Typical	High	Typical	High	Typical	High		
Typical Capacity (gal)	Guidehouse	CWH EERE 2010 Final Rule /AHRI	(WH HERE 2012) Proliminary Analysis												
Uniform Energy Factor	Guidenouse	DOF CCD		CWH EERE CWH EERE 2022 ENERGY reliminary Analysis STAR Preliminary Analysis STAR Analysis											
Average Life (y)	CWH EERE Rul							Guidehouse							
Retail Equipment Cost (2022\$)	Distributors	CWH EERE 2010 Final Rule	CWH EERE 2022 Preliminary Analysis						Guidenouse						
Total Installed Cost (2022\$)		CWH EERE 2010 Final Rule													
Annual Maintenance Cost (2022\$)	CWH EERE Rul														

Residential Oil-Fired Water Heaters

COMPORT	2015	2020	2022			2030	2040	2050			
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical / High					
Typical Capacity (gal)	AHRI	CWH EERE 2010 Final Rule/AHRI									
Uniform Energy Factor	Guidehouse	AHRI/DOE CCD	CWH FERE 2022 Proliminary								
Average Life (y)			CWHE	ERE 2022 Pre Analysis	liminary	Guidehouse					
Retail Equipment Cost (2022\$)	CWH EERE 2010 Final										
Total Installed Cost (2022\$)		ule									
Annual Maintenance Cost (2022\$)											

Residential Electric Resistance Storage Water Heaters

SOURCES	2015	2020	2022			2030		2040		2050			
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High		
Typical Capacity (gal)	AHRI	CWH EERE 2010 Final Rule/AHRI											
Uniform Energy Factor	Guidehouse	AHRI/ DOE CCD											
Average Life (y)			CWH EERE 2022 Preliminary										
Retail Equipment Cost (2022\$)	CWH EERE 2010 Final		Analysis			Guidehouse							
Total Installed Cost (2022\$)	Ri	ıle											
Annual Maintenance Cost (2022\$)													

Residential Heat Pump Water Heaters

	2015	2020		2022		2030		2040		2050	
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Capacity (gal)		AHRI	CWH EE	RE 2022 Pre Analysis	eliminary						
Uniform Energy Factor	Guidehouse	DOE CCD	CWH EERE 2022 Preliminary Analysis	ENERGY STAR	CWH EERE 2022 Preliminary Analysis						
Average Life (y)	CWH EERI Ru	E 2010 Final ile	·		·	Guidehouse					
Retail Equipment Cost (2022\$)	CWH EERE 2010 Final Rule	Distributors		RE 2022 Pr∈	eliminary						
Total Installed Cost (2022\$)	CWH EERI			Analysis							
Annual Maintenance Cost (2022\$)	Ru	ıle									

Residential Solar Water Heaters

	2015	2020	202	22	2030	2040	2050
SOURCES	Installed Base	Installed Base	ENERGY STAR V. 4.0	Typical	Typical	Typical	Typical
Typical Capacity (sq. ft.)	SPCC / Co	uidehouse	ENERG	Y STAR			
Solar Uniform Energy Factor (SUEF)	SRCC / G	uidenouse	DC	DE			
Average Life (y)		DOE / Gu	uidehouse			Guidehouse	
Retail Equipment Cost (2022\$)		Forecast Updates				Guidenouse	
Total Installed Cost (2022\$)	(20	018)	Building Constru	iction Costs 2023			
Annual Maintenance Cost (2022\$)	Guide	ehouse	DC	DE			

Residential Gas-Fired Instantaneous Water Heaters

	2015	2020		2023	20	30	2040		2050				
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 4.0	High	ENERGY STAR V. 5.0	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	AHRI	CWH EERE 2010 Final Rule /AHRI	CWH EERE 2022 Preliminary Analysis										
Uniform Energy Factor	Guidehouse	DOE CCD	CWH EERE						house				
Average Life (y)													
Retail Equipment Cost (2022\$)	CWH EERE		nal CWH EERE 2022 Preliminary Analysis										
Total Installed Cost (2022\$)	Ru	le	CWIT EERE 2022 I Tellillitary Artarysis										
Annual Maintenance Cost (2022\$)													

Residential Electric Instantaneous Water Heaters

COLIDATE	2015	2020		2022		2030		2040		2050			
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High		
Typical Capacity (kBtu/h)			CWH EE	ERE 2022 Pre Analysis	liminary								
Uniform Energy Factor				ERE 2022 Pre alysis/DOE C									
Average Life (y)	Guide	house						Guide	house				
Retail Equipment Cost (2022\$)					Gordian's RSMeans Data – Building Construction Costs 2023								
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)				Guidehouse									

Residential Appliances

Residential Refrigerator-Freezers (Top)

		2015	2020	20	30	2040		2050					
	SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Тур	pical Capacity (ft³)		RF EER	RF EERE 2021 Preliminary Analysis / Guidehouse									
Ene	ergy Consumption (kWh/y)		DOE CCD/ Guidehouse										
Avo	erage Life (y)	RF EERE											
Ret	ail Equipment Cost (2022\$)	2011 / Guidehouse		E 2021 D!:	: A	Janeiro I Cari d	lab a			Guide	nouse		
Tot	al Installed Cost (2022\$)		RF EERE 2021 Preliminary Analysis / Guidehouse										
Anı	nual Maintenance Cost (2022\$)												

Residential Refrigerator-Freezers (Side)

		2015	2020		20	22		20	30	2040		2050	
	SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capa	acity (ft³)		RF EERI	RF EERE 2021 Preliminary Analysis / Guidehouse									
Energy Cons	umption (kWh/y)		DOE CCD/ Guidehouse										
Average Life	(y)	RF EERE											
Retail Equip	ment Cost (2022\$)	2011 / Guidehouse		7 2021 Duali:		Jarojo / Carid	la h awaa			Guiae	nouse		
Total Installe	ed Cost (2022\$)		RF EERE 2021 Preliminary Analysis / Guidehouse										
Annual Mair	ntenance Cost (2022\$)												

Residential Refrigerator-Freezers (Bottom)

	2015	2020		20)22		20	30	2040		2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	High	Typical	High	Typical	High	Typical	High
Typical Capacity (ft³)		RF EER	E 2021 Preli	minary Ana	alysis / Guid	ehouse						
Energy Consumption (kWh/y)		DOE CCD/ Guidehouse		DOE CCD	ENERGY STAR	DOE CCD						
Average Life (y)	RF EERE 2011 /											
Retail Equipment Cost (2022\$)	Guidehouse		E 2021 Droli:	minary Ana	slyvais / Cyid	ahausa			Guide	nouse		
Total Installed Cost (2022\$)		RF EERE 2021 Preliminary Analysis / Guidehouse										
Annual Maintenance Cost (2022\$)												

Residential Freezers (Chest)

	2015	2020		2022		2030 2040 2050					
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical / High					
Typical Capacity (ft³)		E 2011 / house		Preliminary 021/DOE CC							
Energy Consumption (kWh/y)	Guide	chouse	RF EERE Preliminary Analysis 2021	RF EERE Preliminary Analysis 2021/DOE CCD							
Average Life (y)											
Retail Equipment Cost (2022\$)		E 2011 /		reliminary	Analysis 2021 RF EERE						
Total Installed Cost (2022\$)	Guide	Preliminary Analysis 2021 Analysis 2021/DOE									
Annual Maintenance Cost (2022\$)		CCD									

Residential Freezers (Upright)

	2015	2022			2022		2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 5.1	Y High		Typical / Hig	h
Typical Capacity (ft³)		RE 2011/ ehouse	RF EERE	Preliminary	Analysis 20	21/ DOE CCD			
Energy Consumption (kWh/y)	Guide	ehouse	RF EERE Preliminary Analysis 2021	RF EERE Preliminary Analysis 2021/ DOE CCD	ENERGY STAR	DOE CCD			
Average Life (y)						RF EERE Preliminary Analysis 2021		Guidehouse	
Retail Equipment Cost (2022\$)		E 2011 /	RF EERE Prel	iminary Ana	dveje 2021	RF EERE			
Total Installed Cost (2022\$)	Guide	ehouse	RI LEKETTEI	miniary And	11 y 313 2021	Preliminary Analysis 2021/			
Annual Maintenance Cost (2022\$)						DOE CCD			

Residential Natural Gas Cooktops

	2015	2020	20	22	2030	2040	2050		
SOURCES	Installed Base	Installed Base	Typical / High						
Typical Capacity (kBtu/h)	Distributors / Product Literature								
Integrated Annual Energy Consumption (kBtu/y)	Guidehouse / C	Consumer Cooki	ng Products EEF	RE 2016 SNOPR					
Cooking Efficiency (%)		Guide	house						
Average Life (y)	Consum	ner Cooking Pro	ducts EERE 2020) NOPD		Guidehouse			
Retail Equipment Cost (2022\$)	Consumer Coo	oking Products I	EERE 2016 SNOI	PR / Consumer					
Total Installed Cost (2022\$)	Consumer Cooking Products EERE 2016 SNOPR / Consumer Cooking Products EERE 2020 NOPD								
Annual Maintenance Cost (2022\$)	Guidehouse / C	Consumer Cooki	ng Products EEF	RE 2016 SNOPR					

Residential Natural Gas Ovens

	2015	2020	20	22	2030	2040	2050
SOURCES	Installed Base	Installed Base	Typical	High	Typical / High		
Typical Capacity (kBtu/h)	Consumer Co	ooking Products Litera		PR / Product			
Typical Cavity Volume (ft³)	Consumer Cooking						
Integrated Annual Energy Consumption (kBtu/y)	Products EERE		NOPD	S LLIKE 2020			
Cooking Efficiency (%)		Guide	house				
Average Life (y)	Consumer Cooking Products EERE 2020 NOPD		ooking Product	s EERE 2020		Guidehouse	
Retail Equipment Cost (2022\$)	Consumer Cooking		NOPD				
Total Installed Cost (2022\$)	Products EERE 2016 SNOPR						
Annual Maintenance Cost (2022\$)	Guidehouse / C	Consumer Cookii	ng Products EEF	RE 2016 SNOPR			

Residential Natural Gas Ranges

	2015	2020	20	22	2030	2040	2050	
SOURCES	Installed Base	Installed Base		Typical / High				
Typical Capacity of Cooktop Component (kBtu/h)								
Typical Capacity of Oven Component (kBtu/h)	Consumer Coo	Consumer Cooking Products EERE 2016 SNOPR / Product Literature						
Typical Cavity Volume of Oven Component (ft ³)	Consumer Cooking Products EERE 2020 NOPD							
Integrated Annual Energy Consumption (kBtu/y)	Guidehouse / Consumer Cooking Products EERE 2016 SNOPR	Consumer C	ooking Product NOPD	s EERE 2020		Guidehouse		
Average Life (y)	Consumer Cooking Products EERE 2020 NOPD							
Retail Equipment Cost (2022\$)	Guidehouse / Dis	uidehouse / Distributors / Gordian's RSMeans Data – Building						
Total Installed Cost (2022\$)	Construction Costs 2023							
Annual Maintenance Cost (2022\$)	Guidehouse / Consumer Cooking Products EERE 2016 SNOPR							

Residential Electric Cooktops

	2015	2020	20	22	2030	2040	2050			
SOURCES	Installed Base Installed Base Typical High Typical / High									
Typical Capacity (W)	Consumer Cooking Products EERE 2016 SNOPR / Distributors									
Integrated Annual Energy Consumption (kWh/y)										
Average Life (y)	Consum	aar Cooking Pro	duata EEDE 2020	NODD		Guidehouse				
Retail Equipment Cost (2022\$)	Consum	ner Cooking Prod	uucis EERE 2020	THOI D		Guidenouse				
Total Installed Cost (2022\$)	Guidehouse / Consumer Cooking Products EERE 2016 SNOPR									
Annual Maintenance Cost (2022\$)										

Residential Electric Ovens

	2015	2020	20	22	2030	2040	2050		
SOURCES	Installed Base	Installed Base	Typical	High	Typical / High				
Typical Capacity (W)	Consumer Cool	king Products El	ERE 2016 SNOP	R / Distributors					
Typical Cavity Volume (ft³)	Consumer Cooking								
Integrated Annual Energy Consumption (kWh/y)	Products EERE								
Average Life (y)	Consumer Cooking Products EERE 2020 NOPD	Consumer Cooking Products EERE 2020 RE NOPD Guidehouse							
Retail Equipment Cost (2022\$)	Consumer Cooking								
Total Installed Cost (2022\$)	Products EERE 2020 NOPD								
Annual Maintenance Cost (2022\$)	2020 NOPD Guidehouse / Consumer Cooking Products EERE 2016 SNOPR								

Residential Electric Ranges

	2015	2020	20	22	2030	2040	2050		
SOURCES	Installed Base	Installed Base	Typical	High		Typical / High			
Typical Capacity of Cooktop Component (W)	Consumor Cool	lein a Dua des ata El	EDE 2017 CNOD	D / Distributors					
Typical Capacity of Oven Component (W)	Consumer Coo.	king Products El	ERE 2016 SNOP.	X / Distributors					
Typical Cavity Volume of Oven Component (ft ³)	Consumer Cooking								
Integrated Annual Energy Consumption (kWh/y)	Products EERE								
Average Life (y)	Consumer Cooking Products EERE 2020 NOPD		ooking Product NOPD	s EERE 2020		Guidehouse			
Retail Equipment Cost (2022\$)	Consumer								
Total Installed Cost (2022\$)	Cooking Products EERE 2020 NOPD								
Annual Maintenance Cost (2022\$)	Guidehouse / C	Consumer Cookir	ng Products EEF	E 2016 SNOPR					

Residential Electric Clothes Dryers

	2015	2020		20)22		2030	2040	2040				
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 1.1	High		Typical / High					
Typical Capacity (ft³)			DOE CCD			Guidehouse / DOE CCD / ENERGY STAR							
CEF, D1 (lb/kWh)	Consumer Clothes		Consumer Clothes		ENERGY	DOE CCD							
CEF, D2 (lb/kWh)	Dryers EERE 2022 NOPR / Guidehouse	DOE CCD	Dryers EERE 2022 NOPR	DOE CCD	STAR V. 1.1	ENERGY STAR							
Average Life (y)		Consum	er Clothes Dry	yers EERE 201	22 NOPR			Guidehouse					
Retail Equipment Cost (2022\$)	Co	onsumer Clot	hes Dryers EE	RE 2022 NOI	PR / Guidehou	ıse							
Total Installed Cost (2022\$)			-										
Annual Maintenance Cost (2022\$)		Consum	er Clothes Dry	yers EERE 202	22 NOPR								

Residential Natural Gas Clothes Dryers

	2015	2020		20)22		2030	2040	2050		
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 1.1	High		Typical / High			
Typical Capacity (ft ³)			DOE	CCD							
CEF, D1 (lb/kWh)	Consumer Clothes		Clark		ENEDGY						
CEF2, D2 (lb/kWh)	Dryers EERE 2022 NOPR / Guidehouse	DOE CCD	Clothes Dryers EERE 2022 NOPR	DOE CCD	ENERGY STAR V. 1.1	DOE CCD					
Average Life (y)		Consum	er Clothes Dr	yers EERE 20	22 NOPR			Guidehouse			
Retail Equipment Cost (2022\$)	Co	onsumer Clot	hes Dryers EE	RE 2022 NOI	PR / Guidehou	se					
Total Installed Cost (2022\$)			·								
Annual Maintenance Cost (2022\$)		Consum	er Clothes Dr	yers EERE 20	22 NOPR						

Residential Clothes Washers (Front)

	2015	2020		20)22		2030	2040	2050		
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 8.1	High		Typical / High			
Typical Capacity (ft ³)	Guidehouse		DOE CCD		DOE CCD						
Integrated Modified Energy Factor (ft³/kWh/cycle)	AHAM /	DOE CCD / Guidehouse	RCW EERE 2021	DOE CCD	ENERGY	DOE CCD					
Integrated Water Factor (gal/cycle/ft³)	Guidehouse		Preliminary Analysis		STAR V. 8.1						
Average Life (y)		RCW	EERE 2021 Pr	eliminary An	alysis						
Water Consumption (gal/cycle)											
Hot Water Energy (kWh/cycle)		Cuidobouso	/ RCW EERE	2021 Prolimin	any Analysis			Guidehouse			
Machine Energy (kWh/cycle)		Guidenouse	/ NCVV EERE.	2021 I Tellillil	iary Ariarysis						
Dryer Energy (kWh/cycle)											
Retail Equipment Cost (2022\$)	EIA Technology	RCW	EERE 2021 Pr	eliminary An	alysis/ Distrib	utors					
Total Installed Cost (2022\$)	Forecast Updates (2018)	RCW	RCW EERE 2021 Preliminary Analysis/ Guidehouse								
Annual Maintenance Cost (2022\$)	RCW EERE 2021 Preliminary Analysis / Guidehouse										

Residential Clothes Washers (Top)

	2015	2020		20)22		2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 8.1	High		Typical / High	
Typical Capacity (ft ³)	Guidehouse	Guidehouse	DOE CCD		DOE CCD	DOE CCD			
Integrated Modified Energy Factor (ft³/kWh/cycle)	AHAM/	RCW EE		DOE CCD	ENERGY	DOE CCD			
Integrated Water Factor (gal/cycle/ft ³)	Guidehouse	Preliminar	y Analysis		STAR V. 8.1				
Average Life (y)		RCW EERE 2021 Preliminary Analysis							
Water Consumption (gal/cycle)		RCW EERE 2	2021 Prelimin	ary Analysis ,					
Hot Water Energy (kWh/cycle) Machine Energy (kWh/cycle) Dryer Energy (kWh/cycle)	Guidehouse						Guidehouse		
Retail Equipment Cost (2022\$)	EIA RCW EERE 2021 Preliminary Analysis / Guidehouse Technology Forecast								
Total Installed Cost (2022\$)	Updates (2018)								
Annual Maintenance Cost (2022\$)		RCW EERE 2	2021 Prelimin	ary Analysis ,	Guidehouse				

Residential Dishwashers

	2015	2020		20	22		2023	2030	2040	2050		
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 6.0	High	ENERGY STAR V. 7.0		Typical / High			
Typical Annual Energy Use (kWh/y)		Guidehouse / DOE CCD		Guidehouse / DOE CCD		DW EERE 2022	ENERGY					
Water Consumption (gal/cycle)	EERE 2012 Final Rule	/ ENERGY STAR	CFR	/ ENERGY STAR	STAR	Preliminary Analysis	STAR					
Water Heating Energy Use (kWh/y)	AHAM 2014 / DW EERE 2012 Final Rule	DW EERE 2016 Direct Final Rule							Guidehouse			
Average Life (y)	DW EERE 2016 Direct Final Rule/Guidehouse					DW EERE 20)22 Prelimir	nary Analysis				
Retail Equipment Cost (2022\$)		DW EERE										
Total Installed Cost (2022\$)	Rule	2016 Direct Final Rule	Direct									

Return to Table of Content

Commercial Space Heating and Cooling

Commercial Gas-Fired Furnaces

	2012	2018		2022			2023		2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	New Standard Typical High Typical/High					
Typical Input Capacity (kBtu/h)	AHRI	CWAF EERE 2015	1)()H((1)								
Thermal Efficiency (%)		DOE CCD	CFR	DOE	CCD	CFR					
Typical Output Capacity (kBtu/h)			Guide	house							
Average Life (y)									Guidehous	20	
Retail Equipment Cost (2022\$)									Garacioa		
Total Installed Cost (2022\$)			CWAF E	ERE 2015							
Total Installed Cost (2022\$/kBtu/h)											
Annual Maintenance Cost (2022\$)											
Annual Maintenance Cost (2022\$/kBtu/h)											

Commercial Oil-Fired Furnaces

	2012	2018		2022		2	023	2030	2040	2050
SOURCES	Installed Base		Current Standard		High	New Standard	Typical		Typical/High	
Typical Input Capacity (kBtu/h)	AHRI	DOE		DOE	CCD					
Thermal Efficiency (%)		CCD	10 CFR 431.77	DOE	CCD	10 CFR 431.77				
Typical Output Capacity (kBtu/h)			Guide	house						
Average Life (y)									Guidehouse	
Retail Equipment Cost (2022\$)									Guidenouse	
Total Installed Cost (2022\$)			CWAF E	ERE 2015						
Total Installed Cost (2022\$/kBtu/h) Annual Maintenance Cost (2022\$)										
Annual Maintenance Cost (2022\$/kBtu/h)										

Commercial Electric Resistance Heaters

COLIDORS	20	12	20	18	20	22	20	30	2040		2050	
SOURCES	Small	Large	Small	Large	Small	Large	Small	Large	Small	Large	Small	Large
Typical Capacity (kBtu/h)		Ι	Distributors	/Guidehous	e							
Efficiency (%)		Guidehouse/DOE										
Average Life (y)	Technolo	Technology Cost and Performance File for Commercial Model fo AEO2010										
Retail Equipment Cost (2022\$)					Gordian's	RSMeans			Ci.d.	shouse		
Total Installed Cost (2022\$)	EIA Tecl	hnology For	ecast Updat	res (2018)	Data – E Construct	Building tion Costs			Guide	ehouse		
Total Installed Cost (2022\$/kBtu/h)					20	23						
Annual Maintenance Cost (2022\$)			C	house								
Annual Maintenance Cost (2022\$/kBtu/h)			Guiae	ehouse								

Commercial Electric Boilers

SOURCES	2012	2018	2022	2030	2040	2050		
SOURCES	Installed Base	Installed Base			Typical			
Typical Capacity (kW)	BSR	IA			Guidehouse			
Efficiency (%)								
Average Life (y)	ASHRAE 2007 HVAC Applications	ASHRAE 2015 HVAC Applications		ASHRAE 2019 HVAC Applications				
Retail Equipment Cost (2022\$)			Gor	dian's RSMeans Da	nta – Building Cons Guidehouse	struction Costs 2023 /		
Total Installed Cost (2022\$)			Cor	rdian's RSMaans D	ata — Building Con	setruction Costs 2023		
Total Installed Cost (2022\$/kBtu/h)	EIA Technology Fore	cast Updates (2018)	Gordian's RSMeans Data – Building Construction 8)					
Annual Maintenance Cost (2022\$)			EIA Technology Forecast Updates (2018)					
Annual Maintenance Cost (2022\$/kBtu/h)				EIA TECHNO	iogy roiecasi opua	1105 (2010)		

Commercial Gas-Fired Boilers

COLINGES	2012	2018		2022			2023		2030		2040		2050			
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	New Standard	Typical	High	Typical	High						
Typical Input Capacity (kBtu/h)	Guidehouse					Com	m. Package	ed Boilers	s EERE 202	20						
Thermal Efficiency (%)	ASHRAE Standard 90.1-2004 / Guidehouse	Comm. Packaged Boilers EERE 2020 / Guidehouse		OE CCD		Comm. Packaged Boilers EERE 2020/Guidehouse										
Average Life (y)	Comm. Heating, AC, WH EERE 2009															
Retail Equipment Cost (2022\$)	EIA Technology															
Total Installed Cost (2022\$)	Forecast					Com	m. Package	ed Boilers	s EERE 202	20						
Total Installed Cost (2022\$/kBtu/h)	Updates (2018)															
Annual Maintenance Cost (2022\$)	Comm. Heating,															
Annual Maintenance Cost (2022\$/kBtu/h)	AC, WH EERE 2009															

Commercial Oil-Fired Boilers

agun gra	2012	2018		2022			2023		2030		2040		2050			
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	New Standard	Typical	High	Typical	High	Typical	High	Typical	High		
Typical Input Capacity (kBtu/h)	Guidehouse					Com	m. Package	ed Boilers	s EERE 202	20						
Thermal Efficiency (%)	ASHRAE Standard 90.1-2004 / Guidehouse	Comm. Packaged Boilers EERE 2020 / Guidehouse		OE CCD		Comm. Packaged Boilers EERE 2020/Guidehouse										
Average Life (y)	Comm. Heating, AC, WH EERE 2009															
Retail Equipment Cost (2022\$)	EIA Technology															
Total Installed Cost (2022\$)	Forecast					Com	m. Package	ed Boilers	s EERE 202	20						
Total Installed Cost (2022\$/kBtu/h)	Updates (2018)															
Annual Maintenance Cost (2022\$)	Comm. Heating,															
Annual Maintenance Cost (2022\$/kBtu/h)	AC, WH EERE 2009															

Commercial Centrifugal Chillers (Water-Cooled)

	2012	2018		2022		203	30	2040		2050					
SOURCES	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High	Typical	High	Typical	High	Typical	High				
Typical Capacity (tons)		IPCC/AR	B/TEAP/Guio	dehouse											
Efficiency (kW/ton)	ASHRAE 90.1-														
СОР	2010/FEMP/ eSource/ Product Literature	AS	HRAE 90.1-2	019/Product	Lit										
Average Life (y)	2007 ASHRAE Applications Handbook		ASHRAE Applications Handbook A37 Table 4 Guidehouse												
Retail Equipment Cost (2022\$/ton)	EIA														
Total Installed Cost (2022\$/ton)	Forecast	Gordian's R	SMeans Data Costs		Construction										
Total Installed Cost (2022\$/kBtu/h)	Updates (2018)														
Annual Maintenance Cost (2022\$/ton) Annual Maitnenance Cost (2022\$/kBtu/h)		Guideho	ouse/Alabama	a Power											

Commercial Reciprocating Chillers (Air-Cooled Only)

	2012	2018		2022		200	30	2040		205	50
SOURCES	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (tons)	BSRIA/D	DEER		Guidehouse							
Efficiency (kW/ton)	ASHRAE 90.1- 2010/DEER/ FEMP/Product Literature	ASHRAE 90.1-2016 (>150 TR)	ACLIDAE	00.1.2010	Due des et I :t						
СОР	ASHRAE 90.1- 2010/DEER/ FEMP/Product Literature	ASHRAE 90.1-2016 (>150 TR)	ASHRAE	90.1-2019	Product Lit						
Average Life (y)	Manufacturers	2015 AS	HRAE Applica Tab		oook A37			Guide	house		
Retail Equipment Cost (2022\$/ton)											
Total Installed Cost (2022\$/ton)	EIA Technolog Updates (SMeans Data ruction Cost							
Total Installed Cost (2022\$/kBtu/h)											
Annual Maintenance Cost (2022\$/ton)		0.111	/41.1								
Annual Maintenance Cost (2022\$/kBtu/h)		Guideho	nouse/Alabama Power								

Commercial Screw Chillers (Air-Cooled Only)

	2012	2018		2022		2030	2040	2050				
SOURCES	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High		Typical/High					
Typical Capacity (tons)			Guidehouse									
Efficiency (kW/ton)				ASHRAE 90.1-								
СОР	Guidehouse	ASHRAE 90.1- 2016 (>150 TR)			Product Lit							
Average Life (y)	Manufacturers		FacilitiesNet									
Retail Equipment Cost (2022\$/ton)											
Total Installed Cost (2022\$/ton)							Guidehouse					
Total Installed Cost (2022\$/kBtu/h)		logy Forecast es (2018)		RSMeans Data on Costs 2023 / C								
Annual Maintenance Cost (2022\$/ton)		Cu: dal	a ou so / A labore a									
Annual Maintenance Cost (2022\$/kBtu/h)		Guider	nouse/Alabama	ı rower								

Commercial Scroll Chillers (Air-Cooled Only)

	2012	2018		2022		2030	2030 2040
SOURCE	Installed Base	Installed Base	ASHRAE 90.1-2019	Typical	High		Typical / High
Typical Capacity (tons)		Guidel	nouse/Manufa	acturers			
Efficiency [full-load/IPLV] (kW/ton)			ASHRAE				
COP [full-load/IPLV]	Guidehouse	Product Lit/ Guidehouse	90.1-2019 (>150 TR)	Product Lit/ Guidehouse	Product Lit		
COI [Iuii-loau/ii LV]			(×100 TK)				
Average Life (y)		1	Manufacturer	s			
Retail Equipment Cost (2022\$/ton)							Guidehouse
Total Installed Cost (2022\$/ton)		logy Forecast es (2018)		RSMeans Data on Costs 2023 /			
Total Installed Cost	Орцате	es (2016)	Constructio	on Costs 2023 /	Guidenouse		
(2022\$/kBtu/h) Annual Maintenance Cost							
(2022\$/ton)		Guideh	ouse/Alabama	a Power			
Annual Maintenance Cost (2022\$/kBtu/h)		Guiden	ouse/Alabam	a i owei			

Commercial Gas-Fired Chillers (Water-Cooled, Direct-Fired Only)

	20	12	20	18		20	22		2030	2040	2050
SOURCES	Installed Base: Absorption	Installed Base: Engine- Driven	Installed Base: Absorption	Installed Base: Engine- Driven	ASHRAE 90.1-2019 Absorption		Absorption	Engine- Driven	Absor	rption/Engine-D	riven
Typical Capacity (tons)				BSRIA/D	istributors						
COP [full-load]					ASHRAE						
COP [IPLV]		iterature/ house	Produ	ıct Lit	90.1-2019 Direct-fired Double Effect	CA Title 24 Gas Engine Standard		ıct Lit			
Average Life (y)	Applio Hand	SHRAE cations book/ butors	20	015 ASHRA	E Applicatio	ns Handboo	ok A37 Table	4		Guidehouse	
Retail Equipment Cost (2022\$/ton) Total Installed Cost	EIA Tec	hnology For	ecast Update	es (2018)			ns Data – Bu				
(2022\$/ton) Total Installed Cost (2022\$/kBtu/h)		6,7	1	,	Constr	uction Costs	ehouse				
Annual Maintenance Cost (2022\$/ton)	Guidehouse/Alabama Power										
Annual Maintenance Cost (2022\$/kBtu/h)	st										

Commercial Rooftop Air Conditioners

	2012	2018		20	22			20	23		20	30	2040		2050	
SOURCES	Installed Base		Current Standard	IVnical	ENERGY STAR V. 3.1	High	New Standard	Typical	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Output Capacity (kBtu/h)	AHRI / Guidehouse				CUA	C EERE	2016									
Part Load Efficiency (IEER)	(CUAC EERE 2016 ENERGY STAR CUAC EERE 2016 ENERGY STAR CUAC EERE 2016 / GERE 2016									16 / Gui	idehouse				
Efficiency (EER)		CUAC EERE 2016 / Guidehouse														
Efficiency Conversion							Ca	lculated								
Average Life (y)							CUAC	C EERE 20)16							
Retail Equipment Cost (2022\$) Total Installed Cost (2022\$)	Distributors / Guidehouse / DEER, 2008							CUAC E	ERE 2016							
Total Installed Cost (2022\$/kBtu/h)							Ca	lculated								
Annual Maintenance Cost (2022\$)		CUAC EERE 2016														
Annual Maintenance Cost (2022\$/kBtu/h)							Ca	lculated								

Commercial Gas-Fired Engine-Drive Rooftop Air Conditioners

SOURCES	2012	2018	2022	2030	2040	2050			
SOURCES	Insta	alled Base		Тур	pical				
Typical Capacity (tons)									
Heating COP				Cuide	ehouse				
Cooling COP				Guide	enouse				
Average Life (y)									
Retail Equipment Cost (\$/ton)	EIA Technology I	Forecast Updates (2018)							
Total Installed Cost (\$/ton)									
Total Installed Cost (\$/kBtu/h)			Gordian's RSMea	ns Data – Building (Construction Costs 2	2023 / Guidehouse			
Annual Maintenance Cost (2022\$)									
Annual Maintenance Cost (2022\$/kBtu/h)									

Commercial Rooftop Heat Pumps

	2012	2018		202	2			2023		203	30	204	0	205	0
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 3.1	High	New Standard	ENERGY STAR V. 4.0	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)				CUH	P EERE 2016										
Part Load Efficiency (IEER)		IP EERE 201	2016 / Guidehouse ENERGY STAR CUHP EERE 2016 ENERGY STAR CUHP EERE 2016 /												
COP (Heating)			STAR 2016												
Average Life (y)															
Retail Equipment Cost (2022\$) Total Installed Cost (2022\$)	EIA														
Total Installed Cost (2022\$/kBtu/h)	Technology Forecast Updates						CUH	IP EERE 2016	6						
Annual Maintenance Cost (2022\$)	(2018)		CUHP EERE 2016												
Annual Maintenance Cost (2022\$/kBtu/h)															

Commercial Ground-Source Heat Pumps

a over ove	2012	2018 2022					030	2040		2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)	U.S. DOE/EIA	Water-So		Heat Pumps al Rule	s EERE 2015						
COP (Heating)	Cod dala socia		ATIDI	Deteless							
EER (Cooling)	Guidehouse		AHRI Database ource Unitary Heat Pumps EERE 2015 Final								
Average Life (y)	Guidehouse / V	Vater-Sourc	e Unitary He Rule	eat Pumps EI	ERE 2015 Final	ıl					
Retail Equipment Cost (2022\$)	Distributors/G uidehouse										
Total Installed Cost (2022\$)	U.S. DOD/IGSHPA							Guid	lehouse		
Total Installed Cost (2022\$/kBtu/h)	/MA DOER/CEFIA/ ASHRAE		urce Unitary	Heat Pump	s 2015 EERE						
Annual Maintenance Cost (2022\$)	Geothermal Heat Pump Consortium,			/ Guidehous							
Annual Maintenance Cost (2022\$/kBtu/h)	Inc. (U.S. DOE Contract DE- FG07- 95ID13347)										

Packaged Terminal Air Conditioners

COMPONE	2012	2018		2022		20	30	20	40	2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)											
Efficiency (EER)											
Efficiency											
Average Life (y)											
Retail Equipment Cost (2022\$)		PTAC & P	THP EERE 2	022 NOPD			PTAC & PT	ΓHP EERE 20)22 NOPD / (Guidehouse	
Total Installed Cost (2022\$)											
Total Installed Cost (2022\$/kBtu/h)											
Annual Maintenance Cost (2022\$)											
Annual Maintenance Cost (2022\$/kBtu/h)											

Packaged Terminal Heat Pumps

COMPONS	2012	2018		2022		20	30	2040		2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical	High	Typical	High	Typical	High
Typical Capacity (kBtu/h)											
Efficiency (EER)											
Efficiency											
COP (Heating)											
Average Life (y)		DTAC 0 D	THP EERE 2	022 NODD				FLID EEDE 20	022 NODD //	Cui dah awaa	
Retail Equipment Cost (2022\$)		FIAC	ITIP EEKE 2	022 NOPD			FIAC & F.	ΓHP EERE 20)22 NOPD / (Juidenouse	
Total Installed Cost (2022\$)											
Total Installed Cost (2022\$/kBtu/h)											
Annual Maintenance Cost (2022\$)											
Annual Maintenance Cost (2022\$/kBtu/h)											

Commercial Water Heating

Commercial Gas-Fired Storage Water Heaters

	2012	2018		202	22		20	30	20	40	205	50
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High
Typical Storage Capacity (gal)	ELA				C	WH EERE 20)22 NOPR					
Typical Input Capacity (kBtu/h)	EIA Technology											
Thermal Efficiency (%)	Forecast Updates (2018)	DOE CCD / Guidehouse										
Average Life (y)					C	WH EERE 20)22 NOPR					
Retail Equipment Cost (2022\$)												
Total Installed Cost (2022\$/kBtu/h)												
Annual Maintenance Cost (2022\$)					CWH E	ERE 2022 NC)PR					
Annual Maintenance Cost (2022\$/kBtu/h)		CWH EERE 2022 NOPR										
Annual Maintenance Cost (2022\$/kBtu/h)												

Commercial Electric Resistance Storage Water Heaters

COLIDORS	2012	2018	202	22	2030	2040	2050	
SOURCES	Installed Base	Installed Base	Current Standard	Typical		Typical		
Typical Storage Capacity (gal)	Product Literature / Guidehouse							
Typical Input Capacity (kW)	Product	CW	'H EERE 2016 NO	PR				
Typical Input Capacity (kBtu/h)	Literature							
Thermal Efficiency (%)		Guide						
Average Life (y)		CWH EERE	CWH EERE 2016 NOPR Guidehouse					
Retail Equipment Cost (2022\$)								
Total Installed Cost (2022\$)	CWILLEEDE 2017							
Total Installed Cost (2022\$/kBtu/h)	CWH EERE 2016 NOPR / Guidehouse		H EERE 2016 NO	PR				
Annual Maintenance Cost (2022\$)	Guidenouse							
Annual Maintenance Cost (2022\$/kBtu/h)								

Commercial Heat Pump Water Heaters

COMPORE	2012	2018	2	2022	2030	2040	2050			
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.0	Typical	Typical	Typical			
Water Flow Rate (gal/min)										
Typical Output Capacity (kW)	Distributors	/Cuidahausa								
Typical Output Capacity (kBtu/h)	Distributors/Guidehouse									
Coefficient of Performance (COP _h)										
Average Life (y)	EERE/Gu	iidehouse			Guidehouse					
Retail Equipment Cost (2022\$)					Guidenouse					
Total Installed Cost (2022\$)		Forecast Updates (18)								
Total Installed Cost (2022\$/kBtu/h)										
Annual Maintenance Cost (2022\$)	Cuida	ehouse								
Annual Maintenance Cost (2022\$/kBtu/h)	Guide	riouse								

Commercial Oil-Fired Storage Water Heaters

COLIDATE	2012	2018		2030	2040	2050				
SOURCES	Installed Base	Installed Base	Current Standard	Typical	High	Typical/High				
Typical Storage Capacity (gal)	AHRI /		DOE CCD/	Guidehouse						
Typical Input Capacity (kBtu/h)	Guidehouse		DOE CCD/	Guidenouse						
Thermal Efficiency (%)	Guide	ehouse	CFR DOE CCD							
Average Life (y)	Commercial H	leating, Air Condi	tioning and Wate	r Heating Equipm	ent EERE 2001					
Retail Equipment Cost (2022\$)							Guidehouse			
Total Installed Cost (2022\$)										
Total Installed Cost (2022\$/kBtu/h)		Dist	Distributors / Guidehouse							
Annual Maintenance Cost (2022\$)										
Annual Maintenance Cost (2022\$/kBtu/h)										

Commercial Electric Booster Water Heaters

SOURCES	2012	2018	2022	2030	2040	2050
SOURCES	Installed Base	Installed Base	Typical	Typical	Typical	Typical
Typical Capacity (gal)						
Typical Output Capacity (kBtu/h)						
Thermal Efficiency (%)						
Average Life (y)						
Retail Equipment Cost (2022\$)			Product Literatu	re / Guidehouse		
Total Installed Cost (2022\$)						
Total Installed Cost (2022\$/kBtu/h)						
Annual Maintenance Cost (2022\$)						
Annual Maintenance Cost (2022\$/kBtu/h)						

Commercial Gas-Fired Booster Water Heaters

COLIDATA	2012	2018	20)22	2030	2040	2050
SOURCES	Installed Base	Installed Base	Current Standard	Typical	Typical	Typical	Typical
Typical Capacity (gal)							
Typical Output Capacity (kBtu/h)							
Thermal Efficiency (%)							
Average Life (y)							
Retail Equipment Cost (2022\$)	Pro	oduct Literature / (Guidehouse		G	uidehouse	
Total Installed Cost (2022\$)							
Total Installed Cost (2022\$/kBtu/h)							
Annual Maintenance Cost (2022\$)							
Annual Maintenance Cost (2022\$/kBtu/h)							

Commercial Gas-Fired Instantaneous Water Heaters

	2012	2018		20:			20	30	20	40	205	50	
SOURCES	Installed Base	Installed Base	Current Standard	Typical	ENERGY STAR V. 2.0	High	Typical	High	Typical	High	Typical	High	
Typical Capacity (kBtu/h)			DOE	CCD					DOE CCD /	C : 1.1			
Thermal Efficiency (%)	Guidehouse	e/DOE CCD	DOE	CCD	ENERGY STAR	DOE CCD			DOE CCD / Guidehouse				
Average Life (y)													
Retail Equipment Cost (2022\$)													
Total Installed Cost (2022\$)						CIAILL FEDE	2022 NODD						
Total Installed Cost (2022\$/kBtu/h)						CWH EERE	2022 NOPR						
Annual Maintenance Cost (2022\$)													
Annual Maintenance Cost (2022\$/kBtu/h)													

Commercial Solar Water Heaters

COLIDORS	2012	2018	20	22	2023	2030	2040	2050				
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 4.0	ENERGY STAR V. 5.0	Typical	Typical	Typical				
Typical Capacity (sq. ft.)												
Typical Capacity (m ²)		CD	RCC / Guidehou	20								
Typical Capacity (Input) (kBtu/h) - North		SIXCC / Guidenouse										
Typical Capacity (Input) (kBtu/h) - South												
Solar Uniform Energy Factor (SUEF)		ENERC	GY STAR / Guid									
Average Life (y)		SR	RCC / Guidehou	se								
Retail Equipment Cost (2022\$)	EIA Technol	ogy Forecast	Gordian's	RSMeans Data -	- Building		Guidehouse					
Total Installed Cost (2022\$)	Update	es (2018)	Construction	on Costs 2023 / C	Guidehouse							
Total Installed Cost (2022\$/kBtu/h) - North			Guidehouse									
Total Installed Cost (2022\$/kBtu/h) - South			Guidenouse									
Annual Maintenance Cost (2022\$)												
Annual Maintenance Cost (2022\$/kBtu/h) - North		D	OE / Guidehous	e								
Annual Maintenance Cost (2022\$/kBtu/h) - South	h											

Commercial Cooking Products

Commercial Natural Gas Range with Griddle and Oven

	2012	2018		2022		2023	2030	2040	2050	
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.2	High	ENERGY STAR V. 3.0		Typical/High		
Griddle - Cooking Energy Efficiency (%)			ENERGY	ENERGY	ENERGY	NA				
Oven - Cooking Energy Efficiency (%)	Guidehouse	FSTC	STAR / FSTC	STAR	STAR	ENERGY STAR				
Range - Cooking Energy Efficiency (%)			FEMP / CEC	NA	FEMP / CEC	NA				
Combined Energy Efficiency (%)			Guidehou	se / FSTC						
Griddle - Normalized Idle Energy Rate (Btu/h/ft²)	Guidehouse	FSTC	ENERGY STAR / FSTC	ENERGY	ENERGY	NA				
Oven - Idle Energy Rate (Btu/h)	FE	MP	ENERGY STAR	STAR	STAR	ENERGY STAR				
Range - Idle Energy Rate (Btu/h)		FSTC		NA	FSTC	NA		Guidehouse		
Combined Idle Energy Rate (Btu/h)		G	uidehouse / FS	ΓC / Distribut	ors					
Average Life (y)			FST	ГС						
Retail Equipment Cost (2022\$)			Distrik	outors						
Total Installed Cost (2022\$)										
Total Installed Cost (2022\$/kBtu/h)	FSTC / Guidehouse									
Annual Maintenance Cost (2022\$)										
Annual Maintenance Cost (2022\$/kBtu/h)		FSTC								

Commercial Electric Range with Griddle and Oven

	2012	2012 2018 2022 2023 2030 2					2040	2050	
SOURCES	Installed Base	Installed Base	Typical	ENERGY STAR V. 2.2	High	ENERGY STAR V. 3.0		Typical/High	
Griddle - Cooking Energy Efficiency (%)			FSTC /	ENERGY	ENERGY	NA			
Oven - Cooking Energy Efficiency (%)	Guidehouse	FSTC	ENERGY STAR / Guidehouse	STAR	STAR	ENERGY STAR			
Range - Cooking Energy Efficiency (%)			Guidenouse	NA	CEC	NA			
Combined Energy Efficiency (%)			Guidehou	se / FSTC					
Griddle - Normalized Idle Energy Rate (kW/ft²)	Cod dalana	FCTC	FSTC / ENERGY STAR / Guidehouse	ENERGY STAR	ENERGY	NA			
Oven - Idle Energy Rate (kW)	Guidehouse	FSTC			STAR	ENERGY STAR			
Range - Idle Energy Rate (kW)			N.	Guidehouse					
Combined Idle Energy Rate (kW)		Gı	uidehouse / FS	ΓC / Distribute	ors				
Average Life (y)			FS	ГС					
Retail Equipment Cost (2022\$)			Distrib						
Total Installed Cost (2022\$)									
Total Installed Cost (2022\$/kBtu/h)	FSTC / Guidehouse								
Annual Maintenance Cost (2022\$)									
Annual Maintenance Cost (2022\$/kBtu/h)	FSTC								

Commercial Hot Food Holding Cabinets – Small

	2012	2018		20)22		2030	2040	
SOURCES	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical/High		
Interior Volume (ft³)]	FEMP / ENE	RGY STAR					
Maximum Idle Energy Rate (W)	CEE / Guidehouse	FEMP	ASAP	ASAP / ENERGY STAR	ENERGY STAR V. 2.0	FEMP / ENERGY STAR			
Annual Energy Use (kWh/y)			FEN	/ID					
Average Life (y)			PEN	VII					
Retail Equipment Cost (2022\$)	Distribut	ors / ENER	GY STAR Sa	avings Calc	ulator / Gui	Guidehouse			
Total Installed Cost (2022\$)			Cuidal	.					
Total Installed Cost (2022\$/kBtu/h)		Guidehouse							
Annual Maintenance Cost (2022\$) Annual Maintenance Cost		FSTC							
(2022\$/kBtu/h)									

Commercial Hot Food Holding Cabinets – Medium

	2012	2018		20)22		2030	2040	
SOURCES	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical/High		
Interior Volume (ft³)]	FEMP / ENE	RGY STAR					
Maximum Idle Energy Rate (W)	CEE / Guidehouse	FEMP	ASAP	ASAP / ENERGY STAR	ENERGY STAR V. 2.0	FEMP / ENERGY STAR			
Annual Energy Use (kWh/y)			FEN	/ID					
Average Life (y)			PEN	VII					
Retail Equipment Cost (2022\$)	Distribut	ors / ENER	GY STAR Sa	avings Calc	ulator / Gui	Guidehouse			
Total Installed Cost (2022\$)			Cui dal	.					
Total Installed Cost (2022\$/kBtu/h)	Guidehouse								
Annual Maintenance Cost (2022\$) Annual Maintenance Cost (2022\$/kBtu/h)	FSTC								

Commercial Hot Food Holding Cabinets – Large

	2012	2018		20)22		2030	2040	
SOURCES	Installed Base	Installed Base	State Standards	Typical	ENERGY STAR V. 2.0	High	Typical/High		
Interior Volume (ft³)]	FEMP / ENE	RGY STAR					
Maximum Idle Energy Rate (W)	CEE / Guidehouse	FEMP	ASAP	ASAP / ENERGY STAR	ENERGY STAR V. 2.0	FEMP / ENERGY STAR			
Annual Energy Use (kWh/y)			FEN	/ID					
Average Life (y)			PEN	VII					
Retail Equipment Cost (2022\$)	Distribut	ors / ENER	GY STAR Sa	avings Calc	ulator / Gui	Guidehouse			
Total Installed Cost (2022\$)			Cuidal	.					
Total Installed Cost (2022\$/kBtu/h)		Guidehouse							
Annual Maintenance Cost (2022\$) Annual Maintenance Cost		FSTC							
(2022\$/kBtu/h)									

<u>Return to Table of Conte</u>

Appendix B References

Guidehouse 1676 International Drive McLean, VA 22102

And

Leidos 11951 Freedom Drive Reston, VA 20190

- AHRI. Air Conditioners Monthly Shipments, Retrieved August 2022 from: https://ahrinet.org/statistics
- AHRI. Furnaces Historical Data, Retrieved August 2022 from: https://ahrinet.org/statistics
- Alabama Power (n.d.). Chillers: Compare Maintenance Costs. Retrieved September 2017 from:
 http://www.alabamapower.com/business/ways-to-save/chillers-space-cooling-options/compare-maintenance-costs.html
- ASAP. Hot Food Holding Cabinets. Retrieved October 2022 from https://appliance-standards.org/product/hot-food-holding-cabinets
- ASHRAE. (2004). ASHRAE Standard 90.1-2004. ASHRAE, Inc.
- ASHRAE. (2007). ANSI/ASHRAE/IESNA Standard 90.1-2007. ASHRAE, Inc.
- ASHRAE. (2016). ANSI/ASHRAE/IESNA Standard 90.1-2016. ASHRAE, Inc.
- ASHRAE. (2019). ANSI/ASHRAE/IESNA Standard 90.1-2019. ASHRAE, Inc.
- ASHRAE. (2015). 2015 ASHRAE Handbook HVAC Applications. ASHRAE Inc.
- Building Services Research and Information Association & Ducker Research Company. (1997, 1998). U.S. Market for Central Plant Air Conditioning; Market for Ducted Warm Air Central Heating; U.S. Market for Hydronic Heating and Burners; U.S. Water Heating Market; U.S. Unitary and Close Control Air Conditioning.
- California Energy Commission. (2019). Building Energy Efficiency Standards for Residential and Nonresidential Buildings.
- CEC. (n.d.). California Energy Commission Appliance Efficiency Database. Retrieved 2004, September 2010, June 2013, and October 2022 from: http://www.appliances.energy.ca.gov/AdvancedSearch.aspx

- CEE. (2009). "Commercial Hot Food Holding Cabinets Program Guide." Consortium for Energy Efficiency. April 2009.
- CFR. (n.d.). National energy conservation standards authorized under the Energy Policy and Conservation Act of 1975 (EPCA) and codified in the Code of Federal Regulations (CFR).
- DOE. (n.d.). *Estimating the Cost and Energy Efficiency of a Solar Water Heater*. Retrieved October 2022 from https://energy.gov/energysaver/estimating-cost-and-energy-efficiency-solar-water-heater
- DOE. (n.d.). Solar Water Heaters. Retrieved October 2022 from https://energy.gov/energysaver/solar-water-heaters
- Distributors. (n.d.). Guidehouse online research and discussions with distributors (e.g., Grainger, Home Depot, Lowe's, Sears, and others).
- EERE. (2001). Energy Efficiency Program for Commercial and Industrial Equipment; Efficiency Standards for Commercial Heating, Air Conditioning and Water Heating Equipment; Final Rule.
- EERE. (2007). Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces and Boilers; Final Rule.
- EERE. (2008). Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers; Direct Final Rule.
- EERE. (2009). Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment; Final Rule.
- EERE. (2010). Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters; Final Rule.

- EERE. (2011). Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and Room Air Conditioners; Direct Final Rule.
- EERE. (2011). Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners and Heat Pumps; Direct Final Rule.
- EERE. (2011). Energy Conservation Program: Standards for Residential Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule.
- EERE. (2012). Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers; Direct Final Rule.
- EERE. (2014). Energy Conservation Standards for Residential/Consumer Clothes Dryers.
- EERE. (2014). Energy Conservation Standards for Residential Conventional Cooking Products (Ovens).
- EERE. (2014). Energy Conservation Standards for Residential Furnaces.
- EERE. (2015). Energy Efficiency Program For Consumer Products And Commercial And Industrial Equipment: Commercial Warm Air Furnaces.
- EERE. (2015). Final Rule Technical Support Document: Energy Efficiency Program for Small, Large, and Very Large Commercial Package Air Conditioners.
- EERE. (2016). Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces; Direct final rule and Technical Support Document.
- EERE. (2016). Energy Conservation Program: Energy Conservation Standards for Residential Boilers.

- EERE. (2016). Final Rule Technical Support Document: Energy Efficiency Program for Residential Central Air Conditioners and Heat Pumps.
- EERE. (2016). Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Water Heating Equipment: Notice of Proposed Rulemaking.
- EERE. (2017). Energy Conservation Standards for Residential Clothes Washers.
- EERE. (2020). Energy Conservation Program: Energy Conservation Standards for Commercial Packaged Boilers; Final rule
- EERE. (2020). Energy Conservation Program: Energy Conservation Standards for Portable Air Conditioners.
- EERE. (2020). Final Rule Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Portable Air Conditioners.
- EERE. (2021). Energy Conservation Program: Energy Conservation Standards for Refrigerators, Refrigerator-Freezers, and Freezers.; Preliminary Analysis
- EERE. (2021). Energy Conservation Program: Product Classes for Residential Dishwashers, Residential Clothes Washers, and Consumer Clothes Dryers.
- EERE. (2022). Energy Conservation Program: Energy Conservation Standards for Residential Boilers; Preliminary Analysis.
- EERE. (2022). Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Notice of Proposed Rulemaking.
- EERE (2022). Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Determination.

- EERE (2022). Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters;
 Preliminary Analysis.
- EERE (2022). Energy Conservation Program: Energy Conservation Standards for Commercial Water Heating Equipment; Notice of Proposed Rulemaking.
- EIA Technology Forecast Updates Residential and Commercial Building Technologies. (2018). Retrieved August 2022 from: https://www.eia.gov/analysis/studies/buildings/equipcosts/pdf/appendix-a.pdf
- ENERGY STAR Savings Calculator (n.d.). "Savings Calculator for ENERGY STAR Qualified Commercial Kitchen Equipment." U.S. EPA and DOE. Retrieved June 2013 from http://www.energystar.gov/index.cfm?c=bulk_purchasing.bus_purchasing
- ENERGY STAR. (n.d.). Retrieved June 2013, September 2017, and October 2022, from ENERGY STAR Products: http://www.energystar.gov/index.cfm?c=products.pr find es products
- EPA. USEPA Certified Wood Stove Database. Retrieved August 2022 from: https://cfpub.epa.gov/oarweb/woodstove/index.cfm?fuseaction=app.search
- FacilitiesNet. (2009). Properly Diagnosing Chiller Life Cycles. Retrieved September 2017 from: http://www.facilitiesnet.com/hvac/article/Properly-Diagnosing-Chiller-Life-Cycles--10645
- FEMP. (2012). "Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets." Retrieved June 2013 from: http://www1.eere.energy.gov/femp/technologies/printable_versions/eep_hot_food.html
- FEMP. (2016, August). Purchasing Energy-Efficient Air-Cooled Chillers. Retrieved September 2017, from FEMP Technologies: https://www1.eere.energy.gov/femp/technologies/eep_ac_chillers.html

- FEMP. (2016, August). Purchasing Energy-Efficient Water-Cooled Electric Chillers. Retrieved September 2017, from FEMP Technologies: https://energy.gov/eere/femp/purchasing-energy-efficient-water-cooled-electric-chillers
- FEMP. (2020, June). Purchasing Energy-Efficient Air-Cooled Electric Chillers. Retrieved September 2022, from FEMP Technologies: https://energy.gov/eere/femp/purchasing-energy-efficient-air-cooled-electric-chillers
- FEMP. (2020, June). Purchasing Energy-Efficient Water-Cooled Electric Chillers. Retrieved September 2022, from FEMP Technologies: https://energy.gov/eere/femp/purchasing-energy-efficient-water-cooled-electric-chillers
- FEMP. (2021, December). Purchasing Energy-Efficient Hot Food Holding Cabinets. Retrieved October 2022 from FEMP Technologies: https://www.energy.gov/eere/femp/purchasing-energy-efficient-hot-food-holding-cabinets
- FSTC. (n.d.). Appliance Reports, Rangetop Performance Reports. Retrieved December 2017, from: https://fishnick.com/publications/appliancereports/rangetops/
- FSTC. (n.d.). Appliance Reports, Griddle Performance Reports. Retrieved December 2017, from: https://fishnick.com/publications/appliancereports/griddles/
- Gordian's RSMeans Data Building Construction Costs 2023. Copyright RSMeans and Gordian. 30 Patewood Dr. Suite 350, Greenville, SC, 29615; All rights reserved.
- Guidehouse. (n.d.). In-House Expertise.
- Less et. al. (2021). The Cost of Decarbonization and Energy Upgrade Retrofits for US Homes. Retrieved February 2023 from: https://eta-publications.lbl.gov/sites/default/files/final_walker the cost_of_decarbonization_and_energy.pdf
- IGSPHA. (n.d.). International Ground-Source Heat Pump Association. Retrieved 2007 from www.igshpa.okstate.edu

- International Ground-Source Heat Pump Association (IGSHPA) Conference Proceedings. (2012, October). Measuring the Costs & Benefits of Nationwide Geothermal Heat Pump (GHP) Deployment A Progress Report. Retrieved June 2013, from IGSHPA: <a href="http://www.igshpa.okstate.edu/membership/members_only/proceedings/2012/10-3-2012-0130-Session-C-Measuring-the-Costs-&-Benefits-of-Nationwide-Geothermal-Heat-Pump-(GHP)-Deployment-A-Progress-Report.pdf
- Manufacturers. (n.d.). Guidehouse discussions with product manufacturers.
- Product Literature. (n.d.). Literature from manufacturers and experts on specific products.
- Propane Education and Research Council (PERC). (2007). Assessment of Propane Fired Gas Air Conditioning, Heat Pumping and Dehumidification Technologies, Products, Markets and Economics
- Residential Energy Services Network. Draft PDS-01, MINHERS Addendum 71, SEER2/HSPF2 Conversions. Retrieved February 2023 from: https://www.resnet.us/about/standards/minhers/draft-pds-01-minhers-addendum-71-seer2-hspf2-conversions/
- Solar Rating and Certification Corporation (SRCC). (n.d.) Solar Uniform Energy Factor Specification. Retrieved October 2022 from: https://solar-rating.org/resources/suef/
- Technology Cost and Performance File for Commercial Model for AEO2010. (2009). (E. Boedecker, Compiler)
- U.S. Department of Energy's Compliance Certification Database. Retrieved August 2022 to February 2023 from: http://www.regulations.doe.gov/certification-data/

APPENDIX C

EIA - Technology Forecast Updates -Residential and Commercial Building Technologies - Reference Case

Presented to:

U.S. Energy Information Administration

Prepared by:

Guidehouse 1200 19th Street, NW, Suite 700 Washington, D.C. 20036

And

Leidos 11951 Freedom Drive Reston, VA 20190

October 14, 2022

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

October 2022

Table of Contents

	Page		Page
<u>Objective</u>	4	Commercial Refrigeration	87
Methodology	5	Compressor Rack Systems	88
<u>Definitions</u>	6	<u>Condensers</u>	90
Calculations	7	Supermarket Display Cases	92
Market Transformation	8	Reach-In Refrigerators	95
		Reach-In Freezers	98
Residential Lighting	9	Walk-In Refrigerators	101
General Service Lamps	10	Walk-In Freezers	105
Reflector Lamps	19	<u>Ice Machines</u>	109
4-foot Linear 2-lamp Lighting Systems	27	Beverage Merchandisers	113
Outdoor Lamps	34	Refrigerated Vending Machines	116
Commercial Lighting	45	Commercial Ventilation	119
General Service Lamps	46	Constant Air Volume	120
Reflector Lamps	52	<u>Variable Air Volume</u>	122
4-Foot Linear 2 Lamp Lighting Systems	57	Fan Coil Units	124
8-Foot Linear 2 Lamp Lighting Systems	67		
Low Bay Lighting Systems	74	Appendix A: Data Sources	A-1
High Bay Lighting Systems	80		
		Appendix B: References	B-1

Objective

The objective of this study is to develop baseline and projected performance and cost characteristics for residential and commercial end-use equipment.

- Examine 2012 and 2018 (commercial) and 2015 and 2020 (residential) baselines, as well as this year's baseline (2022).
 - Review literature, standards, installed base, contractor, and manufacturer information.
 - Provide a relative comparison and characterization of the cost and efficiency of a generic product.
- Forecast technology improvements that are projected to be available through 2050.
 - Review trends in standards, product enhancements, and research and development (R&D).
 - Project impact of product improvements and technology enhancement.

The performance and cost characterization of end-use equipment developed in this study will assist EIA in projecting national primary energy consumption.

Methodology

Input from industry stakeholders, including government, R&D organizations, and manufacturers, was used to project product enhancements concerning equipment performance and cost attributes.

- Technology forecasting involves many uncertainties.
- Technology developments affect performance and cost forecasts.
- Varied sources ensure a balanced view of technology progress and the probable timing of commercial availability.

Definitions

The following tables represent the current and projected efficiencies for residential and commercial building equipment ranging from the installed base in 2012 and 2018 (for commercial products) and 2015 and 2020 (for residential) to the highest efficiency equipment that is expected to be commercially available by 2050, assuming incremental adoption. Below are definitions for the terms used in characterizing the status of each technology.

- Installed Stock Average: the installed and in use equipment for that year. Represents the installed stock of equipment, but does not represent sales.
- Current Standard: the minimum efficiency (or maximum energy use) required (allowed) by current U.S. Department of Energy (DOE) standards, when applicable. For lighting, if no product exists at the standard efficiency level, a hypothetical wattage and lumen output is given for the standard's efficiency level.
- ENERGY STAR®: the minimum efficiency required (or maximum energy use allowed) to meet the ENERGY STAR® criteria, when applicable. Presented performance data represents certified products just meeting current ENERGY STAR specifications. For lighting, if no products exist at the ENERGY STAR efficiency level, a hypothetical wattage and lumen output is given for the ENERGY STAR efficiency level.
- Low: The minimum efficiency product or product mix available on the market. This rating typically reflects minimal compliance with DOE standards.
- **Typical**: the average, or typical, product being sold in the particular timeframe.
- High: the product with the highest efficiency available in the particular timeframe.
- Lumens (lm): the unit for luminous flux used in the SI unit system. This unit is used to indicate a light source's light output. All reported lumens are initial lumens. 1 kilolumen (klm) = 1,000 lumens.
- Correlated Color Temperature (CCT): a specification of the color appearance of the light emitted by a lamp. Note: CCT is not a performance metric.
- Color Rendering Index (CRI): a scale from 0 to 100 percent indicating how accurate a given light source is at rendering color when compared to a reference light source. The higher the CRI, the better the color rendering ability.
- British thermal unit (Btu): a measure of the heat content of fuels or energy sources. It is the quantity of heat required to raise the temperature of one pound of liquid water by 1°F at the temperature that water has its greatest density (approximately 39 °F). 1 kBtu = 1,000 Btu.
- Cubic Feet per Minute (CFM): a measure of airflow volume equal to the number of cubic feet of air flowing through a two-dimensional plane in one minute.
- Not Available (N/A): data is not available where indicated.

Calculations

The following metrics are commonly referred to throughout the tables to follow. Below are the calculations for each metric

Lighting

- System Wattage = (Lamp Wattage * Ballast Factor) / Ballast Efficiency
- System Lumens = Lamp Lumens * Ballast Factor
- Lamp Efficacy = Lamp Lumens / Lamp Wattage
- System Efficacy = System Lumens / System Wattage
- Lamp Cost (\$/klm) = Lamp Cost / (Lamp Lumens / 1,000)
- Total Equipment Cost = Lamp Cost + Fixture (including ballast) Cost
- System Cost (\$/klm) = Total Equipment Cost/(System Lumens / 1,000). 1/b/f denotes that the cost includes the luminaire, the ballast, and the fixture.
- Total Installed Cost = Total Equipment Cost + Labor Installation Cost
- Ballast Luminous Efficiency (BLE) = A/(1+B*Avg Total Lamp Arc Power^(-C)) where A, B, and C are pre-defined constants by DOE Energy Conservation Standards for Fluorescent Lamp Ballasts.

Commercial Refrigeration

- Nominal Capacity over Average Input (Btu in / Btu out) = (Cooling or Heat Rejection Capacity)*24*365/(Annual Energy Consumption * 3,412)
- Total Installed Cost = Retail Equipment Cost + Labor Installation Cost
- Total Installed Cost (\$/kBtu/hour) = Total Installed Cost*1,000 / (Cooling or Heat Rejection Capacity). h used as an abbreviation for hour throughout
- Annual Maintenance Cost (\$/kBtu/h) = Annual Maintenance Cost* 1,000 / (Cooling or Heat Rejection Capacity)

Ventilation

- **CFM out / Btu in / h** = System Airflow / (System Fan Power * 3,412)
- Total Installed Cost (\$/1,000 CFM) = Total Installed Cost* 1,000 / System Airflow
- Annual Maintenance Cost (\$/1,000 CFM) = Annual Maintenance Cost* 1,000 / System Fan Power

Market Transformation

The market for the reviewed products has changed since this analysis was performed in 2015. These changes are noted and reflected in the efficiency and cost characteristics.

- DOE issued federal minimum efficiency standards that have gone into effect for General Service Fluorescent Lamps (2012), Incandescent Reflector Lamps (2012), and Fluorescent Lamp Ballasts (2019).
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lumens per watt (lm/W) backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act (10 CFR 430, 87 FR 27439). This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.
- DOE published a Final Rule updating energy conservation standards for Refrigerated Beverage Vending Machines at the end of 2015, effective in 2018. DOE also issued federal minimum efficiency standards that have or will soon go into effect for Refrigerated Beverage Vending Machines (2012), Automatic Commercial Ice Makers (2018), Walk-In Coolers and Freezers (2017), and Commercial Refrigeration Equipment (2017).

Residential Lighting

Performance and Cost Characteristics » Residential General Service Lamps

The residential general service lamps characterized in this report are a 60-watt and a 75-watt medium screw-based (E26) A-type incandescent lamp and their halogen, CFL, and LED equivalents. A standard 60-watt incandescent lamp produces approximately 800 – 850 lumens. A standard 75-watt incandescent lamp produces approximately 1,100 lumens.

Performance:

- A majority of residential lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Fixture prices and installation costs are not included for the residential sector. Labor costs are assumed to be negligible because homeowners likely replaces lamps themselves as they burn out. Therefore, total installed cost is the price of a lamp, and annual maintenance costs are the cost of replacing the lamps, which is a function of lamp life, lamp price, and the annual operating hours.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Legislation:

- The Energy Independence and Security Act of 2007 (EISA 2007) established standards for 60-watt general service lamps, effective in 2014, and 75-watt lamps, effective in 2013. These standards cannot be achieved by incandescent bulbs, but can be by halogen, CFL, and LED technologies.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

ENERGY STAR:

• For ENERGY STAR qualification, general service omnidirectional lamps must have a minimum lamp efficacy of 70 lm/W for products with CRI ≥ 90 and 80 lm/W for lamps with CRI < 90. Additionally, the lamps must have a CRI ≥ 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime ≥ 10,000 hours (ENERGY STAR).

Performance and Cost Characteristics » Residential General Service Lamps

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent, halogen, and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050:

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022.
CFL	+0.5%	0%	-0.5%	Improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps.

Performance and Cost Characteristics » Residential General Service Incandescent Lamps (60 W)

	2015 ¹	2020 ¹		202	22 ²		2023 ²	203	30 ²	204	0^2	205	50^2
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	60.0	60.0	N/A	N/A	N/A	N/A	18.9	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	850	850	N/A	N/A	N/A	N/A	850	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	14.2	14.2	N/A	N/A	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,700	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	1.0	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	511	511	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$0.30	\$0.30	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$0.34	\$0.34	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$0.30	\$0.30	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$0.15	\$0.15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$0.35	\$0.35	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$0.18	\$0.18	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. The Energy Independence and Security Act of 2007 (EISA 2007) prescribes standards for 60 wattincandescent lamps as of January 1, 2014. Despite the phase out of incandescent lamps, these products remain in the installed stock.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. These standards cannot be met with incandescent technologies.

Performance and Cost Characteristics » Residential General Service Incandescent Lamps (75 W)

	2015 ¹	2020 ¹		202	22 ²		2023 ²	203	30 ²	204	:0 ²	205	50^2
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	75.0	75.0	N/A	N/A	N/A	N/A	26.0	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,170	1,170	N/A	N/A	N/A	N/A	1,170	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	15.6	15.6	N/A	N/A	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,700	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	0.8	0.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	511	511	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$0.44	\$0.44	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$0.38	\$0.38	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$0.44	\$0.44	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$0.30	\$0.30	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$0.38	\$0.38	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$0.26	\$0.26	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. The Energy Independence and Security Act of 2007 (EISA 2007) prescribes standards for 75 wattincandescent lamps as of January 1, 2013. Despite the phase out of incandescent lamps, these products remain in the installed stock.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. These standards cannot be met with incandescent technologies.

Performance and Cost Characteristics » Residential General Service Halogen Lamps (60 W Incandescent Equivalent)

	2015 ¹	2020 ¹		202	22 ²		2023 ²	203	30 ²	204	:0 ²	205	50 ²
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	43.1	43.1	N/A	43.0	N/A	N/A	16.7	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	750	750	N/A	750	N/A	N/A	750	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	17.4	17.4	N/A	17.4	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,850	2,850	N/A	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	1.0	1.0	N/A	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	621	621	N/A	621	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$2.36	\$4.90	N/A	\$5.92	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$3.15	\$6.54	N/A	\$7.89	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$2.36	\$4.90	N/A	\$5.92	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$1.47	\$3.04	N/A	\$3.68	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$3.15	\$6.54	N/A	\$7.89	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$1.95	\$4.06	N/A	\$4.90	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. The Energy Independence and Security Act of 2007 (EISA 2007) prescribes standards for 60 wattincandescent lamps as of January 1, 2014. Starting in 2014, 60 wattincandescent lamps were replaced by halogen lamps.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. These standards cannot be met with existing halogen lamp technologies.

Performance and Cost Characteristics » Residential General Service Halogen Lamps (75 W Incandescent Equivalent)

	2015 ¹	2020 ¹		202	22 ²		2023 ²	203	30 ²	204	0^2	205	50^2
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	53.0	53.0	N/A	53.0	N/A	N/A	19.8	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,050	936	N/A	890	N/A	N/A	890	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	19.8	17.7	N/A	16.8	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,850	2,950	N/A	2,950	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	1.0	1.0	N/A	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	621	621	N/A	621	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$2.37	\$3.58	N/A	\$4.06	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$2.26	\$3.82	N/A	\$4.56	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$2.37	\$3.58	N/A	\$4.06	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$1.47	\$2.22	N/A	\$2.52	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$2.26	\$3.82	N/A	\$4.56	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$1.40	\$2.37	N/A	\$2.83	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. The Energy Independence and Security Act of 2007 prescribes standards for current 75 watt incandescent lamps as of January 1,2013. Starting in 2013,75 watt incandescent lamps were replaced by halogen lamps.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. These standards cannot be met with existing halogen lamp technologies.

Performance and Cost Characteristics » Residential General Service Compact Fluorescent Lamps (60 W Incandescent Equivalent)

	2015 ¹	2020 ¹		202	22 ²		2023 ²	203	30^2	204	10 ²	20	50^2
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ⁴	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	13.0	13.1	14.0	13.0	13.0	13.8	20.0	12.5	12.5	11.9	11.9	11.3	11.3
Lamp Lumens	825	900	900	900	925	800	900	900	925	900	925	900	925
Lamp Efficacy (lm/W) ³	63.5	68.5	64.3	69.2	71.2	80.0	45.0	72.0	74.1	75.7	77.8	79.6	81.8
CRI	82	82	82	82	82	80	N/A	82	82	82	82	82	82
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	10.0	10.0	10.0	10.0	12.0	10.0	N/A	10.0	12.0	10.0	12.0	10.0	12.0
Annual Operating Hours (h/y)	767	767	767	767	767	N/A	N/A	767	767	767	767	767	767
Lamp Price (2022\$)	\$2.55	\$5.40	\$1.50	\$5.35	\$4.63	N/A	N/A	\$5.14	\$4.45	\$4.89	\$4.23	\$4.65	\$4.02
Lamp Cost (2022\$/klm) ³	\$3.10	\$6.00	\$1.67	\$5.94	\$5.01	N/A	N/A	\$5.71	\$4.81	\$5.43	\$4.57	\$5.17	\$4.35
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0	0	0	0	0	N/A	N/A	0	0	0	0	0	0
Total Installed Cost (2022\$)	\$2.55	\$5.40	\$1.50	\$5.35	\$4.63	N/A	N/A	\$5.14	\$4.45	\$4.89	\$4.23	\$4.65	\$4.02
Annual Maintenance Cost (2022\$)	\$0.20	\$0.41	\$0.12	\$0.41	\$0.30	N/A	N/A	\$0.39	\$0.28	\$0.37	\$0.27	\$0.36	\$0.26
Total Installed Cost (2022\$/klm)	\$3.09	\$6.00	\$1.67	\$5.94	\$5.01	N/A	N/A	\$5.71	\$4.81	\$5.43	\$4.57	\$5.17	\$4.35
Annual Maintenance Cost (2022\$/klm)	\$0.24	\$0.46	\$0.13	\$0.46	\$0.32	N/A	N/A	\$0.44	\$0.31	\$0.42	\$0.29	\$0.40	\$0.28

- 1. 2020 data back calculated based on 2022 data and the following assumptions: Efficacy +0.5%/y, Cost -0.5%/y (NCI, 2019)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. These standards can be met with existing CFL products.
- 3. Year-to-year price and performance assumptions for incumbent technologies from 2022 to 2050: Efficacy +0.5%/y, Cost -0.5%/y (NCI, 2019)
- 4. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)

Performance and Cost Characteristics » Residential General Service LED Lamps (60 W Incandescent Equivalent)

	2015	2020		20	22		2023 ²	203	30	204	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	8.7	9.2	10.0	8.9	8.0	10.0	17.8	7.3	6.6	5.8	5.2	5.0	4.5
Lamp Lumens	656	803	800	800	800	800	800	800	800	800	800	800	800
Lamp Efficacy (lm/W)	75.5	87.1	80.0	90.0	100.0	80.0	45.0	108.9	120.9	138.6	154.0	160.7	178.6
CRI	81	85	80	81	90	80	N/A	81	90	81	90	81	90
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	25	21	15	14	18	15.0	N/A	14	18	14	18	14	18
Annual Operating Hours (h/y)	657	657	657	657	657	657	N/A	657	657	657	657	657	657
Lamp Price (2022\$)	\$13.53	\$4.56	\$6.20	\$3.92	\$5.32	\$6.20	N/A	\$3.23	\$4.39	\$2.84	\$3.86	\$2.46	\$3.33
Lamp Cost (2022\$/klm)	\$20.63	\$5.68	\$7.75	\$4.90	\$6.65	\$7.75	N/A	\$4.04	\$5.49	\$3.56	\$4.83	\$3.07	\$4.17
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	0.0	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$13.53	\$4.56	\$6.20	\$3.92	\$5.32	\$6.20	N/A	\$3.23	\$4.39	\$2.84	\$3.86	\$2.46	\$3.33
Annual Maintenance Cost (2022\$)	\$0.35	\$0.15	\$0.27	\$0.18	\$0.19	\$0.27	N/A	\$0.15	\$0.16	\$0.13	\$0.14	\$0.11	\$0.12
Total Installed Cost (2022\$/klm)	\$20.63	\$5.68	\$7.75	\$4.90	\$6.65	\$7.75	N/A	\$4.04	\$5.49	\$3.56	\$4.83	\$3.07	\$4.17
Annual Maintenance Cost (2022\$/klm)	\$0.54	\$0.18	\$0.34	\$0.22	\$0.24	\$0.34	N/A	\$0.18	\$0.20	\$0.16	\$0.17	\$0.14	\$0.15

^{1.} Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)

^{2.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential General Service Filament-LED Lamps (60 W Incandescent Equivalent)

	2015	2020		20	22		2023 ²	203	30	204	4 0	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	9.7	7.1	5.5	6.9	8.0	13.8	17.8	7.0	6.6	5.5	5.2	4.7	4.5
Lamp Lumens	457	650	450	650	800	800	800	800	800	800	800	800	800
Lamp Efficacy (lm/W)	47.1	91.7	81.8	94.8	100.0	80.0	45.0	114.6	120.9	146.0	154.0	169.3	178.6
CRI	82	84	90	84	80	80	N/A	81	90	81	90	81	90
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	23	21	15	15	15	15	N/A	15	15	15	15	15	15
Annual Operating Hours (h/y)	657	657	657	657	657	N/A	N/A	657	657	657	657	657	657
Lamp Price (2022\$)	\$15.17	\$6.88	\$6.25	\$5.91	\$7.75	N/A	N/A	\$4.87	\$6.39	\$4.29	\$5.62	\$3.70	\$4.86
Lamp Cost (2022\$/klm)	\$33.20	\$10.58	\$13.89	\$9.09	\$9.69	N/A	N/A	\$6.09	\$7.99	\$5.36	\$7.03	\$4.63	\$6.07
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$15.17	\$6.88	\$6.25	\$5.91	\$7.75	N/A	N/A	\$4.87	\$6.39	\$4.29	\$5.62	\$3.70	\$4.86
Annual Maintenance Cost (2022\$)	\$0.43	\$0.21	\$0.27	\$0.26	\$0.34	N/A	N/A	\$0.21	\$0.28	\$0.19	\$0.25	\$0.16	\$0.21
Total Installed Cost (2022\$/klm)	\$33.20	\$10.58	\$13.89	\$9.09	\$9.69	N/A	N/A	\$6.09	\$7.99	\$5.36	\$7.03	\$4.63	\$6.07
Annual Maintenance Cost (2022\$/klm)	\$0.93	\$0.33	\$0.61	\$0.40	\$0.42	N/A	N/A	\$0.27	\$0.35	\$0.23	\$0.31	\$0.20	\$0.27

^{1.} Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)

^{2.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential Reflector Lamps

The residential reflector lamps characterized in this report are directional lamps that emit approximately 550 – 850 lumens (except for LED PAR38s which have outputs up to 1,700 lumens). Multiple baseline reflector lamps were analyzed, including 65W Incandescent BR30, Halogen PAR30, Halogen Infrared Reflector (HIR) PAR30, CFL BR30, LED BR30, and LED PAR38.

Performance:

- A majority of residential lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but for CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy.
- Fixture prices and installation costs are not included for the residential sector. Labor costs are assumed to be negligible because homeowners likely replaces lamps themselves as they burn out. Therefore, total installed cost is the price of a lamp, and annual maintenance costs are the cost of replacing the lamps, which is a function of lamp life, lamp price, and the annual operating hours.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Legislation:

- EPAct92 established minimum performance standards for some reflector lamps and provided exemptions for certain specialty applications (e.g., ER/BR, vibration service, more than 5% neodymium oxide, impact resistant, infrared heat, colored). EPAct92 effectively phased-out R-shaped tungsten filament incandescent reflector lamps at certain wattages and bulb diameters, replacing them with more efficient and cost effective tungsten-halogen parabolic aluminized reflector (PAR) lamps. EISA 2007 took away certain exemptions from EPACT 1992, requiring certain previously exempted lamps to meet EPAct92 minimum performance standards by January 1, 2008. The 65W BR30, a large majority of the incandescent reflector lamp market, was still exempted until 2022.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

Performance and Cost Characteristics » Residential Reflector Lamps

ENERGY STAR:

• For ENERGY STAR qualification, general service, reflector lamps must have a minimum lamp efficacy of 61 lm/W for products with CRI \geq 90 and 70 lm/W for lamps with CRI \leq 90, respectively. Additionally, the lamps must have a CRI \geq 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime \geq 10,000 hours (ENERGY STAR).

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022.
CFL	+0.5%	0%	-0.5%	In addition to higher efficiency reflector coatings, improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Residential Reflector Lamps (65W BR30 Incandescent)

	2015 ¹	2020 ¹		202	22 ²		2023 ²	203	30 ²	204	40 ²	205	50 ²
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	65.0	65.0	N/A	65.0	N/A	N/A	13.3	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	637	637	N/A	602	N/A	N/A	600	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	9.8	9.8	N/A	9.3	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,700	2,700	N/A	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	2.0	2.0	N/A	2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	621	621	N/A	621	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$4.00	\$4.00	N/A	\$3.70	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$6.28	\$6.28	N/A	\$6.15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
LaborCost (2022\$/h)	\$0.00	\$0.00	N/A	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$4.00	\$4.00	N/A	\$3.70	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$1.24	\$1.24	N/A	\$1.15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$6.28	\$6.28	N/A	\$6.15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$1.95	\$1.95	N/A	\$1.91	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{1.} Incandescent BR30 lamps were previously exempted from DOE Incandescent Reflector Lamp standards and the EISA 2007 general service lamp definition until DOE's new final rule in 2022. The new definitions go into effect in 2023.

^{2.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. These standards cannot be met with incandescent technologies.

Performance and Cost Characteristics » Residential Reflector Lamps (PAR30 Halogen)

	2015 ¹	2020 ¹		20	22 ²		2023 ²	203	30 ²	204	10 ²	205	50 ²
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	47.1	38.8	N/A	38.8	N/A	N/A	12.0	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	660	576	N/A	542	N/A	N/A	542	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	14.0	14.0	N/A	14.0	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,850	2,850	N/A	2,850	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	1.5	1.5	N/A	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	876	876	N/A	876	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$6.77	\$8.13	N/A	\$8.67	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$10.26	\$14.12	N/A	\$16.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$6.77	\$8.13	N/A	\$8.67	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$3.96	\$4.75	N/A	\$5.06	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$10.26	\$14.12	N/A	\$16.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$5.99	\$8.25	N/A	\$9.34	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. Halogen PAR30 lamps were previously exempted from the EISA 2007 GSL definition until DOE's new final rule in 2022. The new definitions go into effect in 2023. Note: product offerings are very limited in 2022.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. These standards cannot be met with halogen technologies.

Performance and Cost Characteristics » Residential Reflector Lamps (PAR30 Halogen Infrared Reflector (HIR))

	2015 ¹	2020 ¹		202	22 ²		2023 ²	203	30 ²	204	10 ²	205	50 ²
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	38.9	45.5	N/A	48.0	N/A	N/A	18.7	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	650	786	N/A	840	N/A	N/A	840	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	16.7	17.3	N/A	17.5	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,850	2,850	N/A	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	4.0	4.0	N/A	4.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	876	876	N/A	876	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$14.69	\$25.62	N/A	\$29.99	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$22.59	\$32.60	N/A	\$35.70	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$14.69	\$25.62	N/A	\$29.99	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$3.22	\$5.61	N/A	\$6.26	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$22.59	\$32.60	N/A	\$35.70	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$4.95	\$7.14	N/A	\$7.45	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{1.} Halogen PAR30 lamps were previously exempted from the EISA 2007 GSL definition until DOE's new final rule in 2022. The new definitions go into effect in 2023. Note: product offerings are very limited in 2022.

^{2.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. These standards cannot be met with halogen technologies.

Performance and Cost Characteristics » Residential Reflector Lamps (BR30 CFL)

	2015 ¹	2020 ¹		202	22 ²		2023 ³	203	30 ³	204	10 ³	205	50 ³
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ⁴	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	15.5	15.1	N/A	N/A	N/A	N/A	16.7	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	750	750	N/A	N/A	N/A	N/A	750	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	48.3	49.5	N/A	N/A	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	82	82	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,700	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	8.2	8.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	913	913	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$6.76	\$6.59	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$9.01	\$8.79	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$6.76	\$6.59	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$0.75	\$0.71	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$9.01	\$8.79	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$1.00	\$0.95	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. 2015 and 2020 data calculated based on 2009 installed stock data and the following assumptions: Efficacy +0.5%/y, Cost -0.5%/y (NCI, 2019)
- 2. Virtually all manufacturers have discontinued manufacturing of CFL reflector lamps in favor of LEDs. Distributor offerings for CFL reflectors have been eliminated.
- 3. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. Although these standards can be met with CFL technology, manufacturers have discontinued manufacturing CFL reflector lamps in favor of LEDs.
- 4. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)

Performance and Cost Characteristics » Residential Reflector LED BR30

	2015	2020		202	22 ²		2023 ²	203	30 ²	204	10 ²	205	50 ²
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	14.2	10.9	11.0	8.8	7.2	10.7	14.4	7.1	6.2	6.2	5.4	5.5	4.8
Lamp Lumens	706	781	800	683	650	650	650	650	650	650	650	650	650
Lamp Efficacy (lm/W)	49.8	71.5	72.7	78.6	90.3	61.0	45.0	91.7	105.4	104.9	120.5	118.0	135.6
CRI	82	85	92	87	90	80	N/A	87	90	87	90	87	90
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	25	25	25	19	18	15	N/A	19	18	19	18	19	18
Annual Operating Hours (h/y)	730	730	730	730	730	N/A	N/A	730	730	730	730	730	730
Lamp Price (2022\$)	\$21.40	\$15.36	\$4.09	\$5.01	\$5.96	N/A	N/A	\$4.11	\$4.89	\$3.62	\$4.31	\$3.14	\$3.74
Lamp Cost (2022\$/klm)	\$30.31	\$19.66	\$5.11	\$7.33	\$9.17	N/A	N/A	\$6.32	\$7.53	\$5.57	\$6.64	\$4.83	\$5.75
LaborCost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$21.40	\$15.36	\$4.09	\$5.01	\$5.96	N/A	N/A	\$4.11	\$4.89	\$3.62	\$4.31	\$3.14	\$3.74
Annual Maintenance Cost (2022\$)	\$0.63	\$0.45	\$0.12	\$0.20	\$0.24	N/A	N/A	\$0.16	\$0.19	\$0.14	\$0.17	\$0.12	\$0.15
Total Installed Cost (2022\$/klm)	\$30.31	\$19.66	\$5.11	\$7.33	\$9.17	N/A	N/A	\$6.32	\$7.53	\$5.57	\$6.64	\$4.83	\$5.75
Annual Maintenance Cost (2022\$/klm)	\$0.89	\$0.57	\$0.15	\$0.29	\$0.37	N/A	N/A	\$0.25	\$0.30	\$0.22	\$0.26	\$0.19	\$0.23

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential Reflector LED PAR38

	2015	2020		202	22 ²		2023 ²	203	30 ²	204	10 ²	205	50 ²
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	19.2	15.5	17.0	16.4	17.0	22.0	29.9	14.0	14.6	12.3	12.7	10.9	11.3
Lamp Lumens	1,202	1,211	1,200	1,344	1,700	1,344	1,344	1,344	1,700	1,344	1,700	1,344	1,700
Lamp Efficacy (lm/W)	62.7	77.9	70.6	82.0	100.0	61.0	45.0	95.7	116.7	109.5	133.5	123.2	150.2
CRI	83	86	82	86	82	80	N/A	86	86	86	86	86	86
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	3,000	3,000	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	24	27	25	27	25	15	N/A	27	25	27	25	27	25
Annual Operating Hours (h/y)	730	730	730	730	730	N/A	N/A	730	730	730	730	730	730
Lamp Price (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Lamp Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Annual Maintenance Cost (2022\$)	\$1.07	\$0.60	\$0.69	\$0.62	\$0.46	N/A	N/A	\$0.52	\$0.38	\$0.46	\$0.34	\$0.41	\$0.31
Total Installed Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Annual Maintenance Cost (2022\$/klm)	\$0.89	\$0.49	\$0.58	\$0.46	\$0.27	N/A	N/A	\$0.39	\$0.23	\$0.35	\$0.20	\$0.31	\$0.18

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential 4-foot Linear 2-Lamp Lighting Systems

This section characterizes commercial linear fixtures that house two 4ft long linear lamps and their integrated luminaire equivalents. The technologies available for this system are linear fluorescent and LED.

- T5 lamps are approximately 40% narrower than T8 lamps and almost 60% narrower than T12 lamps. This narrowness allows T5 lamps to be coated with higher quality, more efficient phosphor blends than larger diameter lamps, resulting in a more efficacious lamp. The compact size of T5 lamps also permits greater flexibility in lighting design and construction.
- LED options for linear fixtures include replacement lamps that can fit directly into an existing fixture and fully integrated luminaires that can be used to replace existing fixtures. LED replacement lamps are also known as TLEDs. Type A TLEDs can be installed with existing ballasts and Type B and C TLEDs require the ballast to be disconnected. Replacement lamps are only sold to go into existing fixtures. If a new fixture is to be installed, a fully integrated LED luminaire is a more cost effective and efficient option. Because LED luminaires are fully integrated, they do not have lamp or fixture efficiency losses associated with ballasts and fixture optics.

Performance:

- Residential linear lamps often have a nominal CCT rating of 3,500K, but products with CCTs of 3,000K, 4,000K, and 4,100K (neutral white) are also common. 5,000K (daylight) lamps are available as well. When replacing a light bulb, it is important to choose a product with a similar CCT value to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but for CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps, which are sold only as a replacement for use in an existing fixture. The LED luminaire is more efficient and cost effective for new installations or fixture retrofits.
- Labor costs for lamp changes are assumed to be negligible because homeowners likely replace lamps themselves as they burn out. Therefore, annual maintenance costs are the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for residential linear systems.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Legislation:

- Beginning July 14, 2012 (or July 14, 2014, for T8 700-series phosphor lamps), DOE fluorescent lamp standards required a minimum efficacy of 89 lm/W. Although the amended performance-based standards do not explicitly prohibit T12 lamps, no T12 lamps met the standard at the time of its announcement. Since then, however, T12 lamps meeting the standard have entered the market.
- Beginning November 14, 2014, DOE standards required that the characterized residential ballasts have a minimum BLE = 0.993 / (1 + 0.41 * Avg Total Lamp Arc power ^ (- 0.25)). Residential ballasts also must have a minimum power factor of 0.5.
- California's Title 24 mandates the use of electronic ballasts with high efficacy luminaires (including fluorescent) of 13 W or higher (CEC, 2005).

ENERGY STAR:

• ENERGY STAR does not cover linear lamps. (ENERGY STAR, 2020)

Performance and Cost Characteristics » Residential 4-foot Linear 2-Lamp Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050:

Technology	Efficacy	Lifetime	Price	Potential for Improvements
T12	0%	0%	-0.5%	Limited because the technology is mature.
Т8	0%	0%	-0.5%	Limited because the technology is mature.
T5	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Residential Linear Fluorescent Lamp T12

	2015	2020		2022		2	030	204	10	205	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	40.0	40.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	2,860	2,860	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	72	72	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	70.0	82.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Lumens	3,890	5,148	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Efficacy (lm/W)	56	62	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Efficiency (BLE)	78%	87%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	70	70	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	4,100	4,100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	15	15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	694	694	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$1.10	\$1.10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Price (2022\$)	\$13.31	\$13.31	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$34.67	\$34.67	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$0.38	\$0.38	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (lamp, ballast, and fixture (l/b/f)) Cost (2022\$/klm)	\$12.90	\$12.90	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor System Installation (hours)	0.5	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$39.71	\$39.71	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$1.84	\$1.84	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$10.21	\$10.21	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$0.47	\$0.47	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: Assume no labor is associated with lamp replacement in the residential sector because residents likely replace the lamps themselves. Assume real cost has not changed since 2009 because this product has been phased out.

Performance and Cost Characteristics » Residential Linear Fluorescent Lamp T8

	2015	2020		2022		2	030	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	30.8	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
Lamp Lumens	2,770	2,855	2,450	2,855	3,100	2,855	3,100	2,855	3,100	2,855	3,100
Lamp Efficacy (lm/W) ¹	90	89	77	89	97	89	97	89	97	89	97
System Wattage	62.1	63.1	63.1	63.1	63.1	63.1	63.1	63.1	63.1	63.1	63.1
System Lumens	4,875	5,082	4,361	5,082	5,518	5,082	5,518	5,082	5,518	5,082	5,518
System Efficacy (lm/W)	78	81	69	81	87	81	87	81	87	81	87
Ballast Efficiency (BLE)	87%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
CRI	85	87	90	87	85	87	85	87	85	87	85
Correlated Color Temperature (CCT)	4,100	4,100	5,000	4,100	3,500	4,100	3,500	4,100	3,500	4,100	3,500
Average Lamp Life (thousand hours)	21	31	23	31	40	31	40	31	40	31	40
Annual Operating Hours (h/y)	767	767	767	767	767	767	767	767	767	767	767
Lamp Price (2022\$)	\$6.54	\$4.12	\$3.36	\$4.08	\$4.32	\$3.92	\$4.15	\$3.73	\$3.95	\$3.55	\$3.75
Ballast Price (2022\$) ²	\$19.10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$29.23	\$76.29	\$75.53	\$75.53	\$75.53	\$72.56	\$72.56	\$69.01	\$69.01	\$65.64	\$65.64
Lamp Cost (2022\$/klm)	\$2.36	\$1.44	\$1.37	\$1.43	\$1.39	\$1.37	\$1.34	\$1.31	\$1.27	\$1.24	\$1.21
System (1/b/f) Cost (2022\$/klm)	\$12.59	\$29.61	\$33.57	\$29.31	\$27.15	\$27.19	\$25.18	\$25.86	\$23.95	\$24.60	\$22.78
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$100.01	\$189.07	\$179.41	\$181.97	\$182.82	\$171.18	\$171.97	\$164.42	\$165.18	\$158.00	\$158.71
Annual Maintenance Cost (2022\$)	\$0.48	\$0.21	\$0.22	\$0.20	\$0.17	\$0.19	\$0.16	\$0.18	\$0.15	\$0.18	\$0.14
Total Installed Cost (2022\$/klm)	\$20.51	\$37.20	\$41.14	\$35.81	\$33.13	\$33.68	\$31.17	\$32.35	\$29.93	\$31.09	\$28.76
Annual Maintenance Cost (2022\$/klm)	\$0.10	\$0.04	\$0.05	\$0.04	\$0.03	\$0.04	\$0.03	\$0.04	\$0.03	\$0.03	\$0.03

^{1.} Data and assumptions taken from the 2018 SSL Forecast. The report states that efficacy improvements for T8 lamps are not expected in the future, and that the cost for all commercial fixtures is expected to decrease between 0.1%-0.6% per year. We use 0.5% per year here.

Note: Assume no labor is associated with lamp replacement in the residential sector because residents likely replace lamps themselves.

^{2.} From 2020 to 2050, fixture (and fixture price) includes ballast.

Performance and Cost Characteristics » Residential Linear Fluorescent Lamp T5

	2015	2020		2022		2	030	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	27.0	27.5	28.0	27.5	26.0	27.5	26.0	27.5	26.0	27.5	26.0
Lamp Lumens	2,697	2,732	2,530	2,732	2,900	2,732	2,900	2,732	2,900	2,732	2,900
Lamp Efficacy (lm/W) ¹	100	99	90	99	112	99	112	99	112	99	112
System Wattage	51.5	61.7	62.9	61.7	58.4	61.7	58.4	61.7	58.4	61.7	58.4
System Lumens	4,747	5,464	5,060	5,464	5,800	5,464	5,800	5,464	5,800	5,464	5,800
System Efficacy (lm/W)	92	89	81	89	99	89	99	89	99	89	99
Ballast Efficiency (BLE)	92%	89%	89%	89%	89%	89%	89%	89%	89%	89%	89%
CRI	85	85	85	85	85	85	85	85	85	85	85
Correlated Color Temperature (CCT)	4,100	4,100	5,000	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
Average Lamp Life (thousand hours)	30	29	36	29	30	29	30	29	30	29	30
Annual Operating Hours (h/y)	949	949	949	949	949	949	949	949	949	949	949
Lamp Price (2022\$)	\$7.05	\$9.54	\$13.76	\$9.45	\$21.28	\$9.08	\$20.44	\$8.63	\$19.44	\$8.21	\$18.49
Ballast Price (2022\$) ²	\$31.17	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$109.93	\$170.87	\$170.87	\$170.87	\$170.87	\$164.15	\$164.15	\$156.13	\$156.13	\$148.50	\$148.50
Lamp Cost (2022\$/klm)	\$2.61	\$3.49	\$5.44	\$3.46	\$7.34	\$3.32	\$7.05	\$3.16	\$6.70	\$3.01	\$6.38
System (1/b/f) Cost (2022\$/klm)	\$32.69	\$34.77	\$39.21	\$34.73	\$36.80	\$33.37	\$35.35	\$31.73	\$33.62	\$30.18	\$31.98
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$193.80	\$228.57	\$231.39	\$222.77	\$246.43	\$215.31	\$238.04	\$206.40	\$228.02	\$197.92	\$218.48
Annual Maintenance Cost (2022\$)	\$0.45	\$0.62	\$0.73	\$0.62	\$1.35	\$0.59	\$1.29	\$0.57	\$1.23	\$0.54	\$1.17
Total Installed Cost (2022\$/klm)	\$40.83	\$41.83	\$45.73	\$40.77	\$42.49	\$39.41	\$41.04	\$37.77	\$39.31	\$36.22	\$37.67
Annual Maintenance Cost (2022\$/klm)	\$0.09	\$0.11	\$0.14	\$0.11	\$0.23	\$0.11	\$0.22	\$0.10	\$0.21	\$0.10	\$0.20

^{1.} Year-to-year price and performance assumptions for incumbent technologies 2030–2050: Efficacy +0.5%/yr, Life +0.5%/yr, Cost -0.5%/yr (SSL Forecast 2018). 2020 data back calculated using the 2022 data and these assumptions

Note: Assume no labor is associated with lamp replacement in the residential sector because residents likely replace lamps themselves.

^{2.} From 2020 to 2050, fixture (and fixture price) includes ballast.

Performance and Cost Characteristics » Residential Linear LED Replacement Lamp 2-Lamp System

	2015	2020		2022		2	030	204	10	205	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	18.5	16.3	16.0	13.7	11.0	11.6	9.3	10.0	8.0	8.8	7.2
Lamp Lumens	2,013	2,130	1,800	1,920	1,800	1,920	1,800	1,920	1,800	1,920	1,800
Lamp Efficacy (lm/W)	111.0	130.7	112.5	140.1	163.6	166.2	194.1	192.2	224.4	218.0	250.0
System Wattage	36.9	32.6	32.0	27.4	22.0	23.1	18.6	20.0	16.0	17.6	14.4
System Lumens	3,583	4,004	3,384	3,686	3,456	3,686	3,456	3,686	3,456	3,686	3,456
System Efficacy (lm/W)	97.0	122.8	105.8	134.5	157.1	159.6	186.3	184.5	215.4	209.3	240.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	83	82	82	81	80	81	80	81	80	81	80
Correlated Color Temperature (CCT)	4,100	3,500	4,100	4,100	5,000	4,100	5,000	4,100	5,000	4,100	5,000
Average Lamp Life (thousand hours)	55	50	50	54	50	54	50	54	50	54	50
Annual Operating Hours (h/y)	730	730	730	730	730	730	730	730	730	730	730
Lamp Price (2022\$)	\$27.00	\$12.89	\$14.63	\$11.11	\$4.28	\$9.97	\$3.84	\$9.87	\$3.80	\$9.77	\$3.77
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$13.41	\$6.05	\$8.13	\$5.79	\$2.38	\$5.19	\$2.13	\$5.14	\$2.11	\$5.09	\$2.09
System (1/b/f) Cost (2022\$/klm)	N/A	\$6.44	\$8.65	\$6.03	\$2.48	\$5.41	\$2.22	\$5.35	\$2.20	\$5.30	\$2.18
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor System Installation (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$54.00	\$25.78	\$29.26	\$22.22	\$8.56	\$19.95	\$7.68	\$19.74	\$7.60	\$19.55	\$7.53
Annual Maintenance Cost (2022\$)	\$0.72	\$0.38	\$0.43	\$0.30	\$0.12	\$0.27	\$0.11	\$0.27	\$0.11	\$0.26	\$0.11
Total Installed Cost (2022\$/klm)	\$15.07	\$6.44	\$8.65	\$6.03	\$2.48	\$5.41	\$2.22	\$5.35	\$2.20	\$5.30	\$2.18
Annual Maintenance Cost (2022\$/klm)	\$0.20	\$0.09	\$0.13	\$0.08	\$0.04	\$0.07	\$0.03	\$0.07	\$0.03	\$0.07	\$0.03

 $^{1. \}quad N/A \ because \ a \ fixture \ and \ an \ LED \ replacement \ lamp \ would \ not \ be \ purchased \ separately for \ a \ new \ installation \ or \ retrofit \ when there \ are integrated \ LED \ luminaires \ that \ are \ more \ efficient \ and \ cost \ effective. \ These \ lamps \ are \ sold \ only \ as \ replacements \ to \ go \ into \ existing \ fixtures.$

Note: Assume no labor is associated with lamp replacement in the residential sector because residents likely replace lamps themselves.

Performance and Cost Characteristics » Residential Linear LED Luminaire

	2015	2020		2022		2	.030	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	50.0	43.1	49.0	44.0	35.0	35.6	28.3	29.9	23.8	25.8	20.5
System Lumens	4,615	4,945	5,024	5,302	4,800	5,302	4,800	5,302	4,800	5,302	4,800
System Efficacy (lm/W)	92.3	114.7	102.5	120.5	137.1	148.8	169.3	177.2	201.7	205.5	233.9
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	83	82	80	79	80	79	80	79	80	79	80
Correlated Color Temperature (CCT)	3,838	3,000	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
Average Lamp Life (thousand hours)	56	58	54	53	50	53	50	53	50	53	50
Annual Operating Hours (h/y)	584	584	584	584	584	584	584	584	584	584	584
Lamp or Luminaire Price (2022\$)	\$181.60	\$158.60	\$144.85	\$152.54	\$207.80	\$121.11	\$164.98	\$105.34	\$143.50	\$90.11	\$122.76
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (I/b/f) Cost (2022\$/klm)	\$78.70	\$64.15	\$57.66	\$57.54	\$86.58	\$45.68	\$68.74	\$39.74	\$59.79	\$33.99	\$51.15
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$401.81	\$355.81	\$322.70	\$338.08	\$448.60	\$275.22	\$362.97	\$243.68	\$320.01	\$213.23	\$278.52
Annual Maintenance Cost (2022\$)	\$2.30	\$1.97	\$1.92	\$2.04	\$2.81	\$1.70	\$2.31	\$1.52	\$2.06	\$1.36	\$1.82
Total Installed Cost (2022\$/klm)	\$87.07	\$71.95	\$64.23	\$63.76	\$93.46	\$51.91	\$75.62	\$45.96	\$66.67	\$40.22	\$58.03
Annual Maintenance Cost (2022\$/klm)	\$0.50	\$0.40	\$0.38	\$0.39	\$0.59	\$0.32	\$0.48	\$0.29	\$0.43	\$0.26	\$0.38

 $^{1. \}quad N/A \ because the lamp \ and \ fixture \ are both \ included \ in \ the \ luminaire.$

Performance and Cost Characteristics » Residential Outdoor Lamps

• The residential outdoor lamps characterized in this report include reflector and general service lamps used for security and/or porch lighting that can be switched on from inside the home (i.e. parking lot/garage and outdoor common area lighting at multifamily buildings are excluded) with lumen outputs of approximately 1,000 – 1,400 lumens. Multiple baseline lamps were analyzed according to estimates of installed base average lumens by lamp type, including:

Security (Reflector Lamps)	Porch (General Service Lamps)
Incandescent BR30	Incandescent A-Type
Halogen PAR38	Halogen A-Type
Halogen Infrared Reflector (HIR) PAR38	CFL Bare Spiral
CFL PAR38	LED A-Type Lamp
LED PAR38	

Performance:

- 65W BR30 is the only viable incandescent reflector lamp due to exemption from EISA 2007. The lumen output of this lamp type is well below other reflector lamp technologies characterized for residential outdoor spaces, thus its use is limited for this application. This product is, as of 2022, expected to be eliminated by DOE's 45 lm/W backstop requirement.
- A majority of residential lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2015 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Fixture prices and installation costs are not included for the residential sector. Labor costs are assumed to be negligible because homeowners likely replaces lamps themselves as they burn out. Therefore, total installed cost is the price of a lamp, and annual maintenance costs are the cost of replacing the lamps, which is a function of lamp life, lamp price, and the annual operating hours for residential reflector lamps.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Performance and Cost Characteristics » Residential Outdoor Lamps

Legislation:

• In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

ENERGY STAR:

- For ENERGY STAR qualification, general service omnidirectional lamps must have a minimum lamp efficacy of 70 lm/W for products with CRI ≥ 90 and 80 lm/W for lamps with CRI < 90.
- For ENERGY STAR qualification, general service reflector lamps must have a minimum lamp efficacy of 61 lm/W for products with CRI ≥ 90 and 70 lm/W for lamps with CRI < 90.
- Additionally, the lamps must have a CRI \geq 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime \geq 10,000 hours (ENERGY STAR).

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent Omnidirectional	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Incandescent Directional	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
CFL	+0.5%	0%	-0.5%	In addition to benefiting from higher efficiency reflector coatings, improvements in efficacy can be made by using more rare- earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Residential Outdoor Lamps (Security: Incandescent BR30)

	2015 ¹	2020 ¹		202	22 ²		2023 ²	203	30 ²	204	10 ²	205	50^2
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	65.0	65.0	N/A	65.0	N/A	N/A	13.3	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	637	637	N/A	602	N/A	N/A	600	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	9.8	9.8	N/A	9.3	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,700	2,700	N/A	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	2.0	2.0	N/A	2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	621	621	N/A	621	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$4.00	\$4.00	N/A	\$3.70	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$6.28	\$6.28	N/A	\$6.15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$4.00	\$4.00	N/A	\$3.70	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$1.24	\$1.24	N/A	\$1.15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$6.28	\$6.28	N/A	\$6.15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$1.95	\$1.95	N/A	\$1.91	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{1.} Incandescent BR30 lamps were previously exempted from DOE Incandescent Reflector Lamp standards and the EISA 2007 general service lamp definition until DOE's new final rule in 2022. The new definitions go into effect in 2023.

^{2.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. These standards cannot be met with incandescent technologies.

Performance and Cost Characteristics » Residential Outdoor Lamps (Security: Halogen PAR38)

	2015	2020		20	22		2023 ¹	203	80^1	204	:0 ¹	205	50^{1}
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	88.7	78.7	N/A	70.0	N/A	N/A	29.1	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,323	1,316	N/A	1,308	N/A	N/A	1,308	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	14.9	16.9	N/A	18.7	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,900	2,900	N/A	2,900	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	2.4	2.4	N/A	1.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	876	876	N/A	876	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$6.24	\$9.15	N/A	\$10.32	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$4.71	\$6.96	N/A	\$7.89	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$6.24	\$9.15	N/A	\$10.32	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$2.28	\$3.34	N/A	\$6.62	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$4.71	\$6.96	N/A	\$7.89	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$1.72	\$2.54	N/A	\$5.06	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{1.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. These standards cannot be met with halogen technologies.

Performance and Cost Characteristics » Residential Outdoor Lamps (Security: HIR PAR38)

	2015	2020		20	22		2023 ¹	203	30^1	2040 ¹		2050 ¹	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	70.0	70.0	N/A	70.0	N/A	N/A	28.0	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,407	1,334	N/A	1,260	N/A	N/A	1,260	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	20.1	19.1	N/A	18.0	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,850	2,850	N/A	2,900	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	3.6	3.6	N/A	3.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	876	876	N/A	876	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$21.85	\$27.31	N/A	\$29.49	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$15.53	\$20.48	N/A	\$23.40	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$21.85	\$27.31	N/A	\$29.49	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$5.32	\$6.64	N/A	\$8.61	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$15.53	\$20.48	N/A	\$23.40	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$3.78	\$4.98	N/A	\$6.83	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{1.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. These standards cannot be met with halogen technologies.

Performance and Cost Characteristics » Residential Outdoor Lamps (Security: CFL PAR38)

	2015 ¹	2020 ¹		20)22 ²		2023 ³	203	30 ³	204	10 ³	205	0^3
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	23.0	22.4	N/A	N/A	N/A	N/A	28.9	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,300	1,300	N/A	N/A	N/A	N/A	1,300	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	56.5	57.9	N/A	N/A	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	82	82	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,700	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	10.0	10.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	913	913	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$8.52	\$8.31	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$6.55	\$6.39	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$8.52	\$8.31	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$0.78	\$0.74	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$6.55	\$6.39	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$0.60	\$0.57	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. 2015 and 2020 data calculated based on 2009 installed stock data and the following assumptions: Efficacy +0.5%/y, Cost -0.5%/y (NCI, 2019)
- 2. Virtually all manufacturers have discontinued manufacturing of CFL reflector lamps in favor of LEDs. Distributor offerings for CFL reflectors have been eliminated.
- 3. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. Although these standards can be met with CFL technology, manufacturers have discontinued manufacturing CFL reflector lamps in favor of LEDs.

Performance and Cost Characteristics » Residential Outdoor Lamps (Security: LED PAR38)

	2015	2020		20	22		2023 ¹	200	30	204	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	19.2	15.5	17.0	16.4	17.0	22.0	29.9	14.0	14.6	12.3	12.7	10.9	11.3
Lamp Lumens	1,202	1,211	1,200	1,344	1,700	1,344	1,344	1,344	1,700	1,344	1,700	1,344	1,700
Lamp Efficacy (lm/W)	62.7	77.9	70.6	82.0	100.0	61.0	45.0	95.7	116.7	109.5	133.5	123.2	150.2
CRI	83	86	82	86	82	80	N/A	86	86	86	86	86	86
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	3,000	3,000	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	24	27	25	27	25	15	N/A	27	25	27	25	27	25
Annual Operating Hours (h/y)	730	730	730	730	730	N/A	N/A	730	730	730	730	730	730
Lamp Price (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Lamp Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Annual Maintenance Cost (2022\$)	\$1.07	\$0.60	\$0.69	\$0.62	\$0.46	N/A	N/A	\$0.52	\$0.38	\$0.46	\$0.34	\$0.41	\$0.31
Total Installed Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Annual Maintenance Cost (2022\$/klm)	\$0.89	\$0.49	\$0.58	\$0.46	\$0.27	N/A	N/A	\$0.39	\$0.23	\$0.35	\$0.20	\$0.31	\$0.18

^{1.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

^{2.} Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)

Performance and Cost Characteristics » Residential Outdoor Lamps (Porch: Incandescent A19)

	2015 ¹	2020 ¹		202	22 ²		2023 ²	2030 ²		2040 ²		2050 ²	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	75.0	75.0	N/A	N/A	N/A	N/A	26.0	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,170	1,170	N/A	N/A	N/A	N/A	1,170	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	15.6	15.6	N/A	N/A	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,700	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	0.8	0.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	511	511	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$0.44	\$0.44	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$0.38	\$0.38	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Installation (hours)	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$0.44	\$0.44	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$0.30	\$0.30	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$0.38	\$0.38	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$0.26	\$0.26	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{1.} The Energy Independence and Security Act of 2007 (EISA 2007) prescribes standards for 75 wattincandescent lamps as of January 1, 2013. Despite the phase out of incandescent lamps, these products remain in the installed stock.

^{2.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. These standards cannot be met with incandescent technologies.

Performance and Cost Characteristics » Residential Outdoor Lamps (Porch: Halogen A19)

	2015 ¹	2020 ¹		202	22 ²		2023 ²	203	30 ²	2040 ²		2050 ²	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	53.0	53.0	N/A	53.0	N/A	N/A	19.8	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1050	936	N/A	890	N/A	N/A	890	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	19.8	17.7	N/A	16.8	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,850	2,950	N/A	2,950	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	1.0	1.0	N/A	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	621	621	N/A	621	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$2.37	\$3.58	N/A	\$4.06	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$2.26	\$3.82	N/A	\$4.56	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$0.00	\$0.00	N/A	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Installation (hours)	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$2.37	\$3.58	N/A	\$4.06	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$1.47	\$2.22	N/A	\$2.52	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$2.26	\$3.82	N/A	\$4.56	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$1.40	\$2.37	N/A	\$2.83	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{1.} The Energy Independence and Security Act of 2007 prescribes standards for current 75 watt incandescent lamps as of January 1, 2013. Starting in 2013, 75 watt incandescent lamps were replaced by halogen lamps.

^{2.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. These standards cannot be met with existing halogen lamp technologies.

Performance and Cost Characteristics » Residential Outdoor Lamps (Porch: CFL Bare Spiral)

	2015	2020 ¹		202	22		2023 ³	203	60^4	204	10 ⁴	205	50^4
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	18.6	14.6	20.0	18.8	18.0	13.8	26.0	13.9	12.8	13.2	12.2	12.5	11.6
Lamp Lumens	1,216	900	1,100	1,171	1,250	800	1,171	900	925	900	925	900	925
Lamp Efficacy (lm/W)	65.4	61.8	55.0	62.4	69.4	80.0	45.0	65.0	72.3	68.3	76.0	71.8	79.9
CRI	82	82	85	83	82	80	N/A	83	82	83	82	83	82
Correlated Color Temperature (CCT)	2,700	2,700	5,000	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	10.0	10.0	12.0	10.4	10.0	10.0	N/A	10.4	10.0	10.4	10.0	10.4	10.0
Annual Operating Hours (h/y)	767	767	767	767	767	N/A	N/A	767	767	767	767	767	767
Lamp Price (2022\$)	\$3.82	\$5.33	\$9.00	\$5.28	\$5.91	N/A	N/A	\$5.07	\$5.67	\$4.82	\$5.40	\$4.59	\$5.13
Lamp Cost (2022\$/klm)	\$3.14	\$5.92	\$8.18	\$4.51	\$4.72	N/A	N/A	\$5.63	\$6.13	\$5.36	\$5.83	\$5.10	\$5.55
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0	0	0	0	0	N/A	N/A	0	0	0	0	0	0
Total Installed Cost (2022\$)	\$3.82	\$5.33	\$9.00	\$5.28	\$5.91	N/A	N/A	\$5.07	\$5.67	\$4.82	\$5.40	\$4.59	\$5.13
Annual Maintenance Cost (2022\$)	\$0.29	\$0.41	\$0.58	\$0.39	\$0.45	N/A	N/A	\$0.37	\$0.44	\$0.36	\$0.41	\$0.34	\$0.39
Total Installed Cost (2022\$/klm)	\$3.14	\$5.92	\$8.18	\$4.51	\$4.72	N/A	N/A	\$5.63	\$6.13	\$5.36	\$5.83	\$5.10	\$5.55
Annual Maintenance Cost (2022\$/klm)	\$0.24	\$0.45	\$0.52	\$0.33	\$0.36	N/A	N/A	\$0.42	\$0.47	\$0.40	\$0.45	\$0.38	\$0.43

- 1. 2020 data back calculated based on 2022 data and the following assumptions: Efficacy +0.5%/y, Cost -0.5%/y (NCI, 2019)
- 2. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 3. In April 2022, DOE codified into the Code of Federal Regulations the 45lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. CFL products exceed the new minimum efficacy standards.
- 4. The market for 75W equivalent bare spiral CFLs is very limited because almost all product lines are discontinued. This trend is expected to continue until no products are offered at this level by 2030.

Performance and Cost Characteristics » Residential Outdoor Lamps (Porch: LED A-Type)

	2015	2020		20	22		2023 ¹	203	30	204	10	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	12.9	11.8	13.5	11.9	11.0	13.6	24.4	9.9	9.1	7.7	7.1	6.7	6.2
Lamp Lumens	1,073	1,102	1,100	1,089	1,100	1,089	1,100	1,100	1,100	1,100	1,100	1,100	1,100
Lamp Efficacy (lm/W)	83.1	93.5	81.5	92.2	100.0	80	45.0	111.5	120.9	142.0	154.0	164.6	178.6
CRI	81	85	80	86	80	80	N/A	86	80	86	80	86	80
Correlated Color Temperature (CCT)	2,700	2,700	3,000	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	25	21	25	18	25	15	N/A	18	25	18	25	18	25
Annual Operating Hours (h/y)	657	657	657	657	657	N/A	N/A	657	657	657	657	657	657
Lamp Price (2022\$)	\$18.13	\$8.48	\$4.39	\$3.92	\$5.29	N/A	N/A	\$3.23	\$4.36	\$2.84	\$3.84	\$2.46	\$3.31
Lamp Cost (2022\$/klm)	\$16.90	\$7.70	\$3.99	\$3.60	\$4.81	N/A	N/A	\$7.02	\$7.02	\$3.57	\$3.57	\$2.38	\$2.38
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$18.13	\$8.48	\$4.39	\$3.92	\$5.29	N/A	N/A	\$3.23	\$4.36	\$2.84	\$3.84	\$2.46	\$3.31
Annual Maintenance Cost (2022\$)	\$0.49	\$0.27	\$0.12	\$0.14	\$0.14	N/A	N/A	\$0.12	\$0.11	\$0.10	\$0.10	\$0.09	\$0.09
Total Installed Cost (2022\$/klm)	\$16.90	\$7.70	\$3.99	\$3.60	\$4.81	N/A	N/A	\$2.94	\$3.97	\$2.59	\$3.49	\$2.23	\$3.01
Annual Maintenance Cost (2022\$/klm)	\$0.45	\$0.24	\$0.10	\$0.13	\$0.13	N/A	N/A	\$0.11	\$0.10	\$0.09	\$0.09	\$0.08	\$0.08

^{1.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

^{2.} Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)

Commercial Lighting

Performance and Cost Characteristics » Commercial General Service Lamps in Recessed Can Fixtures

This section characterizes commercial omnidirectional incandescent, halogen, CFL, and LED screw-based general service lamps emitting approximately 1,600 lumens (equivalent to a 100W incandescent lamp) used in recessed can fixtures. A recessed can is a directional fixture set into the ceiling, in which all of the light is directed downwards from the opening. Therefore, an omnidirectional lamp is not well suited for use in such fixtures because light that emits upwards and out of the sides must be reflected downwards and out of the fixture and some light is absorbed in the process. A fixture efficiency of 61% is used to characterize these lumen losses for all omnidirectional lamps. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- A majority of general service lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (day light), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps which are sold only as a replacement for use in an existing fixture. There are integrated LED luminaires that are more efficient and cost effective for new installations or fixture retrofits. Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore typical lamp prices in 2015 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial general service lamps (DOESSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for high intensity discharge (HID) lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- The Energy Independence and Security Act of 2007 (EISA 2007) established standards for 100W lamps effective in 2012. These standards cannot be achieved by incandescent bulbs, but they can be met by halogen, CFL, and LED technologies from 2012 to 2023.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

ENERGY STAR:

• For ENERGY STAR qualification, general service omnidirectional lamps must have a minimum lamp efficacy of 70 lm/W for products with CRI ≥ 90 and 80 lm/W for lamps with CRI < 90. Additionally, the lamps must have a CRI ≥ 80 , nominal CCT of 2,700,3,000,3,500,4,000/4,100,5,000, or 6,000 K, and rated lifetime $\geq 10,000 \text{ hours}$ (ENERGY STAR).

Performance and Cost Characteristics » Commercial General Service Lamps in Recessed Can Fixtures

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022
CFL	+0.5%	0%	-0.5%	Improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Commercial General Service 100W Incandescent Lamp in Recessed Can Fixture

	2012 ¹	2018 ¹		202	22 ²		2023 ²	203	30^{2}	204	10 ²	205	50 ²
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	100.0	100.0	N/A	N/A	N/A	N/A	36.0	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,620	1,620	N/A	N/A	N/A	N/A	1,620	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	16.2	16.2	N/A	N/A	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	100.0	100.0	N/A	N/A	N/A	N/A	36.0	N/A	N/A	N/A	N/A	N/A	N/A
System Lumens ³	988	988	N/A	N/A	N/A	N/A	988	N/A	N/A	N/A	N/A	N/A	N/A
System Efficacy (lm/W)	9.9	9.9	N/A	N/A	N/A	N/A	27.5	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,700	2,700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	0.8	0.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	4,015	4,015	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$0.67	\$0.67	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$23.72	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$0.41	\$0.41	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$24.68	\$24.68	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor System Installation (hours)	1.0	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.05	0.05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$101.61	\$101.61	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$24.25	\$24.25	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$102.83	\$102.83	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$24.54	\$24.54	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. The Energy Independence and Security Act of 2007 (EISA 2007) prescribes standards for 100 watt incandescent lamps as of January 1, 2012. Despite the phase out of incandescent lamps, these products remain in the installed stock.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. These standards cannot be met with incandescent technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. Note: the 45 lm/W backstop applies to the lamp, not the calculated fixture efficacy.
- 3. Based on a fixture efficiency of 61% for an omnidirectional lamp installed in a recessed can fixture.

Performance and Cost Characteristics » Commercial General Service Halogen Lamp (100W Incandescent Equivalent) in Recessed Can Fixture

	2012 ¹	2018^{1}		202	22 ²		2023 ²	203	30^{2}	204	10 ²	205	50^{2}
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	72.0	72.0	N/A	72.0	N/A	N/A	33.1	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,490	1,490	N/A	1,490	N/A	N/A	1,490	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	20.7	20.7	N/A	20.7	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	72.0	72.0	N/A	72.0	N/A	N/A	33.1	N/A	N/A	N/A	N/A	N/A	N/A
System Lumens ³	909	909	N/A	909	N/A	N/A	909	N/A	N/A	N/A	N/A	N/A	N/A
System Efficacy (lm/W)	12.6	12.6	N/A	12.6	N/A	N/A	27.5	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,850	3,000	N/A	3,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	1.0	1.0	N/A	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	4,015	4,015	N/A	4,015	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$2.33	\$5.16	N/A	\$4.02	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$26.38	N/A	\$22.07	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$1.57	\$3.46	N/A	\$2.70	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$28.67	\$34.71	N/A	\$28.71	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	N/A	\$66.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor System Installation (hours)	1.0	1.0	N/A	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.05	0.05	N/A	0.05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$103.28	\$108.77	N/A	\$92.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$24.87	\$36.23	N/A	\$29.39	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$113.63	\$119.67	N/A	\$101.32	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$27.36	\$39.86	N/A	\$32.34	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. The Energy Independence and Security Act of 2007 (EISA 2007) prescribes standards for 100 watt incandescent lamps as of January 1, 2012. Starting in 2012, 100 watt incandescent lamps were replaced by halogen lamps.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. These standards cannot be met with existing commercialized halogen lamp technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. Note: the 45 lm/W backstop applies to the lamp, not the calculated fixture efficacy.
- 3. Based on a fixture efficiency of 61% for an omnidirectional lamp installed in a recessed can fixture.

Additional note: No products are currently marketed specifically as 100W equivalent HIR general service lamps and no available data from manufacturers. It is assumed this market is the same as 100W equivalent halogen lamps.

49

Performance and Cost Characteristics » Commercial General Service 100W Equivalent CFL Bare Spiral in Recessed Can Fixture

	2012	2018		202	2		2023 ²	203	30^{2}	204	10 ²	205	50^{2}
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	24.7	24.6	25.0	24.6	26.0	26.0	37.6	23.6	25.0	22.5	23.8	21.4	22.6
Lamp Lumens	1,680	1,680	1,600	1,694	1,835	1,600	1,694	1,694	1,835	1,694	1,835	1,694	1,835
Lamp Efficacy (lm/W)	68.1	68.2	64.0	68.9	70.6	80.0	45.0	71.7	73.4	75.3	77.2	79.2	81.2
System Wattage	24.7	24.6	25.0	24.6	26.0	26.0	37.6	23.6	25.0	22.5	23.8	21.4	22.6
System Lumens ³	1,025	1,025	976	1,033	1,119	976	1,033	1,033	1,119	1,033	1,119	1,033	1,119
System Efficacy (lm/W)	41.6	41.6	39.0	42.0	43.1	37.5	27.5	43.7	44.8	46.0	47.1	48.3	49.5
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	82	82	82	82	82	82	N/A	82	82	82	82	82	82
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	5,000	3,000	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	10.0	10.0	10.0	10.0	10.0	10.0	N/A	10.0	10.0	10.0	10.0	10.0	10.0
Annual Operating Hours (h/y)	4,745	4,745	4,745	4,745	4,745	N/A	N/A	4,745	4,745	4,745	4,745	4,745	4,745
Lamp Price (2022\$) ⁴	\$3.08	\$6.40	\$9.90	\$8.62	\$9.35	N/A	N/A	\$8.28	\$8.98	\$7.87	\$8.54	\$7.49	\$8.13
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ⁴	\$23.72	\$26.38	\$22.07	\$22.07	\$22.07	N/A	N/A	\$21.20	\$21.20	\$20.17	\$20.17	\$19.18	\$19.18
Disposal Cost (2022\$)	\$0.50	\$0.50	\$0.50	\$0.50	\$0.50	N/A	N/A	\$0.50	\$0.50	\$0.50	\$0.50	\$0.50	\$0.50
Lamp Cost (2022\$/klm)	\$1.84	\$3.81	\$6.19	\$5.09	\$5.10	N/A	N/A	\$4.89	\$4.90	\$4.65	\$4.66	\$4.42	\$4.43
System (1/b/f) Cost (2022\$/klm)	\$26.15	\$31.98	\$32.76	\$29.70	\$28.07	N/A	N/A	\$28.53	\$26.97	\$27.13	\$25.65	\$25.81	\$24.39
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	N/A	N/A	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.0	1.0	1.0	1.0	1.0	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.0
Labor Lamp Change (hours)	0.05	0.05	0.05	0.05	0.05	N/A	N/A	0.05	0.05	0.05	0.05	0.05	0.05
Total Installed Cost (2022\$)	\$104.03	\$110.01	\$97.97	\$96.69	\$97.42	N/A	N/A	\$95.48	\$96.18	\$94.04	\$94.71	\$92.67	\$93.31
Annual Maintenance Cost (2022\$)	\$3.53	\$5.11	\$6.50	\$5.89	\$6.24	N/A	N/A	\$5.73	\$6.07	\$5.54	\$5.86	\$5.36	\$5.66
Total Installed Cost (2022\$/klm)	\$101.48	\$107.32	\$100.38	\$93.57	\$87.03	N/A	N/A	\$92.40	\$85.93	\$91.00	\$84.61	\$89.68	\$83.36
Annual Maintenance Cost (2022\$/klm)	\$3.45	\$4.98	\$6.66	\$5.70	\$5.57	N/A	N/A	\$5.55	\$5.42	\$5.36	\$5.23	\$5.18	\$5.06

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. These standards can be met with existing CFL products. Note: the 45 lm/W backstop applies to the lamp, not the calculated fixture efficacy.
- 3. Based on a fixture efficiency of 61% for an omnidirectional lamp installed in a recessed can fixture.
- 4. Year-to-year price and performance assumptions 2022 2050: Efficacy +0.5%, Equipment Cost -0.5%

Performance and Cost Characteristics » Commercial General Service 100W Equivalent LED Replacement Lamp in Recessed Can Fixture

	2012	2018		20	22		2023 ²	20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	26.7	14.5	16.0	14.8	13.0	20.0	34.8	12.2	10.8	9.6	8.4	8.3	7.3
Lamp Lumens	1,600	1,528	1,600	1,567	1,600	1,600	1,567	1,567	1,600	1,567	1,600	1,567	1,600
Lamp Efficacy (lm/W)	60.0	105.1	100.0	106.0	123.1	80.0	45.0	128.2	148.8	163.3	189.5	189.3	219.8
System Wattage	26.7	14.5	16.0	14.8	13.0	20.0	34.8	12.2	10.8	9.6	8.4	8.3	7.3
System Lumens ³	976	932	976	956	976	976	956	956	976	956	976	956	976
System Efficacy (lm/W)	36.6	64.1	61.0	64.7	75.1	48.8	27.5	78.2	90.8	99.6	115.6	115.5	134.1
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	80	80	90	84.8	84	80	N/A	84.8	84.8	84.8	84.8	84.8	84.8
Correlated Color Temperature (CCT)	3,000	3,000	2,700	2,700	5,000	N/A	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	22.0	17.9	25.0	16.9	25.0	15.0	N/A	16.9	25.0	16.9	25.0	16.9	25.0
Annual Operating Hours (h/y)	4,928	4,928	4,928	4,928	4,928	N/A	N/A	4,928	4,928	4,928	4,928	4,928	4,928
Lamp Price (2022\$)	\$47.45	\$11.28	\$5.62	\$7.04	\$3.39	N/A	N/A	\$5.81	\$2.80	\$5.11	\$2.46	\$4.41	\$2.12
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$26.38	\$22.07	\$22.07	\$22.07	N/A	N/A	\$21.20	\$21.20	\$20.17	\$20.17	\$19.18	\$19.18
Lamp Cost (2022\$/klm)	\$25.00	\$7.38	\$3.51	\$4.49	\$2.12	N/A	N/A	\$3.71	\$1.75	\$3.26	\$1.54	\$2.82	\$1.33
System (1/b/f) Cost (2022\$/klm)	\$72.92	\$40.40	\$28.37	\$30.46	\$26.09	N/A	N/A	\$28.26	\$24.59	\$26.45	\$23.18	\$24.68	\$21.83
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	N/A	N/A	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.0	1.0	1.0	1.0	1.0	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.0
Labor Lamp Change (hours)	0.05	0.05	0.05	0.05	0.05	N/A	N/A	0.05	0.05	0.05	0.05	0.05	0.05
Total Installed Cost (2022\$)	\$148.39	\$114.88	\$93.69	\$95.11	\$91.46	N/A	N/A	\$93.01	\$90.00	\$91.27	\$88.63	\$89.59	\$87.30
Annual Maintenance Cost (2022\$)	\$11.49	\$4.16	\$1.76	\$3.02	\$1.32	N/A	N/A	\$2.66	\$1.20	\$2.45	\$1.14	\$2.25	\$1.07
Total Installed Cost (2022\$/klm)	\$152.04	\$123.25	\$95.99	\$99.52	\$93.71	N/A	N/A	\$97.32	\$92.21	\$95.51	\$90.81	\$93.75	\$89.45
Annual Maintenance Cost (2022\$/klm)	\$11.77	\$4.46	\$1.80	\$3.16	\$1.35	N/A	N/A	\$2.78	\$1.23	\$2.57	\$1.16	\$2.35	\$1.10

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards. Note: the 45 lm/W backstop applies to the lamp, not the calculated fixture efficacy.
- 3. Based on a fixture efficiency of 61% for an omnidirectional lamp installed in a recessed can fixture.

Performance and Cost Characteristics » Commercial Reflector Lamps in Recessed Can Fixtures

This section characterizes commercial halogen, halogen infrared reflector (HIR), and LED screw-based reflector lamps emitting approximately 1400 lumens used in recessed can fixtures.

- HIR lamps contain a tungsten halogen capsule with a film coating on the inside of the capsule. The coating reflects infrared radiation back into the lamp filament, which forces the filament to burn at a higher temperature. This design increases the efficacy of the lamp, without reducing operating life.
- A recessed can is a directional fixture set into the ceiling, in which all of the light is directed downwards from the opening. Therefore, a reflector lamp, which employs reflective coating to direct light out in only one direction, is well suited for use in such fixtures. However, some light is not able to escape the fixture, and a fixture efficiency of 93% is used to characterize these minimal lumen losses. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- A majority of reflector lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps which are sold only as a replacement for use in an existing fixture. Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial reflector lamps (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- EPAct92 established minimum performance standards for some reflector lamps and provided exemptions for certain specialty applications (e.g., ER/BR, vibration service, more than 5% neodymium oxide, impact resistant, infrared heat, colored). EPAct92 effectively phased-out R-shaped tungsten filament incandescent reflector lamps at certain wattages and bulb diameters, replacing them with more efficient and cost effective tungsten-halogen parabolic aluminized reflector (PAR) lamps. EISA2007 took away certain exemptions from EPACT 1992, requiring certain previously exempted lamps to meet EPAct92 minimum performance standards by January 1, 2008. In 2015, DOE issued a final rule that determined that amending the standards for incandescent reflector lamps could not be economically justified.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

Performance and Cost Characteristics » Commercial Reflector Lamps in Recessed Can Fixtures

ENERGY STAR:

• For ENERGY STAR qualification, general service reflector lamps must have a minimum lamp efficacy of 61 lm/W for products with CRI ≥ 90 and 70 lm/W for lamps with CRI < 90. Additionally, the lamps must have a CRI ≥ 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime ≥ 10,000 hours (ENERGY STAR).

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022
CFL	+0.5%	0%	-0.5%	In addition to higher efficiency reflector coatings, improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Commercial Halogen Reflector Lamp (PAR38) in Recessed Can Fixture

	2012	2018		202	22		2023 ²	20 3	30 ²	204	10^{2}	205	50 ²
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	90.0	87.3	N/A	70.0	N/A	N/A	29.1	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,323	1,323	N/A	1,308	N/A	N/A	1,308	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	14.7	15.1	N/A	18.7	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	90.0	87.3	N/A	70.0	N/A	N/A	29.1	N/A	N/A	N/A	N/A	N/A	N/A
System Lumens ¹	1,230	1,230	N/A	1,217	N/A	N/A	1,217	N/A	N/A	N/A	N/A	N/A	N/A
System Efficacy (lm/W)	13.7	14.1	N/A	17.4	N/A	N/A	41.9	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,850	2,850	N/A	2,850	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	2.4	2.4	N/A	1.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	4,052	4,052	N/A	4,052	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$4.49	\$7.99	N/A	\$10.32	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$26.38	N/A	\$22.07	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$3.39	\$6.04	N/A	\$7.89	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$22.93	\$27.93	N/A	\$26.62	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	N/A	\$66.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor System Installation (hours)	1.0	1.0	N/A	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.05	0.05	N/A	0.05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$105.43	\$111.59	N/A	\$98.39	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$14.09	\$20.00	N/A	\$40.40	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$85.69	\$90.70	N/A	\$80.86	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$11.46	\$16.26	N/A	\$33.20	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. Based on a fixture efficiency of 93% for an directional reflector lamp installed in a recessed can fixture.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. These standards cannot be met with existing commercialized halogen lamp technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

Performance and Cost Characteristics » Commercial Halogen Infrared Reflector Lamp (PAR38) in Recessed Can Fixture

	2012	2018		202	22		2023 ²	20 3	30^{2}	204	10^{2}	205	50^{2}
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	70.0	70.0	N/A	70.0	N/A	N/A	28.0	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	1,407	1,407	N/A	1,260	N/A	N/A	1,260	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	20.1	20.1	N/A	18.0	N/A	N/A	45.0	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	70.0	70.0	N/A	70.0	N/A	N/A	28.0	N/A	N/A	N/A	N/A	N/A	N/A
System Lumens ¹	1,309	1,309	N/A	1,172	N/A	N/A	1,172	N/A	N/A	N/A	N/A	N/A	N/A
System Efficacy (lm/W)	18.7	18.7	N/A	16.7	N/A	N/A	41.9	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Correlated Color Temperature (CCT)	2,850	2,850	N/A	2,850	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Lamp Life (thousand hours)	3.6	3.6	N/A	3.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Operating Hours (h/y)	4,052	4,052	N/A	4,052	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Price (2022\$)	\$18.58	\$25.12	N/A	\$29.49	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$26.38	N/A	\$22.07	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$13.20	\$17.86	N/A	\$23.40	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$32.33	\$39.36	N/A	\$44.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	N/A	\$66.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor System Installation (hours)	1.0	1.0	N/A	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.05	0.05	N/A	0.05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$119.52	\$128.73	N/A	\$117.56	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$25.25	\$32.62	N/A	\$44.28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$91.34	\$98.38	N/A	\$100.32	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$19.30	\$24.93	N/A	\$37.79	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. Based on a fixture efficiency of 93% for an directional reflector lamp installed in a recessed can fixture.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. These standards cannot be met with existing commercialized halogen lamp technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

Performance and Cost Characteristics » Commercial LED Reflector Lighting (PAR38)

	2012	2018		20	22		2023 ²	20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ³	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	17.2	16.6	17.0	16.4	17.0	22.0	29.9	14.0	14.6	12.3	12.7	10.9	11.3
Lamp Lumens	1,045	1,210	1,200	1,344	1,700	1,344	1,344	1,344	1,700	1,344	1,700	1,344	1,700
Lamp Efficacy (lm/W)	60.9	73.0	70.6	82.0	100.0	61.0	45.0	95.7	116.7	109.5	133.5	123.2	150.2
System Wattage	17.2	16.6	17.0	16.4	17.0	22.0	29.9	14.0	14.6	12.3	12.7	10.9	11.3
System Lumens ¹	972	1,125	1,116	1,250	1,581	1,250	1,250	1,250	1,581	1,250	1,581	1,250	1,581
System Efficacy (lm/W)	56.6	67.9	65.6	76.1	93.0	56.7	41.9	89.0	108.6	101.9	124.2	114.6	139.7
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	83	83	82	86	82	80	N/A	86	82	86	82	86	82
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	3,000	3,000	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	22	15	25	28	25	25	N/A	28	25	28	25	28	25
Annual Operating Hours (h/y)	4,928	4,928	4,928	4,928	4,928	N/A	N/A	4,928	4,928	4,928	4,928	4,928	4,928
Lamp Price (2022\$)	\$61.98	\$28.10	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$26.38	\$22.07	\$22.07	\$22.07	N/A	N/A	\$21.20	\$21.20	\$20.17	\$20.17	\$19.18	\$19.18
Lamp Cost (2022\$/klm)	\$59.31	\$23.23	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
System (1/b/f) Cost (2022\$/klm)	\$88.18	\$48.42	\$41.02	\$36.13	\$23.88	N/A	N/A	\$32.48	\$21.75	\$30.02	\$20.22	\$27.64	\$18.74
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	N/A	N/A	\$91.40	\$91.40	\$91.40	\$91.40	\$91.40	\$91.40
Labor System Installation (hours)	1.0	1.0	1.0	1.0	1.0	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.0
Labor Lamp Change (hours)	0.05	0.05	0.05	0.05	0.05	N/A	N/A	0.05	0.05	0.05	0.05	0.05	0.05
Total Installed Cost (2022\$)	\$162.93	\$131.71	\$111.78	\$111.16	\$103.76	N/A	N/A	\$132.00	\$125.78	\$128.92	\$123.36	\$125.95	\$121.02
Annual Maintenance Cost (2022\$)	\$14.75	\$10.50	\$5.32	\$4.64	\$3.74	N/A	N/A	\$4.22	\$3.50	\$3.86	\$3.23	\$3.51	\$2.96
Total Installed Cost (2022\$/klm)	\$167.64	\$117.04	\$100.16	\$88.92	\$65.63	N/A	N/A	\$105.59	\$79.56	\$103.13	\$78.02	\$100.75	\$76.55
Annual Maintenance Cost (2022\$/klm)	\$15.17	\$9.33	\$4.77	\$3.72	\$2.37	N/A	N/A	\$3.37	\$2.21	\$3.09	\$2.04	\$2.81	\$1.87

- 1. Based on a fixture efficiency of 93% for an omnidirectional lamp installed in a recessed can fixture.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. All LED lighting products exceed the new minimum efficacy standards.
- 3. Criteria outlined in ÉNERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)

Performance and Cost Characteristics » Commercial 4-foot Linear 2-Lamp Lighting Systems

This section characterizes commercial linear fixtures that house two 4ft long linear lamps and their integrated luminaire equivalents. The technologies available for this system are linear fluorescent and LED.

- Linear fluorescent options are T5, T8, and T12 lamps. T5 lamps are approximately 40% narrower than T8 lamps and almost 60% narrower than T12 lamps. This narrowness allows T5 lamps to be coated with higher quality, more efficient phosphor blends than larger diameter lamps, resulting in a more efficacious lamp. The compact size of T5 lamps also permits greater flexibility in lighting design and construction.
- LED options for linear fixtures include replacement lamps that can fit directly into an existing fixture and fully integrated luminaires that can be used to replace existing fixtures. LED replacement lamps are also known as TLEDs. Type A TLEDs can be installed with existing ballasts and Type B and C TLEDs require the ballast to be disconnected. Replacement lamps are only sold to go into existing fixtures. If a new fixture is to be installed, a fully integrated LED luminaire is a more cost effective and efficient option. Because LED luminaires are fully integrated, they do not have lamp or fixture efficiency losses associated with ballasts and fixture optics. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- Linear lamps often have a nominal CCT rating of 3,500K, but products with CCTs of 3,000K, 4,000K, and 4,100K (neutral white) are also common. 5,000K (daylight) lamps are available as well. When replacing a light bulb, it is important to choose a product with a similar CCT value to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but for CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- The total installed cost is the price of 2 lamps, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps, which are sold only as a replacement for use in an existing fixture. There are integrated LED luminaires that are more efficient and cost effective for new installations or fixture retrofits. Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours of 4055 hours/year for commercial 4ft linear systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- Beginning July 14, 2012 (or July 14, 2014, for T8 700-series phosphor lamps), DOE fluorescent lamp standards required a minimum efficacy of 89 lm/W. Although the amended performance-based standards do not explicitly prohibit T12 lamps, no T12 lamps meet the standard at the time of its announcement. Since then, however, T12 lamps meeting the standard have entered the market.
- California's Title 24 mandates the use of electronic ballasts with high efficacy luminaires (including fluorescent) of 13 W or higher (CEC, 2005).

ENERGY STAR:

• ENERGY STAR does not cover commercial linear luminaires (ENERGY STAR, 2020).

Performance and Cost Characteristics » Commercial 4-foot Linear 2-Lamp Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
T8 F32 Commodity	0%	0%	-0.5%	Limited because the technology is mature.
T8 F32 High Efficiency/High Output	0%	0%	-0.5%	Limited because the technology is mature.
T5 F28	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial 4-ft T8 F32 Commodity in 2-Lamp System

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average ¹	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
Lamp Lumens	2,725	2,855	2,450	2,855	3,100	2,855	3,100	2,855	3,100	2,855	3,100
Lamp Efficacy (lm/W)	85.2	89.0	76.6	89.2	96.9	89.2	96.9	89.2	96.9	89.2	96.9
System Wattage	61.8	62.5	63.1	63.1	63.1	63.1	63.1	63.1	63.1	63.1	63.1
System Lumens	4,796	5,082	4,361	5,082	5,518	5,082	5,518	5,082	5,518	5,082	5,518
System Efficacy (lm/W)	77.7	81.4	69.1	80.6	87.5	80.6	87.5	80.6	87.5	80.6	87.5
Ballast Efficiency (BLE)	91%	91%	90%	90%	90%	90%	90%	90%	90%	90%	90%
CRI	83	87	90	87	85	87	85	87	85	87	85
Correlated Color Temperature (CCT)	4,100	4,100	5,000	4,100	3,500	4,100	3,500	4,100	3,500	4,100	3,500
Average Lamp Life (thousand hours)	24	31	23	31	40	31	40	31	40	31	40
Annual Operating Hours (h/y)	4,055	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920
Lamp Price (2022\$)	\$7.81	\$5.02	\$3.36	\$4.08	\$4.32	\$3.92	\$4.15	\$3.73	\$3.95	\$3.55	\$3.75
Ballast Price (2022\$) ²	\$19.56	\$19.40	N/A								
Fixture Price (2022\$)	\$29.67	\$77.61	\$75.53	\$75.53	\$75.53	\$72.56	\$72.56	\$69.01	\$69.01	\$65.64	\$65.64
Disposal Costs (2022\$)	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48
Lamp Cost (2022\$/klm)	\$2.86	\$1.76	\$1.37	\$1.43	\$1.39	\$1.37	\$1.34	\$1.31	\$1.27	\$1.24	\$1.21
System (1/b/f) Cost (2022\$/klm)	\$13.52	\$21.07	\$33.57	\$29.31	\$27.15	\$15.91	\$14.65	\$15.05	\$13.94	\$14.31	\$13.26
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Total Installed Cost (2022\$)	\$103.45	\$145.67	\$179.41	\$181.97	\$182.82	\$113.86	\$113.86	\$109.47	\$109.91	\$105.73	\$106.15
Annual Maintenance Cost (2022\$)	\$7.89	\$3.88	\$4.24	\$3.28	\$2.58	\$3.25	\$2.55	\$3.21	\$2.52	\$3.18	\$2.49
Total Installed Cost (2022\$/klm)	\$21.57	\$28.66	\$41.14	\$35.81	\$33.13	\$22.41	\$20.63	\$21.54	\$19.92	\$20.81	\$19.24
Annual Maintenance Cost (2022\$/klm)	\$1.65	\$0.76	\$0.97	\$0.65	\$0.47	\$0.64	\$0.46	\$0.63	\$0.46	\$0.63	\$0.45

^{1.} Data and assumptions taken from the 2018 SSL Forecast. The report states that efficacy improvements for T8 lamps are not expected in the future and that cost for all commercial fixtures is expected to decrease between 0.1%-0.6% per year. We use 0.5% per year here.

^{2.} From 2020 to 2050, fixture (and fixture price) includes ballast.

Performance and Cost Characteristics » Commercial 4-ft T8 F28 High-efficiency and High-output in 2-Lamp System

	2012	2018	2022	2030	2040	2050
DATA ¹	Installed Stock Average	Installed Stock Average ²	Typical	Typical	Ty pical	Typical
Lamp Wattage	28.0	28.0	28.0	28.0	28.0	28.0
Lamp Lumens	2,560	2,682	2,682	2,682	2,682	2,682
Lamp Efficacy (lm/W)	91	96	96	96	96	96
System Wattage	55.4	55.4	55.4	55.4	55.4	55.4
System Lumens	4,557	4,774	4,774	4,774	4,774	4,774
System Efficacy (lm/W)	82	86	86	86	86	86
Ballast Efficiency (BLE)	90%	90%	90%	90%	90%	90%
CRI	85	84	84	84	84	84
Correlated Color Temperature (CCT)	4,100	3,500	3,500	3,500	3,500	3,500
Average Lamp Life (thousand hours)	24	48	48	48	48	48
Annual Operating Hours (h/y)	4,055	2,920	2,920	2,920	2,920	2,920
Lamp Price (2022\$)	\$11.17	\$5.40	\$5.29	\$5.08	\$4.84	\$4.60
Ballast Price (2022\$) ³	\$19.56	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$35.20	\$77.05	\$75.53	\$72.56	\$69.01	\$65.64
Disposal Costs (2022\$)	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48
Lamp Cost (2022\$/klm)	\$4.36	\$2.01	\$1.97	\$1.90	\$1.80	\$1.71
System (1/b/f) Cost (2022\$/klm)	\$30.12	\$32.75	\$32.11	\$30.85	\$29.34	\$27.90
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	0.4	0.4	0.4	0.4	0.4	0.4
Total Installed Cost (2022\$)	\$104.54	\$121.06	\$113.82	\$110.64	\$106.85	\$103.24
Annual Maintenance Cost (2022\$)	\$9.03	\$2.54	\$2.26	\$2.23	\$2.20	\$2.17
Total Installed Cost (2022\$/klm)	\$22.94	\$25.36	\$23.84	\$23.18	\$22.38	\$21.63
Annual Maintenance Cost (2022\$/klm)	\$1.98	\$0.53	\$0.47	\$0.47	\$0.46	\$0.46

- 1. Only a typical dataset because provided as these lamps all have similar efficacies.
- 2. Data and assumptions taken from the 2018 SSL Forecast. The report states that efficacy improvements for T8 lamps are not expected in the future and that cost for all commercial fixtures is expected to decrease between 0.1%-0.6% per year. We use 0.5% per year here.
- 3. From 2018 to 2050, fixture (and fixture price) includes ballast.

Performance and Cost Characteristics » Commercial 4-ft T5 F28 in 2-Lamp System

	2012	2018	2018 2022			20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	28.0	27.7	28.0	27.5	26.0	27.5	26.0	27.5	26.0	27.5	26.0
Lamp Lumens	2,697	2,732	2,530	2,732	2,900	2,732	2,900	2,732	2,900	2,732	2,900
Lamp Efficacy (lm/W)	96.3	98.5	90.4	99.3	111.5	99.3	111.5	99.3	111.5	99.3	111.5
System Wattage	62.9	62.3	62.9	61.7	58.4	61.7	58.4	61.7	58.4	61.7	58.4
System Lumens	5,394	5,464	5,060	5,464	5,800	5,464	5,800	5,464	5,800	5,464	5,800
System Efficacy (lm/W)	85.8	87.8	80.5	88.5	99.4	88.5	99.4	88.5	99.4	88.5	99.4
Ballast Efficiency (BLE)	89%	89%	89%	89%	89%	89%	89%	89%	89%	89%	89%
CRI	85	85	85	85	85	85	85	85	85	85	85
Correlated Color Temperature (CCT)	4,100	3,500	5,000	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
Average Lamp Life (thousand hours)	30	29	36	29	30	29	30	29	30	29	30
Annual Operating Hours (h/y)	4,055	3,176	3,176	3,176	3,176	3,176	3,176	3,176	3,176	3,176	3,176
Lamp Price (2022\$) ¹	\$6.54	\$6.96	\$13.76	\$9.45	\$21.28	\$9.08	\$20.44	\$8.63	\$19.44	\$8.21	\$18.49
Ballast Price (2022\$) ²	\$31.94	\$22.83	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$111.59	\$83.32	\$170.87	\$170.87	\$170.87	\$164.15	\$164.15	\$156.13	\$156.13	\$148.50	\$148.50
Disposal Costs (2022\$)	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48
Lamp Cost (2022\$/klm)	\$2.42	\$2.55	\$5.44	\$3.46	\$7.34	\$3.32	\$7.05	\$3.16	\$6.70	\$3.01	\$6.38
System (I/b/f) Cost (2022\$/klm)	\$29.03	\$21.97	\$39.21	\$34.73	\$36.80	\$37.53	\$35.35	\$31.73	\$33.62	\$30.18	\$31.98
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Total Installed Cost (2022\$)	\$195.22	\$158.68	\$231.39	\$222.77	\$246.43	\$238.04	\$238.04	\$206.40	\$228.02	\$197.92	\$218.48
Annual Maintenance Cost (2022\$)	\$5.97	\$4.93	\$4.78	\$4.99	\$7.33	\$4.91	\$7.15	\$4.81	\$6.94	\$4.72	\$6.74
Total Installed Cost (2022\$/klm)	\$36.19	\$29.04	\$45.73	\$40.77	\$42.49	\$43.57	\$41.04	\$37.77	\$39.31	\$36.22	\$37.67
Annual Maintenance Cost (2022\$/klm)	\$1.11	\$0.90	\$0.94	\$0.91	\$1.26	\$0.90	\$1.23	\$0.88	\$1.20	\$0.86	\$1.16

- Year-to-year price and performance assumptions for incumbent technologies 2030–2050: Efficacy +0 %/y, Life +0 %/y, Cost -0.5 %/y (SSL Forecast 2018).
 From 2020 to 2050, fixture (and fixture price) includes ballast.

Performance and Cost Characteristics » Commercial 4-ft Linear LED Replacement Lamp in 2-Lamp System

	2012	2018		2022		20	30	204	40	205	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	20.8	17.0	16.0	13.7	11.0	11.6	9.3	10.0	8.0	8.8	7.2
Lamp Lumens	2,091	2,003	1,800	1,920	1,800	1,920	1,800	1,920	1,800	1,920	1,800
Lamp Efficacy (lm/W)	100.5	117.8	112.5	140.1	163.6	166.2	194.1	192.2	224.4	218.0	250.0
System Wattage	41.6	34.0	32.0	27.4	22.0	23.1	18.6	20.0	16.0	17.6	14.4
System Lumens	3,555	3,565	3,456	3,686	3,456	3,686	3,456	3,686	3,456	3,686	3,456
System Efficacy (lm/W)	85.4	104.9	108.0	134.5	157.1	159.6	186.3	184.5	215.4	209.3	240.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	86	81	82	81	80	81	80	81	80	81	80
Correlated Color Temperature (CCT)	4,100	4,020	4,100	4,100	5,000	4,100	5,000	4,100	5,000	4,100	5,000
Average Lamp Life (thousand hours)	50	54	50	54	50	54	50	54	50	54	50
Annual Operating Hours (h/y)	4,055	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541
Lamp Price (2022\$)	\$278.36	\$35.06	\$14.63	\$11.11	\$4.28	\$9.88	\$3.81	\$9.66	\$3.72	\$9.44	\$3.64
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$133.10	\$17.50	\$8.13	\$5.79	\$2.38	\$5.15	\$2.11	\$5.03	\$2.07	\$4.92	\$2.02
System (l/b/f) Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Total Installed Cost (2022\$)	\$587.35	\$70.12	\$29.26	\$22.22	\$8.56	\$19.76	\$7.61	\$19.31	\$7.44	\$18.89	\$7.28
Annual Maintenance Cost (2022\$)	\$47.64	\$6.61	\$3.93	\$3.17	\$2.46	\$3.01	\$2.39	\$2.98	\$2.38	\$2.95	\$2.37
Total Installed Cost (2022\$/klm)	\$165.20	\$19.67	\$8.47	\$6.03	\$2.48	\$5.36	\$2.20	\$5.24	\$2.15	\$5.12	\$2.11
Annual Maintenance Cost (2022\$/klm)	\$13.40	\$1.85	\$1.14	\$0.86	\$0.71	\$0.82	\$0.69	\$0.81	\$0.69	\$0.80	\$0.69

^{1.} N/A because a fixture and an LED replacement lamp would not be purchased separately for a new installation or retrofit when there are integrated LED luminaires that are more efficient and cost effective. These lamps are sold only as replacements to go into existing fixtures.

Performance and Cost Characteristics » Commercial 4-ft Linear LED Luminaire to Replace 2-Lamp Systems

	2012	2018	2022		20	30	2040		2050		
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	51.5	50.0	49.0	44.0	35.0	35.6	28.3	29.9	23.8	25.8	20.5
System Lumens	4,818	4,673	5,024	5,302	4,800	5,302	4,800	5,302	4,800	5,302	4,800
System Efficacy (lm/W)	93.6	93.5	102.5	120.5	137.1	148.8	169.3	177.2	201.7	205.5	233.9
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	84	79	80	79	80	79	80	79	80	79	80
Correlated Color Temperature (CCT)	3,500	3,650	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
Average Lifetime (thousand hours)	67	53	54	53	50	53	50	53	50	53	50
Annual Operating Hours (h/y)	4,055	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431
Lamp or Luminaire Price (2022\$)	\$723.96	\$188.00	\$144.85	\$152.54	\$207.80	\$127.58	\$173.80	\$118.37	\$161.25	\$109.57	\$149.27
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (l/b/f) Cost (2022\$/klm)	\$150.25	\$40.23	\$57.66	\$57.54	\$86.58	\$24.06	\$36.21	\$22.33	\$33.59	\$20.67	\$31.10
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$762.57	\$226.61	\$322.70	\$338.08	\$448.60	\$160.58	\$206.80	\$151.37	\$194.25	\$142.57	\$182.27
Annual Maintenance Cost (2022\$)	\$46.16	\$14.67	\$11.30	\$12.01	\$16.52	\$10.40	\$14.19	\$9.80	\$13.33	\$9.23	\$12.51
Total Installed Cost (2022\$/klm)	\$158.27	\$48.49	\$64.23	\$63.76	\$93.46	\$30.29	\$43.08	\$28.55	\$40.47	\$26.89	\$37.97
Annual Maintenance Cost (2022\$/klm)	\$9.58	\$3.14	\$2.25	\$2.27	\$3.44	\$1.96	\$2.96	\$1.85	\$2.78	\$1.74	\$2.61

 $^{1.\,}N/A\,\,because\,the\,lamp\,and\,fix ture\,are\,both\,included\,in\,\,the\,luminaire.$

Performance and Cost Characteristics » Commercial 4-ft T8 F28 High-efficiency and High-output in 2-Lamp System with Occupancy Sensor

	2012	2018	2022	2030	2040	2050
DATA ¹	Installed Stock Average	Installed Stock Average ²	Typical	Typical	Typical	Typical
Lamp Wattage	28.0	28.0	28.0	28.0	28.0	28.0
Lamp Lumens	2,560	2,682	2,682	2,682	2,682	2,682
Lamp Efficacy (lm/W)	91	96	96	96	96	96
System Wattage	50.3	55.4	55.4	55.4	55.4	55.4
System Lumens	4,506	4,774	4,774	4,774	4,774	4,774
System Efficacy (lm/W)	90	86	86	86	86	86
Ballast Efficiency (BLE)	90%	90%	90%	90%	90%	90%
CRI	85	84	84	84	84	84
Correlated Color Temperature (CCT)	4,100	3,500	3,500	3,500	3,500	3,500
Average Lamp Life (thousand hours)	24	48	48	48	48	48
Annual Operating Hours (h/y) ³	4,055	2,920	1,869	1,869	1,869	1,869
Lamp Price (2022\$)	\$11.17	\$5.40	\$5.29	\$5.08	\$4.84	\$4.60
Ballast Price (2022\$)	\$19.56	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$35.20	\$77.05	\$75.53	\$72.56	\$69.01	\$65.64
Occupancy Sensor Price (2022\$)	N/A	N/A	\$161.34	\$161.34	\$161.34	\$161.34
Disposal Costs (2022\$)	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48
Lamp Cost (2022\$/klm)	\$4.36	\$2.01	\$1.97	\$1.90	\$1.80	\$1.71
System (1/b/f) Cost (2022\$/klm)	\$30.12	\$32.75	\$92.26	\$91.00	\$89.49	\$88.06
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	0.4	0.4	0.4	0.4	0.4	0.4
Total Installed Cost (2022\$)	\$104.54	\$121.06	\$275.16	\$271.98	\$268.19	\$264.58
Annual Maintenance Cost (2022\$)	\$9.03	\$2.54	\$1.44	\$1.43	\$1.41	\$1.39
Total Installed Cost (2022\$/klm)	\$23.20	\$25.36	\$57.64	\$56.97	\$56.18	\$55.42
Annual Maintenance Cost (2022\$/klm)	\$2.00	\$0.53	\$0.30	\$0.30	\$0.30	\$0.29

- 1. Only a typical dataset is provided because these lamps all have similar efficacies.
- 2. Data and assumptions taken from the 2018 SSL Forecast. The report states that efficacy improvements for T8 lamps are not expected in the future and that cost for all commercial fixtures is expected to decrease between 0.1%-0.6% per year. We use 0.5% per year here.
- 3. Assumes occupancy sensor reduces hours of use by 36% (NCI, 2019)

Performance and Cost Characteristics » Commercial 4-ft T8 F28 High-efficiency and High-output in 2-Lamp System with Specular Reflector

	2012	2018	2022	2030	2040	2050
DATA ¹	Installed Stock Average	Installed Stock Average ²	Typical	Typical	Typical	Typical
Lamp Wattage	28.0	28.0	28.0	28.0	28.0	28.0
Lamp Lumens	2,560	2,682	2,682	2,682	2,682	2,682
Lamp Efficacy (lm/W)	91.4	95.8	95.8	95.8	95.8	95.8
System Wattage	55.4	55.4	55.4	55.4	55.4	55.4
System Lumens ³	4,506	4,774	5,347	5,347	5,347	5,347
System Efficacy (lm/W)	81	86	97	97	97	97
Ballast Efficiency (BLE)	90%	90%	90%	90%	90%	90%
CRI	85	84	84	84	84	84
Correlated Color Temperature (CCT)	4,100	3,500	3,500	3,500	3,500	3,500
Average Lamp Life (thousand hours)	24	48	48	48	48	48
Annual Operating Hours (h/y)	2,920	4,055	4,055	4,055	4,055	4,055
Lamp Price (2022\$)	\$11.17	\$5.40	\$5.29	\$5.08	\$4.84	\$4.60
Ballast Price (2022\$)	\$19.56	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$35.20	\$77.05	\$75.53	\$72.56	\$69.01	\$65.64
Reflector Price (2022\$)	N/A	N/A	\$44.53	\$44.53	\$44.53	\$44.53
Disposal Costs (2022\$)	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48
Lamp Cost (2022\$/klm)	\$4.36	\$2.01	\$1.97	\$1.90	\$1.80	\$1.71
System (l/b/f) Cost (2022\$/klm)	\$30.12	\$32.75	\$48.71	\$47.45	\$45.94	\$44.51
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	0.4	0.4	0.4	0.4	0.4	0.4
Total Installed Cost (2022\$)	\$104.54	\$121.06	\$158.35	\$155.17	\$151.38	\$147.77
Annual Maintenance Cost (2022\$)	\$6.50	\$3.53	\$3.13	\$3.10	\$3.06	\$3.02
Total Installed Cost (2022\$/klm)	\$23.20	\$25.36	\$29.62	\$29.02	\$28.31	\$27.64
Annual Maintenance Cost (2022\$/klm)	\$1.44	\$0.74	\$0.59	\$0.58	\$0.57	\$0.56

- 1. Only a typical dataset is provided because these lamps all have similar efficacies.
- 2. Data and assumptions taken from the 2018 SSL Forecast. The report states that efficacy improvements for T8 lamps are not expected in the future and that cost for all commercial fixtures is expected to decrease between 0.1%-0.6% per year. We use 0.5% per year here.
- 3. Specular reflector is expected to add 12% luminaire efficiency (LRC, 1992).

Performance and Cost Characteristics » Commercial 4-ft T8 F28 High-efficiency and High-output in 2-Lamp System with Occupancy Sensor and Specular Reflector

	2012	2018	2022	2030	2040	2050
DATA ¹	Installed Stock Average	Installed Stock Average ²	Typical	Typical	Typical	Typical
Lamp Wattage	28.0	28.0	28.0	28.0	28.0	28.0
Lamp Lumens	2,560	2,682	2,682	2,682	2,682	2,682
Lamp Efficacy (lm/W)	91.4	95.8	95.8	95.8	95.8	95.8
System Wattage	50.3	55.4	55.4	55.4	55.4	55.4
System Lumens ³	4,506	4,774	5,347	5,347	5,347	5,347
System Efficacy (lm/W)	89.6	86.2	96.6	96.6	96.6	96.6
Ballast Efficiency (BLE)	90%	90%	90%	90%	90%	90%
CRI	85	84	84	84	84	84
Correlated Color Temperature (CCT)	4,100	3,500	3,500	3,500	3,500	3,500
Average Lamp Life (thousand hours)	24	48	48	48	48	48
Annual Operating Hours (h/y) ³	4,055	2,920	1,869	1,869	1,869	1,869
Lamp Price (2022\$)	\$11.17	\$5.40	\$5.29	\$5.08	\$4.84	\$4.60
Ballast Price (2022\$)	\$19.56	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$35.20	\$77.05	\$75.53	\$72.56	\$69.01	\$65.64
Reflector Price (2022\$)	N/A	N/A	\$44.53	\$44.53	\$44.53	\$44.53
Occupancy Sensor Price (2022\$)	N/A	N/A	\$161.34	\$161.34	\$161.34	\$161.34
Disposal Costs (2022\$)	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48
Lamp Cost (2022\$/klm)	\$4.36	\$2.01	\$1.97	\$1.90	\$1.80	\$1.71
System (1/b/f) Cost (2022\$/klm)	\$30.12	\$32.75	\$108.87	\$107.61	\$106.10	\$104.66
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	0.4	0.4	0.4	0.4	0.4	0.4
Total Installed Cost (2022\$)	\$104.54	\$121.06	\$319.69	\$316.51	\$312.72	\$309.11
Annual Maintenance Cost (2022\$)	\$9.03	\$2.54	\$1.44	\$1.43	\$1.41	\$1.39
Total Installed Cost (2022\$/klm)	\$23.20	\$25.36	\$59.79	\$59.20	\$58.49	\$57.81
Annual Maintenance Cost (2022\$/klm)	\$2.00	\$0.53	\$0.27	\$0.27	\$0.26	\$0.26

- 1. Only a typical dataset is provided because these lamps all have similar efficacies.
- 2. Data and assumptions taken from the 2018 SSL Forecast. The report states that efficacy improvements for T8 lamps are not expected in the future and that cost for all commercial fixtures is expected to decrease between 0.1%-0.6% per year. We use 0.5% per year here.
- 3. Assumes occupancy sensor reduces hours of use by 36% (NCI, 2019). Specular reflector is expected to add 12% luminaire efficiency (LRC, 1992).

Performance and Cost Characteristics » Commercial 8-foot Linear 2-Lamp Lighting Systems

This section characterizes commercial linear fixtures that house two 8ft long linear lamps and their integrated luminaire equivalents. The technologies available for this system are linear fluorescent and LED.

- Linear fluorescent options are T5, T8, and T12 lamps. T5 lamps are approximately 40% narrower than T8 lamps and almost 60% narrower than T12 lamps. This narrowness allows T5 lamps to be coated with higher quality, more efficient phosphor blends than larger diameter lamps, resulting in a more efficacious lamp. The compact size of T5 lamps also permits greater flexibility in lighting design and construction.
- LED options for linear fixtures include replacement lamps that can fit directly into an existing fixture and fully integrated luminaires that can be used to replace existing fixtures. LED replacement lamps are also known as TLEDs. Type A TLEDs can be installed with existing ballasts and Type B and C TLEDs require the ballast to be disconnected. Replacement lamps are only sold to go into existing fixtures. If a new fixture is to be installed, a fully integrated LED luminaire is a more cost effective and efficient option. Because LED luminaires are fully integrated, they do not have lamp or fixture efficiency losses associated with ballasts and fixture optics. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- Linear lamps often have a nominal CCT rating of 3,500K, but products with CCTs of 3,000K, 4,000K, and 4,100K (neutral white) are also common. 5,000K (daylight) lamps are available as well. When replacing a light bulb, it is important to choose a product with a similar CCT value to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but for CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- The total installed cost is the price of 2 lamps, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps which are sold only as a replacement for use in an existing fixture. There are integrated LED luminaires that are more efficient and cost effective for new installations or fixture retrofits. Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours of 4147 hours/year for commercial 8ft linear systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- Beginning July 14, 2012 (or July 14, 2014, for T8 700-series phosphor lamps), DOE fluorescent lamp standards required a minimum efficacy of 89 lm/W. Although the amended performance-based standards do not explicitly prohibit T12 lamps, no T12 lamps meet the standard at the time of its announcement. Since then, however, T12 lamps meeting the standard have entered the market.
- California's Title 24 mandates the use of electronic ballasts with high efficacy luminaires (including fluorescent) of 13 W or higher (CEC, 2005).

ENERGY STAR:

• ENERGY STAR does not cover commercial linear luminaires (ENERGY STAR, 2020).

Performance and Cost Characteristics » Commercial 8-foot Linear 2-Lamp Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume the manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050:

Technology	Efficacy	Lifetime	Price	Potential for Improvements
T8 F59 Typical Efficiency	0%	0%	-0.5%	Limited because the technology is mature.
T8 F59 High Efficiency	0%	0%	-0.5%	Limited because the technology is mature.
T8 F96 High Output	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial 8-ft T8 F59 Typical Efficiency in a 2-Lamp System

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	59.0	59.0	59.0	59.0	59.0	59.0	59.0	59.0	59.0	59.0	59.0
Lamp Lumens	5,430	5,788	5,900	5,905	5,950	5,905	5,950	5,905	5,950	5,905	5,950
Lamp Efficacy (lm/W)	92.0	98.1	100.0	100.1	100.8	100.1	100.8	100.1	100.8	100.1	100.8
System Wattage	106.8	111.6	112.9	112.9	112.9	112.9	112.9	112.9	112.9	112.9	112.9
System Lumens	9,448	10,071	10,384	10,393	10,472	10,393	10,472	10,393	10,472	10,393	10,472
System Efficacy (lm/W)	88.5	90.3	92.0	92.1	92.8	92.1	92.8	92.1	92.8	92.1	92.8
Ballast Efficiency (BLE)	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%
CRI	82	84	85	84	85	84	85	84	85	84	85
Correlated Color Temperature (CCT)	4,100	4,100	3,500	4,100	3,500	4,100	3,500	4,100	3,500	4,100	3,500
Average Lamp Life (thousand hours)	24	21	24	21	24	21	24	21	24	21	24
Annual Operating Hours (h/y)	4,147	3,066	3,066	3,066	3,066	3,066	3,066	3,066	3,066	3,066	3,066
Lamp Price (2022\$)	\$14.70	\$21.80	\$23.58	\$21.37	\$22.84	\$20.53	\$21.94	\$19.53	\$20.87	\$18.57	\$19.85
Ballast Price (2022\$)	\$23.26	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	\$27.20	\$117.38	\$115.06	\$115.06	\$115.06	\$110.54	\$110.54	\$105.13	\$105.13	\$99.99	\$99.99
Disposal Costs (2022\$)	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96
Lamp Cost (2022\$/klm)	\$2.28	\$3.77	\$4.00	\$3.62	\$3.84	\$3.48	\$3.69	\$3.31	\$3.51	\$3.15	\$3.34
System (l/b/f) Cost (2022\$/klm)	\$12.40	\$15.99	\$15.62	\$15.18	\$15.35	\$14.59	\$14.75	\$13.87	\$14.03	\$13.20	\$13.34
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.0	1.0	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Labor Lamp Change (hours)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Total Installed Cost (2022\$)	\$114.60	\$238.20	\$247.36	\$242.94	\$245.88	\$236.74	\$239.56	\$229.33	\$232.01	\$222.28	\$224.83
Annual Maintenance Cost (2022\$)	\$8.98	\$9.66	\$8.51	\$9.08	\$8.32	\$8.83	\$8.09	\$8.54	\$7.82	\$8.26	\$7.55
Total Installed Cost (2022\$/klm)	\$12.13	\$23.65	\$23.82	\$23.38	\$23.48	\$22.78	\$22.88	\$22.07	\$22.16	\$21.39	\$21.47
Annual Maintenance Cost (2022\$/klm)	\$0.95	\$0.96	\$0.82	\$0.87	\$0.79	\$0.85	\$0.77	\$0.82	\$0.75	\$0.79	\$0.72

^{1.} From 2018 to 2050, fixture (and fixture price) includes ballast.

Performance and Cost Characteristics » Commercial 8-ft T8 F96 High-Output in a 2-Lamp System

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	86.0	86.0	86.0	86.0	86.0	86.0	86.0	86.0	86.0	86.0	86.0
Lamp Lumens	7600	8134	7710	8134	8200	8134	8200	8134	8200	8134	8200
Lamp Efficacy (lm/W)	88.4	94.6	89.7	94.6	95.3	94.6	95.3	94.6	95.3	94.6	95.3
System Wattage	148.4	183.6	183.6	183.6	183.6	183.6	183.6	183.6	183.6	183.6	183.6
System Lumens	12,026	15,455	14,649	15,455	15,580	15,455	15,580	15,455	15,580	15,455	15,580
System Efficacy (lm/W)	81.0	84.2	79.8	84.2	84.9	84.2	84.9	84.2	84.9	84.2	84.9
Ballast Efficiency (BLE)	92%	89%	89%	89%	89%	89%	89%	89%	89%	89%	89%
CRI	78	85	85	85	85	85	85	85	85	85	85
Correlated Color Temperature (CCT)	4,100	4,100	3,500	4,100	4,100	4,100	4,100	4,100	4,100	4,100	4,100
Average Lamp Life (thousand hours)	18	22	18	22	30	22	30	22	30	22	30
Annual Operating Hours (h/y)	4,147	3,066	3,066	3,066	3,066	3,066	3,066	3,066	3,066	3,066	3,066
Lamp Price (2022\$)	\$20.22	\$30.62	\$16.51	\$30.02	\$73.42	\$28.84	\$70.53	\$27.43	\$67.09	\$26.09	\$63.81
Ballast Price (2022\$)	\$18.55	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	\$27.20	\$117.38	\$115.06	\$115.06	\$115.06	\$110.54	\$110.54	\$105.13	\$105.13	\$99.99	\$99.99
Disposal Costs (2022\$)	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96	\$0.96
Lamp Cost (2022\$/klm)	\$2.24	\$3.77	\$2.14	\$3.69	\$8.95	\$3.55	\$8.60	\$3.37	\$8.18	\$3.21	\$7.78
System (l/b/f) Cost (2022\$/klm)	\$21.99	\$11.56	\$10.11	\$11.33	\$16.81	\$10.88	\$16.15	\$10.35	\$15.36	\$9.85	\$14.61
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.0	1.0	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Labor Lamp Change (hours)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Total Installed Cost (2022\$)	\$143.19	\$255.85	\$233.22	\$260.24	\$347.04	\$253.36	\$336.75	\$245.13	\$324.44	\$237.31	\$312.74
Annual Maintenance Cost (2022\$)	\$13.48	\$11.68	\$8.94	\$11.08	\$16.99	\$10.75	\$16.40	\$10.35	\$15.70	\$9.98	\$15.03
Total Installed Cost (2022\$/klm)	\$17.89	\$16.55	\$15.92	\$16.84	\$22.27	\$16.39	\$21.61	\$15.86	\$20.82	\$15.36	\$20.07
Annual Maintenance Cost (2022\$/klm)	\$1.12	\$0.76	\$0.61	\$0.72	\$1.09	\$0.70	\$1.05	\$0.67	\$1.01	\$0.65	\$0.96

^{1.} From 2018 to 2050, fixture (and fixture price) includes ballast.

Performance and Cost Characteristics » Commercial 8-ft Linear LED Replacement Lamp for a 2 Lamp System

	2012	2018		2022		20	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	N/A	35.7	34.0	39.0	40.0	32.9	33.7	28.4	29.2	25.1	25.7
Lamp Lumens	N/A	3,975	4,200	4,960	5,500	4,960	5,500	4,960	5,500	4,960	5,500
Lamp Efficacy (lm/W)	N/A	111.2	123.5	127.2	137.5	150.8	163.1	174.4	188.6	197.9	213.9
System Wattage	N/A	71.5	68.0	78.0	80.0	65.8	67.5	56.9	58.3	50.1	51.4
System Lumens	N/A	7,473	8,064	9,523	10,560	9,523	10,560	9,523	10,560	9,523	10,560
System Efficacy (lm/W)	N/A	104.5	118.6	122.1	132.0	144.8	156.5	167.4	181.0	189.9	205.4
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	N/A	80	82	81	82	81	82	81	82	81	82
Correlated Color Temperature (CCT)	N/A	5,000	4,000	4,000	5,000	4,000	5,000	4,000	5,000	4,000	5,000
Average Lamp Life (thousand hours)	N/A	50	50	50	50	50	50	50	50	50	50
Annual Operating Hours (h/y)	N/A	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541
Lamp Price (2022\$)	N/A	\$89.59	\$33.11	\$37.22	\$41.44	\$32.35	\$36.02	\$31.71	\$35.30	\$31.11	\$34.64
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	N/A	\$19.00	\$7.88	\$7.50	\$7.53	\$6.52	\$6.55	\$6.39	\$6.42	\$6.27	\$6.30
System (1/b/f) Cost (2022\$/klm)	N/A	\$23.98	\$8.21	\$7.82	\$7.85	\$6.79	\$6.82	\$6.66	\$6.69	\$6.53	\$6.56
Labor Cost (2022\$/h)	N/A	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	N/A	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Total Installed Cost (2022\$)	N/A	\$179.18	\$66.22	\$74.44	\$82.88	\$64.70	\$72.04	\$63.42	\$70.61	\$62.22	\$69.28
Annual Maintenance Cost (2022\$)	N/A	\$14.22	\$6.00	\$6.58	\$7.18	\$5.89	\$6.41	\$5.80	\$6.31	\$5.71	\$6.21
Total Installed Cost (2022\$/klm)	N/A	\$45.08	\$8.21	\$7.82	\$7.85	\$6.79	\$6.82	\$6.66	\$6.69	\$6.53	\$6.56
Annual Maintenance Cost (2022\$/klm)	N/A	\$3.58	\$0.74	\$0.69	\$0.68	\$0.62	\$0.61	\$0.61	\$0.60	\$0.60	\$0.59

^{1.} N/A because a fixture and an LED replacement lamp would not be purchased separately for a new installation or retrofit when there are integrated LED luminaires that are more efficient and cost effective. These lamps are sold only as replacements to go into existing fixtures.

Performance and Cost Characteristics » Commercial 8-ft Linear LED Luminaire Replacement for a 2-Lamp System

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	N/A	73.0	90.0	78.0	72.0	64.6	59.6	55.2	50.9	48.1	44.4
System Lumens	N/A	8,000	8,200	9,465	10,400	9,465	10,400	9,465	10,400	9,465	10,400
System Efficacy (lm/W)	N/A	109.6	91.1	121.3	144.4	146.5	174.4	171.6	204.3	196.6	234.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	N/A	90	80	81	80	81	80	81	80	81	80
Correlated Color Temperature (CCT)	N/A	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Average Lifetime (thousand hours)	N/A	75	50	73	100	73	100	73	100	73	100
Annual Operating Hours (h/y)	N/A	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431
Lamp or Luminaire Price (2022\$)	N/A	\$759.16	\$119.99	\$142.48	\$153.91	\$109.90	\$118.71	\$96.00	\$103.70	\$82.68	\$89.31
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (l/b/f) Cost (2022\$/klm)	N/A	\$80.00	\$14.63	\$15.05	\$14.80	\$11.61	\$11.41	\$10.14	\$9.97	\$8.73	\$8.59
Labor Cost (2022\$/h)	N/A	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	N/A	1.0	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Labor Lamp Change (hours) 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	N/A	\$708.20	\$206.52	\$229.01	\$240.44	\$196.42	\$205.24	\$182.53	\$190.23	\$169.20	\$175.83
Annual Maintenance Cost (2022\$)	N/A	\$39.16	\$22.40	\$17.46	\$13.53	\$14.40	\$11.11	\$13.09	\$10.08	\$11.84	\$9.10
Total Installed Cost (2022\$/klm)	N/A	\$88.53	\$25.18	\$24.20	\$23.12	\$20.75	\$19.73	\$19.28	\$18.29	\$17.88	\$16.91
Annual Maintenance Cost (2022\$/klm)	N/A	\$4.89	\$2.73	\$1.84	\$1.30	\$1.52	\$1.07	\$1.38	\$0.97	\$1.25	\$0.87

^{1.} N/A because the lamp and fixture are both included in the luminaire.

Performance and Cost Characteristics » Commercial Low-Bay Lighting Systems

The commercial low bay lighting characterized in this report is a one-lamp and one-ballast system in a low/high bay fixture that emits between 6,000 and 10,000 system lumens. Low bay lighting is defined as "interior lighting where the roof trusses or ceiling height is less than 25ft. above the floor" (IESNA, 2000). For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- Low bay conventional lighting technologies, such as metal halide and sodium vapor lamps, provide higher efficacy ranging from 80 lm/W to 100 lm/W. Older, mercury vapor lamps have much lower efficacy at approximately 40 lm/W.
- CCT and CRI values range broadly based on technology type for low bay products.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED luminaires, which are sold as one integrated system. Many factors influence the price of LED luminaires, including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical luminaire prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial low-bay systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

ENERGY STAR:

• ENERGY STAR does not cover low/high bay luminaires (ENERGY STAR, 2012).

Performance and Cost Characteristics » Commercial Low-Bay Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- (Navigant, 2019). Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

	Efficacy	Lifetime	Price	Potential for Improvements
Mercury Vapor	0%	0%	-0.5%	Limited because the technology is mature.
Metal Halide	0%	0%	-0.5%	Limited because the technology is mature.
Sodium Vapor	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial Mercury Vapor Low-Bay

	2012	2018	2022	2030 ²	2040 ²	2050^{2}
DATA ¹	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical
Lamp Wattage	175.0	175.0	175.0	N/A	N/A	N/A
Lamp Lumens	7,400	7,400	7,400	N/A	N/A	N/A
Lamp Efficacy (lm/W)	42.3	42.3	44.0	N/A	N/A	N/A
System Wattage	205.9	205.9	205.9	N/A	N/A	N/A
System Lumens	7,400	7,400	7,400	N/A	N/A	N/A
System Efficacy (lm/W)	35.9	35.9	35.9	N/A	N/A	N/A
BallastEfficiency	85%	85%	85%	N/A	N/A	N/A
CRI	33	33	33	N/A	N/A	N/A
Correlated Color Temperature (CCT)	3,700	3,700	3,700	N/A	N/A	N/A
Average Lamp Life (thousand hours)	24	24	24	N/A	N/A	N/A
Annual Operating Hours (h/y)	3,687	3,687	3,687	N/A	N/A	N/A
Lamp Price (2022\$)	\$13.96	\$13.55	\$13.80	N/A	N/A	N/A
Ballast Price (2022\$)	\$51.91	\$50.37	\$49.48	N/A	N/A	N/A
Fixture Price (2022\$)	\$38.73	\$37.58	\$36.83	N/A	N/A	N/A
Disposal Cost (2022\$)	\$1.50	\$1.50	\$1.50	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$1.89	\$1.83	\$1.86	N/A	N/A	N/A
System (I/b/f) Cost (2022\$/klm)	\$14.13	\$13.72	\$13.53	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	N/A	N/A	N/A
Labor System Installation (hours)	1.5	1.5	1.5	N/A	N/A	N/A
Labor Lamp Change (hours)	0.5	0.5	0.5	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$220.43	\$217.33	\$199.11	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$8.31	\$8.24	\$7.42	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$29.79	\$29.37	\$26.91	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$1.12	\$1.11	\$1.00	N/A	N/A	N/A

- Only a typical dataset is provided because these lamps all have similar efficacies.
 EPAct 2005 limited the sale and production of mercury vapor ballasts since 2008, and by 2030 there is no expected market for these products.

Performance and Cost Characteristics » Commercial Metal Halide Low-Bay

	2012	2018	2022	2030	2040	2050
DATA ¹	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical
Lamp Wattage	100.0	100.0	100.0	100.0	100.0	100.0
Lamp Lumens	8,084	8,331	8,500	8,500	8,500	8,500
Lamp Efficacy (lm/W)	80.8	83.3	85.0	85.0	85.0	85.0
System Wattage	113.6	113.6	113.6	113.6	113.6	113.6
System Lumens	7,400	7,400	7,400	7,400	7,400	7,400
System Efficacy (lm/W)	65.1	65.1	65.1	65.1	65.1	65.1
Ballast Efficiency	88%	88%	88%	88%	88%	88%
CRI	80	80	80	80	80	80
Correlated Color Temperature (CCT)	4,000	4,000	4,000	4,000	4,000	4,000
Average Lamp Life (thousand hours)	15	15	15	15	15	15
Annual Operating Hours (h/y)	3,760	3,760	3,760	3,760	3,760	3,760
Lamp Price (2022\$)	\$17.97	\$17.44	\$17.10	\$16.43	\$15.62	\$14.86
Ballast Price (2022\$)	\$57.97	\$56.26	\$49.48	\$47.54	\$45.21	\$43.00
Fixture Price (2022\$)	\$38.73	\$37.58	\$36.83	\$35.39	\$33.66	\$32.01
Disposal Cost (2022\$)	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50
Lamp Cost (2022\$/klm)	\$2.22	\$2.09	\$2.01	\$1.93	\$1.84	\$1.75
System (1/b/f) Cost (2022\$/klm)	\$15.50	\$15.04	\$13.97	\$13.43	\$12.77	\$12.14
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.5	1.5	1.5	1.5	1.5	1.5
Labor Lamp Change (hours)	0.5	0.5	0.5	0.5	0.5	0.5
Total Installed Cost (2022\$)	\$230.51	\$227.11	\$202.41	\$198.35	\$193.49	\$188.87
Annual Maintenance Cost (2022\$)	\$14.56	\$14.43	\$12.93	\$12.76	\$12.56	\$12.37
Total Installed Cost (2022\$/klm)	\$31.15	\$30.69	\$27.35	\$26.80	\$26.15	\$25.52
Annual Maintenance Cost (2022\$/klm)	\$1.97	\$1.95	\$1.75	\$1.72	\$1.70	\$1.67

 $^{1. \}quad \text{Only a typical dataset is provided because these lamps all have similar efficacies}.$

Performance and Cost Characteristics » Commercial Sodium Vapor Low-Bay

	2012	2018	2022	2030	2040	2050
DATA ¹	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical
Lamp Wattage	100.0	100.0	100.0	100.0	100.0	100.0
Lamp Lumens	8,550	8,550	9,300	9,300	9,300	9,300
Lamp Efficacy (lm/W)	85.5	85.5	93.0	93.0	93.0	93.0
System Wattage	128.0	128.0	128.0	128.0	128.0	128.0
System Lumens	8,550	8,550	9,300	9,300	9,300	9,300
System Efficacy (lm/W)	66.8	66.8	72.6	72.6	72.6	72.6
Ballast Efficiency	78%	78%	78%	78%	78%	78%
CRI	22	22	22	22	22	22
Correlated Color Temperature (CCT)	2,100	2,100	2,100	2,100	2,100	2,100
Average Lamp Life (thousand hours)	24	24	24	24	24	24
Annual Operating Hours (h/y)	3,614	3,614	3,614	3,614	3,614	3,614
Lamp Price (2022\$)	\$54.04	\$52.44	\$13.14	\$12.62	\$12.01	\$11.42
Ballast Price (2022\$)	\$56.14	\$54.48	\$43.26	\$41.56	\$39.53	\$37.60
Fixture Price (2022\$)	\$128.14	\$124.35	\$121.88	\$117.09	\$111.36	\$105.92
Disposal Cost (2022\$)	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50
Lamp Cost (2022\$/klm)	\$6.32	\$6.13	\$1.41	\$1.36	\$1.29	\$1.23
System (1/b/f) Cost (2022\$/klm)	\$27.87	\$27.05	\$19.17	\$18.42	\$17.52	\$16.66
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.5	1.5	1.5	1.5	1.5	1.5
Labor Lamp Change (hours)	0.5	0.5	0.5	0.5	0.5	0.5
Total Installed Cost (2022\$)	\$354.16	\$347.10	\$277.28	\$270.27	\$261.90	\$253.93
Annual Maintenance Cost (2022\$)	\$14.18	\$13.93	\$7.17	\$7.10	\$7.00	\$6.91
Total Installed Cost (2022\$/klm)	\$41.42	\$40.60	\$29.81	\$29.06	\$28.16	\$27.30
Annual Maintenance Cost (2022\$/klm)	\$1.66	\$1.63	\$0.77	\$0.76	\$0.75	\$0.74

 $^{1. \}quad \text{Only a typical dataset is provided because these lamps all have similar efficacies}.$

Performance and Cost Characteristics » Commercial LED Low-Bay Luminaire

	2012	2018		2022		2030)	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	68.1	84.0	40.0	73.0	76.0	61.2	63.7	52.7	54.9	46.3	48.2
System Lumens	4,877	10,000	5,000	10,000	12,000	10,000	12,000	10,000	12,000	10,000	12,000
System Efficacy (lm/W)	71.6	119.0	125.0	137.0	157.9	163.4	188.4	189.7	218.7	216.0	248.9
Ballast Efficiency	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	85	78	84	81	80	81	84	81	84	81	81
Correlated Color Temperature (CCT)	4,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
Average Lifetime (thousand hours)	50	74	75	65	60	65	60	65	60	65	60
Annual Operating Hours (h/y)	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042
Lamp or Luminaire Price (2022\$)	\$903.82	\$281.00	\$63.99	\$145.46	\$285.89	\$123.82	\$243.37	\$111.24	\$218.63	\$99.09	\$194.75
Ballast Price (2022\$) 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$185.31	\$28.10	\$12.80	\$14.55	\$23.82	\$12.38	\$20.28	\$11.12	\$18.22	\$9.91	\$16.23
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$865.44	\$396.83	\$162.99	\$244.46	\$384.89	\$222.82	\$342.37	\$210.24	\$317.63	\$198.09	\$293.75
Annual Maintenance Cost (2022\$)	\$69.95	\$37.02	\$12.23	\$24.24	\$45.18	\$21.55	\$39.45	\$19.99	\$36.12	\$18.48	\$32.90
Total Installed Cost (2022\$/klm)	\$177.44	\$39.68	\$32.60	\$24.45	\$32.07	\$22.28	\$28.53	\$21.02	\$26.47	\$19.81	\$24.48
Annual Maintenance Cost (2022\$/klm)	\$14.34	\$3.70	\$2.45	\$2.42	\$3.77	\$2.16	\$3.29	\$2.00	\$3.01	\$1.85	\$2.74

 $^{1. \}quad N/A \ because the lamp \ and \ fixture \ are both \ included \ in \ the \ luminaire.$

Performance and Cost Characteristics » Commercial High-Bay Lighting Systems

The commercial high-bay lighting characterized in this report is a one-lamp and one-ballast system in a low/high bay fixture that emits greater than 10,000 system lumens. High-bay lighting is defined as "interior lighting where the roof trusses or ceiling height is greater than 25ft. above the floor" (IESNA, 2000). For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- High bay conventional lighting technologies, such as metal halide and sodium vapor lamps, provide higher efficacy ranging from 80 lm/W to 100 lm/W. Older, mercury vapor lamps have much lower efficacy at approximately 40 lm/W.
- CCT and CRI values range broadly based on technology type for high bay products.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED luminaires, which are sold as one integrated system. Many factors influence the price of LED luminaires including, CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical luminaire prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial high bay systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

ENERGY STAR:

• ENERGY STAR does not cover low/high bay luminaires (ENERGY STAR, 2012).

Performance and Cost Characteristics » Commercial High-Bay Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

	Efficacy	Lifetime	Price	Potential for Improvements
Mercury Vapor	0%	0%	-0.5%	Limited because the technology is mature.
Metal Halide	0%	0%	-0.5%	Limited because the technology is mature.
Sodium Vapor	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial Mercury Vapor High-Bay

	2012	2018	2022	2030 ²	2040 ²	2050 ²
DATA ¹	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical
Lamp Wattage	400.0	400.0	400.0	N/A	N/A	N/A
Lamp Lumens	15,800	15,800	21,000	N/A	N/A	N/A
Lamp Efficacy (lm/W)	39.5	39.5	52.5	N/A	N/A	N/A
System Wattage	449.4	449.4	449.4	N/A	N/A	N/A
System Lumens	15,800	15,800	21,000	N/A	N/A	N/A
System Efficacy (lm/W)	35.2	35.2	46.7	N/A	N/A	N/A
BallastEfficiency	89%	89%	89%	N/A	N/A	N/A
CRI	50	50	50	N/A	N/A	N/A
Correlated Color Temperature (CCT)	3,900	3,900	3,900	N/A	N/A	N/A
Average Lamp Life (thousand hours)	24	24	24	N/A	N/A	N/A
Annual Operating Hours (h/y)	3,687	3,687	3,687	N/A	N/A	N/A
Lamp Price (2022\$)	\$23.81	\$23.10	\$28.93	N/A	N/A	N/A
Ballast Price (2022\$)	\$55.39	\$53.75	\$64.35	N/A	N/A	N/A
Fixture Price (2022\$)	\$106.65	\$103.49	\$101.43	N/A	N/A	N/A
Disposal Cost (2022\$)	\$1.50	\$1.50	\$1.50	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$1.51	\$1.46	\$1.38	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$11.76	\$11.41	\$9.27	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	N/A	N/A	N/A
Labor System Installation (hours)	2.0	2.0	2.0	N/A	N/A	N/A
Labor Lamp Change (hours)	0.5	0.5	0.5	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$340.29	\$334.78	\$326.71	N/A	N/A	N/A
Annual Maintenance Cost (2022\$)	\$9.82	\$9.71	\$9.74	N/A	N/A	N/A
Total Installed Cost (2022\$/klm)	\$21.54	\$21.19	\$15.56	N/A	N/A	N/A
Annual Maintenance Cost (2022\$/klm)	\$0.62	\$0.61	\$0.46	N/A	N/A	N/A

 $^{1. \}quad Only \ a \ typical \ dataset is \ provided \ because \ these \ lamps \ all \ have \ similar \ efficacies.$

Performance and Cost Characteristics » Commercial Metal Halide High-Bay

	2012	2018	2022	2030	2040	2050
DATA ¹	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical
Lamp Wattage	400.0	400.0	400.0	400.0	400.0	400.0
Lamp Lumens	32,000	32,972	42,000	42,000	42,000	42,000
Lamp Efficacy (lm/W)	80.0	82.4	105.0	105.0	105.0	105.0
System Wattage	444.4	444.4	444.4	444.4	444.4	444.4
System Lumens	32,000	32,972	42,000	42,000	42,000	42,000
System Efficacy (lm/W)	72.0	74.2	94.5	94.5	94.5	94.5
Ballast Efficiency	90%	90%	90%	90%	90%	90%
CRI	80	80	80	80	80	80
Correlated Color Temperature (CCT)	4,000	4,000	4,000	4,000	4,000	4,000
Average Lamp Life (thousand hours)	20	20	20	20	20	20
Annual Operating Hours (h/y)	3,760	3,760	3,760	3,760	3,760	3,760
Lamp Price (2022\$)	\$34.95	\$33.91	\$42.15	\$40.49	\$38.51	\$36.63
Ballast Price (2022\$)	\$55.39	\$53.75	\$64.35	\$61.82	\$58.80	\$55.92
Fixture Price (2022\$)	\$248.32	\$248.32	\$248.32	\$238.56	\$226.90	\$215.80
Disposal Cost (2022\$)	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50
Lamp Cost (2022\$/klm)	\$1.09	\$1.03	\$1.00	\$0.96	\$0.92	\$0.87
System (I/b/f) Cost (2022\$/klm)	\$10.58	\$10.19	\$8.45	\$8.12	\$7.72	\$7.34
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	2.0	2.0	2.0	2.0	2.0	2.0
Labor Lamp Change (hours)	0.5	0.5	0.5	0.5	0.5	0.5
Total Installed Cost (2022\$)	\$493.10	\$490.43	\$486.82	\$472.87	\$456.21	\$440.36
Annual Maintenance Cost (2022\$)	\$14.11	\$13.91	\$14.41	\$14.10	\$13.72	\$13.37
Total Installed Cost (2022\$/klm)	\$15.41	\$14.87	\$11.59	\$11.26	\$10.86	\$10.48
Annual Maintenance Cost (2022\$/klm)	\$0.44	\$0.42	\$0.34	\$0.34	\$0.33	\$0.32

 $^{1. \}quad Only \ a \ typical \ dataset is \ provided \ because \ these \ lamps \ all \ have \ similar \ efficacies.$

Performance and Cost Characteristics » Commercial Sodium Vapor High-Bay

	2012	2018	2022	2030	2040	2050
DATA ¹	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical
Lamp Wattage	250.0	250.0	250.0	250.0	250.0	250.0
Lamp Lumens	24,300	24,300	28,500	28,500	28,500	28,500
Lamp Efficacy (lm/W)	97.2	97.2	114.0	114.0	114.0	114.0
System Wattage	297.0	296.6	296.6	296.6	296.6	296.6
System Lumens	24,300	24,300	28,500	28,500	28,500	28,500
System Efficacy (lm/W)	81.8	81.9	96.1	96.1	96.1	96.1
Ballast Efficiency	84%	84%	84%	84%	84%	84%
CRI	22	22	22	22	22	22
Correlated Color Temperature (CCT)	2,100	2,100	2,100	2,100	2,100	2,100
Average Lamp Life (thousand hours)	24	24	24	24	24	24
Annual Operating Hours (h/y)	3,614	3,614	3,614	3,614	3,614	3,614
Lamp Price (2022\$)	\$53.71	\$52.12	\$20.37	\$19.57	\$18.61	\$17.70
Ballast Price (2022\$)	\$90.16	\$87.49	\$90.09	\$86.55	\$82.32	\$78.29
Fixture Price (2022\$)	\$280.71	\$272.39	\$266.98	\$256.49	\$243.95	\$232.02
Disposal Cost (2022\$)	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50	\$1.50
Lamp Cost (2022\$/klm)	\$2.21	\$2.14	\$0.71	\$0.69	\$0.65	\$0.62
System (1/b/f) Cost (2022\$/klm)	\$17.47	\$16.95	\$13.24	\$12.72	\$12.10	\$11.51
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	2.0	2.0	2.0	2.0	2.0	2.0
Labor Lamp Change (hours)	0.5	0.5	0.5	0.5	0.5	0.5
Total Installed Cost (2022\$)	\$579.02	\$566.44	\$509.44	\$494.61	\$476.88	\$460.02
Annual Maintenance Cost (2022\$)	\$14.13	\$13.89	\$8.26	\$8.14	\$8.00	\$7.86
Total Installed Cost (2022\$/klm)	\$23.83	\$23.31	\$17.88	\$17.35	\$16.73	\$16.14
Annual Maintenance Cost (2022\$/klm)	\$0.58	\$0.57	\$0.29	\$0.29	\$0.28	\$0.28

 $^{1. \}quad \text{Only a typical dataset is provided because these lamps all have similar efficacies}.$

Performance and Cost Characteristics » Commercial T5 4xF54 HO High-Bay

	2012	2018	20:	22	20	30	20	40	20	50
DATA ¹	Installed Stock Average	Installed Stock Average	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0
Lamp Lumens	4,850	4,850	4,273	4,750	4,273	4,750	4,273	4,750	4,273	4,750
Lamp Efficacy (lm/W)	89.8	89.8	79.1	88.0	79.1	88.0	79.1	88.0	79.1	88.0
System Wattage	233.8	233.8	233.8	233.8	233.8	233.8	233.8	233.8	233.8	233.8
System Lumens	19,400	19,400	17,092	19,000	17,092	19,000	17,092	19,000	17,092	19,000
System Efficacy (lm/W)	83.0	83.0	73.1	81.3	73.1	81.3	73.1	81.3	73.1	81.3
Ballast Efficiency (BLE)	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%
CRI	86	86	86	86	86	86	86	86	86	86
Correlated Color Temperature (CCT)	4,100	4,100	4,100	4,100	4,100	4,100	4,100	4,100	4,100	4,100
Average Lamp Life (thousand hours)	24	24	25	25	25	25	25	25	25	25
Annual Operating Hours (h/y)	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042
Lamp Price (2022\$)	\$8.45	\$8.20	\$4.70	\$13.65	\$4.51	\$13.11	\$4.29	\$12.47	\$4.08	\$11.86
Ballast Price (2022\$)	\$33.43	\$32.44	\$32.17	\$32.17	\$30.91	\$30.91	\$29.39	\$29.39	\$27.96	\$27.96
Fixture Price (2022\$)	\$129.23	\$125.40	\$122.91	\$122.91	\$118.08	\$118.08	\$112.31	\$112.31	\$106.82	\$106.82
Disposal Cost (2022\$)	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48	\$0.48
Lamp Cost (2022\$/klm)	\$1.74	\$1.69	\$1.10	\$2.87	\$1.06	\$2.76	\$1.00	\$2.63	\$0.96	\$2.50
System (1/b/f) Cost (2022\$/klm)	\$10.13	\$9.83	\$10.17	\$11.04	\$9.77	\$10.60	\$9.30	\$10.08	\$8.84	\$9.59
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Labor Lamp Change (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total Installed Cost (2022\$)	\$325.54	\$320.47	\$291.78	\$300.73	\$285.50	\$294.10	\$277.99	\$286.17	\$270.86	\$278.63
Annual Maintenance Cost (2022\$)	\$12.51	\$12.35	\$8.68	\$14.47	\$8.56	\$14.12	\$8.42	\$13.71	\$8.29	\$13.32
Total Installed Cost (2022\$/klm)	\$16.78	\$16.52	\$17.07	\$15.83	\$16.70	\$15.48	\$16.26	\$15.06	\$15.85	\$14.66
Annual Maintenance Cost (2022\$/klm)	\$0.65	\$0.64	\$0.51	\$0.76	\$0.50	\$0.74	\$0.49	\$0.72	\$0.48	\$0.70

Performance and Cost Characteristics » Commercial LED High-Bay Luminaire

	2012	2018		2022		203	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	212.2	167.0	150.0	137.8	130.0	115.5	109.0	99.4	93.9	87.4	82.5
System Lumens	18,915	18,797	18,500	18,500	18,900	18,500	18,900	18,500	18,900	18,500	18,900
System Efficacy (lm/W)	89.1	112.6	123.3	134.3	145.4	160.2	173.4	186.0	201.4	211.7	229.2
Ballast Efficiency	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	74	78	80	80	80	80	80	80	80	80	80
Correlated Color Temperature (CCT)	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
Average Lifetime (thousand hours)	70	67	100	100	100	100	100	100	100	100	100
Annual Operating Hours (h/y)	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042
Lamp or Luminaire Price (2022\$)	\$2,842.05	\$448.43	\$177.54	\$195.81	\$234.20	\$162.12	\$193.90	\$148.87	\$178.06	\$136.20	\$162.90
Ballast Price (2022\$) 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (l/b/f) Cost (2022\$/klm)	\$150.25	\$23.86	\$9.60	\$10.58	\$12.39	\$8.76	\$10.26	\$8.05	\$9.42	\$7.36	\$8.62
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$2,996.49	\$602.87	\$309.54	\$327.81	\$366.20	\$294.12	\$325.90	\$280.87	\$310.06	\$268.20	\$294.90
Annual Maintenance Cost (2022\$)	\$173.01	\$36.40	\$12.51	\$13.25	\$14.80	\$11.89	\$13.17	\$11.35	\$12.53	\$10.84	\$11.92
Total Installed Cost (2022\$/klm)	\$158.42	\$32.07	\$16.73	\$17.72	\$19.38	\$15.90	\$17.24	\$15.18	\$16.41	\$14.50	\$15.60
Annual Maintenance Cost (2022\$/klm)	\$9.15	\$1.94	\$0.68	\$0.72	\$0.78	\$0.64	\$0.70	\$0.61	\$0.66	\$0.59	\$0.63

^{1.} N/A because the lamp and fixture are both included in the luminaire.

Refrigeration

Performance and Cost Characteristics » Commercial Compressor Rack Systems

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Total Capacity (kBtu/h) ¹	1,200	1,200	1,200	1,190	930	N/A	1,190	930	1,190	930	1,190	930
Median Store Size (ft²)	46,500	31,997	35,197	35,197	35,197	N/A	35,197	35,197	35,197	35,197	35,197	35,197
Power Input (kW)	162	155	162	160	125	N/A	160	125	160	125	160	125
Annual Energy Use (MMWh/y) ²	1,497	1,497	1,305	1,232	1,160	N/A	1,232	1,160	1,232	1,160	1,232	1,160
Indexed Annual Efficiency ³	1.00	1.00	1.15	1.21	1.29	N/A	1.21	1.29	1.21	1.29	1.21	1.29
Average Life (years)	15	15	15	15	15	N/A	15	15	15	15	15	15
Total Installed Cost (2022\$)	\$630,000	\$630,000	\$488,000	\$625,000	\$630,000	N/A	\$625,000	\$630,000	\$625,000	\$630,000	\$625,000	\$630,000
Total Installed Cost (2022\$/kBtu/h)	\$525,000	\$525,000	\$406,667	\$525,210	\$677,419	N/A	\$525,210	\$677,419	\$525,210	\$677,419	\$525,210	\$677,419
Annual Maintenance Cost (2022\$) ⁴	\$3,400	\$3,400	\$3,400	\$3,400	\$3,400	N/A	\$3,400	\$3,400	\$3,400	\$3,400	\$3,400	\$3,400
Annual Maintenance Cost (2022\$/kBtu/h)	\$2,833	\$2,833	\$2,833	\$2,857	\$3,656	N/A	\$2,857	\$3,656	\$2,857	\$3,656	\$2,857	\$3,656

- 1. The total capacity represents the nominal compressor capacity required for the entire refrigeration system of a typical supermarket. This refrigeration system usually includes two low temperature racks and two medium temperature racks. For 2018, a 1,200 MBtu/h total cooling capacity is based on a 200-ton estimate for total capacity–80 tons for the medium temperature racks and 20 tons for the low temperature racks.
- 2. Capacity and annual energy consumption for 2022 and beyond are based on market research and Guidehouse estimates.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Maintenance cost includes oil changes, bearing lubrication, filter replacement, and system functionality checks-approximately half a day per rack of labor for technician is assumed.

87

- Commercial compressor rack systems that serve commercial supermarket display cases and walk-ins consist of a number of parallel-connected compressors located in a separate machine room. By modulating compressor capacity, these integrated systems provide higher efficiency and mechanical longevity.
- Rack integrators generally supply a packaged compressor rack for which much of the necessary piping, insulation, components, and controls are pre-assembled.
- A typical supermarket will have 10 to 20 compressors mounted in racks in the 3-horsepower (hp) to 15-hp size range. Usually, each rack has three to five compressors serve a series of loads with nearly identical evaporator temperature.
- The duty cycle for compressors is usually in the range of 60% to 70%.
- Energy use and capacity for the Reference Case are projected to remain static over the coming decades because commercial compressor racks systems are a mature technology. The Reference Case assumes low R&D efforts because it is an established technology.

Performance and Cost Characteristics » Commercial Condensers

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Total Capacity (kBtu/h) ¹	1,680	1,520	1,440	1,440	1,440	N/A	1,440	1,440	1,440	1,440	1,440	1,440
Median Store Size (ft²)	46,500	31,997	35,197	35,197	35,197	N/A	35,197	35,197	35,197	35,197	35,197	35,197
Power Input (kW)	25	25	18	18	18	N/A	18	18	18	18	18	18
Annual Energy Use (MMWh/y)	120	120	115	106	86	N/A	106	86	106	86	106	86
Indexed Annual Efficiency ²	1.00	1.00	1.04	1.13	1.40	N/A	1.13	1.40	1.13	1.40	1.13	1.40
Average Life (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Total Installed Cost (2022\$)	\$54,000	\$60,000	\$54,000	\$60,000	\$80,000	N/A	\$60,000	\$80,000	\$60,000	\$80,000	\$60,000	\$80,000
Total Installed Cost (2022\$/kBtu/h)	\$32,143	\$39,474	\$37,500	\$41,667	\$55,556	N/A	\$41,667	\$55,556	\$41,667	\$55,556	\$41,667	\$55,556
Annual Maintenance Cost (2022\$) ³	\$954	\$954	\$954	\$954	\$954	N/A	\$954	\$954	\$954	\$954	\$954	\$954
Annual Maintenance Cost (2022\$/kBtu/h)	\$0.57	\$0.63	\$0.66	\$0.66	\$0.66	N/A	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66

- 1. Total capacity is the total heat rejected (THR) by condensers comprised of two low temperature condensers (THRL = 240 MBtu/h each, suction temperature= -25°F, condensing temperature=110°F) and two medium temperature condensers (THRM = 520 MBtu/h each, suction temperature = 15°F, condensing temperature = 115°F); ambient temperature = 95°F. (NCI, 2009). For 2022 and beyond, capacity was estimated by Guidehouse.
- 2. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 3. Maintenance cost includes coil cleaning, leak checking, belt replacement as necessary, and system functionality checks.

- Condensers are designed with multiple methods of cooling: air-cooled, water-cooled, and evaporative. These units can be single-circuit or a multiple circuit.
- Commercial condensers are remotely located, typically installed on the roof of a supermarket.
- For use with parallel compressors in supermarkets, air-cooled units are the most commonly used condensers. This analysis is based on multiple air-cooled condensers connected to a supermarket refrigeration system comprised of two low temperature condensers and two medium temperature condensers.
- Each compressor rack has a dedicated condenser or a separate circuit of a single common condenser. Condenser temperatures of multiple racks are often different.
- The duty cycle for condensers is usually in the range 50%-70%.
- Energy use is projected to remain static over the coming decades because commercial condensers are a mature technology.

Performance and Cost Characteristics » Commercial Supermarket Display Cases

	2012	2018		20	22		20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	17,623	11,850	11,850	11,850	11,850	N/A	11,850	11,850	11,850	11,850	11,850	11,850
Median Store Size (ft²)	46,500	31,997	35,197	35,197	35,197	N/A	35,197	35,197	35,197	35,197	35,197	35,197
Case Length (ft)	12	12	12	12	12	N/A	12	12	12	12	12	12
Annual Energy Use (kWh/y) ^{1,2}	13,497	10,506	10,506	9,771	9,087	N/A	9,771	9,087	9,771	9,087	9,771	9,087
Annual Energy Use / Case Length (kWh/ft)	1,125	876	876	814	757	N/A	814	757	814	757	814	757
Indexed Annual Efficiency ³	1.00	1.28	1.28	1.38	1.49	N/A	1.38	1.49	1.38	1.49	1.38	1.49
Average Life (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$8,510	\$10,650	\$7,265	\$9,500	\$10,680	N/A	\$9,500	\$10,680	\$9,500	\$10,680	\$9,500	\$10,680
Total Installed Cost (2022\$)	\$10,811	\$12,650	\$9,265	\$11,500	\$12,680	N/A	\$11,500	\$12,680	\$11,500	\$12,680	\$11,500	\$12,680
Total Installed Cost (2022\$/kBtu/h)	613	1,068	782	970	1,070	N/A	970	1,070	970	1,070	970	1,070
Annual Maintenance Cost (2022\$) ⁴	\$940	\$940	\$940	\$940	\$940	N/A	\$940	\$940	\$940	\$940	\$940	\$940
Annual Maintenance Cost (2022\$/kBtu/h)	\$53.34	\$79.32	\$79.32	\$79.32	\$79.32	N/A	\$79.32	\$79.32	\$79.32	\$79.32	\$79.32	\$79.32

- 1. For 2022 and beyond, energy consumption and cost values were estimated using shipment-weighted averages reported in DOE's 2014 CRE Final Rule Technical Support Document (TSD) for equipment commonly used as display cases. DOE's updated conservation standard went into effect in 2017, so units sold in 2018 are assumed to comply with this standard.
- 2. For consistency with DOE rulemaking practices, Supermarket Display Case Energy Use reported above includes energy use of the compressor racks and condensers. To avoid double counting, do not add Energy Use from the Compressor Rack or Condenser Systems tabs if calculating total energy consumption.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Maintenance cost includes preventative maintenance costs such as cleaning evaporator coils, drain pans, fans, and intake screens as well as lamp replacements and other lighting maintenance activities. After 2012, these values are based on a reported maintenance and repair cost of \$220 per unit for preventative maintenance plus approximately \$60 per linear foot for additional repair and maintenance.

- DOE set federal energy efficiency standards for Commercial Refrigeration Equipment (CRE) in 2009. These standards set maximum daily energy consumption levels, in kilowatt-hours per day, for display cases manufactured sold in the United States on or after January 1, 2012.
- DOE updated its Energy Conservation Standards for Commercial Refrigeration Equipment in 2014 for equipment sold on or after March 27, 2017.
- The table below lists equipment used as supermarket display cases and their corresponding Energy Conservation Standard levels. The maximum allowable daily energy consumption for each equipment class is a linear function of Total Display Area (TDA).

Equipment Description	Standards Equation (2012)	Standards Equation (2017)
Vertical Open Cooler (VOP.RC.M)	0.82xTDA+4.07	0.64xTDA+4.07
Semi-Vertical Open Cooler (SVO.RC.M)	0.83xTDA+3.18	0.66xTDA+3.18
Horizontal Open Cooler (HZO.RC.M)	0.35xTDA+2.88	0.35xTDA+2.88
Transparent-Doored Cooler (VCT.RC.M)	0.22xTDA+1.95	0.15xTDA+1.95
Deli Display Cooler (SOC.RC.M)	0.51xTDA+0.11	0.44xTDA+0.11
Transparent-Doored Freezer (VCT.RC.L)	0.56xTDA+2.61	0.49xTDA+2.61
Horizontal Open Freezer (HZO.RC.L)	0.57xTDA+6.88	0.55xTDA+6.88

- According to CBECS 2018 microdata, the average building size for food sale building type is 31,997.
- Unit energy consumption for 2022 and beyond is estimated using a shipment-weighted average by efficiency level and equipment class, using data in DOE's 2014 CRE Final Rule TSD with updated analysis from Guidehouse in 2016. The equipment classes analyzed are listed in the table on the previous slide.
- Supermarket refrigeration systems consist of refrigerated display cases, condensing units, and centralized compressor racks.
- A typical supermarket display case contains lighting, evaporators, evaporator fans, piping, insulation, valves, and controls.
- The efficiency of supermarket display cases can be increased through the use of improved evaporator coils, larger evaporators, higher efficiency evaporator fan blades, high efficiency doors, LED lighting, and improved insulation.
- Energy use is projected to remain static over the coming decades because supermarket display cases are a mature technology.

Performance and Cost Characteristics » Commercial Reach-In Refrigerators

	2012	2018		20	22		20	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	2,929	2,400	2,349	2,349	2,349	2,349	2,349	2,349	2,349	2,349	2,349	2,349
Size (ft³)	49	49	46	46	46	47	46	46	46	46	46	46
Annual Energy Use (kWh/y)	2,340	2,222	1,935	1,351	810	810	1,351	810	1,351	810	1,351	810
Annual Energy Use / Volume (kWh/y/ft³)¹	48	45	42	29	18	17	29	18	29	18	29	18
Indexed Annual Efficiency ³	1.00	1.05	1.21	1.73	2.89	2.89	1.73	2.89	1.73	2.89	1.73	2.89
Average Life (years)	10	10	10	10	10	10	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$2,624	\$2,403	\$2,728	\$2,780	\$3,021	\$3,021	\$2,780	\$3,021	\$2,780	\$3,021	\$2,780	\$3,021
Total Installed Cost (2022\$) ⁴	\$3,454	\$3,282	\$3,591	\$3,643	\$3,884	\$3,884	\$3,643	\$3,884	\$3,643	\$3,884	\$3,643	\$3,884
Total Installed Cost (2022\$/kBtu/h)	\$1,179	\$1,368	\$1,529	\$1,551	\$1,654	\$1,654	\$1,551	\$1,654	\$1,551	\$1,654	\$1,551	\$1,654
Annual Maintenance Cost (2022\$) ⁵	\$185	\$185	\$185	\$185	\$185	\$186	\$185	\$185	\$185	\$185	\$185	\$185
Annual Maintenance Cost (2022\$/kBtu/h)	\$63	\$77	\$79	\$79	\$79	\$79	\$79	\$79	\$79	\$79	\$79	\$79

- 1. EPACT 2005 energy standards went into effect in 2010. 2022 low efficiency cost and energy consumption values are based on minimum compliance with this standard. Unless otherwise noted, all other cases are based on shipment-weighted averages solid- and transparent-doored units reported in the 2014 CRETSD. DOE's updated Energy Conservation standards went into effect in 2017; therefore, compliance with this standard is assumed for 2022 and beyond.
- 2. The ENERGY STAR category is based on a shipment weighted average of solid- and transparent-doored units that are minimally compliant with ENERGY STAR v3, effective October 1, 2014. Units compliant with ENERGY STAR are found to be the most efficient reach-in refrigeration equipment on the market in 2022.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 is based on NCI 2009 report that assumes a cost of \$863. Installation cost for 2022 and beyond is based DOE's 2014 CREFinal Rule and additional analysis by Guidehouse, which assumes an installation cost of \$878 for self-contained equipment.
- 5. Maintenance costs after 2012 are based on DOE's CRE 2014 Final Rule TSD, which reports \$35 annual preventative maintenance, per unit, per year, plus approximately \$40 per linear foot, per year of additional repair and maintenance costs for the units characterized.

- The Energy Policy Act of 2005 (EPACT 2005) set maximum daily energy consumption levels, in kilowatt-hours per day, for commercial reach-in refrigerators that went into effect on January 1, 2010. The daily energy consumption is based on the volume of the unit (V) in ft³.
- In 2014, DOE updated its energy conservation standards for reach-in refrigerators, effective March 27, 2017. Both standards are reported in the table below.

Equipment Class	EPCA Standard Level (2010)	DOE Standard Level (2017)
Solid Door (VCS.SC.M)	0.10xV+2.04	0.05xV + 1.36
Glass Door (VCT.SC.M)	0.12xV+3.34	0.1xV+0.86

• In 2013, EPA updated its ENERGY STAR specifications for reach-in refrigerators, effective March 27, 2017. These standards are also based on the refrigerated volume of the unit.

Reach-In Refrigerator Size	0 < V < 15	15 ≤ V < 30	30 ≤ V < 50	50 ≤ V
Solid Door (VCS.SC.M)	0.022xV+0.97	0.066xV+0.31	0.04xV+1.09	0.024xV+1.89
Glass Door (VCT.SC.M)	0.095xV+0.445	0.05xV+1.12	0.076xV+0.034	0.105xV-1.111

- Unit energy consumption for 2012 and beyond was estimated based on shipment-weighted averages by efficiency level and equipment class for 49 ft3 VCS.SC.M and VCT.SC.M units reported in DOE's 2014 CRE Final Rule TSD with updated analysis from Guidehouse in 2016. These units were estimated to comprise approximately 85% and 15% of total reach-in refrigerator shipments, respectively.
- The efficiency of commercial reach-in refrigerators can be increased through the use of efficient compressors, efficient evaporator fans, efficient condenser fans, electric defrost, and more efficient lighting.
- For this referenced scenario, energy use is projected to remain static over the coming decades because reach-in refrigerators are a mature technology.

Performance and Cost Characteristics » Commercial Reach-In Freezers

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	4,341	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340
Size (ft³)	49	49	49	49	49	49	49	49	49	49	49	49
Annual Energy Use (kWh/y) ¹	6,023	5,585	5,585	4,847	4,110	4,110	4,847	4,110	4,847	4,110	4,847	4,110
Annual Energy Use / Volume (kWh/y/ft³)	123	114	114	99	84	84	99	84	99	84	99	84
Indexed Annual Efficiency ³	1.00	1.08	1.08	1.24	1.47	1.47	1.24	1.47	1.24	1.47	1.24	1.47
Average Life (years)	10	10	10	10	10	10	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$2,886	\$2,886	\$2,886	\$3,175	\$3,493	\$3,493	\$3,175	\$3,493	\$3,175	\$3,493	\$3,175	\$3,493
Total Installed Cost (2022\$) ⁴	\$3,749	\$3,749	\$3,749	\$4,125	\$4,443	\$4,443	\$4,125	\$4,443	\$4,125	\$4,443	\$4,125	\$4,443
Total Installed Cost (2022\$/kBtu/h)	\$864	\$864	\$864	\$950	\$1,024	\$1,024	\$950	\$1,024	\$950	\$1,024	\$950	\$1,024
Annual Maintenance Cost (2022\$) ⁵	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181
Annual Maintenance Cost (2022\$/kBtu/h)	\$41.70	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71

- 1. A 49 ft³ unit was characterized, because it was the representative size selected for DOE's rulemaking analysis.
- $2. \qquad \text{The ENERGY STAR category was based on a solid-doored unit that is minimally compliant with ENERGY STAR v3, effective October 1, 2014.}$
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 and 2018 is based on DOE's on-going CRE rulemaking, which assumes a cost of \$863 for self-contained equipment and \$950 for 2022 and beyond based on analysis from Guidehouse.
- 5. Maintenance costs are calculated based on a \$35 per unit annual preventative maintenance cost, plus an additional \$45 per linear foot repair and maintenance cost estimated based on values reported in the CRETSD.

- EPACT 2005 set maximum daily energy consumption levels, in kilowatt-hours per day, for commercial reach-in freezers that went into effect on January 1, 2010. The daily energy consumption is based on the volume of the unit (V) in ft³.
- In March of 2017, DOE updated its energy conservation standards for commercial refrigeration equipment, including reach-in freezers. Both the EPCA and DOE standards are reported in the table below.

Equipment Class	EPCA (2010)	DOE Standard Level (2017)
Solid Door (VCS.SC.L)	0.4xV+1.38	0.22xV+1.38
Transparent Door (VCT.SC.L)	0.75xV+4.10	0.29xV+2.95

• In 2013, EPA updated its ENERGY STAR specifications for reach-in freezers, effective March 27, 2017. These standards are also based on the refrigerated volume of the unit.

Reach-In Freezer Size	0 < V < 15	15 ≤ V < 30	$30 \le V < 50$	50 ≤ V
Solid Door (VCS.SC.L)	0.21xV+0.9	0.12xV+2.248	0.285xV-2.703	0.142xV+4.445
Glass Door (VCT.SC.L)	0.232xV+2.36	0.232xV+2.36	0.232xV+2.36	0.232xV+2.36

- The commercial reach-in freezer characterized in this report, which is the typical unit according to DOE's 2014 CRE rulemaking, is a 49 cubic ft. solid two-door unit with a nominal compressor size of 4,341 Btu/h.
- The efficiency of commercial reach-in freezers can be increased through the use of efficient compressors, efficient evaporator fans, efficient condenser fans, electric defrost, and more efficient lighting.
- For this referenced scenario, energy use is projected to remain static over the coming decades because reach-in freezers are a mature technology.

Performance and Cost Characteristics » Commercial Walk-In Refrigerators

	2012	2018		20	22		20	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h) ¹	37,820	39,422	41,024	41,024	41,024	N/A	41,024	41,024	41,024	41,024	41,024	41,024
Size (ft²)	305	240	240	240	240	N/A	240	240	240	240	240	240
Annual Energy Use (kWh/y) ²	30,689	20,040	17,600	16,200	14,800	N/A	16,200	14,800	16,200	14,800	16,200	14,800
Annual Energy Use / Area (kWh/ft²/y)	101	84	73	68	62	N/A	68	62	68	62	68	62
Indexed Annual Efficiency ³	1.00	1.53	1.74	1.89	2.07	N/A	1.89	2.07	1.89	2.07	1.89	2.07
Insulated Box Average Life (years)	12	12	12	12	12	N/A	12	12	12	12	12	12
Compressor Average Life (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$23,598	\$19,847	\$16,050	\$19,847	\$23,644	N/A	\$16,050	\$23,644	\$16,050	\$23,644	\$16,050	\$23,644
Total Installed Cost (2022\$) ⁴	\$27,012	\$23,897	\$20,100	\$23,897	\$27,694	N/A	\$20,100	\$27,694	\$20,100	\$27,694	\$20,100	\$27,694
Total Installed Cost (2022\$/kBtu/h)	\$714	\$606	\$490	\$583	\$675	N/A	\$490	\$675	\$490	\$675	\$490	\$675
Annual Maintenance Cost (2022\$) ⁵	\$716	\$740	\$740	\$740	\$740	N/A	\$740	\$740	\$740	\$740	\$740	\$740
Annual Maintenance Cost (2022\$/kBtu/h)	\$18.93	\$18.77	\$18.04	\$18.04	\$18.04	N/A	\$18.04	\$18.04	\$18.04	\$18.04	\$18.04	\$18.04

- 1. Assumes medium temperature units are refrigerators.
- 2. Average unit energy consumption was adapted from the DOE CRE 2016 report by assuming electronically commutated motor (ECM) evaporator fan motors are required for Energy Policy & Conservation Act (EPCA) compliance, as well as ECM condenser fan motors.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 and beyond is based on DOE's Walk-In TSD.
- 5. Maintenance cost includes checking and maintaining refrigerant charge levels, checking settings, and cleaning heat exchanger coils.

- For 2012 and beyond, the unit characterized was a walk-in storage cooler, based on DOE's WICF TSD.
- A typical walk-in refrigerator includes:
 - insulated floor and wall panels
 - merchandising doors, shelving, and lighting (not included in cost estimate)
 - semi-hermetic reciprocating compressor
 - refrigerant (R404A)
 - condenser
 - evaporator
- Energy consumption is assumed to scale with the AWEF (Annual Walk-in Energy Factor), defined as the ratio of total
 heat removed from the refrigerated volume per year to the total electrical energy input of refrigeration systems over
 the same time period.
- The installation cost consists of freight and delivery costs in addition to on-site assembly.

The Energy Independence and Security Act (EISA) of 2007 included prescriptive standards for walk-in refrigerators (coolers) that went into effect in 2009. These prescriptive standards, which are included in the analysis for all units for 2012 and beyond, state that all walk-in refrigerators manufactured after January 1, 2009, must:

- For 2012 and beyond
- have automatic door closers
- have strip doors, spring hinged doors, or other method of minimizing infiltration when doors are open
- contain wall, ceiling, and door insulation of at least R–25, except for glazed portions of doors and structural members
- use electronically commutated motors or three-phase motors (for evaporator fan motors of under 1 horsepower and less than 460 volts)
- use electronically commutated motors, permanent split capacitor-type motors, or three-phase motors (for condenser fan motors of under 1 horsepower)
- use light sources with an efficacy of 40 lumens per watt or more, including ballast losses (if any), except that light sources with an efficacy of 40 lumens per watt or less, including ballast losses (if any), may be used in conjunction with a timer or device that turns off the lights within 15 minutes of when the walk-in refrigerator is not occupied by people.

In 2014, DOE updated its energy conservation standards for walk-in coolers and freezers. Minimum AWEF (Annual Walk-In Energy Factor) was set for refrigeration systems, as well as upper limits on energy consumption attributable to passage, freight, and display doors. DOE elected not to set new standards for the R-value of Walk-In Panels.

ENERGY CONSERVATION STANDARDS FOR WALK-IN COOLERS AND WALK-IN FREEZERS Class descriptor Class Standard level Refrigeration Systems Minimum AWEF (Btu/W-h) Dedicated Condensing, Medium Temperature, Indoor System, <9,000 Btu/h Capacity DC.M.I, <9,000 ... 5.61 Dedicated Condensing, Medium Temperature, Indoor System, ≥9,000 Btu/h Capacity DC.M.I, ≥9,000 ... 5.61 Dedicated Condensing, Medium Temperature, Outdoor System, <9,000 Btu/h Capacity DC.M.O, <9,000 ...7.60 Dedicated Condensing, Medium Temperature, Outdoor System, ≥9,000 Btu/h Capacity DC.M.O,≥9,000 ...7.60 Dedicated Condensing, Low Temperature, Outdoor System, <9,000 Btu/h Capacity DC.L.O, <9,000 .. 2.30 · 1044 · Q + 2.73 Dedicated Condensing, Low Temperature, Outdoor System, ≥9,000 Btu/h Capacity DC.L.O, ≥9,000 .. 4.79 Panels Minimum R-v alue (h-ft2-°F/Btu) Non-Display Doors Maximum energy consumption (kWh/day) * Passage Door, Low Temperature PD.L 0.14 · And + 4.8 Display Doors Maximum Energy Consumption (kWh/day) †

Performance and Cost Characteristics » Commercial Walk-In Freezers

	2012	2018		20	22		20	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	22,114	23,500	23,500	23,500	23,500	N/A	23,500	23,500	23,500	23,500	23,500	23,500
Size (ft²) ¹	172	161	161	161	161	N/A	161	161	161	161	161	161
Annual Energy Use (kWh/y) ²	22,862	22,000	22,000	20,460	19,028	N/A	20,460	19,028	20,460	19,028	20,460	19,028
Annual Energy Use / Area (kWh/ft²/y)	133	124	124	115	107	N/A	115	107	115	107	115	107
Indexed Annual Efficiency ³	1.00	1.04	1.04	1.12	1.20	N/A	1.12	1.20	1.12	1.20	1.12	1.20
Insulated Box Average Life (years)	12	12	12	12	12	N/A	12	12	12	12	12	12
Compressor Average Life (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$22,008	\$21,950	\$21,950	\$22,850	\$23,750	N/A	\$22,850	\$23,750	\$22,850	\$23,750	\$22,850	\$23,750
Total Installed Cost (2022\$) ⁴	\$24,058	\$23,950	\$23,950	\$24,850	\$25,750	N/A	\$24,850	\$25,750	\$24,850	\$25,750	\$24,850	\$25,750
Total Installed Cost (2022\$/kBtu/h)	\$1,088	\$1,019	\$1,019	\$1,057	\$1,096	N/A	\$1,057	\$1,096	\$1,057	\$1,096	\$1,057	\$1,096
Annual Maintenance Cost (2022\$) ⁵	\$741	\$741	\$741	\$741	\$741	N/A	\$741	\$741	\$741	\$741	\$741	\$741
Annual Maintenance Cost (2022\$/kBtu/h)	\$33.51	\$31.53	\$31.53	\$31.53	\$31.53	N/A	\$31.53	\$31.53	\$31.53	\$31.53	\$31.53	\$31.53

- 1. Based on DOE's 2014 WICF Final Rule TSD and additional analysis by Guidehouse, the average floor area for a walk-in storage freezer as 161 ft².
- 2. EISA 2007 includes prescriptive standards for walk-in freezers that went into effect in 2009. All units for 2012 and beyond include these prescriptive standards. Units for 2022 and beyond are characterized using data from DOE's 2014 WICF rulemaking. All units for 2022 and beyond are assumed to comply with this standard.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 and beyond is based on DOE's WICF TSD and additional analysis by Guidehouse.
- 5. Maintenance cost includes checking and maintaining refrigerant charge levels, checking settings, and cleaning heat exchanger coils.

- The commercial walk-in freezer characterized in this report is a walk-in storage freezer with an area of 161 ft².
- A typical walk-in freezer includes:
 - insulated floor, door, and wall panels
 - semi-hermetic reciprocating compressor
 - refrigerant (R404A)
 - condenser
 - evaporator
- Energy consumption is assumed to scale with the AWEF (Annual Walk-in Energy Factor), defined as the ratio of total heat removed from the refrigerated volume per year to the total electrical energy input of refrigeration systems over the same time period.
- The installation cost consists of freight and delivery costs in addition to on-site assembly.

EISA 2007 included prescriptive standards for walk-in freezers that went into effect in 2009. These prescriptive standards, which are included in all units for 2011 and beyond, state that all walk-in freezers manufactured after January 1, 2009, must:

- have automatic door closers
- have strip doors, spring hinged doors, or other method of minimizing infiltration when doors are open
- contain wall, ceiling, and door insulation of at least R–32, except for glazed portions of doors and structural members
- contain floor insulation of at least R–28
- use electronically commutated motors or three-phase motors (for evaporator fan motors of under 1 horsepower and less than 460 volts)
- use electronically commutated motors, permanent split capacitor-type motors, or three-phase motors (for condenser fan motors of under 1 horsepower)
- use light sources with an efficacy of 40 lumens per watt or more, including ballast losses (if any), except that light sources with an efficacy of 40 lumens per watt or less, including ballast losses (if any), may be used in conjunction with a timer or device that turns off the lights within 15 minutes of when the walk-in freezer is not occupied by people.

In 2014, DOE updated its energy conservation standards for walk-in coolers and freezers. Minimum AWEF (Annual Walk-in Energy Factor) was set for refrigeration systems, as well as upper limits on energy consumption attributable to passage, freight, and display doors. DOE elected not to set new standards for the R-value of Walk-in Panels.

ENERGY CONSERVATION STANDARDS FOR WALK-IN COOLERS AND WALK-IN FREEZERS Class descriptor Class Standard level

•		
Refrigeration Systems Minimum AWEF (Btu/W-h)		
Dedicated Condensing, Medium Temperature, Indoor System, <9,000 Btu/h Capacity	. DC.M.I, <9,000	. 5.61
Dedicated Condensing, Medium Temperature, Indoor System, ≥9,000 Btu/h Capacity	DC.M.I, ≥9,000.	5.61
Dedicated Condensing, Medium Temperature, Outdoor System, <9,000 Btu/h Capacity	.DC.M.O, <9,000.	7.60
Dedicated Condensing, Medium Temperature, Outdoor System, ≥9,000 Btu/h Capacity	DC.M.O,≥9,000	7.60
Dedicated Condensing, Low Temperature, Indoor System, <9,000 Btu/h Capacity	. DC.L.I, <9,000	5.93 · 10 _{¥5} · Q + 2.33
Dedicated Condensing, Low Temperature, Indoor System, ≥9,000 Btu/h Capacity	DC.L.I, ≥9,000	. 3.10
Dedicated Condensing, Low Temperature, Outdoor System, <9,000 Btu/h Capacity	DC.L.O, <9,000.	. 2.30 · 10 _{¥4} · Q + 2.73
Dedicated Condensing, Low Temperature, Outdoor System, ≥9,000 Btu/h Capacity	DC.L.O, ≥9,000.	4.79
Multiplex Condensing, Medium Temperature	MC.M	10.89
Multiplex Condensing, Low Temperature	MC.L	6.57
Panels Minimum R-v alue (h-ft2-°F/Btu)		
Structural Panel, Medium Temperature	SP.M	25
Structural Panel, Low Temperature		
Floor Panel, Low Temperature		
Non-Display Doors Maximum energy consumption		
(kWh/day) ** Passage Door, Medium Temperature	PD M	0.05. And + 1.7
Passage Door, Low Temperature		
Freight Door, Medium Temperature		
Freight Door, Low Temperature		
		. 0.12 / Alid · 0.0
Display Doors Maximum Energy Consumption (kWh/day) †		
Display Door, Medium Temperature	DD.M	$0.04 \cdot A_{dd} + 0.41$
Display Door, Low Temperature		

Performance and Cost Characteristics » Commercial Ice Machines

	2012	2018		20	22		20	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ⁶	Typical	High	Typical	High	Typical	High
Output (pounds [lbs] per day) 1	300	641	700	700	700	700	700	700	700	700	700	700
Cooling Capacity (Btu/h) ²	1963	4194	4580	4580	4580	4580	4580	4580	4580	4580	4580	4580
Water Use per Hundred Pounds (gal/hundred lbs) ³	20	25	25	20	15	15	20	15	20	15	20	15
Energy Use per Hundred Pounds (kWh/hundred lbs)	7.7	7.5	7.1	5.8	4.8	4.8	5.8	4.8	5.8	4.8	5.8	4.8
Annual Energy Use (kWh/y) ⁴	3,185	2,502	1,675	1,478	1,190	1,190	1,478	1,190	1,478	1,190	1,478	1,190
Indexed Annual Efficiency ⁵	1.00	1.27	1.90	2.15	2.68	2.68	2.15	2.68	2.15	2.68	2.15	2.68
Average Life (years)	8.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
Retail Equipment Cost (2022\$)	\$2,146	\$2,616	\$2,946	\$3,020	\$3,368	\$3,368	\$3,020	\$3,368	\$3,020	\$3,368	\$3,020	\$3,368
Total Installed Cost (with Bin)	\$2,441	\$3,626	\$3,276	\$3,350	\$3,737	\$3,737	\$3,350	\$3,737	\$3,350	\$3,737	\$3,350	\$3,737
Total Installed Cost (2022\$/kBtu/h)	\$1,244	\$865	\$715	\$732	\$816	\$816	\$732	\$816	\$732	\$816	\$732	\$816
Annual Maintenance Cost (2022\$) ⁷	\$826	\$826	\$800	\$800	\$800	\$800	\$800	\$800	\$800	\$800	\$800	\$800
Annual Maintenance Cost (2022\$/kBtu/h)	\$421	\$197	\$175	\$175	\$175	\$175	\$175	\$175	\$175	\$175	\$175	\$175

- 1. Based on the average output from the Compliance Certification Database and values within 2022 Automatic Commercial Ice Maker (ACIM) TSD.
- 2. Defined as the average heat load to remove the latent and sensible heat required to freeze the daily output capacity of ice.
- 3. Water use refers to potable water.
- 4. EPACT 2005 energy standards went into effect in 2010. The 2015 low values are based on this standard. In 2014, DOE set new standards for commercial ice machines, with compliance required by 2018. The unit characterized for 2012 and beyond uses data from this rulemaking. All units for 2020 and beyond are assumed to comply with the updated standard.
- 5. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 6. The ENERGY STAR category is based on minimum compliance with the ENERGY STAR v3.0 standard, which went into effect on January 28, 2018. According to this analysis, ENERGY STAR certification is typical for the small air-cooled ice-making head (IMH) unit characterized.
- 7. Maintenance cost is based on the average cost of equipment within the 700 lb/day output range and includes cleaning and maintaining refrigerant levels, replacing filters, checking water distribution lines for leaks, cleaning, sanitizing, and descaling the bin and water system. Maintenance cost decreases as the size of the ice machine (i.e. output) decreases.

- Commercial ice machines are typically integrated with an insulated ice storage bin or mounted on top of a separate storage bin. The retail equipment cost includes the ice making head and the integrated storage bin. Commercial ice machine condensers are either air-cooled or water-cooled. Approximately 90% of all units are the air-cooled type.
- Commercial ice machine maintenance includes periodic cleaning (every 2 to 6 weeks) to remove lime and scale and sanitizing to kill bacteria. Some ice machines are self-cleaning/sanitizing.
- ENERGY STAR® updated its maximum energy consumption levels, in kilowatt-hours per 100 pounds of ice, for air-cooled ice machines that went into effect on January 28, 2018. These efficiency levels are based on the harvest rate, in pounds per 24 hours. (H). Water-cooled ice machines are not eligible for ENERGY STAR certification.

ENERGY STAR Requirements for Air-Cooled Batch-Type Ice Makers										
Equipment Type	Applicable Ice Harvest Rate Range (lbs of ice/24 hrs)	Energy Consumption Rate (kWh/100 lbs ice)	Potable Water Use (gal/hundred lbs ice)							
IMH	$200 \le H \le 1600$	≤37.72 * H ^{-0.298}	≤ 20.0							
RCU	400 ≤ H ≤ 1600	≤22.95 * H -0.258 + 1.00	≤ 20.0							
	$1600 \le H \le 4000$	≤-0.00011 * H + 4.60	≤20.0							
SCU	50 ≤ H ≤ 450	≤ 48.66 * H -0.326 + 0.08	≤ 25.0							

ENERGY STAR Requirements for Air-Cooled Continuous-Type Ice Makers										
Equipment Type	Energy Consumption Rate (kWh/hundred lbs ice)	Potable Water Use (gal/hundred lbs ice)								
IMH	≤9.18 * H ^{-0.057}	≤15.0								
RCU	≤6.00 * H -0.162 + 3.50	≤15.0								
SCU	≤59.45 * H -0.349 + 0.08	≤15.0								

EPACT 2005 issued standard levels for commercial ice machines with capacities between 50 pounds and 2500 pounds per 24-hour period that are manufactured or sold in the United States on or after January 1, 2010. The energy consumption is based on the harvest rate in pounds per 24 hours (H). In 2015, DOE finalized new standards for ACIMs extending coverage to flake, nugget, and tube-type machines and to capacities up to 4,000 pounds per 24 hours.

Equipment Type	Type of Cooling	Harvest Rate (lbs ice/24 hrs)	Maximum Energy Use (kWh/hundred lbs ice)	Maximum Condenser Water Use (gal/hundred lbs ice)		
		<500	7.80-0.0055 H	200-0.022 H		
Ice Making Head	Water	≥500 and <1,436	5.58-0.0011 H	200-0.022 H		
		≥1,436	4.0	200-0.022 H		
	Air	<450	10.26-0.0086 H	Not Applicable		
	AII	≥450	6.89-0.0011 H	Not Applicable		
Remote Condensing	Air	<1,000	8.85-0.0038 H	Not Applicable		
(but not remote compressor)	All	≥1,000	5.10	Not Applicable		
Remote Condensing	Air	<934	8.85-0.0038 H	Not Applicable		
and Remote Compressor	All	≥934	5.3	Not Applicable		
	Water	<200	11.40-0.019 H	191-0.0315 H		
Self Contained	vvater	≥200	7.60	191-0.0315 H		
Jen Contained	Air	<175	18.0-0.0469 H	Not Applicable		
	All	≥175	9.80	Not Applicable		

Water use is for the condenser only and does not include potable water used to make ice.

2

2014 DOE Standards

Energy Conservation Standards for Batch-Type Automatic Commercial Ice Makers Effective January 2018

Equipment Type	Type of Cooling	Harvest Rate lb ice/24 hours	Maximum Energy Use kWh/100 lb ice*	Maximum Condenser Water Use gal/100 lb ice**
		<300	6.88 - 0.0055H	200 - 0.022H
		300 and <850	5.80 - 0.00191H	200 - 0.022H
Ice-Making Head	Water	850 and <1,500	4.42 - 0.00028H	200 - 0.022H
		1500 and <2,500	4.0	200 - 0.022H
		2500 and <4,000	4.0	145
		<300	10 - 0.01233H	Not Applicable
I Ml.i II J	Λ:	300 and <800	7.05 - 0.0025H	Not Applicable
Ice-Making Head	Air	800 and <1500	5.55 - 0.00063H	Not Applicable
		1500 and <4,000	4.61	Not Applicable
Remote Condensing		50 and <1,000	7.97 - 0.00342H	Not Applicable
(but not remote compressor)	Air	1,000 and <4,000	4.55	Not Applicable
Remote Condensing		<942	7.97 - 0.00342H	Not Applicable
and Remote Compressor	Air	942 and <4,000	4.75	Not Applicable
		<200	9.5 - 0.019H	191 - 0.0315H
Self-Contained	Water	200 and <2,500	5.7	191 - 0.0315H
		2500 and <4,000	5.7	112
		<110	14.79 - 0.0469H	Not Applicable
Self-Contained	Air	110 and <200	12.42 - 0.02533H	Not Applicable
		200 and <4,000	7.35	Not Applicable

Energy Conservation Standards for Continuous-Type Automatic Commercial Ice Makers Effective January 2018

Lifective jairdar	y 2010			
Equipment Type	Type of Cooling	Harvest Rate lbice/24 hours	Maximum Energy Use kWh/100 lb ice*	Maximum Condenser Water Use gal/100 lb ice**
		<801	6.48 - 0.00267H	180 - 0.0198H
Ice-Making Head	Mater	801 and <2,500	4.34	180 - 0.0198H
ice-Making Head	water	2,500 and <4,000	4.34	130.5
		<310	9.19 - 0.00629H	Not Applicable
Ice-Making Head	Air	310 and <820	8.23 - 0.0032H	Not Applicable
_		820 and <4,000	5.61	Not Applicable
Remote		<800	9.7 - 0.0058H	Not Applicable
Condensing (but not remote compressor)	Air	800 and <4,000	5.06	Not Applicable
Remote		<800	9.9 - 0.0058H	Not Applicable
Condensing and Remote Compressor	Air	800 and <4,000	5.26	Not Applicable
		<900	7.6 - 0.00302H	153 - 0.0252H
Self-Contained	Water	900 and <2,500	4.88	153 - 0.0252H
		2500 and <4,000	4.88	90
		<200	14.22 - 0.03H	Not Applicable
Self-Contained	Air	200 and <700	9.47 - 0.00624H	Not Applicable
111		700 and <4,000	5.1	Not Applicable

Performance and Cost Characteristics » Commercial Beverage Merchandisers

	2012	2018		2022			20	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	4,689	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700
Size (ft³)	27	27	27	27	27	27	27	27	27	27	27	27
Annual Energy Use (kWh/y)	1,829	1,635	1,380	1,141	902	902	1,141	902	1,141	902	1,141	902
Annual Energy Use / Volume (kWh/ft³/y)¹	68	73	55	35	26	26	35	26	35	26	35	26
Indexed Annual Efficiency ³	1.00	1.12	1.33	1.60	2.03	2.03	1.60	2.03	1.60	2.03	1.60	2.03
Average Life (years)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Retail Equipment Cost (2022\$)	\$2,382	\$2,051	\$1,710	\$2,762	\$3,332	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332
Total Installed Cost (2022\$) ⁴	\$2,382	\$2,051	\$1,710	\$2,762	\$3,332	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332
Total Installed Cost (2022\$/kBtu/h)	\$508	\$436	\$364	\$588	\$709	\$709	\$588	\$709	\$588	\$709	\$588	\$709
Annual Maintenance Cost (2022\$)	\$108	\$108	\$95	\$95	\$95	\$95	\$95	\$95	\$95	\$95	\$95	\$95
Annual Maintenance Cost (2022\$/kBtu/h)	\$23.03	\$22.98	\$20.21	\$20.21	\$20.11	\$20.11	\$20.21	\$20.11	\$20.21	\$20.11	\$20.21	\$20.11

- 1. EPACT 2005 energy conservation standards went into effect in 2010. In 2015, DOE updated its energy conservation standards for commercial refrigeration equipment, including transparent-doored refrigerators with pull-down capability. Compliance with this standard is required by 2017. Units characterized for 2018 and beyond use data reported in this rulemaking's TSD. Units sold in 2022 and beyond are assumed to comply with this updated standard.
- 2. The ENERGY STAR category characterizes a unit that is compliant with ENERGY STAR v4, effective March 2017. This standard does not separately define units with pull-down capability.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Beverage merchandisers are shipped ready to be plugged in, so installation costs are assumed to be negligible.

- EPACT 2005 sets maximum daily energy consumption levels, in kilowatt-hours per day, for commercial refrigerators with transparent doors and self-contained condensing unit designed for pull-down temperature applications (i.e., beverage merchandisers) and went into effect on January 1, 2010.
- In 2014, DOE updated its energy consumption standards for commercial refrigeration equipment, including beverage merchandisers, effective March 27, 2015. Both the DOE and EPCA standards are reported below.

Equipment Type	EPCA (2010)	DOE Standards (2017)
Beverage Merchandisers (PD.SC.M)	0.126xV + 3.51	0.11xV+0.81

• In 2013, EPA updated its ENERGY STAR specifications for glass-doored commercial refrigerators, which can be used as beverage merchandisers, effective October 1, 2014. These standards are also based on the volume of the unit (V). Note that ENERGY STAR does not have a separate equipment class for units with pull-down capability.

Beverage Merchandiser Size	0 < V < 15	15 ≤ V < 30	30 ≤ V < 50	50 ≤ V
Glass Door	0.118*V + 1.382	≤0.140*V + 1.050	≤0.088*V + 2.625	≤0.110*V + 1.500

- The beverage merchandiser characterized in this report, which is the typical unit according to DOE's 2014 CRE rulemaking and additional analysis by Guidehouse, is a 27 cubic foot cooler with a single hinged, transparent door, bright lighting, and shelving with a nominal compressor size of 4,700 Btu/h.
- The efficiency of beverage merchandisers can be increased through the use of more efficient compressors, fluorescent lighting with electronic ballasts, LED lighting, and improved insulation.
- For the Reference Case, beverage merchandisers are assumed to be mature technologies with few technology advancements in the coming years that would dramatically improve the efficiency.

Performance and Cost Characteristics » Commercial Refrigerated Vending Machines

	2012	2018	2022		2030		2040		2050			
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	1,810	1,707	1,810	1,810	1,810	1,810	1,810	1,810	1,810	1,810	1,810	1,810
Can Capacity	470	500	500	500	500	500	500	500	500	500	500	500
Size (ft³)	26	35	35	35	35	35	35	35	35	35	35	35
Annual Energy Use (kWh/y) ¹	1,632	1,550	1,550	1,531	1,443	1,443	1,531	1,443	1,531	1,443	1,531	1,443
Annual Energy Use / Volume (kWh/ft³/y)	63	44	44	44	41	41	44	41	44	41	44	41
Indexed Annual Efficiency ³	1.00	1.05	1.05	1.07	1.13	1.13	1.07	1.13	1.07	1.13	1.07	1.13
Average Life (years)	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
Retail Equipment Cost (2022\$)	\$3,209	\$2,553	\$3,059	\$3,272	\$3,520	\$3,520	\$3,272	\$3,520	\$3,272	\$3,520	\$3,272	\$3,520
Total Installed Cost (2022\$)	\$3,320	\$2,705	\$3,276	\$3,489	\$3,737	\$3,737	\$3,489	\$3,737	\$3,489	\$3,737	\$3,489	\$3,737
Total Installed Cost (2022\$/kBtu/h)	\$1,834	\$1,585	\$1,810	\$1,928	\$2,065	\$2,065	\$1,928	\$2,065	\$1,928	\$2,065	\$1,928	\$2,065
Annual Maintenance Cost (2022\$)	\$270	\$270	\$333	\$333	\$333	\$333	\$333	\$333	\$333	\$333	\$333	\$333
Annual Maintenance Cost (2022\$/kBtu/h)	\$149	\$149	\$184	\$184	\$184	\$184	\$184	\$184	\$184	\$184	\$184	\$184

- 1. Energy use for 2018 and beyond is estimated based on DOE's 2020 BVM Final Rule and the 2022 Compliance Certification Database.
- 2. The ENERGY STAR category assumes units are compliant with the ENERGY STAR v4 standard because combination units are currently not separately defined by ENERGY STAR. This standard went into effect on April 29, 2020. Our analysis finds ENERGY STAR certified equipment to be the most efficient currently available on the market.
- $3. \quad Annual \, efficiency \, normalized \, to \, the \, efficiency \, of \, the \, 2012 \, installed \, base. \, Indexed \, Annual \, Efficiency = (2012 \, Energy \, Use) / \, (Energy \, Use).$
- 4. Maintenance cost includes preventative maintenance costs such as checking and maintaining refrigerant charge levels, cleaning heat exchanger coils, and an annualized cost for refurbishments/remanufacturing.

- DOE set federal energy efficiency standards for refrigerated vending machines. These standards set maximum daily energy consumption levels, in kilowatt-hours per day, for commercial refrigerated vending machines manufactured or sold in the United States on or after August 31, 2012. The daily energy consumption is based on the volume of the unit (V).
- In December 2015, DOE updated its energy conservation standards for beverage vending machines and defined two new product classes for combination vending machines. The energy conservation standard remains the same in the updated 2022 technical support document for vending machines. Compliance with these standards was required by 2019. For this analysis, compliance with these updated standards is assumed for equipment sold in 2022 and beyond. The updated standards and DOE equipment definitions are listed in the table below.

Equipment Type	Maximum Daily Energy Consumption
Class A (Transparent-Front)	MDEC= $0.052 \times V + 2.43$
Class B (Solid-Front)	$MDEC = 0.052 \times V + 2.20$
Combination A	$MDEC = 0.086 \times V + 2.66$
Combination B	$MDEC = 0.111 \times V + 2.04$

ENERGY STAR® updated its maximum daily energy consumption efficiency levels, also in kilowatt-hours per day, for refrigerated vending machines that went into effect on April 29, 2020. These efficiency levels are based on refrigerated volume.

Equipment Class	Maximum daily energy consumption (kilowatt-hours per day)		
Class A – a refrigerated bottled or canned beverage vending machine that is not a combination vending machine and in which 25% or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.04836 x V + 2.2599		
Class B – any refrigerated bottled or canned beverage vending machine that is not considered to be Class A and is not a combination vending machine	MDEC = 0.04576 x V+1.936		
Combination A – a combination vending machine where 25% or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.07998 x V + 2.4738		
Combination B – a combination vending machine that is not considered to be Combination A	MDEC = 0.09768 x V + 1.7952		

Commercial Ventilation

Performance and Cost Characteristics » Commercial Constant Air Volume

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average ³	Low ^{4,5}	Typical ^{4,6}	High ^{4,7}	ENERGY STAR	Typical ^{4,6}	High ^{4,7}	Typical ^{4,6}	High ^{4,7}	Typical ^{4,6}	High ^{4,7}
System Airflow (CFM)	15,000	16,300	16,300	16,300	16,300	N/A	16,300	16,300	16,300	16,300	16,300	16,300
System Fan Power (kW)	11.56	11.56	11.56	10.98	10.78	N/A	10.98	10.78	10.98	10.78	10.98	10.78
Specific Fan Power (W/CFM)	0.771	0.709	0.709	0.674	0.661	N/A	0.674	0.661	0.674	0.661	0.674	0.661
Annual Fan Energy Use (kWh/y) ¹	43,924	23,038	23,038	21,886	20,792	N/A	21,886	20,792	21,886	20,792	21,886	20,792
Average Life (years)	35	35	35	35	35	N/A	35	35	35	35	35	35
Total Installed Cost (2022\$) ²	\$80,288	\$83,083	\$83,083	\$86,901	\$90,651	N/A	\$86,901	\$90,651	\$86,901	\$90,651	\$86,901	\$90,651
Annual Maintenance Cost (2022\$)	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	N/A	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054
Total Installed Cost (2022\$/thousand cubic feet per minute [CFM])	\$5,353	\$5,097	\$5,097	\$5,331	\$5,561	N/A	\$5,331	\$5,561	\$5,331	\$5,561	\$5,331	\$5,561
Annual Maintenance Cost (2022\$/thousand CFM)	\$70	\$65	\$65	\$65	\$65	N/A	\$65	\$65	\$65	\$65	\$65	\$65

- 1. Based on 3800 operating hours per year (ADL, 1999) and typical zone air flow requirement profile (ASHRAES45.11-2012)
- $2. \quad Total \, installed \, cost of \, 16,\!300 \, CFM \, constant \, air \, volume \, (CAV) \, air \, handling \, unit \, (AHU) \, and \, hypothetical \, supply \, ductwork \, layout \, decreases a constant air \, volume \, (CAV) \, air \, handling \, unit \, (AHU) \, and \, hypothetical \, supply \, ductwork \, layout \, decreases a constant \, air \, volume \, (CAV) \, air \, handling \, unit \, (AHU) \, and \, hypothetical \, supply \, ductwork \, layout \, decreases a constant \, air \, volume \, (CAV) \, air \, handling \, unit \, (AHU) \, and \, hypothetical \, supply \, ductwork \, layout \, decreases a constant \, air \, volume \, (CAV) \, air \, handling \, unit \, (AHU) \, and \, hypothetical \, supply \, ductwork \, layout \, decreases a constant \, air \, volume \, (CAV) \, air \, handling \, unit \, (AHU) \, and \, hypothetical \, supply \, ductwork \, layout \, decreases a constant \, air \, volume \, (CAV) \, air \, handling \, unit \, (AHU) \, and \, hypothetical \, supply \, ductwork \, layout \, decreases a constant \, layout \, la$
- $3. \quad Based \ on \ ASHRAE 90.1-2016 \ and \ 2019 \ fan \ power \ limit \ (Table 6.5.3.1.1-1) \ with \ no \ pressure \ drop \ adjustment. \ Assumed \ 80\% \ motor \ load \ and \ 91\% \ motor \ efficiency \ drop \ adjustment.$
- 4. ASHRAE90.1-2016 and 2019 Section 6.5.3.2 require minimum two-speed fan control (no longer always constant volume).
- 5. Two-speed variable frequency drive (VFD)
- 6. Modulating VFD
- 7. Modulating custom engineered VFD

- Constant air volume (CAV) ventilation systems are common, inexpensive, air-side HVAC systems that operate in response to a single control zone. Historically, these systems provide a constant flow rate of air (typically a mix of recirculated and outside air) and adjust the supply temperature of that air in order to maintain the space temperature setpoint. Beginning with ASHRAE 90.1-2013 and continued in ASHRAE 90.1-2019, new CAV ventilation systems were mandated to have at least two fan speed settings with the requirement of a maximum 40% power at 66% flow. Systems with variable speed fans are increasingly popular, making the term "constant air volume" somewhat of a misnomer for this system type. This analysis examines only the fan energy of the CAV system.
- There is movement in the industry and in energy codes to reduce fan power. ASHRAE 90.1 includes fan power limits for CAV systems. Fan power can be minimized through good design practice (efficient duct layout, low pressure drop ductwork, filters, coils), proper fan selection, and high efficiency type fans. ASHRAE 90.1-2019 now requires a minimum fan efficiency grade (FEG, based on AMCA 205-12: Energy Efficiency Classification for Fans) of 67 and a design operating fan efficiency within 15% of the maximum fan total efficiency. There are exceptions to this requirement, including packaged systems such as the CAV system type considered here. Still the fan power limits are expected to become more stringent, and fan efficiency will become more important throughout the industry.
- The unit characterized in this report is a 16,300 CFM CAV system. The average commercial building is approximately 16,300 square feet (CBECS 2018). Assuming 1 CFM is needed per square foot of floor area results in a 16,300 CFM air handling unit.
- A 16,300 CFM CAV packaged indoor air handling unit with cooling and heating coils can be installed for approximately \$71,829 (RS Means 2022). Ductwork would cost approximately \$9,272 additional (\$81,101 total). A two-speed motor (estimated \$500 incremental cost) and variable frequency drive (estimated \$5,800) add cost. Custom engineered variable frequency drives (estimated \$9,550) and premium efficiency motors (estimated additional \$1,500) add an additional cost to the system.
- Annual maintenance cost assumes 8 hours worth of labor by a technician to perform the necessary tasks (e.g., filter replacement, draining condenser water, etc.)
- ASHRAE Standard 90.1, which is used as a basis for most state energy codes, limits the fan power (brake HP or nameplate HP) for CAV systems. The 2016 version of Standard 90.1 was used to represent the 2018 minimum efficiency level (state energy codes typically refer to older versions of Standard 90.1 due to code revision cycles).
- Fan energy is affected by several factors, including fan type (e.g., centrifugal, axial), fan blade shape (e.g., forward-curved, backward-curved, backward-inclined, airfoil), drive type (belt or direct), configuration (plenum or housed centrifugal), system effects, duct design, filter and coil pressure drops, motor efficiency, and speed and flow control.

Performance and Cost Characteristics » Commercial Variable Air Volume

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average ³	Low ⁴	Typical⁵	High ⁶	ENERGY STAR	Typical ⁶	High ^{6,7}	Typical ^{6,7}	High ^{6,7}	Typical ^{6,7}	High ^{6,7}
System Airflow (CFM)	15,000	16,300	16,300	16,300	16,300	N/A	16,300	16,300	16,300	16,300	16,300	16,300
System Fan Power (kW)	15.99	15.99	15.99	15.99	15.99	N/A	15.99	15.19	15.99	15.19	15.99	15.19
Specific Fan Power (W/CFM)	1.066	1.066	0.981	0.981	0.981	N/A	0.981	0.932	0.981	0.932	0.981	0.932
Annual Fan Energy Use (kWh/y) ¹	24,699	24,082	24,082	22,878	21,734	N/A	22,878	21,734	22,878	21,734	22,878	21,734
Average Life (years)	28	28	28	28	28	N/A	28	28	28	28	28	28
Total Installed Cost (2022\$) ²	\$103,327	\$110,414	\$118,814	\$124,495	\$124,995	N/A	\$124,495	\$124,995	\$124,495	\$124,995	\$124,495	\$124,995
Annual Maintenance Cost (2022\$)	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	N/A	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054
Total Installed Cost (2022\$/thousand CFM)	\$6,888	\$6,774	\$7,289	\$7,638	\$7,668	N/A	\$7,638	\$7,668	\$7,638	\$7,668	\$7,638	\$7,668
Annual Maintenance Cost (2022\$/thousand CFM)	\$70	\$65	\$65	\$65	\$65	N/A	\$65	\$65	\$65	\$65	\$65	\$65

- 1. Based on 3800 operating hours per year (ADL, 1999) and typical zone air flow requirement profile (ASHRAES45.11-2012)
- 2. Total installed cost of 16,300 CFM VAV AHU, VFD, (10) VAV boxes, (10) VAV controllers with associated space temperature sensor, and hypothetical supply ductwork layout
- $3. \quad Based \ on \ ASHRAE 90.1-2016 \ and \ 2019 \ fan \ power \ limit \ (Table 6.5.3.1.1-1) \ with \ no \ pressure \ drop \ adjustment. \ Assumed \ 80\% \ motor \ load \ and \ 91\% \ motor \ efficiency \ drop \ adjustment.$
- 4. ASHRAE90.1-2016 and 2019 Section 6.5.3.2 minimum power-flow requirement
- 5. ASHRAE 90.1-2019 fan power limit and typical VAV power-flow relationship for 40%-100% flow
- 6. ASHRAE90.1-2019 fan power limit and typical VAV power-flow relationship for 30%-100% flow
- 7. High aerodynamic efficiency fan

- Variable air volume (VAV) ventilation systems are the most common multi-zone system type specified today for conditioning commercial buildings. These systems provide conditioned air to multiple zone terminal units (VAV boxes) that use dampers to modulate the amount of cool air to each zone. An individual zone thermostat controls the VAV box damper to allow more or less cooling. If a zone requires heating, then the VAV box provides the minimum flow rate and typically includes a reheat coil to meet the space temperature setpoint. As VAV box dampers close in the system, a variable frequency drive reduces fan speed and flow continuously to meet current requirements.
- This analysis examines only the fan energy of the VAV system. VAV systems vary fan speed and flow to meet space conditioning requirements; minimum flow settings apply for DX cooling stages and gas furnace heating stages. Most hours of operation are much lower than full speed, and fan power varies with the cube of fan speed according to fan affinity laws. The 2012 ASHRAE Handbook: HVAC Systems and Equipment (p. 45.11) provided the typical flow profile used for this analysis. The unit characterized in this report is a 16,300 CFM VAV system.
- There is movement in the industry and in energy codes to reduce fan power. ASHRAE 90.1 includes fan power limits for VAV systems. Fan power can be minimized through good design practice (efficient duct layout, low pressure drop ductwork, filters, coils), proper fan selection, and high efficiency type fans. ASHRAE 90.1-2019 now requires a minimum fan efficiency grade (FEG, based on AMCA 205-12: Energy Efficiency Classification for Fans) of 67 and a design operating fan efficiency within 15% of the maximum fan total efficiency. There are exceptions to this requirement, including packaged systems such as the VAV system type considered here. Still the fan power limits are expected to become more stringent, and fan efficiency will become more important throughout the industry.
- A 16,300 CFM VAV packaged indoor air handling unit with cooling and heating coils can be installed for approximately \$82,023 (RS Means 2022). Ductwork and (10) VAV boxes with reheat would cost approximately an additional \$28,272. (10) VAV controllers and the associated space temperature sensor would cost approximately \$8,400 (\$118,695 total). A 15 hp variable frequency drive (estimated \$5,800) is an additional cost.
- ASHRAE Standard 90.1, which is used as a basis for most state energy codes, limits the fan power for VAV systems (brake HP or nameplate HP). The 2016 version of Standard 90.1 was used to represent the 2018 minimum efficiency level (state energy codes typically refer to older versions of Standard 90.1 due to code revision cycles).
- Annual maintenance cost assumes 8 hours worth of labor by a technician to perform the necessary tasks (e.g., filter replacement, draining condenser water, etc.)
- Fan energy is affected by several factors, including fan type (e.g., centrifugal, axial), fan blade shape (e.g., forward-curved, backward-curved, backward-inclined, airfoil), drive type (belt or direct), configuration (plenum or housed centrifugal), system effects, duct design, filter and coil pressure drops, and motor VFD efficiency.

Performance and Cost Characteristics » Commercial Fan Coil Units

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average ⁵	Low ³	Typical ⁵	High ⁶	ENERGY STAR	Typical ^{4,6}	High ^{4,7}	Typical ^{4,7}	High ^{4,8}	Typical ^{4,8}	High ^{4,8,9}
System Airflow (CFM)	800	800	800	800	800	N/A	800	800	800	800	800	800
System Fan Power (kW)	0.241	0.241	0.241	0.148	0.148	N/A	0.141	0.134	0.134	0.136	0.136	0.129
Specific Fan Power (W/CFM)	0.302	0.302	0.301	0.185	0.185	N/A	0.176	0.167	0.167	0.170	0.170	0.162
Annual Fan Energy Use (kWh/y) ¹	543	542	542	333	333	N/A	316	301	301	306	306	291
Average Life (years)	37	37	37	37	37	N/A	37	37	37	37	37	37
Total Installed Cost (2022\$) ²	\$2,845	\$2,688	\$3,038	\$3,521	\$3,961	N/A	\$3,961	\$4,161	\$3,961	\$4,161	\$3,961	\$4,161
Annual Maintenance Cost (2022\$)	\$117	\$117	\$117	\$117	\$117	N/A	\$117	\$117	\$117	\$117	\$117	\$117
Total Installed Cost (2022\$/thousand CFM)	\$3 <i>,</i> 557	\$3,360	\$3,798	\$4,401	\$4,951	N/A	\$4,951	\$5,201	\$4,951	\$5,201	\$4,951	\$5,201
Annual Maintenance Cost (2022\$/thousand CFM)	\$146	\$146	\$146	\$146	\$146	N/A	\$146	\$146	\$146	\$146	\$146	\$146

- 1. Based on 2250 operating hours per year (ADL, 1999) and typical zone air flow requirement profile (ASHRAES45.11-2012)
- 2. Total installed cost of 2-ton horizontal two-pipe fan coil unit, housing, and controls
- $3. \quad Based \ on \ ASHRAE 90.1-2016 \ and \ 2019 \ fan \ power \ limit \ (Table 6.5.3.1.1-1) \ with \ no \ pressure \ drop \ adjustment. \ Assumed \ 80\% \ motor \ load \ and \ 91\% \ motor \ efficiency \ drop \ adjustment.$
- 4. Based on ASHRAE90.1-2016 and 2019 Section 6.5.3.6 requirement of electronically commutated or 70+% efficient fan motor
- 5. Permanent split capacitor fan motor
- 6. Electronically commutated fan motor (single speed)
- 7. Electronically commutated fan motor (two-speed)
- 8. Electronically commutated fan motor (variable speed)
- 9. High aerodynamic efficiency fan

- Commercial fan coil units (FCUs) are self-contained, mass-produced assemblies that provide cooling, heating, or cooling and heating, but they do not include the source of cooling or heating. The unit characterized in this report is a cooling only (two-pipe), horizontal unit with housing and controls. Fan coil units are typically installed in or adjacent to the space being served and have no (or very limited) ductwork.
- According to manufacturer literature, the cooling capacity for a nominal 800 CFM fan coil unit is about 2 tons. This analysis examines only the fan energy of FCUs.
- Fan coil unit fan motors can be shaded pole, a single-phase AC motor with offset start winding and no capacitor; PSC, a single-phase AC motor with offset start winding with capacitor; or ECM, an AC electronically commutated permanent magnet DC motor. PSC motors are currently the most common motor type in FCUs, but manufacturers also offer single speed, two speed, and ECM motors as an option. ASHRAE 90.1-2019 requires an electronically commutated fan motor (or minimum motor efficiency of 70%) for this system.
- There is movement in the industry and in energy codes to reduce fan power. ASHRAE 90.1 includes fan power limits for FCUs. Fan power can be minimized through good design practice and high efficiency type fans. ASHRAE 90.1-2019 now requires a minimum fan efficiency grade (FEG, based on AMCA 205-12: Energy Efficiency Classification for Fans) of 67 and a design operating fan efficiency within 15% of the maximum fan total efficiency. There are exceptions to this requirement, including small systems such as the FCU considered here. Still the fan power limits are expected to become more stringent, and fan efficiency will become more important throughout the industry.
- Fan coil units have higher maintenance costs than central air systems due to the distributed nature of the system. For each unit, the filters must be changed, and drain systems must be flushed periodically.
- ASHRAE Standard 90.1, which is used as a basis for most state energy codes, limits the fan power (brake HP or nameplate HP). The 2016 version of Standard 90.1 was used to represent the 2018 minimum efficiency level (state energy codes typically refer to older versions of Standard 90.1 due to code revision cycles).
- Fan energy is affected by several factors, including fan type configuration, filter and coil pressure drops, motor efficiency, and fan speed control.

Appendix A Data Sources

Guidehouse 1200 19th Street, NW, Suite 700 Washington, D.C. 20036

And

SAIC 8301 Greensboro Drive McLean, VA 22102

Residential Lighting

Final

Data Sources » Residential General Service Incandescent Lamps (60 watt)

	2015	2020		202	22		2023	20	30	2040		20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typica	High	Typical H	igh [Гурісаl	High
Lamp Wattage													
Lamp Lumens	2016 EIA Ref. Case												
Lamp Efficacy (lm/W)	2016 EIA Rei. Case												
CRI													
Correlated Color Temperature (CCT)	DOE, 2008												
Average Lamp Life (thousand hours)	2016 EIA Ref. Case												
Annual Operating Hours (h/y)	DOE, 2017												
Lamp Price (2022\$)	2016 EIA Ref. Case	Assume Unchanged					N/A						
Lamp Cost (2022\$/klm)	2010 EIA Rei. Case												
Labor Cost (2022\$/h)	N/A												
Labor Lamp Installation (hours)	IN/A												
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calculated												
Total Installed Cost (2022\$/klm)	Calculated												
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential General Service Incandescent Lamps (75 watt)

	2015	2020		202	2		2023	203	30	204	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens	2016 EIA Ref. Case												
Lamp Efficacy (lm/W)	2010 EIA Rei. Case												
CRI													
Correlated Color Temperature (CCT)	DOE, 2008												
Average Lamp Life (thousand hours)	2016 EIA Ref. Case												
Annual Operating Hours (h/y)	DOE, 2017												
Lamp Price (2022\$)	2016 EIA Ref. Case	Assume Unchanged					N/A						
Lamp Cost (2022\$/klm)	2010 Ell Tiel. Case												
Labor Cost (2022\$/h)	N/A												
Labor Lamp Installation (hours)	14/11												
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calculated												
Total Installed Cost (2022\$/klm)	- Cut unit u												
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential General Service Halogen Lamps (60 watt Incandescent Equivalent)

	2015	2020		2022	2		2023	20	30	204	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens	2016 EIA Ref. Case	Assume Unchanged		Distributor Websites or									
Lamp Efficacy (lm/W)	2010 LIA Rei, Case	Assume Officialized		Product Catalogs									
CRI													
Correlated Color Temperature (CCT)	DOE	2008		DOE, 2008									
Average Lamp Life (thousand hours)	2016 EIA Ref. Case	2016 EIA Ref. Case Assume Unchanged Distributor Websites DOE, 2017 DOE, 2017 N/A Distributor N/A											
Annual Operating Hours (h/y)	DOE	. 2017		DOE, 2017									
Lamp Price (2022\$)	2016 EIA Ref. Case	Calculated	N/A	Distributor Websites				N/A					
Lamp Cost (2022\$/klm)	Calcu	ulated		Calculated									
Labor Cost (2022\$/h)	N,	/ ^		N/A									
Labor Installation (hours)	1 V	A		IV/A									
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calca	ılated		Calculated									
Total Installed Cost (2022\$/klm)	Calc	auc c		Carculated									
Annual Maintenance Cost (2022\$/klm)													

Data Sources» Residential General Service Halogen Lamps (75 watt Incandescent Equivalent)

	2015	2020		2022	2		2023	203	30	204	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens	2016 EIA Ref. Case	Calculated		Distributor Websites or									
Lamp Efficacy (lm/W)	2010 LIA Rei. Case	Calculated		Product Catalogs									
CRI													
Correlated Color Temperature (CCT)	DOE	, 2008		DOE, 2008									
Average Lamp Life (thousand hours)	2016 EIA Ref. Case Distributor Websites or Product Catalogs DOE, 2017 DOE, 2017 DOE, 2017 N/A Distributor N/A												
Annual Operating Hours (h/y)	DOE	, 2017		DOE, 2017									
Lamp Price (2022\$)	2016 EIA Ref. Case	Calculated	N/A	Distributor Websites				N/A					
Lamp Cost (2022\$/klm)	Calcı	ulated		Calculated									
Labor Cost (2022\$/h)	N	/A		N/A									
Labor Installation (hours)	10	/A		IN/A									
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calar	ulated		Calculated									
Total Installed Cost (2022\$/klm)	Caici	uiaicu		Calculated									
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential General Service Compact Fluorescent Lamps (60 watt Incandescent Equivalent)

	2015	2020		202	2		2023	203	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage			Distributo	r Websites or	Product								
Lamp Lumens	2016 EIA Ref. Case	Calculated		Catalogs			DOE, 2022						
Lamp Efficacy (lm/W)	2010 EIA Nei. Case			Calculated		ENERGY				NCI,	2019		
CRI						STAR, 2020				i vei,	2017		
Correlated Color Temperature (CCT)	Product Catalogs	Assume Unchanged	Distributo	r Websites or Catalogs	Product		N/A						
Average Lamp Life (thousand hours)	2016 EIA Ref. Case												
Annual Operating Hours (h/y)					DOE, 201	7							
Lamp Price (2022\$)	2016 EIA Ref. Case	Calculated	Distributo	r Websites or Catalogs	Product		N/A			NCI,	2019		
Lamp Cost (2022\$/klm)	2010 Ell Trei. Case	Cure tunic ti		Calculated			14/11			1101	2017		
Labor Cost (2022\$/h)		N/A								N/A			
Labor Installation (hours)		14/21				N/A				1 1/11			
Total Installed Cost (2022\$/klm)						14/11							
Annual Maintenance Cost (2022\$)		Calculate	·d				N/A			Calcı	ılated		
Total Installed Cost (2022\$/klm)		Curc anno					- 1/11			Curet			
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential General Service LED Lamps (60 Watt Equivalent)

	2015	2020		202	2		2023	20	30	20	40	20	050
DATA SOURCES	Installed Stock Average		Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage			Distributo	r Websites or	Product					Calcı	ılated		
Lamp Lumens				Catalogs			DOE 2022		A	Assume U	Inchang	ged	
Lamp Efficacy (lm/W)	Model, Energy Savings Forecast of Solid-State Lighting in General	2020 DOE LED Pricing		Calculated		ENERGY	DOE, 2022	Model R of So	lid-S tate	Scenario Lighting cations (N	in Gen	y Savings eral Illumi nt, 2019)	Forecast nation
CRI	Illumination Applications	Analysis				STAR, 2020				Assume U	Inchano	rod	
Correlated Color Temperature (CCT)	(Navigant, 2019)		Distributo	r Websites or	Product		NT/A		F	issuite C	ncnang	;eu	
Average Lamp Life (thousand hours)				Catalogs			N/A	Model Roof So	lid-S tate	Scenario Lighting cations (N	in Gen	y Savings eral Illumi nt, 2019)	Forecast nation
Annual Operating Hours (h/y)					DOE, 201	7			• • •	·	Ű		
Lamp Price (2022\$)	Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	2020 DOE LED Pricing Analysis	Distributo	r Websites or Catalogs	Product	N,	/A		lid-State		in Gen	y Savings eral Illumi nt, 2019)	
Lamp Cost (2022\$/klm)					Calculated	i							
Labor Cost (2022\$/h)					N/A								
Labor Installation (hours)					IN/A								
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$)		Са	lculated				N/A			Calcı	ılated		
Total Installed Cost (2022\$/klm)		Ca	ac ainic d				14/11			Cuict			
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential General Service Filament-LED Lamps (60 Watt Equivalent)

	2015	2020		2022	2		2023	20	30	20	40	20	050
DATA SOURCES	Installed Stock Average		Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage			Distributo	r Websites or	Product					Calcı	ılated		
Lamp Lumens				Catalogs			DOE 2022		A	Assume U	Inchan	ged	
Lamp Efficacy (lm/W)	Model, Energy Savings Forecast of Solid-State Lighting in General	2020 DOE LED Pricing		Calculated		ENERGY	DOE, 2022	Fore	ecastofS	Solid-Stat	e Light	Inergy Sav ing in Ger Navigant, 2	ne ral
CRI Correlated Color Temperature (CCT)	Illumination Applications (Navigant, 2019)	Analysis	Distributo	r Websites or	Product	STAR, 2020			A	Assume U	Inchan	ged	
Average Lamp Life (thousand hours)			Distributo	Catalogs	rioduct		N/A	Fore	ecastofS	6 o lid-S tat	e Light	inergy Sav ing in Ger Navigant, 2	ne ral
Annual Operating Hours (h/y)					DOE, 201	7				• • •	Ì		
Lamp Price (2022\$)	Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	2020 DOE LED Pricing Analysis	Distributo	r Websites or Catalogs	Product	N/	'A	Fore	ecastofS	Solid-Stat	e Light	Energy Sav ting in Ger Navigant, 2	neral
Lamp Cost (2022\$/klm)					Calculated	d							
Labor Cost (2022\$/h)					N/A								
Labor Lamp Installation (hours)					IN/A								
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)		Cal	lculated				N/A			Calcu	ılated		
Total Installed Cost (2022\$/klm)		Cui	- Cauca				1 1/21			Cuic	Lanc a		
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Reflector Lamps (65W BR30 Incandescent)

	2015	2020		20	22		2023	20	30	204	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typica1	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens	2016 EIA Ref.												
Lamp Efficacy (lm/W)	Case			Distributor									
CRI				Websitesor									
Correlated Color Temperature (CCT)	DOE, 2012(1)			Product Catalogs									
Average Lamp Life (thousand hours)	2016 EIA Ref. Case	Assume Unchanged	N/A					N/A					
Annual Operating Hours (h/y)	DOE, 2017			DOE, 2017									
Lamp Price (2022\$)	2016 EIA Ref. Case			Distributor Websites or Product Catalogs									
Lamp Cost (2022\$/klm)				Calculated									
Labor Cost (2022\$/h)						N/A							
Labor Lamp Installation (hours)						IN/A							
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)						Calculated							
Total Installed Cost (2022\$/klm)						Curc mane u							
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Reflector Lamps (PAR30 Halogen)

	2015	2020		202	22		2023	20	30	204	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage		Assume Unchanged											
Lamp Lumens	2016 EIA Ref. Case	Calculated											
Lamp Efficacy (lm/W)	Case			Distributor									
CRI				Websites or Product									
Correlated Color Temperature (CCT)	DOE, 2012(1)	Assume Unchanged		Catalogs									
Average Lamp Life (thousand hours)	2016 EIA Ref. Case		N/A					N/A					
Annual Operating Hours (h/y)	DOE,	2017		DOE, 2017									
Lamp Price (2022\$)	2016 EIA Ref. Case	Calculated		Distributor Websites or Product Catalogs									
Lamp Cost (2022\$/klm)				Calculated									
Labor Cost (2022\$/h)						N/A							
Labor Lamp Installation (hours)						IN/A							
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)						Calculated							
Total Installed Cost (2022\$/klm)						Jule divide d							
Annual Maintenance Cost (2022\$/klm)				125									

Data Sources » Residential Reflector Lamps (PAR30 Halogen Infrared Reflector (HIR)

	2009	2020		201	15		2023	20:	20	203	30	204	40
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens	2016 FIA D. 6	Calculated											
Lamp Efficacy (lm/W)	2016 EIA Ref. Case												
CRI				Distributor Websites or Product									
Correlated Color Temperature (CCT)	DOE, 2012(1)	Assume Unchanged		Catalogs									
Average Lamp Life (thousand hours)	2016 EIA Ref. Case		N/A					N/A					
Annual Operating Hours (h/y)	DOE,	2017		DOE, 2017									
Lamp Price (2022\$)	2016 EIA Ref. Case	Calculated		Distributor Websites or Product Catalogs									
Lamp Cost (2022\$/klm)				Calculated									
Labor Cost (2022\$/h)						N/A							
Labor Lamp Installation (hours)						IN/A							
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)						Calculated							
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Reflector Lamps (BR30 CFL)

	2015	2020		20	22		2023	20	30	204	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens	2016 EIA I												
Lamp Efficacy (lm/W)	Calcu	lated											
CRI													
Correlated Color Temperature (CCT)	DOE, 2	OCE, 2012(1)											
Average Lamp Life (thousand hours)	2016 EIA I Calcu												
Annual Operating Hours (h/y)	DOE,	2017											
Lamp Price (2022\$)	2016 EIA I						N/A						
Lamp Cost (2022\$/klm)	Calcu	lated											
Labor Cost (2022\$/h)	N/	' A											
Labor Lamp Installation (hours)	IN/	A											
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calcu	lated											
Total Installed Cost (2022\$/klm)	Calcu	nateu											
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Reflector LED BR30

	2015	2020		20	22		2023	20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	Model		Distributo	or Websites o	r Product					Calcu	late d		
Lamp Lumens	Reference			Catalogs						Assume U			
Lamp Efficacy (lm/W)	Scenario, Energy Savings			Calculated			DOE, 2022	Fore	ecast of S	ence Scer Solid-Stat Applicati	e Lightir	ng in Ger	neral
CRI	Forecastof					ENERGY			^	Assume U	nahana	vd.	
Correlated Color Temperature (CCT)	Lighting in	LED Pricing Analysis				STAR, 2020			F	Assume O	nchange	ea	
Average Lamp Life (thousand hours)	General Illumination Applications (Navigant, 2019)	J	Distributo	or Websites o Catalogs	r Product		N/A	Fore	ecast of S	ence Scei Solid-Stati Applicati	e Lightir	ng in Ger	neral
Annual Operating Hours (h/y)	Í					DOE, 2017				11	ì	,	
Lamp Price (2022\$)	Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	LED Pricing Analysis	Distributo	or Websites o Catalogs	r Product	N/A		Fore	castof	ence Scer Solid-State Applicati	e Lightir	ng in Ger	neral
Lamp Cost (2022\$/klm)	, ,					Calculated							
Labor Cost (2022\$/h)						N/A							
Labor Lamp Installation (hours)						IN/A							
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)			Calca	ulated			N/A			Calcu	lated		
Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)			Calci	шаюч			IN/A			CaiCt	uateu		

Data Sources » Residential Reflector LED PAR38

	2015	2020		20	22		2023	203	30	20	40	205	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage			Distributor M	Vebsites or Pro	dust Catalogs					Calcı	ılated		
Lamp Lumens			Distributor V	veosites of 1 to	duct Catalogs		DOT			Assume U	Inchanged	l	
Lamp Efficacy (lm/W)	Solid-State	gsForecast of Lighting in		Calculated		ENERGY	DOE, 2022				ral Illumin	avings For ation App	
CRI	General III Applications					STAR, 2020				Assume U	Inchange	ı	
Correlated Color Temperature (CCT)	201		Distributor Websites or Product (D.T./ A			713341116 C	richangee	ı	
Average Lamp Life (thousand hours)							N/A	Model F Solid-Stat	Reference te Lightin	Scenario, g in Gene (Navigar	ral Illumin	avings For ation App	ecast of blications
Annual Operating Hours (h/y)						DOE, 2017							
Lamp Price (2022\$)	Model Refere Energy Savin Solid-State General III Applications	gs Forecast of Lighting in lumination s (Navigant,	Distributor W	Vebsites or Pro	duct Catalogs	N/A					ral Illumin	avings For ation App	
Lamp Cost (2022\$/klm)						Calculated							
Labor Cost (2022\$/h)						N/A							
Labor Lamp Installation (hours)						IV/A							
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)			Calculated				N/A			Calcı	ılated		
Total Installed Cost (2022\$/klm)			Carc	auc u			1 4/ 2 1			Carc	anc a		
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Linear Fluorescent Lamp T12

	2015	2020		2022		2	030	204	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	2016 EIA Ref. Case										
Lamp Lumens	2010 EIA Rei. Case										
Lamp Efficacy (lm/W)		Assume									
System Wattage	Calculated	Unchanged									
System Lumens	Carculated										
System Efficacy (lm/W)											
Ballast Efficiency (BLE)	2016 EIA Ref. Case	Chapter 5; Table 5.8.16 of GSFL Ballast Final Rule TSD (DOE, 2020)									
CRI											
Correlated Color Temperature (CCT)	2016 EIA Ref. Case										
Average Lamp Life (thousand hours)							т / А				
Annual Operating Hours (h/y)	DOE, 2017					Γ	N/A				
Lamp Price (2022\$)											
Ballast Price (2022\$)	2016 EIA Ref. Case										
Fixture Price (2022\$)											
Lamp Cost (2022\$/klm)	Calculated	Assume									
System (l/b/f) Cost (2022\$/klm)	Carculatea	Unchanged									
Labor Cost (2022\$/h)											
Labor System Installation (hours)	2016 EIA Ref. Case										
Labor Lamp Change (hours)											
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)	Calculated										
Total Installed Cost (2022\$/klm)	Curcurated										
Annual Maintenance Cost (2022\$/klm)		140									

Data Sources » Residential Linear Fluorescent Lamp T8

	2015	2020		2022		2	030	204	40	20	050
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	l High
Lamp Wattage	Calculated	Died	tributor Wel	acitoc							
Lamp Lumens	2016 EIA Ref. Case	DIS	illoutor vve	osnes				Calcula	ated		
Lamp Efficacy (lm/W)	2015 GSFL TSD, Figure 11.5.4		Calculated								
System Wattage											
System Lumens				Calcula	ted						
System Efficacy (lm/W)											
Ballast Efficiency (BLE)	2016 EIA Ref. Case	(Chapter 5; Ta	able 5.8.15 of	GSFL B	allast Fin	al Rule TS	D (DOE,	2020)		
CRI	Distributor Websites										
Correlated Color Temperature (CCT)	2016 EIA Ref. Case	IA Ref. Case Distributor Websites									
Average Lamp Life (thousand hours)								Calcula	ated		
Annual Operating Hours (h/y)				DOE, 20	017						
Lamp Price (2022\$)		Calculated									
Ballast Price (2022\$)	2016 EIA Ref. Case	N/A	Distri	outor Websi	tes			Calcula	ated		
Fixture Price (2022\$)		Calculated									
Lamp Cost (2022\$/klm)				Calcula	ted						
System (l/b/f) Cost (2022\$/klm)				Curcuia	····						
Labor Cost (2022\$/h)		Assume			2	022 RS M	eans Onlir	ne.			
Labor System Installation (hours)	2016 EIA Ref. Case	unchanged				022 R5 W	caris Orim	ic			
Labor Lamp Change (hours)	N/A										
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)				Calcula	tod						
Total Installed Cost (2022\$/klm)				Caicula	icu						
Annual Maintenance Cost (2022\$/klm)											

Data Sources » Residential Linear Fluorescent Lamp T5

	2015	2020		2022		20	030	20	40	20)50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	Calculated	Diat	ributor We	haitaa							
Lamp Lumens	2016 EIA Ref. Case	Dist	Tibutor We	ebsites			As	sumeun	change	d	
Lamp Efficacy (lm/W)	2015 GSFL TSD, Figure 11.5.4		Calculated	i			110	ourre un	criarige		
System Wattage											
System Lumens				Calcula	ited						
System Efficacy (lm/W)											
Ballast Efficiency (BLE)	Chapter 5; Table 5.3.32 of GSFL IRL Final Rule TSD (DOE, 2015) Chapter 5; Table 5.8.6 of GSFL Ballast Final Rule TSD (DOE, 2020)										
CRI											
Correlated Color Temperature (CCT)	2016 EIA Ref. Case			Di	stributo	or Websit	es				
Average Lamp Life (thousand hours)											
Annual Operating Hours (h/y)				DOE, 2	017						
Lamp Price (2022\$)		Calculated									
Ballast Price (2022\$)	2016 EIA Ref. Case	N/A	Distri	butor Webs	ites			Calcula	ated		
Fixture Price (2022\$)		Calculated									
Lamp Cost (2022\$/klm)				Calcula	ited						
System (l/b/f) Cost (2022\$/klm)				Curcur	itea						
Labor Cost (2022\$/h)					2	022 RS M	eans Onli	ne			
Labor System Installation (hours)	2016 EIA I	Ref. Case			_						
Labor Lamp Change (hours)						N	I/A				
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)				Calcula	ited						
Total Installed Cost (2022\$/klm)				20120110							
Annual Maintenance Cost (2022\$/klm)											

Data Sources» Residential Linear LED Replacement Lamp 2-Lamp System

	2015	2020		2022		20	030	20	40	20)50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typica	l High
Lamp Wattage								Calcul	ated		
Lamp Lumens	LED Webscrape	DOE Web Scrape					umesam				
Lamp Efficacy (lm/W)	Database	Database	Distri	butor websi	tes	Forec	el Referer cast of So ination A	lid-State	Lightii	ng in Ger	neral
System Wattage								••	Ì	Ŭ .	ĺ
System Lumens				Calcula	ted						
System Efficacy (lm/W)											
Ballast Efficiency (BLE)				N/A							
CRI	2016 EIA Ref. Case Case Distributor										
Correlated Color Temperature (CCT)	2016 EIA Ref. Case Distributor Websites Distributor Websites										
Average Lamp Life (thousand hours)	LED Webscrape Database	DOE Web Scrape Database									
Annual Operating Hours (h/y)				DOE, 20)17						
Lamp Price (2022\$)	LED Webscrape	DOE Web Scrape Database	Distri	butor Websi	tes		Energy S ng in Gen ()		ninatio	n Applio	
Ballast Price (2022\$)	Database	N/A						N/A	Δ.		
Fixture Price (2022\$)		N/A						11/1	1		
Lamp Cost (2022\$/klm)				Calcula	ted						
System (l/b/f) Cost (2022\$/klm)				Carcara	ica						
Labor Cost (2022\$/h)				27/1							
Labor System Installation (hours)				N/A							
Labor Lamp Change (hours)											
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm)				Calcula	ted						
Annual Maintenance Cost (2022\$/klm)											
Ammai Mammenance Cost (20224/Killi)		1.42									

Data Sources » Residential Linear LED Luminaire

	2015	2020	N/A Calculated Assume same as 2022 Typical and Model Reference Scenario, Energy Sa of Solid-State Lighting in General I Applications (Navigant, 2017) Web Scrape tabase Distributor Websites DOE, 2017 Web Scrape tabase Distributor Websites DOE, 2017 Web Scrape tabase N/A Anodel, Energy Savings Forecast of Lighting in General Illumination A (Navigant, 2019) N/A 2022 RS Means Online		20	50						
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High	
Lamp Wattage												
Lamp Lumens				N/A								
Lamp Efficacy (lm/W)												
System Wattage												
System Lumens	LED Webscrape	DOE Web Scrape	—.						, ,	,	_	
System Efficacy (lm/W)	Database	Database	Distri	butor Websi	tes		d-State Li	ghting in	Genera	l Illumin		
Ballast Efficiency (BLE)												
CRI	I ED 147-1	DOE 147-1- C	N/A DE Web Scrape Distributor Websites Distributor Websites									
Correlated Color Temperature (CCT)	LED Webscrape Database	Database Database	Model Reference Scenario, Energy Savings of Solid-State Lighting in General Illumin Applications (Navigant, 2019) N/A Peb Scrape lbase Distributor Websites Distributor Websites Distributor Websites Distributor Websites Distributor Websites Model Reference Scenario, Energy Savings Forecast Illumination Applications (Navigant, 2019) Model, Energy Savings Forecast of Solid Lighting in General Illumination Application Applications (Navigant, 2019)									
Average Lamp Life (thousand hours)	Butubuse	Dutubuse										
Annual Operating Hours (h/y)				DOE, 20)17							
Lamp or Luminaire Price (2022\$)	LED Webscrape Database	DOE Web Scrape Database	Distri	butor Websi	tes		ing in Gen	eral Illun	nination			
Ballast Price (2022\$)												
Fixture Price (2022\$)				NI/A								
Lamp Cost (2022\$/klm)				IN/A								
System (l/b/f) Cost (2022\$/klm)												
Labor Cost (2022\$/h)					2	022 RS M	eans Onli	ne				
Labor System Installation (hours)	2016 EIA I	Ref. Case			2	0221311	earis Oriii	ite				
Labor Lamp Change (hours)						N	I/A					
Total Installed Cost (2022\$)												
Annual Maintenance Cost (2022\$)				Calcula	ted							
Total Installed Cost (2022\$/klm)				Carcula	ica							
Annual Maintenance Cost (2022\$/klm)												

Data Sources » Residential Outdoor Lamps (Security: BR30 In candescent)

	2009	2020		20	15		2023	20	20	20	30	204	10
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
CRI													
Correlated Color Temperature (CCT)													
Average Lamp Life (thousand hours)													
Annual Operating Hours (h/y)													
Lamp Price (2022\$)				Sa	me as indoor R	esidential Incan	descent Reflec	tor					
Lamp Cost (2022\$/klm)													
Labor Cost (2022\$/h)													
Labor Lamp Installation (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)													
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Outdoor Lamps (Security: PAR38 Halogen)

	2015	2020		20	22		2023	20	30	20	40	2050	
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typica1	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
CRI													
Correlated Color Temperature (CCT)													
Average Lamp Life (thousand hours)													
Annual Operating Hours (h/y)													
Lamp Price (2022\$)	Interpolatio Commerc	n Based on ial PAR38				:	Same as Comr	mercial PAR38	8 Halogen				
Lamp Cost (2022\$/klm)													
Labor Cost (2022\$/h)													
Labor Lamp Installation (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)													
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Outdoor Lamps (Security: PAR38 HIR)

	2015	2020		20	22		2023	20	30	20	40	2050	
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typica1	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
CRI													
Correlated Color Temperature (CCT)													
Average Lamp Life (thousand hours)													
Annual Operating Hours (h/y)													
Lamp Price (2022\$)	Interpola Commercial	ted from I PAR38 HIR					Same as Co	mmercial PAI	R38 HIR				
Lamp Cost (2022\$/klm)													
Labor Cost (2022\$/h)													
Labor Lamp Installation (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)													
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Outdoor Lamps (Security: CFL PAR38)

	2015	2020		20	2023	20	30	2040		2050				
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High	
Lamp Wattage		2016 EIA Ref. Case /												
Lamp Lumens	2016 EIA I													
Lamp Efficacy (lm/W)	Calcı	ulate d												
CRI														
Correlated Color Temperature (CCT)	DOE, 2	2012(1)												
Average Lamp Life (thousand hours)		Ref. Case / ulated												
Annual Operating Hours (h/y)	DOE,	, 2017												
Lamp Price (2022\$)		Ref. Case/			N/A									
Lamp Cost (2022\$/klm)	Calcı	ulate d												
Labor Cost (2022\$/h)	N	/ A												
Labor Lamp Installation (hours)	10,	N/A												
Total Installed Cost (2022\$)														
Annual Maintenance Cost (2022\$)	Color	ulated												
Total Installed Cost (2022\$/klm)	Calct	Calculated												
Annual Maintenance Cost (2022\$/klm)														

Data Sources » Residential Outdoor Lamps (Security: LED PAR38)

	2015	2015 2020 2022							30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
CRI													
Correlated Color Temperature (CCT)													
Average Lamp Life (thousand hours)													
Annual Operating Hours (h/y)													
Lamp Price (2022\$)					Same as	Residential LEI	PAR38						
Lamp Cost (2022\$/klm)													
Labor Cost (2022\$/h)													
Labor Lamp Installation (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)													
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Outdoor Lamps (Porch: A19 Incandescent)

	2015	2020		20	2023	2030		2040		2050			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
CRI													
Correlated Color Temperature (CCT)													
Average Lamp Life (thousand hours)													
Annual Operating Hours (h/y)				0	D :1 ::1			1					
Lamp Price (2022\$)				Samea	is Kesidential	General Servi	ce75W Incan	descent					
Lamp Cost (2022\$/klm)													
Labor Cost (2022\$/h)													
Labor Lamp Installation (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)													
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Outdoor Lamps (Porch: Halogen A-Type)

	2015	2020	2022					2030		2040		2050	
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
CRI													
Correlated Color Temperature (CCT)													
Average Lamp Life (thousand hours)													
Annual Operating Hours (h/y)													
Lamp Price (2022\$)				Same as R	esidential Ge	neral Service 7	'5W Equivale	nt Haloge	n				
Lamp Cost (2022\$/klm)													
Labor Cost (2022\$/h)													
Labor Lamp Installation (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)													
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Outdoor Lamps (Porch: CFL Bare Spiral)

	2015	2020		20	22		2023	2030		2040		2050			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High		
Lamp Wattage			DietributerM	Johniton or Pro	educt Catalogs										
Lamp Lumens	2016 EIA Ref.	Calculated	Distributor Websites or Product Catalogs				DOE, 2022								
Lamp Efficacy (lm/W)	Case		Calculated												
CRI						ENERGY		NCI, 2019							
Correlated Color Temperature (CCT)	Product Catalogs	Assume Unchanged	Distributor W	/ebsites or Pro		STAR, 2020	N/A								
Average Lamp Life (thousand hours)	2016 EIA Ref. Case														
Annual Operating Hours (h/y)						DOE, 2017	3, 2017								
Lamp Price (2022\$)	2016 EIA Ref.	Calculated	Distributor Websites or Product Catalogs				N/A	NICI 2010							
Lamp Cost (2022\$/klm)	Case	Calculated	Calculated				IN/A	NCI, 2019							
Labor Cost (2022\$/h)			N/A			NT/A		N/A							
Labor Lamp Installation (hours)				N/A				1 1/11							
Total Installed Cost (2022\$)															
Annual Maintenance Cost (2022\$)			Calculated		N/A			Calcu	ılated						
Total Installed Cost (2022\$/klm)							- 1/2 2	Carculated							
Annual Maintenance Cost (2022\$/klm)															

Data Sources » Residential Outdoor Lamps (Porch: LED A-Type)

		2020			22		2023	2030		2040		20	2050		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High		
Lamp Wattage	Model		Distributor M	/ebsites or Pro	duat Cataloga			Calculated							
Lamp Lumens	Reference Scenario,		Distributor W	rebsiles of Fro			Assume Unchanged								
Lamp Efficacy (lm/W)	Energy Savings	2020 DOE	Calculated				DOE, 2022	Model Reference Scenario, Energy Savings Forecast o Solid-State Lighting in General Illumination Applications (Navigant, 2019)							
CRI	Forecast of Solid-State	2020 DOE LED Pricing			ENERGY										
	Lighting in	Analysis				STAR, 2020		Assume Unchanged							
Average Lamp Life (thousand hours)	General Illumination Applications (Navigant, 2019)	•	Distributor W	/ebsites or Pro	duct Catalogs		N/A	Model Reference Scenario, Energy Savings Forecas Solid-State Lighting in General Illumination Applications (Navigant, 2019)							
Annual Operating Hours (h/y)						DOE, 2017									
Lamp Price (2022\$)	Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)		Distributor W	N/A		Model Reference Scenario, Energy Savings Forecas Solid-State Lighting in General Illumination Applications (Navigant, 2019)									
Lamp Cost (2022\$/klm)						Calculated									
Labor Cost (2022\$/h)						N/A									
Labor Lamp Installation (hours)						IN/A									
Total Installed Cost (2022\$)															
Annual Maintenance Cost (2022\$)						Calculated									
Total Installed Cost (2022\$/klm)						Carculated	Caic mate a								
Annual Maintenance Cost (2022\$/klm)															

Commercial Lighting

Data Sources » Commercial General Service 100W Incandescent Lamp in Recessed Can Fixture

	2012	2018		202	.2		2023	20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
System Wattage	2016 FIA Ro	ference Case											
System Lumens	2010 EIA RE	ierence case											
System Efficacy (lm/W)													
Ballast Efficiency (BLE)													
CRI													
Correlated Color Temperature (CCT)		2008											
Average Lamp Life (thousand hours)	2016 EIA Re	ference Case											
Annual Operating Hours (h/y)	DOE,	2017											
Lamp Price (2022\$)							N/A						
Ballast Price (2022\$)	2016 ELA D	(
Fixture Price (2022\$)		ference Case; ılated											
Lamp Cost (2022\$/klm)	Care	ara tea											
System (I/b/f) Cost (2022\$/klm)													
Labor Cost (2022\$/h)													
Labor System Installation (hours)	2016 EIA Re	ference Case											
Labor Lamp Change (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Color	ılated											
Total Installed Cost (2022\$/klm)	Carci	iiated											
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Commercial General Service Halogen Lamp (100W Incandescent Equivalent) in Recessed Can Fixture

	2012	2018		2022	2		2023	20	30	204	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typica 1	High	Typica 1	High	Typica 1	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
System Wattage	2016 EIA	Assume											
System Lumens	Reference Case	Unchanged											
System Efficacy (lm/W)				Product									
Ballast Efficiency (BLE)				Catalogs									
CRI	DOE	2000											
Correlated Color Temperature (CCT)	DOE,	2008											
Average Lamp Life (thousand hours)	2016 EIA Reference Case	Assume Unchan <i>g</i> ed											
Annual Operating Hours (h/y)	DOE,	2017	N/A	DOE, 2017				N/A					
Lamp Price (2022\$)			1 1/11					1 1/23	•				
Ballast Price (2022\$)				Distributor									
Fixture Price (2022\$)	2016 EIA Reference Case	DOE, 2019		Websites									
Lamp Cost (2022\$/klm)													
System (1/b/f) Cost (2022\$/klm)				Calculated									
Labor Cost (2022\$/h)				2022 RS									
Labor System Installation (hours)	2016 EIA Re	ference Case		Means									
Labor Lamp Change (hours)				Online									
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calcu	ılated		Calculated									
Total Installed Cost (2022\$/klm)	Calct	iiaieu		Calculated									
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Commercial General Service 100W Equivalent CFL Bare Spiral in Recessed Can Fixture

	2012	2018		202	2		2023	203	30	20	40	20	50
DAT A SOURCES	Installed Stock Average	Installed Stock Average	Low	T ypical	High	ENERGY ST AR	Standard	Typical	High	T ypical	High	T ypical	High
Lamp Wattage										Calcu	la te d		
Lamp Lumens							DOE, 2022			Assume U	nchange	d	
Lamp Efficacy (lm/W)										NCI,	2019		
System Wattage	2016 EIA Reference Case	Calculated/ Guidehouse				ENERGY			Same as	lamp wat	tage		
System Lumens			Pr	oduct Catalogs		ST AR, 2020							
System Efficacy (lm/W)									Ca	lcula te d			
Ballast Efficiency (BLE)													
CRI													
Correlated Color Temperature (CCT)	2016 EIA Ref						N/A			Assume U	nchange	d	
Average Lamp Life (thousand hours)	2016 EIA Kei	te rence Case											
Annual Operating Hours (h/y)		DO	OE, 2017						D	OE, 2017			
Lamp Price (2022\$)			Diat	ributor Website	20								
Ballast Price (2022\$)	2016 EIA Reference	e Case; Calculated	Dist	indutor websit	es					NCI,	2019		
Fixture Price (2022\$)				NCI, 2019									
Disposal Cost (2022\$)		EI	PA, 2022							EPA,	2022		
Lamp Cost (2022\$/klm)		Ca	lculated							NCI,	2010		
System (l/b/f) Cost (2022\$/klm)		Ca	icuiateu			N/A				INCI,	2019		
Labor Cost (2022\$/h)						1 1/11	N/A						
Labor System Installation (hours)	2016 EIA Ref	fe re nce Case	2022	RS Means Onli	ine				20	022 RS Me	ans Onli	ne	
Labor Lamp Change (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)		Са	lcula te d							Calcu	lated		
Total Installed Cost (2022\$/klm)		Ca	reala te a							Carea	ia ic u		
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Commercial General Service 100W Equivalent LED Replacement Lamp in Recessed Can Fixture

	2012	2018		202	2		2023	20	30	2	040	205	50
DAT A SOURCES	Installed Stock Average	Installed Stock Average	Low	T ypical	High	ENERGY ST AR	Standard	Typical	High	T ypical	High	T ypical	High
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)	Average	Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor W	ebsites or Prod	uct Catalogs	ENERGY STAR, 2020	DOE, 2022	Modell Solid-Stat	Re fe renc	Assume de Scenarion	ulated Unchange o, Energy S eral Illumi ant, 2019)	d a vings Fore nation App	ecast of lications
System Wattage System Lumens System Efficacy (lm/W) Ballast Efficiency (BLE)	2016 EIA Reference Case					Calculate	d						
CRI Correlated Color Temperature (CCT)		Model Reference Scenario, Energy				ENERGY STAR, 2020 N/A				Assume	Unchange	d	
Average Lamp Life (thousand hours)		Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor W	ebsites or Prod	uct Catalogs	ENERGY ST AR, 2020	N/A	Modell Savings Fo in Gener	ore cast o al Illumii	re Scenario f Solid-Sta nation Ap ant, 2019)	te Lighting	S Assu Uncha	
Annual Operating Hours (h/y)					DO	E, 2017							0
Lamp Price (2022\$)		Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor W	ebsites or Prod	uct Catalogs			Modell Solid-Stat	Re fe renc te Lightir	ng in Gene	o, Energy S eral Illumi ant, 2019)	a vings Fore na tion App	ecast of lications
Ballast Price (2022\$) Fixture Price (2022\$)	2016 EIA Reference		N/A			N,	/A			1	N/A		
Lamp Cost (2022\$/klm) System (l/b/f) Cost (2022\$/klm)	Case		Calculat N/A	e d		1,					ulated N/A		
Labor Cost (2022\$/h) Labor System Installation (hours) Labor Lamp Change (hours)		2016 EIA Reference Case	2022	RS Means Onl	ine				2	2022 RS M	eans Onli	ne	
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)			Calculat	ed						Calc	ula te d		
			1	EO									

Data Sources » Commercial Halogen Reflector Lamp (PAR38) in Recessed Can Fixture

	2012	2018		2022			2023	203	30	204	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
System Wattage		2016 EIA		Distributor									
System Lumens	2016 EIA Reference	Reference Case /		Websitesor									
System Efficacy (lm/W)	Case	Calculated,		Product Catalogs									
Ballast Efficiency (BLE)		NCI, 2019		Catalogs									
CRI													
Correlated Color Temperature (CCT)													
Average Lamp Life (thousand hours)													
Annual Operating Hours (h/y)	DOE	, 2017		DOE, 2017									
Lamp Price (2022\$)			N/A	Distributor Websites or				N/A					
Ballast Price (2022\$)	2016 EIA Re	ference Case;		Product									
Fixture Price (2022\$)	Calc	ulated		Catalogs									
Lamp Cost (2022\$/klm)				Calculated									
System (1/b/f) Cost (2022\$/klm)				Carculated									
Labor Cost (2022\$/h)				2022 RS Means									
Labor System Installation (hours)	2016 EIA Re	ference Case		Online									
Labor Lamp Change (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calc	ulated		Calculated									
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Commercial Halogen Infrared Reflector Lamp (PAR38) in Recessed Can Fixture

	2012	2018		2022			2023	203	30	204	£0	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage													
Lamp Lumens													
Lamp Efficacy (lm/W)													
System Wattage				Distributor									
System Lumens	2016 EIA Rei	forence Case		Websitesor									
System Efficacy (lm/W)	2010 LET ICE	iciciice casc		Product Catalogs									
Ballast Efficiency (BLE)				Catalogs									
CRI													
Correlated Color Temperature (CCT)													
Average Lamp Life (thousand hours)													
Annual Operating Hours (h/y)	DOE,	2017		DOE, 2017									
Lamp Price (2022\$)			N/A	Distributor				N/A					
Ballast Price (2022\$)	201 (FIL D. /			Websites or Product									
Fixture Price (2022\$)	2016 EIA Ref Calcu			Catalogs									
Lamp Cost (2022\$/klm)				Calculated									
System (1/b/f) Cost (2022\$/klm)				Calculated									
Labor Cost (2022\$/h)				2022 DC 3.4									
Labor System Installation (hours)	2016 EIA Rei	ference Case		2022 RS Means Online									
Labor Lamp Change (hours)													
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calcu	ılated		Calculated									
Total Installed Cost (2022\$/klm)	Cure			Sure trace at									
Annual Maintenance Cost (2022\$/klm)													

Data Sources» Commercial LED Reflector Lighting (PAR38)

	2012	2018		202	2		2023	20	30	20	10	205	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)		Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor V	Vebsites or Produc	t Catalogs	ENERGY STAR, 2020	DOE, 2022			Calcu Assume U cenario, Energ al Illuminatio	nchanged gy Savings I		
System Wattage System Lumens System Efficacy (lm/W) Ballast Efficiency (BLE)	2016 EIA Reference Case					Calcula	ted						
CRI Correlated Color Temperature (CCT)		Model Reference Scenario, Energy				ENERGY STAR, 2020 N/A				Assume U	nchanged		
Average Lamp Life (thousand hours)		Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor V	Vebsites or Produc	t Catalogs	ENERGY STAR, 2020	N/A	Fore cast of	of Solid-Sta	enario, Energ ate Lighting in ations (Naviga	n General	Assume U:	nchanged
Annual Operating Hours (h/y)						DOE, 2017							
Lamp Price (2022\$)	2016 EIA	Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor V	Vebsites or Produc	t Catalogs					cenario, Energ al Illuminatio			
Ballast Price (2022\$) Fixture Price (2022\$)	Reference Case		N/A	A		N/.	A			N/	A		
Lamp Cost (2022\$/klm)		Calculated								Calcu			
System (I/b/f) Cost (2022\$/klm) Labor Cost (2022\$/h) Labor System Installation (hours) Labor Lamp Change (hours)		2016 EIA Reference Case	N/ <i>E</i> 202					N/ 2022 RS Me					
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)								Calcu	lated				
				1.71									

Data Sources » Commercial 4-ft T8 F32 Commodity in 2-Lamp System

	2012	2018		2022		20	30	204	10	20	50	
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High	
Lamp Wattage		Calculated										
Lamp Lumens		Assume same as residential T8			Assur	ne same a	s residen	tial T8				
Lamp Efficacy (lm/W)		SSL Forecast for 2018										
System Wattage												
System Lumens	2016 EIA Ref.				Cal	lculated						
System Efficacy (lm/W)	Case											
Ballast Efficiency (BLE)		Assume unchanged		Chapter 5; Tab	ole 5.8.1 o	f GSFL Ba	llast Fina	ıl Rule TSI) (DOE, 2	2020)		
CRI Correlated Color Temperature (CCT)		Ü		Δες	ıımacam.	e as reside	ntial TS					
Average Lamp Life (thousand hours)				1133	unic sam	c as i csiac	iitiai 10					
Annual Operating Hours (h/y)					DO	E, 2017						
Lamp Price (2022\$)		SSL Forecast										
Ballast Price (2022\$)		for 2018	Assumesa	me as residen	tial T8			Calcu	lated			
Fixture Price (2022\$)		101 2016										
Disposal Costs (2022\$)				I	EPA, 2022	2						
Lamp Cost (2022\$/klm)					Cal	lculated						
System (l/b/f) Cost (2022\$/klm)												
Labor Cost (2022\$/h) Labor System Installation (hours)	2016 EIA Ref. 2022 RS Means Online											
Labor Lamp Change (hours)	2016 EIA Ref.	Case			۷()22 K3 Wie	ans Omn	ile				
Total Installed Cost (2022\$)	Case											
Annual Maintenance Cost (2022\$)					6.1	1 1 1						
Total Installed Cost (2022\$/klm)					Cal	lculated						
Annual Maintenance Cost (2022\$/klm)												

Data Sources» Commercial 4-ft T8 F28 High-efficiency and High-output in 2-Lamp System

	2012	2018	2022	2030	2040	2050					
DATA SOURCES	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical					
Lamp Wattage	2016 EIA Ref.										
Lamp Lumens	Case		Di	istributor Websit	es						
Lamp Efficacy (lm/W)	Cuse										
System Wattage											
System Lumens			Calcu	ılated							
System Efficacy (lm/W)											
Ballast Efficiency (BLE)		Chapter 5; Table	25.8.1 of GSFL B	allast Final Rule T	TSD (DOE, 2020)						
CRI		Distributor Websites									
Correlated Color Temperature (CCT)	2016 EIA Ref.										
Average Lamp Life (thousand hours)											
Annual Operating Hours (h/y)	Case			DOE, 2017							
Lamp Price (2022\$)			Distribuston								
Ballast Price (2022\$)		Calculated	Distributor Websites		Calculated						
Fixture Price (2022\$)			Websites								
Disposal Costs (2022\$)			EPA,	2022							
Lamp Cost (2022\$/klm)			Calcu	ulated							
System (1/b/f) Cost (2022\$/klm)			Caicu	ilated							
Labor Cost (2022\$/h)											
Labor System Installation (hours)	2016 EIA Ref. Case 2022 RS Means Online										
Labor Lamp Change (hours)											
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)			Calcu	ulated							
Total Installed Cost (2022\$/klm)		Calculated									
Annual Maintenance Cost (2022\$/klm)											

Data Sources » Commercial 4-ft T5 F28 in 2-Lamp System

	2012	2018		2022		203	30	204	10	20	50		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High		
Lamp Wattage		Calculated											
Lamp Lumens	2016 EIA Ref. Case	T5, 2022			Assum	ne same a	s residen	ıtial T5					
Lamp Efficacy (lm/W)		SSL Forecast for 2018											
System Wattage													
System Lumens				C	Calculated	d							
System Efficacy (lm/W)		CI	Chapter 5; Table 5.8.6 of GSFL Ballast Final Rule TSD (DOE, 2020)										
Ballast Efficiency (BLE)		Cr	Chapter 5; Table 5.8.6 of GSFL Ballast Final Rule TSD (DOE, 2020)										
CRI													
Correlated Color Temperature (CCT)				Assu	ımesame	e as resido	ential T5						
Average Lamp Life (thousand hours)	2016 EIA Ref.												
Annual Operating Hours (h/y)	Case				DO	E, 2017							
Lamp Price (2022\$)		SSL Forecast											
Ballast Price (2022\$)		for 2018	Assumesa	me as residen	tial T5			Calcu	lated				
Fixture Price (2022\$)					TD 4 2020								
Disposal Costs (2022\$)				E	PA, 2022	<u>2</u>							
Lamp Cost (2022\$/klm)					Cal	culated							
System (l/b/f) Cost (2022\$/klm)													
Labor Cost (2022\$/h)													
Labor System Installation (hours)	2016 EIA Ref.	2016 EIA Ref. Case			20	22 RS Me	ans Onli	ne					
Labor Lamp Change (hours)	Case												
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)			Calculated										
Total Installed Cost (2022\$/klm)													
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Commercial 4-ft Linear LED Replacement Lamp in 2-Lamp System

	2012	2018		2022		20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage								Calcu	lated		
Lamp Lumens		LED	Dietni	outor website	20	A	ssumesa	me as 202	22 Typica	ıl and Hig	h
Lamp Efficacy (lm/W)		Webscrape Database	Distri	outor website	:5		d-State L	Scenario, Lighting ir Loations (N	General	Illuminat	
System Wattage							• • •		Ü		
System Lumens			Calcula	ed				Calcu	lated		
System Efficacy (lm/W)											
Ballast Efficiency (BLE)			N/A					N,	/A		
CRI		Distributor websites									
Correlated Color Temperature (CCT)					Distribu	itor webs	ites				
Average Lamp Life (thousand hours)	2016 FIA D. 6										
Annual Operating Hours (h/y)	2016 EIA Ref. Case				DC	E, 2017					
Lamp Price (2022\$)	Case	LED Webscrape Database	Distri	outor Website	es			vings Fore nation Ap			
Ballast Price (2022\$)			N/A					N	/A		
Fixture Price (2022\$)			14/21					- 1,			
Lamp Cost (2022\$/klm)					Cal	lculated					
System (l/b/f) Cost (2022\$/klm)											
Labor Cost (2022\$/h) Labor System Installation (hours)		Assume 2022 RS Means Online									
Labor Lamp Change (hours)		unchanged									
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)					C	laulate J					
Total Installed Cost (2022\$/klm)					Ca	lculated					
Annual Maintenance Cost (2022\$/klm)											

Data Sources » Commercial 4-ft Linear LED Luminaire to Replace 2-Lamp Systems

	2012	2018		2022		200	30	204	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage											
Lamp Lumens			N/A					N/	Ά		
Lamp Efficacy (lm/W)											
System Wattage								Calcu			
System Lumens		LED						ame as 202			
System Efficacy (lm/W)		Webscrape Database	Distri	butor websites		Model Ref Statel		enario, Ene n General I (Naviga)	lluminati		
Ballast Efficiency (BLE)			N/A					N/	Ά		
CRI				utor websit	-00						
Correlated Color Temperature (CCT)					Distrib	ator w cosh	.03				
Average Lifetime (thousand hours)											
Annual Operating Hours (h/y)	2016 EIA Ref.				DC	DE, 2017					
Lamp or Luminaire Price (2022\$)	Case	LED Webscrape Database	Distri	butor Websites	3			vings Forec ation App			
Ballast Price (2022\$)											
Fixture Price (2022\$)						N/A					
Lamp Cost (2022\$/klm)											
System (l/b/f) Cost (2022\$/klm)					Cal	lculated					
Labor Cost (2022\$/h)											
Labor System Installation (hours)		Assume 2022 RS Means On unchanged									
Labor Lamp Change (hours)											
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)					Cal	lculated					
Total Installed Cost (2022\$/klm)											
Annual Maintenance Cost (2022\$/klm)											

Data Sources » Commercial 4-ft T8 F28 High-efficiency and High-output in 2-Lamp System with Occupancy Sensor

	2012	2018	2022	2030	2040	2050			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical			
Lamp Wattage									
Lamp Lumens	Distributor Websites								
Lamp Efficacy (lm/W)									
System Wattage System Lumens				Calculated					
System Editions System Efficacy (lm/W)				Calculated					
Ballast Efficiency (BLE)	2016 EIA Ref. Case	Chapter 5; Table 5.8.1 of GSFL Ballast Final Rule TSD (DOE, 2020)							
CRI									
Correlated Color Temperature (CCT)			Γ	Distributor Website	S				
Average Lamp Life (thousand hours)									
Annual Operating Hours (h/y)			D	DOE, 2017					
Lamp Price (2022\$)		Calculated	Distributor Websites		Calculated				
Ballast Price (2022\$)				N/A					
Fixture Price (2022\$)		Calculated	Distributor		Calculated				
Occupancy Sensor Price (2022\$)	N/	'A	Websites	Ι	Distributor Website	S			
Disposal Costs (2022\$)			EPA,	2022					
Lamp Cost (2022\$/klm)				Calculated					
System (1/b/f) Cost (2022\$/klm)		Calculated							
Labor Cost (2022\$/h)		Assume 2022 RS Means Online Case							
Labor System Installation (hours)	2016 EIA Ref. Case								
Labor Lamp Change (hours)	ZU10 EIA KEI. Case								
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$)									
Total Installed Cost (2022\$/klm)		Calculated							
Annual Maintenance Cost (2022\$/klm)									
	1	67							

Data Sources» Commercial 4-ft T8 F28 High-efficiency and High-output in 2-Lamp System with Specular Reflector

	2012	2018	2022	2030	2040	2050			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical			
Lamp Wattage									
Lamp Lumens		Distributor Websites							
Lamp Efficacy (lm/W)									
System Wattage									
System Lumens				Calculated					
System Efficacy (lm/W)									
Ballast Efficiency (BLE)	2016 EIA Ref.	Chap	ter 5; Table 5.8.1 of	GSFL Ballast Fina	al Rule TSD (DOE,	2020)			
CRI	Case								
Correlated Color Temperature (CCT)		Distributor Websites							
Average Lamp Life (thousand hours)									
Annual Operating Hours (h/y)				DOE, 2017					
Lamp Price (2022\$)		Calculated	Distributor Websites	Calculated					
Ballast Price (2022\$)				N/A					
Fixture Price (2022\$)		Calculated	Distributor		Calculated				
Reflector Price (2022\$)	N,	/A	Websites	D	istributor Website	es			
Disposal Costs (2022\$)			EPA,	2022					
Lamp Cost (2022\$/klm)				Calculated					
System (l/b/f) Cost (2022\$/klm)									
Labor Cost (2022\$/h)		Assume							
Labor System Installation (hours)	2016 EIA Ref.	2022 RS Means Online							
Labor Lamp Change (hours) Total Installed Cost (2022\$)	Case								
Annual Maintenance Cost (2022\$)									
Total Installed Cost (2022\$/klm)				Calculated					
Annual Maintenance Cost (2022\$/klm)									
Annual Mannellance Cost (20224/Kint)									

Data Sources » Commercial 4-ft T8 F28 High-efficiency and High-output in 2-Lamp System with Occupancy Sensor and Specular Reflector

	2012	2018	2022	2030	2040	2050		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical		
Lamp Wattage		Calculated	Distributor	Distributor	Distributor	Distributor		
Lamp Lumens		Distributor	Websites	Websites	Websites	Websites		
Lamp Efficacy (lm/W)		Websites						
System Wattage								
System Lumens				Calculated				
System Efficacy (lm/W)								
Ballast Efficiency (BLE)		Chap	ter 5; Table 5.8.1 of	f GSFL Ballast Fina	ıl Rule TSD (DOE, 2	2020)		
CRI	2016 EIA Ref.							
Correlated Color Temperature (CCT)	Case	Distributor Websites						
Average Lamp Life (thousand hours)								
Annual Operating Hours (h/y)		DOE, 2017						
Lamp Price (2022\$)								
Ballast Price (2022\$)		Calculated		Calculated	Calculated	Calculated		
Fixture Price (2022\$)			Distributor					
Reflector Price (2022\$)		N/A	Websites	D	istributor Website	es		
Occupancy Sensor Price (2022\$)								
Disposal Costs (2022\$)			EPA,	2022				
Lamp Cost (2022\$/klm)				Calculated				
System (l/b/f) Cost (2022\$/klm)				Carcalatea				
Labor Cost (2022\$/h)		Assume 2022 RS Means Online unchanged						
Labor System Installation (hours)	2016 EIA Ref.							
Labor Lamp Change (hours) Total Installed Cost (2022\$)	Case							
Annual Maintenance Cost (2022\$)								
Total Installed Cost (2022\$/klm)		Calculated						
Annual Maintenance Cost (2022\$/klm)								
American American Cost (London, Mill)								

Data Sources » Commercial 8-ft T8 F59 Typical Efficiency in a 2-Lamp System

	2012	2018		2022		203	30	204	40	205	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage Lamp Lumens		Calculated	Distri	butor Websites	,			Assumesaı	me as 2022	,	
Lamp Efficacy (lm/W)		Curculated	4				1	100 arre bar	110 40 2022	•	
System Wattage	2016 EIA Ref.	Calculated	(Calculated				Calcu	امدما		
System Lumens System Efficacy (lm/W)	Case	Calculated						Carcu	iated		
Ballast Efficiency (BLE)		Assume unchanged		Chapter 5; T	able 5.8.1 o	of GSFL Ba	llast Final	Rule TSD ((DOE, 202	0)	
CRI											
Correlated Color Temperature (CCT) Average Lamp Life (thousand hours)	2016 EIA Ref.							Assume sai	me as 2022	<u>!</u>	
Annual Operating Hours (h/y) Lamp Price (2022\$)	Case	se DOE, 2017									
Ballast Price (2022\$)		Calculated Distributor Websites						Calcu	lated		
Fixture Price (2022\$)					ED 4 2022						
Disposal Costs (2022\$)					EPA, 2022						
Lamp Cost (2022\$/klm)	2016 EIA Ref.				Cal	lculated					
System (l/b/f) Cost (2022\$/klm)	Case	Assume									
Labor Cost (2022\$/h)		unchanged									
Labor System Installation (hours)	Chapter 8; Tabl IRL Preliminar (DOE,	y Analysis TSD			2	022 RS Me	ans Onlin	e			
Labor Lamp Change (hours)		C	hapter 8; Table	8.2.4 of GSFL II	RL Prelimi	nary Anal	ysis TSD(I	OOE, 2013)			
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)	2016 EIA Ref. Case	ef. Calculated									
			170								

Data Sources » Commercial 8-ft T8 F96 High-Output in a 2-Lamp System

	2012	2018		2022		20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage		Assume same									
Lamp Lumens		as 2022 typical	Distri	butor Website	s		A	Assume sa	me as 202	.2	
Lamp Efficacy (lm/W)											
System Wattage											
System Lumens					Cal	lculated					
System Efficacy (lm/W)			Cl		0.07 CCEI	mrr 1	ID 1 TCT) (DOE 30	11.4\		
Ballast Efficiency (BLE)	2016 EIA Ref.		Cha	pter 5; Table 5.	3.26 GSFL	LIKL Final	Kule ISL) (DOE, 20)14)		
CRI	Case										
Correlated Color Temperature (CCT)					Distribu	ıtor Websi	ites				
Average Lamp Life (thousand hours)											
Annual Operating Hours (h/y)					DC	E, 2017					
Lamp Price (2022\$)											
Ballast Price (2022\$)		Calculated	Distri	butor Website	s			Calcu	lated		
Fixture Price (2022\$)											
Disposal Costs (2022\$)					EPA, 2022	_					
Lamp Cost (2022\$/klm)	2017 ETA D. C	Calculated				Calcu	lated				
System (l/b/f) Cost (2022\$/klm)	2016 EIA Ref.	2016 EIA Ref.									
Labor Cost (2022\$/h)	Case	Case									
Labor System Installation (hours)	GSFL IRL I	; Table 8.2.4 of 2022 RS Means Online . Preliminary SD (DOE, 2013)									
Labor Lamp Change (hours)		Cha	apter 8; Table 8	3.2.4 of GSFL II	RL Prelim	inary Ana	lysis TSD	(DOE, 201	13)		
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)	2016 EIA Ref. Case		Calculat	red				Calcu	lated		

Data Sources » Commercial 8-ft Linear LED Replacement Lamp for a 2 Lamp System

	2012	2018		2022		20	30	2030 2040		20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage			Dietr	ibutor Websites				Calcu	lated		
Lamp Lumens		2016 EIA Ref.	Disti	ibutor vvebsites			Assume	same as 202	22 Typical	and High	
Lamp Efficacy (lm/W)		Case, 2015 typical	Case, 2015 typical					cenario, Ene neral Illumi 201	nation Ap		
System Wattage			'	Calculated							
System Lumens		Calculated						Calcu	lated		
System Efficacy (lm/W)											
Ballast Efficiency (BLE)			N/A								
CRI		2016 EIA Ref.									
Correlated Color Temperature (CCT)		Case, 2015	Distributor Websites		Assume same as 2022						
Average Lamp Life (thousand hours)		typical									
Annual Operating Hours (h/y)	N/A				DC	DE, 2017					
Lamp Price (2022\$)	IN/A		Distr	ibutor Websites		Calculated					
Ballast Price (2022\$)		2016 EIA Ref.				NT/A					
Fixture Price (2022\$)		Case, 2015				N/A					
Lamp Cost (2022\$/klm)		typical				Calcu	امدما				
System (1/b/f) Cost (2022\$/klm)						Caicu	iated				
Labor Cost (2022\$/h)		2016 EIA Ref. Case			2	2022 RS Me	ans Onlin	e			
Labor System Installation (hours)						N/A					
Labor Lamp Change (hours)			Chapter 8; Table 8.2.4 of GSFL IRL Preliminary Analysis TSD (DOE, 2013)								
Total Installed Cost (2022\$)			•				, ,	•	·		
Annual Maintenance Cost (2022\$)						1 . 1					
Total Installed Cost (2022\$/klm)		Calculated		Calculated							
Annual Maintenance Cost (2022\$/klm)											

Data Sources » Commercial 8-ft Linear LED Luminaire Replacement for a 2-Lamp System

	2012	2018		2022		20	30	20	40	20	50																										
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High																										
Lamp Wattage																																					
Lamp Lumens						N/A																															
Lamp Efficacy (lm/W)																																					
System Wattage								Calcu																													
System Lumens		2016 EIA Ref.						ame as 202																													
System Efficacy (lm/W)		Case, 2015 typical	Distri	butor Websites	5			Scenario, ng in Gener (Naviga)	al Illumir																												
Ballast Efficiency (BLE)			N/A																																		
CRI		2016 EIA Ref.																																			
Correlated Color Temperature (CCT)		Case, 2015 typical				Distributor Websites																															
Average Lifetime (thousand hours)		ty picar																																			
Annual Operating Hours (h/y)	NT/A				DC	E, 2017																															
Lamp or Luminaire Price (2022\$)	N/A	N/A	N/A	·						N/A	N/A	N/A			N/A	,	,	,	IV/A	IN/A	IN/A	N/A	IN/A			,	,	2016 EIA Ref.			I	Distributo	r Websites	8			
Ballast Price (2022\$)		Case, 2015																																			
Fixture Price (2022\$)		typical				N/	'A																														
Lamp Cost (2022\$/klm)		ty picui																																			
System (1/b/f) Cost (2022\$/klm)						Calcu	lated																														
Labor Cost (2022\$/h)		2016 EIA Ref.			2	022 RS Me	ans Onlin	P																													
Labor System Installation (hours)		Case						C																													
Labor Lamp Change (hours)		N/A																																			
Total Installed Cost (2022\$)		2016 EIA Ref.																																			
Annual Maintenance Cost (2022\$)		Case	(alculated																																		
Total Installed Cost (2022\$/klm)																																					
Annual Maintenance Cost (2022\$/klm)																																					

Data Sources» Commercial Mercury Vapor Low-bay

Installed Stock Average Lamp Lamp Lamp Lamp Lamp Lamp Lamp Lamp		2012	2018	2022	2030	2040	2050
Lamp Lamp (Lamp (1976)) System (Mattage System Efficiency Ballast Efficiency 2016 FIA Reference Case Fifticacy (Inchanged CRI Correlated Color Temperature (CCT) Average Lamp Life (thousand hours) Average Lamp Life (thousand hours) Average Lamp Life (thousand hours) Annual Operating Hours (thy) Ballast Price (2022s) Fixture Price (2022s) Distributor Websites or Product Catalogs Product Catalogs TSD (DOE, 2015) Distributor Websites or Product Catalogs Product Catalogs TSD (DOE, 2015) Distributor Websites or Product Catalogs Product Catalogs TSD (DOE, 2015) Distributor Websites or Product Catalogs Product Catalogs TSD (DOE, 2015) Distributor Websites or Product Catalogs N/A Sallast Price (2022s) Fixture Price (2022s) Distributor Websites or Product Catalogs Table A3 addition (State Catalogs) N/A Calculated Distributor Websites or Product Catalogs N/A Calculated	DATA SOURCES	Installed Stock Average	Installed Stock Average	T ypical	T ypical	T ypical	T ypical
Ballast Efficiency CRI Crelated Color Temperature (CCT) Average Lamp Life (thousand hours) Annual Operating Hours (h/y) Lamp Price (20225) Ballast Price (20225) Ballast Price (20225) Fixture Price (20225) Distributor Websites or Product Catalogs DOE, 2017 Distributor Websites or Product (Catalogs Distributor Websites or Product (Catalogs N/A Distributor Websites or Product (Catalogs N/A Distributor Websites or Product (Catalogs N/A Fixture Price (20225) Chapter 3 & Appendix 6A; Table 6A, 3 4 of HID Final Determination TSD (DOE, 2015) EPA, 2022 Lamp Cost (20225) Lamp Cost (20225) Lamp Cost (20225) Labor Cost (20225) Labor Cost (20225Alm) Labor Labor Lange (flours) Labor Lange (flours) Labor Lange (flours) Labor Lange (flours) Calculated Calculated Calculated Calculated Calculated Calculated Calculated Calculated	Lamp Lumens Lamp Efficacy (lm/W) System Wattage System Lumens						
Correlated Color T emperature (CCT) Product Catalogs Chapter 3, Section 3.4.2 of HID Final Determination TSD (DOE, 2015) Lamp Price (20225) Ballast Price (20225) Eixture Price (20225) Distributor Websites or Product Catalogs N/A Chapter 7 & Appendix 6A; Table 6A, 3.4 of HID Final Determination TSD (DOE, 2015), Calculated Disposal Cost (20225) Lamp Cost (20225) EPA, 2022 Lamp Cost (20225) Labor Cost (20225/klm) Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015), Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015), Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015), Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015), Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) Labor Cost (20225/klm) Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) Calculated Calculated Calculated Calculated	Ballast Efficiency	2016 EIA Reference Case		HID Final Determination			
Average Lamp Life (thousand hours) Annual Operating Hours (h/y) Lamp Price (2022s) Annual Operating Hours (h/y) Lamp Price (2022s) Ballast Price (2022s) Eixture Price (2022s) Disposal Cost (2022s) Disposal Cost (2022s) Lamp Cost (2022s) Lamp Cost (2022s) Eixture Price (2022s) Disposal Cost (2022s) Calculated Disposal Cost (2022s) Labor Cost (2022s) Labor Lost (2022s) Labor Lost (2022s) Labor Lost (2022s) Labor Lost (2022s) Labor Lamp Cost (2022s) Annual Maintenance Cost (2022s) Annual Maintenance Cost (2022s) Calculated Calculated Calculated	CRI			Distributor Wabsites or			
Average Lamp Life (thousand hours) Annual Operating Hours (h/y) Lamp Price (20225) Ballast Price (20225) Ballast Price (20225) Chapter 7 & Appendix 6A; Table 6A.3.4 of HID Final Determination TSD (DOE, 2015) Disposal Cost (20225) Lamp Cost (20225/klm) Labor Cost (20225/klm) Labor System (Installation (hours) Labor System Installation (hours) Labor Lamp Change (hours) Labor Cost (20225) Lamp Cost (20225/klm) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Labor System Installation (hours) Labor Lamp Change (hours) Labor Cost (20225/klm) Calculated Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) Chapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015)	Correlated Color Temperature (CCT)						
Lamp Price (20225) Ballast Price (20225) 2016 EIA Reference Case; Calculated Chapter 7 & Appendix 6A; Table 6A.3.4 of HID Final Determination TSD (DOE, 2015), Calculated Disposal Cost (20225) Lamp Cost (20225/klm) Calculated Chapter 9; Section 9, 2.2.1 of HID Final Determination TSD (DOE, 2015) Labor Cost (20225/klm) Labor System Installation (hours) Labor Lamp Change (hours) Total Installed Cost (20225) Annual Maintenance Cost (20225) Annual Maintenance Cost (20225) Calculated Calculated Calculated Calculated Calculated	Average Lamp Life (thousand hours)			HID Final Determination			
Ballast Price (2022\$) Product Catalogs N/A 2016 EIA Reference Case; Calculated Chapter 7 & Appendix 6A; Table 6A.3. 4 of HID Final Determination TSD (DOE, 2015), Calculated Disposal Cost (2022\$) Lamp Cost (2022\$/klm) System (I/b/f) Cost (2022\$/klm) Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) Labor Cost (2022\$/klm) 2016 EIA Reference Case Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) 2022 RS Me ans Online Total Installed Cost (2022\$/klm) Calculated Calculated Calculated Calculated	Annual Operating Hours (h/y)		DOE, 2017				
Fixture Price (20225) Disposal Cost (2022\$) Lamp Cost (2022\$) Lamp Cost (2022\$) Labor Cost (2022\$) Labor Cost (2022\$) Labor System Installation (hours) Labor System Installation (hours) Labor System Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Annual Maintenance Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$) Clapter 9; Section 9, 2, 2, 1 of HID Final Determination TSD (DOE, 2015) 2022 RS Means Online Calculated Calculated Calculated	Lamp Price (2022\$)					N/A	
Fixture Price (2022\$) Chapter 7 & Appendix 6A; Table 6A.3.4 of HID Final Determination TSD (DOE, 2015), Calculated Disposal Cost (2022\$) Lamp Cost (2022\$/klm) System (I/b/f) Cost (2022\$/klm) Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) Labor Cost (2022\$/klm) Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) 2022 RS Me ans Online Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Calculated Calculated Calculated	Ballast Price (2022\$)						
Labor Cost (2022\$/klm) Labor Cost (2022\$/klm) Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) Labor System Installation (hours) Labor Lamp Change (hours) Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$) Calculated Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) Calculated Calculated Calculated	Fixture Price (2022\$)	2016 EIA Referenc	ce Case; Calculated	Table 6A.3.4 of HID Final Determination TSD (DOE,			
Labor Cost (2022\$/klm) Labor System Installation (hours) Labor System Installation (hours) Labor Lamp Change (hours) Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$) Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) 2022 RS Means Online Calculated Calculated			EP A, 2022				
Labor Cost (2022\$/h) 2016 EIA Reference Case Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) Labor System Installation (hours) Labor Lamp Change (hours) T otal Installed Cost (2022\$) Annual Maintenance Cost (2022\$) T otal Installed Cost (2022\$/kIm) Calculated Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015) 2022 RS Me ans Online Calculated			Calculate d				
Labor Lamp Change (hours) T otal Installed Cost (2022\$) Annual Maintenance Cost (2022\$) T otal Installed Cost (2022\$) Calculated Calculated		2016 EIA Re	fe re nce Case	HID Final Determination			
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Calculated Calculated	Labor System Installation (hours)			2022 RS Means Online			
Annual Maintenance Cost (2022\$) T otal Installed Cost (2022\$/klm) Calculated Calculated	Labor Lamp Change (hours)			2022 NO ME ans Offille			
	Annual Maintenance Cost (2022\$) T otal Installed Cost (2022\$/klm)	Calcu	ıla te d	Calcula te d			

Data Sources » Commercial Metal Halide Low-bay

	2012	2018	2022	2030	2040	2050			
DAT A SOURCES	Installed Stock Average	Installed Stock Average	Typical	T ypical	T ypical	T ypical			
Lamp Wattage	Assume U	Jnchange d			Calculate d				
Lamp Lumens	Distributor Websites or Pr	oduct Catalogs; Calculated			Assume Unchanged				
Lamp Efficacy (lm/W)			Distributor Websites or						
System Wattage			Product Catalogs	Model. Energy Savings Fo	ore cast of Solid-State Lighting	g in General Illumination			
System Lumens					Applications (Navigant, 2019)				
System Efficacy (lm/W)									
Ballast Efficiency	2016 EIA Reference Case Assume Unchanged		Chapter 5; Table 5.7.24 of HID Final Determination TSD (DOE, 2015)	Assume Unchanged					
CRI			Distributor Websites or		1 Louine Orientalige a				
Correlated Color T emperature (CCT)			Product Catalogs						
Average Lamp Life (thousand hours)		Chapter 3; Section 3.4.2 of HID Final Determination TSD (DOE, 2015)							
Annual Operating Hours (h/y)		, 2017	DOE, 2017						
Lamp Price (2022\$)	Distributor Websites or Pro	oduct Catalogs; Calculated							
Ballast Price (2022\$)			Distributor Websites or Product Catalogs	Model, Energy Savings Fo	ore cast of Solid-State Lighting Applications (Navigant, 2019)	g in General Illumina tion)			
Fixture Price (2022\$)	2016 EIA Referend	ce Case; Calculated	Chapter 7 & Appendix 6A; Table 6A.3.4 of HID Final Determination TSD (DOE, 2015), Calculated						
Disposal Cost (2022\$)			EPA,	2022					
Lamp Cost (2022\$/klm)	2016 EIA Referenc	ce Case; Calculated		Calcu	.late d				
System (l/b/f) Cost (2022\$/klm)									
Labor Cost (2022\$/h)	2016 EIA Re	fe re nœ Case	Chapte	r 9; Section 9.2.2.1 of HID Fi	nal Determination TSD (DOE	E, 2015)			
Labor System Installation (hours)				2022 RS Me	ans Online				
Labor Lamp Change (hours) Total Installed Cost (2022\$)				ZOZZ KO WIE	uno Omme				
Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm)			Calcu	la te d					
Annual Maintenance Cost (2022\$/klm)									
		175							

Data Sources» Commercial Sodium Vapor Low-bay

	2012	2018	2022	2030	2040	2050		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Typical	Typical	Typical	Typical		
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W) System Wattage System Lumens System Efficacy (lm/W)			Distributor Websites or Product Catalogs	Model, Energy Savings Foreca	Calculated Assume Unchanged ast of Solid-State Lighting in Ge (Navigant, 2019)	eneral Illumination Applications		
Ballast Efficiency	2016 EIA Reference Case	Assume Unchanged	Chapter 5; Table 5.7.24 of HIL Final Determination TSD (DOE, 2015)	Assume Unchanged				
CRI			Distributor Websites or					
Correlated Color Temperature (CCT)			Product Catalogs					
Average Lamp Life (thousand hours)			Chapter 3; Section 3.4.2 of HII Final Determination TSD (DOE, 2015)					
Annual Operating Hours (h/y)	DOE,	.2017	DOE, 2017					
Lamp Price (2022\$)			Distributor Websites or Product Catalogs	Model, Energy Savings Foreca	eneral Illumination Applications			
Ballast Price (2022\$) Fixture Price (2022\$)	2016 EIA Referen	ce Case; Calculate d	Chapter 7 & Appendix 6A; Table 6A.3.4 of HID Final Determination TSD (DOE, 2015), Calculated					
Disposal Cost (2022\$)			EPA	, 2022				
Lamp Cost (2022\$/klm)	2016 EIA Referenc	ce Case; Calculated	Calculated	Model, Energy Savings Foreca	ast of Solid-State Lighting in Ge (Navigant, 2019)	eneral Illumination Applications		
System (l/b/f) Cost (2022\$/klm)								
Labor Cost (2022\$/h)	2016 EIA Re	eference Case	Cha	apter 9; Section 9.2.2.1 of HID Fi	inal Determination TSD (DOE,	2015)		
Labor System Installation (hours)				2022 RS M	eans Online			
Labor Lamp Change (hours) Total Installed Cost (2022\$)				2,32 10 11				
Annual Maintenance Cost (2022\$)			C-1-	ulated				
Total Installed Cost (2022\$/klm)			Calc	urateu				
Annual Maintenance Cost (2022\$/klm)								

Data Sources » Commercial LED Low-bay Luminaire

	2012	2018		2022		203	30	20-	40	2050	2050	
DAT A SOURCES	Installed Stock Average	Installed Stock Average	Low	T ypical	High	T ypical	High	Typical	High	T ypical	High	
Lamp Wattage												
Lamp Lumens					N/A							
Lamp Efficacy (lm/W)												
System Wattage		Model, Energy										
System Lumens		Savings Forecast of										
System Efficacy(lm/W)	2016 EIA Reference	Lighting in General Illumination Applications (Navigant, 2019)	Illumination Applications		bsites or Product llogs	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)						
Ballast Efficiency	Case	N/A		N	/A			N/A				
CRI	Cusc	Model, Energy						Assume Unc	hange d			
Correlated Color Temperature (CCT)		Savings Forecast of						Assume One	Harige u			
Average Lifetime (thousand hours)		Solid-State Lighting in General Illumination Applications (Navigant, 2019)	umination oplications		bsites or Product clogs	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)						
Annual Operating Hours (h/y)	DOE	E, 2017					DOE, 2017					
Lamp or Luminaire Price (2022\$)	2016 EIA Referenα	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)		Distributor Wel Cata	bsites or Product clogs	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)						
Ballast Price (2022\$)	Case											
Fixture Price (2022\$)		N/A					N/A					
Lamp Cost (2022\$/klm)						_						
System (l/b/f) Cost (2022\$/klm)		Calculated		Calculated								
Labor Cost (2022\$/h) Labor System Installation (hours) Labor Lamp Change (hours)		2016 EIA Reference Case		Model, Energy Savings Forecast of Solid-State Ligi 2022 RS Means Online Applications (Navigant, 2			n General Illun	nination				
T otal Installed Cost (2022\$) Annual Maintenance Cost (2022\$) T otal Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)	Calcu	ula te d					Calculated					

Data Sources » Commercial Mercury Vapor High-Bay

	2012	2018	2022	2030	2040	2050
DAT A SOURCES	Installed Stock Average	Installed Stock Average	T ypical	T ypical	T ypical	T ypical
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W) System Wattage System Lumens System Efficacy (lm/W)			Distributor Websites or Product Catalogs			
Ballast Efficiency	2016 EIA Reference Case	Assume Unchange d	Chapter 5; Table 5.7.24 of HID Final Determination TSD (DOE, 2015)			
CRI Correlated Color T emperature (CCT)			Distributor Websites or			
Correlated Color 1 emperature (CC1)			Product Catalogs			
Average Lamp Life (thousand hours)			Chapter 3; Section 3.4.2 of HID Final Determination TSD (DOE, 2015)			
Annual Operating Hours (h/y)	DOE,	, 2017	DOE, 2017			
Lamp Price (2022\$) Ballast Price (2022\$)			Distributor Websites or Product Catalogs		N/A	
Fixture Price (2022\$)	2016 EIA Referenc	ce Case; Calculated	Chapter 7 & Appendix 6A; Table 6A.3.4 of HID Final Determination TSD (DOE, 2015), Calculated		IV/A	
Disposal Cost (2022\$)		EPA, 2022				
Lamp Cost (2022\$/klm) System (l/b/f) Cost (2022\$/klm)	2016 EIA Referenc	ce Case; Calculated	Ca lcula te d			
Labor Cost (2022\$/h)			Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015)			
Labor System Installation (hours)			2022 RS Means Online			
Labor Lamp Change (hours) Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)	Calcu	ılated	Calculated			

Data Sources » Commercial Metal Halide High-Bay

DATA COVIDERS	2012	2018	2022	2030	2040	2050			
DAT A SOURCES	Installed Stock Average	Installed Stock Average	T ypical	T ypical	T ypical	Typical			
Lamp Wattage		Assume Unchanged			Calculated				
Lamp Lumens		2016 EIA Reference Case; Calculated	Distributor Websites or Product Catalogs		Assume Unchanged				
Lamp Efficacy (lm/W) System Wattage			1 Toddet Catalogs	Model Fnerov Savinos F	g in General Illumination				
System Lumens									
System Efficacy (lm/W)						,			
Ballast Efficiency	Chapter 5; Table 5.7.24 of HID Final Determination TSD (DOE, 2015) Assume Unchanged Assume Unchanged			Assume Unchange d					
CRI		Assume Offichangeu	Distributor Websites or						
Correlated Color Temperature (CCT)			Product Catalogs						
Average Lamp Life (thousand hours)			Chapter 3; Section 3.4.2 of HID Final Determination TSD (DOE, 2015)						
Annual Operating Hours (h/y)	DOE	, 2017	DOE, 2017						
Lamp Price (2022\$)			Distributor Websites or Product Catalogs	Model, Energy Savings F	g in General Illumination				
Ballast Price (2022\$)					Applications (Navigant, 2019)			
Fixture Price (2022\$)	2016 EIA Referen	ce Case; Calculated	Chapter 7 & Appendix 6A; Table 6A.3.4 of HID Final Determination TSD (DOE, 2015), Calculated						
Disposal Cost (2022\$)			EPA,	2022					
Lamp Cost (2022\$/klm) System (I/b/f) Cost (2022\$/klm)	2016 EIA Referen	ce Case; Calculated	Calculate d	Model, Energy Savings F	Fore cast of Solid-State Lightin Applications (Navigant, 2019	g in General Illumination			
Labor Cost (2022\$/h)	2016 EIA Re	ference Case	Chapter 9; Section 9.2.2.1 of HID Final Determination TSD (DOE, 2015)	ion 9.2.2.1 of ermination					
Labor System Installation (hours)				2022 RS Means Online					
Labor Lamp Change (hours)				2022 R5 Weatts Offine					
T otal Installed Cost (2022\$) Annual Maintenance Cost (2022\$)									
Total Installed Cost (2022\$/klm)			Calcu	lcula ted					
Annual Maintenance Cost (2022\$/klm)									

Data Sources» Commercial Sodium Vapor High-Bay

	2012	2018	2022	2030	2040	2050			
DAT A SOURCES	Installed Stock Average	Installed Stock Average	T ypical	T ypical	T ypical	T ypical			
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W) System Wattage System Lumens System Efficacy (lm/W)			Distributor Websites or Product Catalogs		Calculated Assume Unchanged orecast of Solid-State Lightin Applications (Navigant, 201				
Ballast Efficiency	2016 EIA Reference Case	Assume Unchanged	Chapter 5; Table 5.7.24 of HID Final Determination TSD (DOE, 2015)		Assume Unchanged				
CRI			Distributor Websites or						
Correlated Color Temperature (CCT)			Product Catalogs						
Average Lamp Life (thousand hours)			Chapter 3; Section 3.4.2 of HID Final Determination TSD (DOE, 2015)						
Annual Operating Hours (h/y)	DOE,	2017	DOE, 2017						
Lamp Price (2022\$)			Distributor Websites or Product Catalogs	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination					
Ballast Price (2022\$)			1 Toutet Cutarogo	Applications (Navigant, 2019)					
Fixture Price (2022\$)	2016 EIA Referenc	e Case; Calculated	Chapter 7 & Appendix 6A; Table 6A.3.4 of HID Final Determination TSD (DOE, 2015), Calculated						
Disposal Cost (2022\$)			EP A,	2022					
Lamp Cost (2022\$/klm)	2016 EIA Referenc	re Case; Calculated	Calculated		ore cast of Solid-State Lighti Applications (Navigant, 201				
System (l/b/f) Cost (2022\$/klm)									
Labor Cost (2022\$/h)	2016 EIA Re	ference Case	Chapte	r 9; Se ction 9.2.2.1 of HID Fi	DE, 2015)				
Labor System Installation (hours)				2022 RS Me	eans Online				
Labor Lamp Change (hours) Total Installed Cost (2022\$)				2022 NO INICATIS OTHING					
Annual Maintenance Cost (2022\$)			Calcu	late d					
Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)			Calcu	nateu					

Data Sources » Commercial T5 4xF54 HO High-bay

	2012	2018	2022		20)30	20	40	20	50		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Typical	High	Typical	High	Typical	High	Typical	High		
Lamp Wattage							Calcula	ited				
Lamp Lumens							Assume Und	changed				
Lamp Efficacy (lm/W)			Distributor Websites or F	Product Catalogs								
System Wattage			Distributor Websites of 1	Toduct Catalogs	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination							
System Lumens							(Navigant,	2019)				
System Efficacy (lm/W)	2016 EIA Reference Case	Assume Unchanged										
Ballast Efficiency (BLE)			GSFL Ballast Final Rule	last Final Rule TSD (DOE, 2020								
CRI			Distributor Websites or F	Product Catalogo	Assume Unchanged							
Correlated Color Temperature (CCT)			Distributor Websites of I	<u>;</u> s								
Average Lamp Life (thousand hours)			Distributor Websites or F	Product Catalogs								
Annual Operating Hours (h/y)	DOE	, 2017	DOE, 201	5 Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)								
Lamp P rice (2022\$)			Distributor Wahsitas an I									
Ballast Price (2022\$)			Distributor websites or r									
Fixture Price (2022\$)	2016 EIA Referen	ce Case; Calculated	Chapter 7 & Appendix 6 A HID Final Determination 2015), Calcul	ak								
Disposal Cost (2022\$)				EPA	A, 2022							
Lamp Cost (2022\$/klm)	2016 EIA Referen	ce Case; Calculated	Calculate	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination A					n Application			
System (1/b/f) Cost (2022\$/klm)					Wiodel, Elielgy	ouvings1 orccast	(Navigant,		cia manunatio	1171pprications		
Labor Cost (2022\$/h)												
Labor System Installation (hours)	2016 EIA Re	2016 EIA Reference Case		Online								
Labor Lamp Change (hours)												
Total Installed Cost (2022\$)												
Annual Maintenance Cost (2022\$)				Calc	ulated							
Total Installed Cost (2022\$/klm)			Calculated									
Annual Maintenance Cost (2022\$/klm)												

Data Sources » Commercial LED High-bay Luminaire

	2012	2018		2022		203	0	2040 2050			50		
DAT A SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	T ypical	High	T ypical	High		
Lamp Wattage													
Lamp Lumens					N/A								
Lamp Efficacy (lm/W)													
System Wattage) () () () ()											
System Lumens		Model, Energy Savings Forecast of											
System Efficacy (lm/W)	2016 EIA Reference	Solid-State Lighting in General Illumination Applications (Navigant, 2019)		Distributor Websii Catalo _i		t Model, Energy Savings Forecast of Solid-State Lighting in General II Applications (Navigant, 2019)					Illumina tion		
Ballast Efficiency	Case	N/A					N/A						
CRI	Cusc	N. 11.E						Assuma I In	ahanga d				
Correlated Color Temperature (CCT)		Model, Energy Savings Forecast of				Assume Unchanged							
Average Lifetime (thousand hours)		Solid-State Lighting in General Illumination Applications (Navigant, 2019)		Distributor Websi Catalo _i		Model, Energ	del, Energy Savings Forecast of Solid-State Lighting in General II Applications (Navigant, 2019)						
Annual Operating Hours (h/y)	DOE	E, 2017					DOE, 2017						
Lamp or Luminaire Price (2022\$)	2016 EIA Reference	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	N/A	Distributor Websi Catalo _l	Model, Energy Savings Forecast of Solid-State Lighting in General Illumin Applications (Navigant, 2019)								
Ballast Price (2022\$)	Case												
Fixture Price (2022\$)	Cusc	N/A					N/A						
Lamp Cost (2022\$/klm)		,					,						
System (l/b/f) Cost (2022\$/klm)		Calculated		Calculat	ted								
Labor Cost (2022\$/h)		2017 FIA D 6				Model, Energy					Illumination		
Labor System Installation (hours)		2016 EIA Reference Case		2022 RS Me an	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)								
Labor Lamp Change (hours)		Case											
T otal Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calculate d						Calculated						
Total Installed Cost (2022\$/klm)	Cuici						Carcara ic u	i.u					
Annual Maintenance Cost (2022\$/klm)													

Refrigeration

Data Sources » Commercial Compressor Rack Systems

	2012	2018	estalled Stock Low Typical High ENERGY STAR Typical High Typical High Typical											
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High		Typical	High	Typical	High	Typical	High		
Total Capacity (kBtu/h)	ADL, 1996				DOE, 2014	:CRE Report /	Guidehouse	Analysis 202	22					
Median Store Size (ft²)	Food Marketing Institute (FMI), 2012					CBEC	CS 2018							
Power Input (kW)	Copeland, 2008		DOE, 2014: CRE Report / Guidehouse Analysis 2022											
Annual Energy Use (MMWh/y)	ADL, 1996 / NCI Analysis, 2015													
Indexed Annual Efficiency						Calculated								
Average Life (years)	Kysor- Warren, 2008				DOE, 2014	:CRE Report/	Guidehouse	Analysis 202	22					
Total Installed Cost (2022\$)	NCI, 2009/ NCI Analysis, 2012				DOE, 2014	: CRE Report /	Guidehouse	Analysis 202	22					
Total Installed Cost (2022\$/kBtu/h)						Calculated								
Annual Maintenance Cost (2022\$)	ADL, 1996/ NCI Analysis, 2008				DOE, 2014	: CRE Report /	Guidehouse	Analysis 202	22					
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Condensers

	2012	2018	talled tock Low Typical High ENERGY Typical High Typical High Typical											
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High		Typical	High	Typical	High	Typical	High		
Total Capacity (kBtu/h)	NCI Analysis, 2008 / Heatcraft, 2008 / ADL, 1996		Low Typical High ENERGY STAR Typical High Typical High Typical High Typical											
Median Store Size (ft²)	Food Marketing Institute (FMI), 2012					СВЕС	CS 2018							
Power Input (kW)	NCI Analysis, 2008 / Heatcraft, 2008 / ADL, 1996				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Annual Energy Use (MMWh/y)	NCI Analysis, 2008 / ADL, 1996				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Indexed Annual Efficiency						Calculated								
Average Life (years)	ADL, 1996/NCI Analysis, 2008				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Total Installed Cost (2022\$)	NCI Analysis, 2008 / Heatcraft, 2008 / RS Means, 2007				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Total Installed Cost (2022\$/kBtu/h)						Calculated								
Annual Maintenance Cost (2022\$)	NCI Analysis, 2008				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Supermarket Display Cases

	2012	2018		20)22		203	30	20	40	205	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	ENERGY STAR	High	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	DOE, 2007/NCI Analysis, 2008				DOE, 20	14:CRERe _l	port/Guidel	house Anal	ysis 2022						
Median Store Size (ft²)	Food Marketing Institute (FMI), 2012					(CBECS 2018	}							
Case Length (ft)			DOE, 2016: CRE Report/Guidehouse Analysis 2022												
Annual Energy Use (kWh/y) ^{1,2}	DOE, 2007/NCI Analysis, 2008		DOE, 2014: CREReport/Guidehouse Analysis 2022												
Annual Energy Use / Case Length (kWh/ft)			Calculated												
Indexed Annual Efficiency ³						Calcula	ted								
Average Life (years)	DOE, 2007/NCI Analysis, 2008				DOE, 20	16:CRERe _]	oort/Guidel	house Anal	ysis 2022						
Retail Equipment Cost (2022\$)	DOE, 2007/NCI Analysis, 2008			DOE, 20	014:CRERe _l	oort/Guide	ehouse Anal	ysis 2022/T	he Restaura	ant Store					
Total Installed Cost (2022\$)	DOE, 2007/NCI Analysis, 2008				DOE, 20	14։CRERe _l	port/Guidel	house Anal	ysis 2022						
Total Installed Cost (2022\$/kBtu/h)						Calcula	ted								
Annual Maintenance Cos (2022\$) ⁴	tDOE, 2007/NCI Analysis, 2008				DOE, 20	14:CRERe _l	oort/Guidel	house Anal	ysis 2022						
Annual Maintenance Cos (2022\$/kBtu/h)						Calcula	ted								

Data Sources » Commercial Reach-In Refrigerators

	2012	2018		20	22		20	30	20	40	20	50		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High		
Cooling Capacity (Btu/h)	ADL, 1996 / NCI Analysis, 2008					DOE, 201	14:CRERep	ort						
Size (ft³)	ADL, 1996 / Distributor Web Sites					DOE, 20	14: CRERep	ort						
Annual Energy Use (kWh/y)	ADL, 1996/NCI Analysis, 2008		DOE, 2014: CREReport/Guidehouse Analysis 2022/ENERGY STAR 2022											
Annual Energy Use / Volume (kWh/y/ft³)	NCI Analysis, 2012		Calculated											
Indexed Annual Efficiency						Calculated	l							
Average Life (years)						Calculated								
Retail Equipment Cost (2022\$)	ACEEE, 2002					DOE, 2	014:CRETS	D						
Total Installed Cost (2022\$)	ADL, 1996/ Distributor Web Sites / NCI Analysis, 2008		DOE, 20	014: CRE Rep	ort/Guideł	nouse Analys	is2022/ENI	ERGYSTAF	R 2022 / The	Restauran	tStore			
Total Installed Cost (2022\$/kBtu/h)	Distributor Web Sites / NCI Analysis, 2008				DOE, 201	4:CRERepor	t/Guideho	use Analysi	s2022					
Annual Maintenance Cost (2022\$)						Calculated	1							
Annual Maintenance Cost (2022\$/kBtu/h)	NCI Analysis, 2008				DOE, 201	4: CRERepor	t/Guideho	use Analysi	s 2022					
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated	l							

Data Sources » Commercial Reach-In Freezers

	2012	2018		20	22		203	30	20	40	205	0		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High		
Cooling Capacity (Btu/h)	ADL, 1996/NCI Analysis, 2008					DOE, 2016	:CREReport							
Size (ft³)	ADL, 1996 / Distributor Web Sites					DOE, 2016	:CREReport							
	ADL, 1996 / NCI Analysis, 2008		DOE, 2016: CRE Report/Guidehouse Analysis 2022											
Annual Energy Use / Volume (kWh/y/ft³)	NCI Analysis, 2012		Calculated											
Indexed Annual Efficiency						Calculated								
Average Life (years)	ACEEE, 2002				DOE, 2016:	CREReport/	Guidehouse	Analysis 20)22					
Retail Equipment Cost (2022\$)	ADL, 1996/ Distributor Web Sites / NCI Analysis, 2008		DOE, 20	016: CRERep	ort/Guideho	ouse Analysis 2	2022/ENERC	GY STAR 20)22 / The Res	taurant Sto	re			
Total Installed Cost (2022\$)	Distributor Web Sites / NCI Analysis, 2008				DOE, 2016:	CREReport/	Guidehouse	Analysis 20)22					
Total Installed Cost (2022\$/kBtu/h)						Calculated								
Annual Maintenance Cost (2022\$)	NCI Analysis, 2008				DOE, 2016:	CREReport/	Guidehouse	Analysis 20)22					
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Walk-In Refrigerators

	2012	2018		20	22		20	30	20	40	205	50		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High		
Cooling Capacity (Btu/h)		Ü		DOE CRE	Report 2016	/CCMS 2022 /	Guidehouse A	Analysis 2022						
Size (ft²)				DC	DE 2014 WIC	FTSD/Guideh	ouse Analysis	s 2022						
Annual Energy Use (kWh/y)	ADL, 1996 / PG&E, 2004 / NCI Analysis, 2008		DOE CRE Report 2016/Guidehouse Analysis 2022											
Annual Energy Use / Area (kWh/ft²/y)			Calculated											
Indexed Annual Efficiency			Calculated											
Insulated Box Average Life (years)	ADL, 1996 / PG&E, 2004		DOE CRE Report 2016/Guidehouse Analysis 2022											
Compressor Average Life (years)	ADL, 1996 / PG&E, 2004				DOE C	RE Report 201	6/Guidehous	se Analysis 202	22					
Retail Equipment Cost (2022\$)	ADL, 1996 / Distributor Web Sites / NCI Analysis, 2008			DO	E CRE Repor	t 2016/Websta	nurant 2022 / C	Guidehouse A	nalysis 2022					
	ADL, 1996 / Distributor Web Sites / NCI Analysis, 2008			DO	E CRE Repor	t 2016/Websta	nurant 2022 / C	Guidehouse A	nalysis 2023					
Total Installed Cost (2022\$/kBtu/h)	•					Calculated								
Cost (2022\$)	Analysis, 2008				DOE C	RE Report 201	6/Guidehous	se Analysis 202	22					
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Walk-In Freezers

	2012	2018		. 2	022		20	30	20	40	205	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	ADL, 1996/NCI Analysis, 2008	Ü]	OOE CRE Rep	ort 2016/CCM	S 2022 / Guid	ehouse Anal	ysis 2022			
Size (ft²)	ADL, 1996 / NCI Analysis, 2008					Guidehous	se Analysis 20	22				
Annual Energy Use (kWh/y)	ADL, 1996 / PG&E, 2004 / NCI Analysis, 2008					Guidehouse	CREReport2	2016				
Annual Energy Use / Area (kWh/ft²/y)						Calculated						
Indexed Annual Efficiency						Calculated						
Insulated Box Average Life (years)	ADL, 1996 / PG&E, 2004				DOE CI	RE Report 2016	/Guidehouse	e Analysis 202	22			
Compressor Average Life (years)	ADL, 1996 / PG&E, 2004				DOE CI	RE Report 2016	/Guidehouse	e Analysis 202	22			
Retail Equipment Cost (2022\$)	ADL, 1996 / tDistributor Web Sites / NCI Analysis, 2008			DO	E CRE Report	: 2016/Webstau	ırant 2022 / Gı	uidehouse Aı	nalysis 2022			
Total Installed Cost (2022\$)	ADL, 1996 / Distributor Web Sites / NCI Analysis, 2008		DOE CRE Report 2016/Webstaurant 2022/Guidehouse Analysis 2023									
Total Installed Cost (2022\$/kBtu/h)			Calculated									
Annual Maintenance Cost (2022\$)				DX	DE CRE Repoi	t 2016/Guideh	iouse Analysi	s 2022				
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated						

Data Sources » Commercial Ice Machines

	2012	2018		20	22		20	30	204	40	205	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Output (pounds [lbs] per day)	ADL, 1996/NCI Analysis, 2008	_		DOE, 2	2022: ACIMT	SD/Guideho	use Analysis,	2022/CCMS1	Database 202	22		
Water Use per Hundred Pounds (gal/hundred lbs)	ADL, 1996 / Distributor Web Sites			DOE, 2	2022: ACIMT	'SD/Guideho	use Analysis, 2	2022/CCMS1	Database 202	22		
Energy Use per Hundred Pounds (kWh/hundred lbs)	ADL, 1996/NCI Analysis, 2008				DOE, 20	22: ACIM TSE) / Guidehous	e Analysis, 20	122			
Annual Energy Use (kWh/y)	ACEEE, 2002 / NCI Analysis, 2012			DO	E, 2022: ACII	MTSD/Guide	house Analys	is, 2022 / ENE	RGY STAR			
Indexed Annual Efficiency	yCalculated											
Average Life (years)	ADL, 1996/ Distributor Web Sites / NCI Analysis, 2008				DOE, 20	22: ACIM TSE)/Guidehous	e Analysis, 20)22			
Retail Equipment Cost (2022\$)	Distributor Web Sites / NCI Analysis, 2008				DOE, 20	22: ACIM TSE) / Guidehous	e Analysis, 20)22			
Total Installed Cost (with Bin)	NCI Analysis, 2008		DOE, 2022: ACIMTSD / Guidehouse Analysis, 2022									
Total Installed Cost (2022\$/kBtu/h)						Calculated	l					
Annual Maintenance Cost (2022\$)	ADL, 1996/NCI Analysis, 2008				DOE, 20	22: ACIM TSE)/Guidehous	e Analysis, 20)22			
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated						

Data Sources » Commercial Beverage Merchandisers

	2012	2018		20	22		203	30	20	40	2050	0
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)				DOE	, 2014: CRE R	Report / Guidel	nouse Analysi	s 2022				
Size (ft ³)	ADL, 1996 / Distributor Web Sites				DOE, 2014	:CRE Report/	Guidehouse A	Analysis 202	2			
Annual Energy Use (kWh/y)	ADL, 1996/ NCI Analysis, 2008			DOE, 20	14: CRE Repo	rt/Guidehous	e Analysis 202	22/ENERGY	⁄ STAR 2022			
Annual Energy Use / Volume (kWh/ft³/y)						Calculated						
Indexed Annual Efficiency						Calculated						
Average Life (years)	ACEEE, 2002				DOE, 2014	:CRE Report/	Guidehouse A	Analysis 202	2			
Retail Equipment Cost (2022\$)	ADL, 1996 / Distributor Web Sites			DOE, 2014:	CRE Report /	Guidehouse A	analysis 2022 /	'KaTom Res	taurantSup _]	ply		
Total Installed Cost (2022\$)		DOE, 2014: CRE Report / Guidehouse Analysis 2022										
Total Installed Cost (2022\$/kBtu/h)						Calculated						
Annual Maintenance Cost (2022\$)			DOE	, 2014: CRE R	Report / Guidel	nouse Analysi	s 2022				
Annual Maintenance Cost (2022\$/kBtu/h)		Calculated										

Data Sources » Commercial Refrigerated Vending Machines

	2012	2018		202	22		20	030	204	10	2050)
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	DOE, 2015: BVMTSD/ Guidehouse Analysis, 2015	Ü			DOE, 2	2022: BVM TS	D/ Guidehou	use Analysis, 2	2022			
Can Capacity	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD				
Size (ft³)				I	DOE, 2022: B	VMTSD/Gu	idehouse Ana	alysis, 2022				
Annual Energy Use (kWh/y)	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD				
Annual Energy Use / Volume (kWh/ft³/y)						Calcula	ated					
Indexed Annual Efficiency						Calcula	ated					
Average Life (years)	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD				
Retail Equipment Cost (2022\$	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD				
Total Installed Cost (2022\$)	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD				
Total Installed Cost (2022\$/kBtu/h)						Calcula	ated					
Annual Maintenance Cost (2022\$)	DOE, 2015: BVMTSD/ Guidehouse Analysis, 2015				DOE, 2	2022:BVMTS	D/ Guidehou	use Analysis, 2	2022			
Annual Maintenance Cost (2022\$/kBtu/h)				1	DOE, 2022: B	3VMTSD/Gu	idehouse An	alysis, 2022				

Commercial Ventilation

Data Sources » Commercial Constant Air Volume Ventilation

	2012	2018		2022			20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
System Airflow (CFM)	CBECS 2003 & BED 2007				(CBECS 201	8					
System Fan Power (kW)	A CLED A Floor	A CLED A Floor d	4 CLTD 4 TOO 4									
Specific Fan Power (W/CFM)	ASHRAE90.1- 2007	ASHRAE90.1- 2016	ASHRAE90.1- 2019		AS	HRAE90.1	2019/Gu	idehouse	e Analysis 2022			
Annual Fan Energy Use (kWh/y)	2007	_010	2019									
Average Life (years)				ASI	HRAE: Service	Life Datab	oase					
Total Installed Cost (2022\$)					2022 RS Mea	ns Online						
Annual Maintenance Cost (2022\$)				2022 I	RS Means Onl	ine/Guide	house					
Total Installed Cost (2022\$/thousand CFM)					Calcula	ated						
Annual Maintenance Cost (2022\$/thousand CFM)	Calculated											

	2012	2018		2022			20	30	20	40	20	50	
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High	
System Airflow (CFM)	CBECS 2003 & BED 2007				(CBECS 201	18						
System Fan Power (kW)													
Specific Fan Power(W/CFM)	ASHRAE 90.1-2007	ASHRAE 90.1-2016	ASHRAE 90.1-2019 ASHRAE90.1 2019 / Guidehouse Analysis 2022										
Annual Fan Energy Use (kWh/y)	70.1 2007	70.1 Z010	70.1 Z017										
Average Life (years)				ASF	-IRAE: Service	e Life Data	base						
Total Installed Cost (2022\$)					2022 RS Mea	ns Online							
Annual Maintenance Cost (2022\$)		2022 RS Means Online / Guidehouse											
Total Installed Cost (2022\$/thousand CFM)					Calcul	ated							
Annual Maintenance Cost (2022\$/thousand CFM)					Calcul	ated							

	2012	2018		2022			20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
System Airflow (CFM)					ProductLit	erature						
System Fan Power (kW)												
Specific Fan Power(W/CFM)	ASHRAE90.1- 2007	ASHRAE90.1- 2016	1-ASHRAE90.1- 2019		ASI	HRAE90.1	2019/Gu	idehouse	Analysis 2	2022		
Annual Fan Energy Use (kWh/y)			_,_,									
AverageLife (years)				ASI	HRAE: Service	Life Datal	oase					
Total Installed Cost (2022\$)					2022 RS Mean	ns Online						
Annual Maintenance Cost (2022\$)				2022 I	RS Means Onli	ne/Guide	house					
Total Installed Cost (2022\$/thousand CFM)			Calculated									
Annual Maintenance Cost (2022\$/thousand CFM)					Calcula	ited						

Appendix B References

Guidehouse 1200 19th Street, NW, Suite 700 Washington, D.C. 20036

And

Leidos 11951 Freedom Drive Reston, VA 20190

- ASHRAE Service Life and Maintenance Cost Database. (n.d.).
- ASHRAE 90.1-2010, 2016, 2019. Energy Standard for Buildings Except Low-Rise Residential Buildings
- Appliance Magazine. (2005). Portrait of the U.S. Appliance Industry. Appliance Magazine.
- Arthur D. Little. (1996). Energy Savings Potential for Commercial Refrigeration Equipment.
- DOE SSL Program. (2012a). 2010 U.S. Lighting Market Characterization
- DOE SSL Program. (2012b). Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates
- DOE SSL Program. (2017). 2015 U.S. Lighting Market Characterization
- DOE Appliance and Equipment Standards Program. (2022). The Compliance Certification Database.
- EERE. (2014). Energy Conservation Program for Appliance Standards: Automatic Commercial Ice Makers
- EERE. (2014). Energy Conservation Program for Appliance Standards: Commercial Refrigeration Equipment.
- EERE. (2014). Energy Conservation Program for Appliance Standards: Refrigerated Beverage Vending Machines
- EERE. (2015). Energy Conservation Program for Appliance Standards: Walk-in Coolers and Freezers.
- ENERGY STAR. (n.d.). Retrieved November 2015, from ENERGY STAR Products: http://www.energystar.gov/index.cfm?c=products.pr_find_es_products
- ENERGY STAR. (2020) from ENERGY STAR Lamps Specification Version 2.1: https://www.energystar.gov/sites/default/files/Lamps%20V2.1%20Final%20Specification%20%28Revised%20June%202 020%29 0.pdf

References

- ENERGY STAR. (2014) ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs) Eligibility Criteria Version 1.1
- ENERGY STAR. (2012) ENERGY STAR® Program Requirements Product Specification for Luminaires (Light Fixtures) Eligibility Criteria Version 1.1
- Environmental Protection Agency. (2022). *Establishing a Recycling Program for Mercury-Containing Light Bulbs*. From: https://www.epa.gov/hw/establishing-recycling-program-mercury-containing-light-bulbs
- Federal Standard. (1975). National energy conservation standards authorized under the Energy and Policy Conservation Act of 2007 (EPCA 1975).
- Federal Standard. (2005). National energy conservation standards authorized under the Energy Policy Act of 2005 (EPACT 2005).
- Federal Standard. (2007). National energy conservation standards authorized under the Energy Independence and Security Act of 2007 (EISA 2007).
- Food Marketing Institute. (n.d.). Retrieved May 2022, from FMI Supermarket Facts: https://www.fmi.org/our-research/supermarket-facts/average-total-store-size-square-feetLighting Research Institute. (1992). Specifier Reports, Specular Reflectors.
- KaTom. (n.d.) Retrieved May 2022, From: https://www.katom.com/
- Navigant Consulting, Inc. (2009). Energy Savings Potential and R&D Opportunities for Commercial Refrigeration.
- Navigant Consulting, Inc. (n.d.). In House Expertise.

References

- Navigant Consulting, Inc. (2019). Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, Model. https://www.energy.gov/eere/ssl/downloads/2019-ssl-forecast-report
- Product Literature. (n.d.). Literature from manufacturers and experts on specific products
- The Restaurant Store. (n.d.). Retrieved May 2022, From: https://www.therestaurantstore.com/
- RS Means Online. (2022). Retrieved June 2022, From: https://www.rsmeansonline.com/
- Webstaurant. (n.d.) Retrieved May 2022, From: https://www.webstaurantstore.com/

APPENDIX D

EIA - Technology Forecast Updates – Residential and Commercial Building Technologies – Advanced Case

Presented to:

U.S. Energy Information Administration

Prepared by:

Guidehouse 1200 19th Street, NW, Suite 700 Washington, D.C. 20036

And

Leidos 11951 Freedom Drive Reston, VA 20190

October 14, 2022

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

October 2022

Final

Table of Contents

	Page		Page
<u>Objective</u>	4	Commercial Refrigeration	47
Methodology	5	Compressor Rack Systems	48
<u>Definitions</u>	6	<u>Condensers</u>	50
Calculations	7	Supermarket Display Cases	52
Market Transformation	8	Reach-In Refrigerators	55
		Reach-In Freezers	58
Residential Lighting	9	Walk-In Refrigerators	61
General Service	10	Walk-In Freezers	65
Reflector Lamps	14	<u>Ice Machines</u>	69
4-foot Linear 2-lamp Lighting Systems	18	Beverage Merchandisers	73
Outdoor Lamps	22	Refrigerated Vending Machines	76
Commercial Lighting	26	Commercial Ventilation	79
General Service Lamps	27	Constant Air Volume	80
Reflector Lamps	30	Variable Air Volume	82
4-Foot Linear 2 Lamp Lighting Systems	33	Fan Coil Units	84
8-Foot Linear 2 Lamp Lighting Systems	37		
Low Bay Lighting Systems	41	Appendix A: Data Sources	A-1
High Bay Lighting Systems	44	**	
		Appendix B: References	B-1

Objective

The objective of this study is to develop baseline and projected performance and cost characteristics for residential and commercial end-use equipment in an Advanced Case that assumes accelerated adoption of energy-saving technologies due to increased R&D funding and market incentives.

- Examine 2012 and 2018 (commercial) and 2015 and 2020 (residential) baselines, as well as this year's baseline (2022).
 - Review literature, standards, installed base, contractor, and manufacturer information.
 - Provide a relative comparison and characterization of the cost and efficiency of a generic product.
- Forecast technology improvements that are projected to be available through 2050.
 - Review trends in standards, product enhancements, and research and development (R&D).
 - Project impact of product improvements and technology enhancement.

The performance and cost characterization of end-use equipment developed in this study will assist EIA in projecting national primary energy consumption.

Methodology

Input from industry stakeholders, including government, R&D organizations, and manufacturers, was used to project product enhancements concerning equipment performance and cost attributes.

- Technology forecasting involves many uncertainties.
- Technology developments affect performance and cost forecasts.
- Varied sources ensure a balanced view of technology progress and the probable timing of commercial availability.

Definitions

The following tables represent the current and projected efficiencies for residential and commercial building equipment ranging from the installed base in 2012 and 2018 (for commercial products) and 2015 and 2020 (for residential) to the highest efficiency equipment that is expected to be commercially available by 2050, assuming incremental adoption. Below are definitions for the terms used in characterizing the status of each technology.

- Installed Stock Average: the installed and in use equipment for that year. Represents the installed stock of equipment, but does not represent sales.
- Current Standard: the minimum efficiency (or maximum energy use) required (allowed) by current U.S. Department of Energy (DOE) standards, when applicable. For lighting, if no product exists at the standard efficiency level, a hypothetical wattage and lumen output is given for the standard's efficiency level.
- ENERGY STAR®: the minimum efficiency required (or maximum energy use allowed) to meet the ENERGY STAR® criteria, when applicable. Presented performance data represents certified products just meeting current ENERGY STAR specifications. For lighting, if no products exist at the ENERGY STAR efficiency level, a hypothetical wattage and lumen output is given for the ENERGY STAR efficiency level.
- Low: The minimum efficiency product or product mix available on the market. This rating typically reflects minimal compliance with DOE standards.
- Typical: the average, or typical, product being sold in the particular timeframe.
- High: the product with the highest efficiency available in the particular timeframe.
- Lumens (lm): the unit for luminous flux used in the SI unit system. This unit is used to indicate a light source's light output. All reported lumens are initial lumens. 1 kilolumen (klm) = 1,000 lumens.
- Correlated Color Temperature (CCT): a specification of the color appearance of the light emitted by a lamp. Note: CCT is not a performance metric.
- Color Rendering Index (CRI): a scale from 0 to 100 percent indicating how accurate a given light source is at rendering color when compared to a reference light source. The higher the CRI, the better the color rendering ability.
- British thermal unit (Btu): a measure of the heat content of fuels or energy sources. It is the quantity of heat required to raise the temperature of one pound of liquid water by 1°F at the temperature that water has its greatest density (approximately 39 °F). 1 kBtu = 1,000 Btu.
- Cubic Feet per Minute (CFM): a measure of airflow volume equal to the number of cubic feet of air flowing through a two-dimensional plane in one minute.
- Not Available (N/A): data is not available where indicated.

Calculations

The following metrics are commonly referred to throughout the tables to follow. Below are the calculations for each metric

Lighting

- System Wattage = (Lamp Wattage * Ballast Factor) / Ballast Efficiency
- System Lumens = Lamp Lumens * Ballast Factor
- Lamp Efficacy = Lamp Lumens / Lamp Wattage
- System Efficacy = System Lumens / System Wattage
- Lamp Cost (\$/klm) = Lamp Cost / (Lamp Lumens / 1,000)
- Total Equipment Cost = Lamp Cost + Fixture (including ballast) Cost
- System Cost (\$/klm) = Total Equipment Cost/ (System Lumens / 1,000). 1/b/f denotes that the cost includes the luminaire, the ballast, and the fixture.
- Total Installed Cost = Total Equipment Cost + Labor Installation Cost
- Ballast Luminous Efficiency (BLE) = A/(1+B*Avg Total Lamp Arc Power^(-C)) where A, B, and C are pre-defined constants by DOE Energy Conservation Standards for Fluorescent Lamp Ballasts.

Commercial Refrigeration

- Nominal Capacity over Average Input (Btu in / Btu out) = (Cooling or Heat Rejection Capacity)*24*365/(Annual Energy Consumption * 3,412)
- Total Installed Cost = Retail Equipment Cost + Labor Installation Cost
- Total Installed Cost (\$/kBtu/hour) = Total Installed Cost*1,000 / (Cooling or Heat Rejection Capacity). h used as an abbreviation for hour throughout
- Annual Maintenance Cost (\$/kBtu/h) = Annual Maintenance Cost* 1,000 / (Cooling or Heat Rejection Capacity)

Ventilation

- CFM out / Btu in / h = System Airflow / (System Fan Power * 3,412)
- Total Installed Cost (\$/1,000 CFM) = Total Installed Cost* 1,000 / System Airflow
- Annual Maintenance Cost (\$/1,000 CFM) = Annual Maintenance Cost*1,000/SystemFan Power

Market Transformation

The market for the reviewed products has changed since this analysis was performed in 2015. These changes are noted and reflected in the efficiency and cost characteristics.

- DOE issued federal minimum efficiency standards that have gone into effect for General Service Fluorescent Lamps (2012), Incandescent Reflector Lamps (2012), and Fluorescent Lamp Ballasts (2019).
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lumens per watt (lm/W) backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act (10 CFR 430, 87 FR 27439). This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.
- DOE published a Final Rule updating energy conservation standards for Refrigerated Beverage Vending Machines at the end of 2015, effective in 2018. DOE also issued federal minimum efficiency standards that have or will soon go into effect for Refrigerated Beverage Vending Machines (2012), Automatic Commercial Ice Makers (2018), Walk-In Coolers and Freezers (2017), and Commercial Refrigeration Equipment (2017).

Residential Lighting

Note: More R&D investment and effort in the lighting industry only changes projections of LED technologies because additional funding and effort will likely not be applied to traditional technologies that have been exceeded in performance by their LED counterparts. Therefore, the inputs for all non-LED technologies remain unchanged from the Reference Case and are not included in this report.

Final

Performance and Cost Characteristics » Residential General Service Lamps

The residential general service lamps characterized in this report are a 60-watt and a 75-watt medium screw-based (E26) A-type incandescent lamp and their halogen, CFL, and LED equivalents. A standard 60-watt incandescent lamp produces approximately 800 – 850 lumens. A standard 75-watt incandescent lamp produces approximately 1,100 lumens.

Performance:

- A majority of residential lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Fixture prices and installation costs are not included for the residential sector. Labor costs are assumed to be negligible because homeowners likely replaces lamps themselves as they burn out. Therefore, total installed cost is the price of a lamp, and annual maintenance costs are the cost of replacing the lamps, which is a function of lamp life, lamp price, and the annual operating hours.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Legislation:

- The Energy Independence and Security Act of 2007 (EISA 2007) established standards for 60-watt general service lamps, effective in 2014, and 75-watt lamps, effective in 2013. These standards cannot be achieved by incandescent bulbs, but can be by halogen, CFL, and LED technologies.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

ENERGY STAR:

• For ENERGY STAR qualification, general service omnidirectional lamps must have a minimum lamp efficacy of 70 lm/W for products with CRI ≥ 90 and 80 lm/W for lamps with CRI < 90. Additionally, the lamps must have a CRI ≥ 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime ≥ 10,000 hours (ENERGY STAR).

Performance and Cost Characteristics » Residential General Service Lamps

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent, halogen, and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050:

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022.
CFL	+0.5%	0%	-0.5%	Improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps.

Performance and Cost Characteristics » Residential General Service LED Lamps (60 W Incandescent Equivalent)

Higher efficacy compared with Reference Case

	2015	2020		20	22		2023 ²	203	30	204	10	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	8.7	9.2	10.0	8.9	8.0	13.8	17.8	5.7	5.1	4.4	4.0	3.8	3.4
Lamp Lumens	656	803	800	800	800	800	800	800	800	800	800	800	800
Lamp Efficacy (lm/W)	75.5	87.1	80.0	90.0	100.0	80.0	45.0	141.5	157.2	180.2	200.2	209.0	232.1
CRI	81	85	80	81	90	80	N/A	81	90	81	90	81	90
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	25	21	15	14	18	15	N/A	14	18	14	18	14	18
Annual Operating Hours (h/y)	657	657	657	657	657	657	N/A	657	657	657	657	657	657
Lamp Price (2022\$)	\$13.53	\$4.56	\$6.20	\$3.92	\$5.32	\$6.20	N/A	\$3.23	\$4.39	\$2.84	\$3.86	\$2.46	\$3.33
Lamp Cost (2022\$/klm)	\$20.63	\$5.68	\$7.75	\$4.90	\$6.65	\$7.75	N/A	\$7.02	\$7.02	\$3.57	\$3.57	\$2.38	\$2.38
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	0.0	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$13.53	\$4.56	\$6.20	\$3.92	\$5.32	\$6.20	N/A	\$3.23	\$4.39	\$2.84	\$3.86	\$2.46	\$3.33
Annual Maintenance Cost (2022\$)	\$0.35	\$0.15	\$0.27	\$0.18	\$0.19	\$0.27	N/A	\$0.15	\$0.16	\$0.13	\$0.14	\$0.11	\$0.12
Total Installed Cost (2022\$/klm)	\$20.63	\$5.68	\$7.75	\$4.90	\$6.65	\$7.75	N/A	\$4.04	\$5.49	\$3.56	\$4.83	\$3.07	\$4.17
Annual Maintenance Cost (2022\$/klm)	\$0.54	\$0.18	\$0.34	\$0.22	\$0.24	\$0.34	N/A	\$0.18	\$0.20	\$0.16	\$0.17	\$0.14	\$0.15

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential General Service Filament-LED Lamps (60 W Incandescent Equivalent)

Higher efficacy compared with Reference Case

	2015	2020		20	22		2023 ²	20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	9.7	7.1	5.5	6.9	8.0	13.8	17.8	5.4	5.1	4.2	4.0	3.6	3.4
Lamp Lumens	457	650	450	650	800	800	800	800	800	800	800	800	800
Lamp Efficacy (lm/W)	47.1	91.7	81.8	94.8	100.0	80.0	45.0	149.0	157.2	189.8	200.2	220.0	232.1
CRI	82	84	90	84	80	80	N/A	81	90	81	90	81	90
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	23	21	15	15	15	15	N/A	15	15	15	15	15	15
Annual Operating Hours (h/y)	657	657	657	657	657	N/A	N/A	657	657	657	657	657	657
Lamp Price (2022\$)	\$15.17	\$6.88	\$6.25	\$5.91	\$7.75	N/A	N/A	\$4.87	\$6.39	\$4.29	\$5.62	\$3.70	\$4.86
Lamp Cost (2022\$/klm)	\$33.20	\$10.58	\$13.89	\$9.09	\$9.69	N/A	N/A	\$7.02	\$7.02	\$3.57	\$3.57	\$2.38	\$2.38
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$15.17	\$6.88	\$6.25	\$5.91	\$7.75	N/A	N/A	\$4.87	\$6.39	\$4.29	\$5.62	\$3.70	\$4.86
Annual Maintenance Cost (2022\$)	\$0.43	\$0.21	\$0.27	\$0.26	\$0.34	N/A	N/A	\$0.21	\$0.28	\$0.19	\$0.25	\$0.16	\$0.21
Total Installed Cost (2022\$/klm)	\$33.20	\$10.58	\$13.89	\$9.09	\$9.69	N/A	N/A	\$6.09	\$7.99	\$5.36	\$7.03	\$4.63	\$6.07
Annual Maintenance Cost (2022\$/klm)	\$0.93	\$0.33	\$0.61	\$0.40	\$0.42	N/A	N/A	\$0.27	\$0.35	\$0.23	\$0.31	\$0.20	\$0.27

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential Reflector Lamps

The residential reflector lamps characterized in this report are directional lamps that emit approximately 550 – 850 lumens (except for LED PAR38s which have outputs up to 1,700 lumens). Multiple baseline reflector lamps were analyzed, including 65W Incandescent BR30, Halogen PAR30, Halogen Infrared Reflector (HIR) PAR30, CFL BR30, LED BR30, and LED PAR38.

Performance:

- A majority of residential lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but for CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy.
- Fixture prices and installation costs are not included for the residential sector. Labor costs are assumed to be negligible because homeowners likely replaces lamps themselves as they burn out. Therefore, total installed cost is the price of a lamp, and annual maintenance costs are the cost of replacing the lamps, which is a function of lamp life, lamp price, and the annual operating hours.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Legislation:

- EPAct92 established minimum performance standards for some reflector lamps and provided exemptions for certain specialty applications (e.g., ER/BR, vibration service, more than 5% neodymium oxide, impact resistant, infrared heat, colored). EPAct92 effectively phased-out R-shaped tungsten filament incandescent reflector lamps at certain wattages and bulb diameters, replacing them with more efficient and cost effective tungsten-halogen parabolic aluminized reflector (PAR) lamps. EISA 2007 took away certain exemptions from EPACT 1992, requiring certain previously exempted lamps to meet EPAct92 minimum performance standards by January 1, 2008. The 65W BR30, a large majority of the incandescent reflector lamp market, was still exempted until 2022.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

Performance and Cost Characteristics » Residential Reflector Lamps

ENERGY STAR:

• For ENERGY STAR qualification, general service, reflector lamps must have a minimum lamp efficacy of 61 lm/W for products with CRI ≥ 90 and 70 lm/W for lamps with CRI < 90, respectively. Additionally, the lamps must have a CRI ≥ 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime ≥ 10,000 hours (ENERGY STAR).

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022.
CFL	+0.5%	0%	-0.5%	In addition to higher efficiency reflector coatings, improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Residential Reflector LED BR30

Higher efficacy compared with Reference Case

	2015	2020		20	22		2023 ²	20	30	204	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	14.2	10.9	11.0	8.8	7.2	10.7	14.4	5.5	4.7	4.8	4.1	4.2	3.7
Lamp Lumens	706	781	800	683	650	650	650	650	650	650	650	650	650
Lamp Efficacy (lm/W)	49.8	71.5	72.7	78.6	90.3	61.0	45.0	119.2	137.0	136.3	156.7	153.4	176.3
CRI	82	85	92	87	90	80	N/A	87	90	87	90	87	90
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	25	25	25	19	18	15	N/A	19	18	19	18	19	18
Annual Operating Hours (h/y)	730	730	730	730	730	N/A	N/A	730	730	730	730	730	730
Lamp Price (2022\$)	\$21.40	\$15.36	\$4.09	\$5.01	\$5.96	N/A	N/A	\$4.11	\$4.89	\$3.62	\$4.31	\$3.14	\$3.74
Lamp Cost (2022\$/klm)	\$30.31	\$19.66	\$5.11	\$7.33	\$9.17	N/A	N/A	\$6.32	\$7.53	\$5.57	\$6.64	\$4.83	\$5.75
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$21.40	\$15.36	\$4.09	\$5.01	\$5.96	N/A	N/A	\$4.11	\$4.89	\$3.62	\$4.31	\$3.14	\$3.74
Annual Maintenance Cost (2022\$)	\$0.63	\$0.45	\$0.12	\$0.20	\$0.24	N/A	N/A	\$0.16	\$0.19	\$0.14	\$0.17	\$0.12	\$0.15
Total Installed Cost (2022\$/klm)	\$30.31	\$19.66	\$5.11	\$7.33	\$9.17	N/A	N/A	\$6.32	\$7.53	\$5.57	\$6.64	\$4.83	\$5.75
Annual Maintenance Cost (2022\$/klm)	\$0.89	\$0.57	\$0.15	\$0.29	\$0.37	N/A	N/A	\$0.25	\$0.30	\$0.22	\$0.26	\$0.19	\$0.23

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential Reflector LED PAR38

Higher efficacy compared with Reference Case

	2015	2020		20	22		2023 ²	20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	19.2	15.5	17.0	16.4	17.0	10.7	29.9	10.8	11.2	9.4	9.8	8.4	8.7
Lamp Lumens	1,202	1,211	1,200	1,344	1,700	650	1,344	1,344	1,700	1,344	1,700	1,344	1,700
Lamp Efficacy (lm/W)	62.7	77.9	70.6	82.0	100.0	61.0	45.0	124.5	151.7	142.4	173.6	160.2	195.3
CRI	83	86	82	86	82	80	N/A	86	86	86	86	86	86
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	3,000	2,700	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	24	27	25	27	25	15	N/A	27	25	27	25	27	25
Annual Operating Hours (h/y)	730	730	730	730	730	N/A	N/A	730	730	730	730	730	730
Lamp Price (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Lamp Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Annual Maintenance Cost (2022\$)	\$1.07	\$0.60	\$0.69	\$0.62	\$0.46	N/A	N/A	\$0.52	\$0.38	\$0.46	\$0.34	\$0.41	\$0.31
Total Installed Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Annual Maintenance Cost (2022\$/klm)	\$0.89	\$0.49	\$0.58	\$0.46	\$0.27	N/A	N/A	\$0.39	\$0.23	\$0.35	\$0.20	\$0.31	\$0.18

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023, and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential 4-foot Linear 2-Lamp Lighting Systems

This section characterizes commercial linear fixtures that house two 4ft long linear lamps and their integrated luminaire equivalents. The technologies available for this system are linear fluorescent and LED.

- T5 lamps are approximately 40% narrower than T8 lamps and almost 60% narrower than T12 lamps. This narrowness allows T5 lamps to be coated with higher quality, more efficient phosphor blends than larger diameter lamps, resulting in a more efficacious lamp. The compact size of T5 lamps also permits greater flexibility in lighting design and construction.
- LED options for linear fixtures include replacement lamps that can fit directly into an existing fixture and fully integrated luminaires that can be used to replace existing fixtures. LED replacement lamps are also known as TLEDs. Type A TLEDs can be installed with existing ballasts and Type B and C TLEDs require the ballast to be disconnected. Replacement lamps are only sold to go into existing fixtures. If a new fixture is to be installed, a fully integrated LED luminaire is a more cost effective and efficient option. Because LED luminaires are fully integrated, they do not have lamp and fixture efficiency losses associated with ballasts and fixture optics.

Performance:

- Residential linear lamps often have a nominal CCT rating of 3500K, but products with CCTs of 3000K, 4000K, and 4100K (neutral white) are also common. 5000K (daylight) lamps are available as well. When replacing a light bulb, it is important to choose a product with a similar CCT value to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps, including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps. which are sold only as a replacement for use in an existing fixture. The LED luminaire is more efficient and cost effective for new installations or fixture retrofits.
- Labor costs for lamp changes are assumed to be negligible because homeowners likely replace lamps themselves as they burn out. Therefore, annual maintenance costs are the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for residential linear systems.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Legislation:

- Beginning July 14, 2012 (or July 14, 2014, for T8 700-series phosphor lamps), DOE fluorescent lamp standards required a minimum efficacy of 89 lm/W. Although the amended performance-based standards do not explicitly prohibit T12 lamps, no T12 lamps met the standard at the time of its announcement. Since then, however, T12 lamps meeting the standard have entered the market.
- Beginning November 14, 2014, DOE standards required that the characterized residential ballasts have a minimum BLE = 0.993 / (1 + 0.41 * Avg Total Lamp Arc power ^ (- 0.25)). Residential ballasts also must have a minimum power factor of 0.5.
- California's Title 24 mandates the use of electronic ballasts with high efficacy luminaires (including fluorescent) of 13 W or higher (CEC, 2005).

ENERGY STAR:

• ENERGY STAR does not cover linear lamps. (ENERGY STAR, 2020)

Performance and Cost Characteristics » Residential 4-foot Linear 2-Lamp Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume that manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050:

Technology	Efficacy	Lifetime	Price	Potential for Improvements
T12	0%	0%	-0.5%	Limited because the technology is mature.
Т8	0%	0%	-0.5%	Limited because the technology is mature.
T5	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Residential Linear LED Replacement Lamp 2-Lamp System

Higher efficacy compared with Reference Case

	2015 2020			2022		20	2030		2040		50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	18.5	16.3	16.0	13.7	11.0	8.9	7.2	7.7	7.2	7.7	7.2
Lamp Lumens	2,013	2,130	1,800	1,920	1,800	1,920	1,800	1,920	1,800	1,920	1,800
Lamp Efficacy (lm/W)	111.0	130.7	112.5	140.1	163.6	216.1	250.0	250.0	250.0	250.0	250.0
System Wattage	36.9	32.6	32.0	27.4	22.0	17.8	14.4	15.4	14.4	15.4	14.4
System Lumens	3,583	4,004	3,456	3,686	3,456	3,686	3,456	3,686	3,456	3,686	3,456
System Efficacy (lm/W)	97.0	122.8	108.0	134.5	157.1	207.4	240.0	240.0	240.0	240.0	240.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	83	81	82	81	80	81	80	81	80	81	80
Correlated Color Temperature (CCT)	4,100	3,500	4,100	4,100	5,000	4,100	5,000	4,100	5,000	4,100	5,000
Average Lamp Life (thousand hours)	55	50	50	54	50	54	50	54	50	54	50
Annual Operating Hours (h/y)	584	584	584	584	584	584	584	584	584	584	584
Lamp Price (2022\$)	\$27.00	\$12.89	\$14.63	\$11.11	\$4.28	\$9.97	\$3.84	\$9.87	\$3.80	\$9.77	\$3.77
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$13.41	\$6.05	\$8.13	\$5.79	\$2.38	\$5.19	\$2.13	\$5.14	\$2.11	\$5.09	\$2.09
System (1/b/f) Cost (2022\$/klm)	\$15.07	\$6.44	\$8.47	\$6.03	\$2.48	\$5.41	\$2.22	\$5.35	\$2.20	\$5.30	\$2.18
Labor Cost (2022\$/h) ²	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor System Installation (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$54.00	\$25.78	\$29.26	\$22.22	\$8.56	\$19.95	\$7.68	\$19.74	\$7.60	\$19.55	\$7.53
Annual Maintenance Cost (2022\$)	\$0.57	\$0.30	\$0.34	\$0.24	\$0.10	\$0.22	\$0.09	\$0.21	\$0.09	\$0.21	\$0.09
Total Installed Cost (2022\$/klm)	\$15.07	\$6.44	\$8.47	\$6.03	\$2.48	\$5.41	\$2.22	\$5.35	\$2.20	\$5.30	\$2.18
Annual Maintenance Cost (2022\$/klm)	\$0.16	\$0.08	\$0.10	\$0.07	\$0.03	\$0.06	\$0.03	\$0.06	\$0.03	\$0.06	\$0.03

^{1.} N/A because a fixture and an LED replacement lamp would not be purchased separately for a new installation or retrofit when there are integrated LED luminaires that are more efficient and cost effective. These lamps are sold only as replacements to go into existing fixtures.

Assume no labor is associated with lamp replacement in the residential sector because residents likely replace the lamps themselves.

Performance and Cost Characteristics » Residential Linear LED Luminaire

Higher efficacy compared with Reference Case

	2015	2020	2022			20	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	50.0	43.1	49.0	44.0	35.0	27.4	21.8	23.0	19.2	21.2	19.2
System Lumens	4,615	4,945	5,024	5,302	4,800	5,302	4,800	5,302	4,800	5,302	4,800
System Efficacy (lm/W)	92.3	114.7	102.5	120.5	137.1	193.4	220.1	230.4	250.0	250.0	250.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	83	82	80	79	80	79	80	79	80	79	80
Correlated Color Temperature (CCT)	3,838	3,000	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
Average Lamp Life (thousand hours)	56	58	54	53	50	53	50	53	50	53	50
Annual Operating Hours (h/y)	730	730	730	730	730	730	730	730	730	730	730
Lamp or Luminaire Price (2022\$)	\$181.60	\$158.60	\$144.85	\$152.54	\$207.80	\$121.11	\$164.98	\$105.34	\$143.50	\$90.11	\$122.76
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (I/b/f) Cost (2022\$/klm)	\$78.70	\$64.15	\$57.66	\$57.54	\$86.58	\$45.68	\$68.74	\$39.74	\$59.79	\$33.99	\$51.15
Labor Cost (2022\$/h)	\$80.90	\$80.90	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$403.65	\$357.65	\$322.70	\$338.08	\$448.60	\$275.22	\$362.97	\$243.68	\$320.01	\$213.23	\$278.52
Annual Maintenance Cost (2022\$)	\$2.89	\$2.49	\$2.40	\$2.56	\$3.52	\$2.12	\$2.89	\$1.91	\$2.58	\$1.70	\$2.27
Total Installed Cost (2022\$/klm)	\$87.46	\$72.33	\$64.23	\$63.76	\$93.46	\$51.91	\$75.62	\$45.96	\$66.67	\$40.22	\$58.03
Annual Maintenance Cost (2022\$/klm)	\$0.63	\$0.50	\$0.48	\$0.48	\$0.73	\$0.40	\$0.60	\$0.36	\$0.54	\$0.32	\$0.47

^{1.} N/A because the lamp and fixture are both included in the luminaire.

Performance and Cost Characteristics » Residential Outdoor Lamps

• The residential outdoor lamps characterized in this report include reflector and general service lamps used for security and/or porch lighting that can be switched on from inside the home (i.e. parking lot/garage and outdoor common area lighting at multifamily buildings are excluded) with lumen outputs of approximately 1,000 – 1,400 lumens. Multiple baseline lamps were analyzed according to estimates of installed base average lumens by lamp type, including:

Security (Reflector Lamps)	Porch (General Service Lamps)
Incandescent BR30	Incandescent A-Type
Halogen PAR38	Halogen A-Type
Halogen Infrared Reflector (HIR) PAR38	CFL Bare Spiral
CFL PAR38	LED A-Type Lamp
LED PAR38	

Performance:

- 65W BR30 is the only viable incandescent reflector lamp due to exemption from EISA 2007. The lumen output of this lamp type is well below other reflector lamp technologies characterized for residential outdoor spaces, thus its use is limited for this application. This product is, as of 2022, expected to be eliminated by DOE's 45 lm/W backstop requirement.
- A majority of residential lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2015 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Fixture prices and installation costs are not included for the residential sector. Labor costs are assumed to be negligible because homeowners likely replaces lamps themselves as they burn out. Therefore, total installed cost is the price of a lamp, and annual maintenance costs are the cost of replacing the lamps, which is a function of lamp life, lamp price, and the annual operating hours for residential reflector lamps.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Performance and Cost Characteristics » Residential Outdoor Lamps

Legislation:

• In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

ENERGY STAR:

- For ENERGY STAR qualification, general service omnidirectional lamps must have a minimum lamp efficacy of 70 lm/W for products with CRI ≥ 90 and 80 lm/W for lamps with CRI < 90.
- For ENERGY STAR qualification, general service reflector lamps must have a minimum lamp efficacy of 61 lm/W for products with CRI ≥ 90 and 70 lm/W for lamps with CRI < 90.
- Additionally, the lamps must have a CRI \geq 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime \geq 10,000 hours (ENERGY STAR).

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	P rice	Potential for Improvements
Incandescent Omnidirectional	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Incandescent Directional	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
CFL	+0.5%	0%	-0.5%	In addition to benefiting from higher efficiency reflector coatings, improvements in efficacy can be made by using more rare- earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Residential Outdoor Lamps (Security: LED Reflector)

	2015	2020		20	22		2023 ²	200	30	204	4 0	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	19.2	15.5	17.0	16.4	17.0	10.7	29.9	10.8	11.2	9.4	9.8	8.4	8.7
Lamp Lumens	1,202	1,211	1,200	1,344	1,700	650	1,344	1,344	1,700	1,344	1,700	1,344	1,700
Lamp Efficacy (lm/W)	62.7	77.9	70.6	82.0	100.0	61.0	45.0	124.5	151.7	142.4	173.6	160.2	195.3
CRI	83	86	82	86	82	80	N/A	86	86	86	86	86	86
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	3,000	2,700	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	24	27	25	27	25	15	N/A	27	25	27	25	27	25
Annual Operating Hours (h/y)	730	730	730	730	730	N/A	N/A	730	730	730	730	730	730
Lamp Price (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Lamp Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Annual Maintenance Cost (2022\$)	\$1.07	\$0.60	\$0.69	\$0.62	\$0.46	N/A	N/A	\$0.52	\$0.38	\$0.46	\$0.34	\$0.41	\$0.31
Total Installed Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Annual Maintenance Cost (2022\$/klm)	\$0.89	\$0.49	\$0.58	\$0.46	\$0.27	N/A	N/A	\$0.39	\$0.23	\$0.35	\$0.20	\$0.31	\$0.18

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential Outdoor Lamps (Porch: LED A-Type)

	2015	2020		20	22		2023 ¹	2023 ¹ 2030			1 0	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	12.9	11.8	13.5	11.9	11.0	13.6	24.4	7.6	7.0	6.0	5.5	5.1	4.7
Lamp Lumens	1,073	1,102	1,100	1,089	1,100	1,089	1,100	1,100	1,100	1,100	1,100	1,100	1,100
Lamp Efficacy (lm/W)	83.1	93.5	81.5	92.2	100.0	80	45.0	144.9	157.2	184.6	200.2	214.0	232.1
CRI	81	85	80	86	80	80	N/A	86	80	86	80	86	80
Correlated Color Temperature (CCT)	2,700	2,700	3,000	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	25	21	25	18	25	N/A	N/A	18	25	18	25	18	25
Annual Operating Hours (h/y)	657	657	657	657	657	N/A	N/A	657	657	657	657	657	657
Lamp Price (2022\$)	\$18.13	\$8.48	\$4.39	\$3.92	\$5.29	N/A	N/A	\$3.23	\$4.36	\$2.84	\$3.84	\$2.46	\$3.31
Lamp Cost (2022\$/klm)	\$16.90	\$7.70	\$3.99	\$3.60	\$4.81	N/A	N/A	\$7.02	\$7.02	\$3.57	\$3.57	\$2.38	\$2.38
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$18.13	\$8.48	\$4.39	\$3.92	\$5.29	N/A	N/A	\$3.23	\$4.36	\$2.84	\$3.84	\$2.46	\$3.31
Annual Maintenance Cost (2022\$)	\$0.49	\$0.27	\$0.12	\$0.14	\$0.14	N/A	N/A	\$0.12	\$0.11	\$0.10	\$0.10	\$0.09	\$0.09
Total Installed Cost (2022\$/klm)	\$16.90	\$7.70	\$3.99	\$3.60	\$4.81	N/A	N/A	\$2.94	\$3.97	\$2.59	\$3.49	\$2.23	\$3.01
Annual Maintenance Cost (2022\$/klm)	\$0.45	\$0.24	\$0.10	\$0.13	\$0.13	N/A	N/A	\$0.11	\$0.10	\$0.09	\$0.09	\$0.08	\$0.08

^{1.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Commercial Lighting

Note: More R&D investment and effort in the lighting industry will only change future projections of LED technologies because additional funding and effort will likely not be applied to traditional technologies that have been exceeded in performance by their LED counterparts. Therefore, the inputs for all non-LED technologies remain unchanged from the Reference Case and are therefore not included in this report.

.

Final

Performance and Cost Characteristics » Commercial General Service Lamps in Recessed Can Fixtures

This section characterizes commercial omnidirectional incandescent, halogen, CFL, and LED screw-based general service lamps emitting approximately 1,600 lumens (equivalent to a 100W incandescent lamp) used in recessed can fixtures. A recessed can is a directional fixture set into the ceiling, in which all of the light is directed downwards from the opening. Therefore, an omnidirectional lamp is not well suited for use in such fixtures because light that emits upwards and out of the sides must be reflected downwards and out of the fixture and some light is absorbed in the process. A fixture efficiency of 61% is used to characterize these lumen losses for all omnidirectional lamps. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- A majority of general service lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (day light), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps which are sold only as a replacement for use in an existing fixture. There are integrated LED luminaires that are more efficient and cost effective for new installations or fixture retrofits. Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore typical lamp prices in 2015 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial general service lamps (DOESSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for high intensity discharge (HID) lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- The Energy Independence and Security Act of 2007 (EISA 2007) established standards for 100W lamps effective in 2012. These standards cannot be achieved by incandescent bulbs, but they can be met by halogen, CFL, and LED technologies from 2012 to 2023.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

ENERGY STAR:

• For ENERGY STAR qualification, general service omnidirectional lamps must have a minimum lamp efficacy of 70 lm/W for products with CRI ≥ 90 and 80 lm/W for lamps with CRI < 90. Additionally, the lamps must have a CRI ≥ 80 , nominal CCT of 2,700,3,000,3,500,4,000/4,100,5,000, or 6,000 K, and rated lifetime $\geq 10,000 \text{ hours}$ (ENERGY STAR).

Performance and Cost Characteristics » Commercial General Service Lamps in Recessed Can Fixtures

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022
CFL	+0.5%	0%	-0.5%	Improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Commercial General Service 100W Equivalent LED Replacement Lamp in Recessed Can Fixture

	2012	2018		20	22		2023 ²	20	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	26.7	14.5	16.0	14.8	13.0	20.0	34.8	9.4	8.3	7.4	6.5	6.4	6.4
Lamp Lumens	1,600	1,528	1,600	1,567	1,600	1,600	1,567	1,567	1,600	1,567	1,600	1,567	1,600
Lamp Efficacy (lm/W)	60.0	105.1	100.0	106.0	123.1	80.0	45.0	166.7	193.5	212.2	246.4	246.1	250.0
System Wattage	26.7	14.5	16.0	14.8	13.0	20.0	34.8	9.4	8.3	7.4	6.5	6.4	6.4
System Lumens ³	976	932	976	956	976	976	956	956	976	956	976	956	976
System Efficacy (lm/W)	36.6	64.1	61.0	64.7	75.1	48.8	27.5	101.7	118.0	129.5	150.3	150.1	152.5
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	80	80	90	84.8	84	80	N/A	84.8	84.8	84.8	84.8	84.8	84.8
Correlated Color Temperature (CCT)	3,000	3,000	2,700	2,700	5,000	N/A	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	22.0	17.9	25.0	16.9	25.0	15.0	N/A	16.9	25.0	16.9	25.0	16.9	25.0
Annual Operating Hours (h/y)	4,928	4,928	4,928	4,928	4,928	N/A	N/A	4,928	4,928	4,928	4,928	4,928	4,928
Lamp Price (2022\$)	\$47.45	\$11.28	\$5.62	\$7.04	\$3.39	N/A	N/A	\$5.81	\$2.80	\$5.11	\$2.46	\$4.41	\$2.12
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$26.38	\$22.07	\$22.07	\$22.07	N/A	N/A	\$21.20	\$21.20	\$20.17	\$20.17	\$19.18	\$19.18
Lamp Cost (2022\$/klm)	\$25.00	\$7.38	\$3.51	\$4.49	\$2.12	N/A	N/A	\$3.71	\$1.75	\$3.26	\$1.54	\$2.82	\$1.33
System (l/b/f) Cost (2022\$/klm)	\$72.92	\$40.40	\$28.37	\$30.46	\$26.09	N/A	N/A	\$28.26	\$24.59	\$26.45	\$23.18	\$24.68	\$21.83
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	N/A	N/A	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.0	1.0	1.0	1.0	1.0	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.0
Labor Lamp Change (hours)	0.05	0.05	0.05	0.05	0.05	N/A	N/A	0.05	0.05	0.05	0.05	0.05	0.05
Total Installed Cost (2022\$)	\$148.39	\$114.88	\$93.69	\$95.11	\$91.46	N/A	N/A	\$93.01	\$90.00	\$91.27	\$88.63	\$89.59	\$87.30
Annual Maintenance Cost (2022\$)	\$11.49	\$4.16	\$1.76	\$3.02	\$1.32	N/A	N/A	\$2.66	\$1.20	\$2.45	\$1.14	\$2.25	\$1.07
Total Installed Cost (2022\$/klm)	\$152.04	\$123.25	\$95.99	\$99.52	\$93.71	N/A	N/A	\$97.32	\$92.21	\$95.51	\$90.81	\$93.75	\$89.45
Annual Maintenance Cost (2022\$/klm)	\$11.77	\$4.46	\$1.80	\$3.16	\$1.35	N/A	N/A	\$2.78	\$1.23	\$2.57	\$1.16	\$2.35	\$1.10

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.
- 3. Based on a fixture efficiency of 61% for an omnidirectional lamp installed in a recessed can fixture.

Performance and Cost Characteristics » Commercial Reflector Lamps in Recessed Can Fixtures

This section characterizes commercial halogen, halogen infrared reflector (HIR), and LED screw-based reflector lamps emitting approximately 1400 lumens used in recessed can fixtures.

- HIR lamps contain a tungsten halogen capsule with a film coating on the inside of the capsule. The coating reflects infrared radiation back into the lamp filament, which forces the filament to burn at a higher temperature. This design increases the efficacy of the lamp, without reducing operating life.
- A recessed can is a directional fixture set into the ceiling, in which all of the light is directed downwards from the opening. Therefore, a reflector lamp, which employs reflective coating to direct light out in only one direction, is well suited for use in such fixtures. However, some light is not able to escape the fixture, and a fixture efficiency of 93% is used to characterize these minimal lumen losses. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- A majority of reflector lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps which are sold only as a replacement for use in an existing fixture. Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial reflector lamps (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- EPAct92 established minimum performance standards for some reflector lamps and provided exemptions for certain specialty applications (e.g., ER/BR, vibration service, more than 5% neodymium oxide, impact resistant, infrared heat, colored). EPAct92 effectively phased-out R-shaped tungsten filament incandescent reflector lamps at certain wattages and bulb diameters, replacing them with more efficient and cost effective tungsten-halogen parabolic aluminized reflector (PAR) lamps. EISA2007 took away certain exemptions from EPACT 1992, requiring certain previously exempted lamps to meet EPAct92 minimum performance standards by January 1, 2008. In 2015, DOE issued a final rule that determined that amending the standards for incandescent reflector lamps could not be economically justified.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

Performance and Cost Characteristics » Commercial Reflector Lamps in Recessed Can Fixtures

ENERGY STAR:

• For ENERGY STAR qualification, general service reflector lamps must have a minimum lamp efficacy of 61 lm/W for products with CRI ≥ 90 and 70 lm/W for lamps with CRI < 90. Additionally, the lamps must have a CRI ≥ 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime ≥ 10,000 hours (ENERGY STAR).

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022
CFL	+0.5%	0%	-0.5%	In addition to higher efficiency reflector coatings, improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Commercial LED Reflector Lighting (PAR38)

	2012	2018		20	22		2023 ²	20	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ³	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	17.2	16.6	17.0	16.4	17.0	22.0	29.9	14.0	11.2	9.4	9.8	8.4	8.7
Lamp Lumens	1,045	1,210	1,200	1,344	1,700	1,344	1,344	1,344	1,700	1,344	1,700	1,344	1,700
Lamp Efficacy (lm/W)	60.9	73.0	70.6	82.0	100.0	61.0	45.0	95.7	151.7	142.4	173.6	160.2	195.3
System Wattage	17.2	16.6	17.0	16.4	17.0	22.0	29.9	14.0	11.2	9.4	9.8	8.4	8.7
System Lumens ¹	972	1,125	1,116	1,250	1,581	1,250	1,250	1,250	1,581	1,250	1,581	1,250	1,581
System Efficacy (lm/W)	56.6	67.9	65.6	76.1	93.0	56.7	41.9	89.0	141.1	132.4	161.4	149.0	181.6
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	83	83	82	86	82	80	N/A	86	82	86	82	86	82
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	3,000	3,000	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	22	15	25	28	25	25	N/A	28	25	28	25	28	25
Annual Operating Hours (h/y)	4,928	4,928	4,928	4,928	4,928	N/A	N/A	4,928	4,928	4,928	4,928	4,928	4,928
Lamp Price (2022\$)	\$61.98	\$28.10	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$26.38	\$22.07	\$22.07	\$22.07	N/A	N/A	\$21.20	\$21.20	\$20.17	\$20.17	\$19.18	\$19.18
Lamp Cost (2022\$/klm)	\$59.31	\$23.23	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
System (1/b/f) Cost (2022\$/klm)	\$88.18	\$48.42	\$41.02	\$36.13	\$23.88	N/A	N/A	\$32.48	\$21.75	\$30.02	\$20.22	\$27.64	\$18.74
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	N/A	N/A	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.0	1.0	1.0	1.0	1.0	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.0
Labor Lamp Change (hours)	0.05	0.05	0.05	0.05	0.05	N/A	N/A	0.05	0.05	0.05	0.05	0.05	0.05
Total Installed Cost (2022\$)	\$162.93	\$131.71	\$111.78	\$111.16	\$103.76	N/A	N/A	\$106.60	\$100.38	\$103.52	\$97.96	\$100.55	\$95.63
Annual Maintenance Cost (2022\$)	\$14.75	\$10.50	\$5.32	\$4.64	\$3.74	N/A	N/A	\$3.99	\$3.25	\$3.64	\$2.98	\$3.29	\$2.71
Total Installed Cost (2022\$/klm)	\$167.64	\$117.04	\$100.16	\$88.92	\$65.63	N/A	N/A	\$85.28	\$63.49	\$82.81	\$61.96	\$80.44	\$60.48
Annual Maintenance Cost (2022\$/klm)	\$15.17	\$9.33	\$4.77	\$3.72	\$2.37	N/A	N/A	\$3.20	\$2.05	\$2.91	\$1.88	\$2.63	\$1.71

- 1. Based on a fixture efficiency of 93% for an omnidirectional lamp installed in a recessed can fixture.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. All LED lighting products exceed the new minimum efficacy standards.
- 3. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)

Performance and Cost Characteristics » Commercial 4-foot Linear 2-Lamp Lighting Systems

This section characterizes commercial linear fixtures that house two 4ft long linear lamps and their integrated luminaire equivalents. The technologies available for this system are linear fluorescent and LED.

- Linear fluorescent options are T5, T8, and T12 lamps. T5 lamps are approximately 40% narrower than T8 lamps and almost 60% narrower than T12 lamps. This narrowness allows T5 lamps to be coated with higher quality, more efficient phosphor blends than larger diameter lamps, resulting in a more efficacious lamp. The compact size of T5 lamps also permits greater flexibility in lighting design and construction.
- LED options for linear fixtures include replacement lamps that can fit directly into an existing fixture and fully integrated luminaires that can be used to replace existing fixtures. LED replacement lamps are also known as TLEDs. Type A TLEDs can be installed with existing ballasts and Type B and C TLEDs require the ballast to be disconnected. Replacement lamps are only sold to go into existing fixtures. If a new fixture is to be installed, a fully integrated LED luminaire is a more cost effective and efficient option. Because LED luminaires are fully integrated, they do not have lamp and fixture efficiency losses associated with ballasts and fixture optics. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- Linear lamps often have a nominal CCT rating of 3,500K, but products with CCTs of 3,000K, 4,000K, and 4,100K (neutral white) are also common. 5,000K (daylight) lamps are available as well. When replacing a light bulb, it is important to choose a product with a similar CCT value to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- The total installed cost is the price of two lamps, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamp, which are sold only as a replacement for use in an existing fixture. There are integrated LED luminaires that are more efficient and cost effective for new installations or fixture retrofits. Many factors influence the price of LED lamps, including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022, reflecting a mix of lamp characteristics and features, were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours of 4055 hours per year for commercial 4ft linear systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- Beginning July 14, 2012 (or July 14, 2014, for T8 700-series phosphor lamps), DOE fluorescent lamp standards required a minimum efficacy of 89 lm/W. Although the amended performance-based standards do not explicitly prohibit T12 lamps, no T12 lamps meet the standard at the time of its announcement. Since then, however, T12 lamps meeting the standard have entered the market.
- California's Title 24 mandates the use of electronic ballasts with high efficacy luminaires (including fluorescent) of 13 W or higher (CEC, 2005).

ENERGY STAR:

• ENERGY STAR does not cover commercial linear luminaires (ENERGY STAR, 2020).

Performance and Cost Characteristics » Commercial 4-foot Linear 2-Lamp Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume that manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
T8 F32 Commodity	0%	0%	-0.5%	Limited because the technology is mature.
T8 F32 High Efficiency/High Output	0%	0%	-0.5%	Limited because the technology is mature.
T5 F28	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial 4-ft Linear LED Replacement Lamp in 2-Lamp System

	2012	2018		2022		203	30	204	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	20.8	17.0	16.0	13.7	11.0	8.9	7.2	7.7	7.2	7.7	7.2
Lamp Lumens	2,091	2,003	1,800	1,920	1,800	1,920	1,800	1,920	1,800	1,920	1,800
Lamp Efficacy (lm/W)	100.5	117.8	112.5	140.1	163.6	216.1	250.0	250.0	250.0	250.0	250.0
System Wattage	41.6	34.0	32.0	27.4	22.0	17.8	14.4	15.4	14.4	15.4	14.4
System Lumens	3,555	3,565	3,456	3,686	3,456	3,686	3,456	3,686	3,456	3,686	3,456
System Efficacy (lm/W)	85.4	104.9	108.0	134.5	157.1	207.4	240.0	240.0	240.0	240.0	240.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	86	81	82	81	80	81	80	81	80	81	80
Correlated Color Temperature (CCT)	4,100	4,020	4,100	3,500	5,000	3,500	5,000	3,500	5,000	3,500	5,000
Average Lamp Life (thousand hours)	50	54	50	54	50	54	50	54	50	54	50
Annual Operating Hours (h/y)	4,055	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541
Lamp Price (2022\$)	\$278.36	\$35.06	\$14.63	\$11.11	\$4.28	\$9.88	\$3.81	\$9.66	\$3.72	\$9.44	\$3.64
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$133.10	\$17.50	\$8.13	\$5.79	\$2.38	\$5.15	\$2.11	\$5.03	\$2.07	\$4.92	\$2.02
System $(l/b/f)$ Cost $(2022\$/klm)^1$	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Total Installed Cost (2022\$)	\$587.35	\$70.12	\$29.26	\$22.22	\$8.56	\$19.76	\$7.61	\$19.31	\$7.44	\$18.89	\$7.28
Annual Maintenance Cost (2022\$)	\$47.63	\$6.61	\$3.93	\$3.17	\$2.46	\$3.01	\$2.39	\$2.98	\$2.38	\$2.95	\$2.37
Total Installed Cost (2022\$/klm)	\$165.20	\$19.67	\$8.47	\$6.03	\$2.48	\$5.36	\$2.20	\$5.24	\$2.15	\$5.12	\$2.11
Annual Maintenance Cost (2022\$/klm)	\$13.40	\$1.85	\$1.14	\$0.86	\$0.71	\$0.82	\$0.69	\$0.81	\$0.69	\$0.80	\$0.69

^{1.} N/A because a fixture and an LED replacement lamp would not be purchased separately for a new installation or retrofit when there are integrated LED luminaires that are more efficient and cost effective. These lamps are sold only as replacements to go into existing fixtures.

Performance and Cost Characteristics » Commercial 4-ft Linear LED Luminaire to Replace 2-Lamp Systems

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	51.5	50.0	49.0	44.0	35.0	27.4	21.8	23.0	19.2	21.2	19.2
System Lumens	4,818	4,673	5,024	5,302	4,800	5,302	4,800	5,302	4,800	5,302	4,800
System Efficacy (lm/W)	93.6	93.5	102.5	120.5	137.1	193.4	220.1	230.4	250.0	250.0	250.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	84	79	80	79	80	79	80	79	80	79	80
Correlated Color Temperature (CCT)	3,500	3,650	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
Average Lifetime (thousand hours)	67	53	54	53	50	53	50	53	50	53	50
Annual Operating Hours (h/y)	4,055	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431
Lamp or Luminaire Price (2022\$)	\$723.96	\$188.00	\$144.85	\$152.54	\$207.80	\$127.58	\$173.80	\$118.37	\$161.25	\$109.57	\$149.27
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (l/b/f) Cost (2022\$/klm)	\$150.25	\$40.23	\$57.66	\$57.54	\$86.58	\$24.06	\$36.21	\$22.33	\$33.59	\$20.67	\$31.10
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$762.57	\$226.61	\$322.70	\$338.08	\$448.60	\$160.58	\$206.80	\$151.37	\$194.25	\$142.57	\$182.27
Annual Maintenance Cost (2022\$)	\$46.16	\$14.67	\$11.30	\$12.01	\$16.52	\$10.40	\$14.19	\$9.80	\$13.33	\$9.23	\$12.51
Total Installed Cost (2022\$/klm)	\$158.27	\$48.49	\$64.23	\$63.76	\$93.46	\$30.29	\$43.08	\$28.55	\$40.47	\$26.89	\$37.97
Annual Maintenance Cost (2022\$/klm)	\$9.58	\$3.14	\$2.25	\$2.27	\$3.44	\$1.96	\$2.96	\$1.85	\$2.78	\$1.74	\$2.61

 $^{1. \}quad N/A \ because the lamp \ and \ fixture \ are both \ included \ in \ the \ luminaire.$

Performance and Cost Characteristics » Commercial 8-foot Linear 2-Lamp Lighting Systems

This section characterizes commercial linear fixtures that house two 8ft long linear lamps and their integrated luminaire equivalents. The technologies available for this system are linear fluorescent and LED.

- Linear fluorescent options are T5, T8, and T12 lamps. T5 lamps are approximately 40% narrower than T8 lamps and almost 60% narrower than T12 lamps. This narrowness allows T5 lamps to be coated with higher quality, more efficient phosphor blends than larger diameter lamps, resulting in a more efficacious lamp. The compact size of T5 lamps also permits greater flexibility in lighting design and construction.
- LED options for linear fixtures include replacement lamps that can fit directly into an existing fixture and fully integrated luminaires that can be used to replace existing fixtures. LED replacement lamps are also known as TLEDs. Type A TLEDs can be installed with existing ballasts and Type B and C TLEDs require the ballast to be disconnected. Replacement lamps are only sold to go into existing fixtures. If a new fixture is to be installed, a fully integrated LED luminaire is a more cost effective and efficient option. Because LED luminaires are fully integrated, they do not have lamp and fixture efficiency losses associated with ballasts and fixture optics. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- Linear lamps often have a nominal CCT rating of 3,500K, but products with CCTs of 3,000K, 4,000K, and 4,100K (neutral white) are also common. 5,000K (daylight) lamps are available as well. When replacing a light bulb, it is important to choose a product with a similar CCT value to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- The total installed cost is the price of two lamps, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps, which are sold only as a replacement for use in an existing fixture. There are integrated LED luminaires that are more efficient and cost effective for new installations or fixture retrofits.

 Many factors influence the price of LED lamps, including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours of 4147 hours per year for commercial 8ft linear systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- Beginning July 14, 2012 (or July 14, 2014, for T8 700-series phosphor lamps), DOE fluorescent lamp standards required a minimum efficacy of 89 lm/W. Although the amended performance-based standards do not explicitly prohibit T12 lamps, no T12 lamps meet the standard at the time of its announcement. Since then, however, T12 lamps meeting the standard have entered the market.
- California's Title 24 mandates the use of electronic ballasts with high efficacy luminaires (including fluorescent) of 13 W or higher (CEC, 2005).

ENERGY STAR:

• ENERGY STAR does not cover commercial linear luminaires (ENERGY STAR, 2020).

Performance and Cost Characteristics » Commercial 8-foot Linear 2-Lamp Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume that manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050:

Technology	Efficacy	Lifetime	Price	Potential for Improvements
T8 F59 Typical Efficiency	0%	0%	-0.5%	Limited because the technology is mature.
T8 F59 High Efficiency	0%	0%	-0.5%	Limited because the technology is mature.
T8 F96 High Output	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial 8-ft Linear LED Replacement Lamp for a 2-Lamp System

	2012	2018		2022		20	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	N/A	35.7	34.0	39.0	40.0	25.3	25.9	21.9	22.4	19.8	22.0
Lamp Lumens	N/A	3,975	4,200	4,960	5,500	4,960	5,500	4,960	5,500	4,960	5,500
Lamp Efficacy (lm/W)	N/A	111.2	123.5	127.2	137.5	196.1	212.0	226.7	245.1	250.0	250.0
System Wattage	N/A	71.5	68.0	78.0	80.0	50.6	51.9	43.8	44.9	39.7	44.0
System Lumens	N/A	7,473	8,064	9,523	10,560	9,523	10,560	9,523	10,560	9,523	10,560
System Efficacy (lm/W)	N/A	104.5	118.6	122.1	132.0	188.2	203.5	217.7	235.3	240.0	240.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	N/A	80	82	81	82	81	82	81	82	81	82
Correlated Color Temperature (CCT)	N/A	5,000	4,000	4,000	5,000	4,000	5,000	4,000	5,000	4,000	5,000
Average Lamp Life (thousand hours)	N/A	50	50	50	50	50	50	50	50	50	50
Annual Operating Hours (h/y)	N/A	4,147	4,147	4,147	4,147	4,147	4,147	4,147	4,147	4,147	4,147
Lamp Price (2022\$)	N/A	\$89.59	\$33.11	\$37.22	\$41.44	\$32.35	\$36.02	\$31.71	\$35.30	\$31.11	\$34.64
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	N/A	\$19.00	\$7.88	\$7.50	\$7.53	\$6.52	\$6.55	\$6.39	\$6.42	\$6.27	\$6.30
System (l/b/f) Cost (2022\$/klm) ¹	N/A	\$23.98	\$8.21	\$7.82	\$7.85	\$6.79	\$6.82	\$6.66	\$6.69	\$6.53	\$6.56
Labor Cost (2022\$/h)	N/A	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	N/A	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Total Installed Cost (2022\$)	N/A	\$200.80	\$84.70	\$92.92	\$101.36	\$83.18	\$90.52	\$81.90	\$89.09	\$80.70	\$87.76
Annual Maintenance Cost (2022\$)	N/A	\$16.65	\$7.02	\$7.71	\$8.41	\$6.90	\$7.51	\$6.79	\$7.39	\$6.69	\$7.28
Total Installed Cost (2022\$/klm)	N/A	\$50.51	\$10.50	\$9.76	\$9.60	\$8.73	\$8.57	\$8.60	\$8.44	\$8.47	\$8.31
Annual Maintenance Cost (2022\$/klm)	N/A	\$4.19	\$0.87	\$0.81	\$0.80	\$0.72	\$0.71	\$0.71	\$0.70	\$0.70	\$0.69

^{1.} N/A because a fixture and an LED replacement lamp would not be purchased separately for a new installation or retrofit when there are integrated LED luminaires that are more efficient and cost effective. These lamps are sold only as replacements to go into existing fixtures.

Performance and Cost Characteristics » Commercial 8-ft Linear LED Luminaire Replacement for a 2-Lamp System

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	N/A	73.0	90.0	78.0	72.0	49.7	45.9	42.4	41.6	37.9	41.6
System Lumens	N/A	8,000	8,200	9,465	10,400	9,465	10,400	9,465	10,400	9,465	10,400
System Efficacy (lm/W)	N/A	109.6	91.1	121.3	144.4	190.4	226.7	223.1	250.0	250.0	250.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	N/A	90	80	81	80	81	80	81	80	81	80
Correlated Color Temperature (CCT)	N/A	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Average Lifetime (thousand hours)	N/A	75	50	73	100	73	100	73	100	73	100
Annual Operating Hours (h/y)	N/A	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431
Lamp or Luminaire Price (2022\$)	N/A	\$759.16	\$119.99	\$142.48	\$153.91	\$109.90	\$118.71	\$96.00	\$103.70	\$82.68	\$89.31
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	N/A	\$80.00	\$14.63	\$15.05	\$14.80	\$11.61	\$11.41	\$10.14	\$9.97	\$8.73	\$8.59
Labor Cost (2022\$/h)	N/A	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	N/A	1.0	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	N/A	\$708.20	\$206.52	\$229.01	\$240.44	\$196.42	\$205.24	\$182.53	\$190.23	\$169.20	\$175.83
Annual Maintenance Cost (2022\$)	N/A	\$39.16	\$22.40	\$17.46	\$13.53	\$14.40	\$11.11	\$13.09	\$10.08	\$11.84	\$9.10
Total Installed Cost (2022\$/klm)	N/A	\$88.53	\$25.18	\$24.20	\$23.12	\$20.75	\$19.73	\$19.28	\$18.29	\$17.88	\$16.91
Annual Maintenance Cost (2022\$/klm)	N/A	\$4.89	\$2.73	\$1.84	\$1.30	\$1.52	\$1.07	\$1.38	\$0.97	\$1.25	\$0.87

Performance and Cost Characteristics » Commercial Low-Bay Lighting Systems

The commercial low bay lighting characterized in this report is a one-lamp and one-ballast system in a low/high bay fixture that emits between 6,000 and 10,000 system lumens. Low bay lighting is defined as "interior lighting where the roof trusses or ceiling height is less than 25ft. above the floor" (IESNA, 2000). For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- Low bay conventional lighting technologies, such as metal halide and sodium vapor lamps, provide higher efficacy ranging from 80 lm/W to 100 lm/W. Older, mercury vapor lamps have much lower efficacy at approximately 40 lm/W.
- CCT and CRI values range broadly based on technology type for low bay products.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED luminaires, which are sold as one integrated system. Many factors influence the price of LED luminaires, including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical luminaire prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial low-bay systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

ENERGY STAR:

• ENERGY STAR does not cover low/high bay luminaires (ENERGY STAR, 2012).

Performance and Cost Characteristics » Commercial Low-Bay Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

	Efficacy	Lifetime	Price	Potential for Improvements
Mercury Vapor	0%	0%	-0.5%	Limited because the technology is mature.
Metal Halide	0%	0%	-0.5%	Limited because the technology is mature.
Sodium Vapor	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial LED Low-Bay Luminaire

	2012	2018		2022		20	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	68.1	84.0	40.0	73.0	76.0	47.1	49.0	40.5	48.0	40.0	48.0
System Lumens	4,877	10,000	5,000	10,000	12,000	10,000	12,000	10,000	12,000	10,000	12,000
System Efficacy (lm/W)	71.6	119.0	125.0	137.0	157.9	212.5	244.9	246.7	250.0	250.0	250.0
Ballast Efficiency	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	85	78	84	81	80	81	84	81	84	81	81
Correlated Color Temperature (CCT)	4,000	4,806	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	4,000
Average Lifetime (thousand hours)	50	74	75	65	60	65	60	65	60	65	60
Annual Operating Hours (h/y)	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042
Lamp or Luminaire Price (2022\$)	\$903.82	\$281.00	\$63.99	\$145.46	\$285.89	\$123.82	\$243.37	\$111.24	\$218.63	\$99.09	\$194.75
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$185.31	\$28.10	\$12.80	\$14.55	\$23.82	\$12.38	\$20.28	\$11.12	\$18.22	\$9.91	\$16.23
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$865.44	\$396.83	\$162.99	\$244.46	\$384.89	\$222.82	\$342.37	\$210.24	\$317.63	\$198.09	\$293.75
Annual Maintenance Cost (2022\$)	\$69.95	\$37.02	\$12.23	\$24.24	\$45.18	\$21.55	\$39.45	\$19.99	\$36.12	\$18.48	\$32.90
Total Installed Cost (2022\$/klm)	\$177.44	\$39.68	\$32.60	\$24.45	\$32.07	\$22.28	\$28.53	\$21.02	\$26.47	\$19.81	\$24.48
Annual Maintenance Cost (2022\$/klm)	\$14.34	\$3.70	\$2.45	\$2.42	\$3.77	\$2.16	\$3.29	\$2.00	\$3.01	\$1.85	\$2.74

 $^{1. \}quad N/A\ because\ the\ lamp\ and\ fixture\ are\ both\ included\ in\ the\ luminaire.$

Performance and Cost Characteristics » Commercial High-Bay Lighting Systems

The commercial high-bay lighting characterized in this report is a one-lamp and one-ballast system in a low/high bay fixture that emits greater than 10,000 system lumens. High-bay lighting is defined as "interior lighting where the roof trusses or ceiling height is greater than 25ft. above the floor" (IESNA, 2000). For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- High bay conventional lighting technologies, such as metal halide and sodium vapor lamps, provide higher efficacy ranging from 80 lm/W to 100 lm/W. Older, mercury vapor lamps have much lower efficacy at approximately 40 lm/W.
- CCT and CRI values range broadly based on technology type for high bay products.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED luminaires, which are sold as one integrated system. Many factors influence the price of LED luminaires including, CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical luminaire prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial high bay systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

ENERGY STAR:

• ENERGY STAR does not cover low/high bay luminaires (ENERGY STAR, 2012).

Performance and Cost Characteristics » Commercial High-Bay Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

	Efficacy	Lifetime	Price	Potential for Improvements
Mercury Vapor	0%	0%	-0.5%	Limited because the technology is mature.
Metal Halide	0%	0%	-0.5%	Limited because the technology is mature.
Sodium Vapor	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial LED High-Bay Luminaire

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	212	167	150	138	130	89	84	76	76	74	76
System Lumens	18,915	18,797	18,500	18,500	18,900	18,500	18,900	18,500	18,900	18,500	18,900
System Efficacy (lm/W)	89	113	123	134	145	208	225	242	250	250	250
Ballast Efficiency	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	74	78	80	80	80	80	80	80	80	80	80
Correlated Color Temperature (CCT)	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
Average Lifetime (thousand hours)	70	67	100	100	100	100	100	100	100	100	100
Annual Operating Hours (h/y)	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042
Lamp or Luminaire Price (2022\$)	\$2,842.05	\$448.43	\$177.54	\$195.81	\$234.20	\$162.12	\$193.90	\$148.87	\$178.06	\$136.20	\$162.90
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$150.25	\$23.86	\$9.60	\$10.58	\$12.39	\$8.76	\$10.26	\$8.05	\$9.42	\$7.36	\$8.62
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$2,957.88	\$564.26	\$276.54	\$294.81	\$333.20	\$261.12	\$292.90	\$247.87	\$277.06	\$235.20	\$261.90
Annual Maintenance Cost (2022\$)	\$170.78	\$34.07	\$11.18	\$11.91	\$13.47	\$10.55	\$11.84	\$10.02	\$11.20	\$9.51	\$10.58
Total Installed Cost (2022\$/klm)	\$156.38	\$30.02	\$14.95	\$15.94	\$17.63	\$14.11	\$15.50	\$13.40	\$14.66	\$12.71	\$13.86
Annual Maintenance Cost (2022\$/klm)	\$9.03	\$1.81	\$0.60	\$0.64	\$0.71	\$0.57	\$0.63	\$0.54	\$0.59	\$0.51	\$0.56

 $^{1. \}quad N/A \ because the lamp \ and \ fixture \ are both \ included \ in \ the \ luminaire.$

Refrigeration

Performance and Cost Characteristics » Commercial Compressor Rack Systems

Lower annual energy use compared with Reference Case

	2012	2018		20	22		20	30	204	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Total Capacity (kBtu/h) ¹	1,200	1,200	1,200	1,190	930	N/A	1,190	930	1,190	930	1,190	930
Median Store Size (ft²)	46,500	31,997	35,197	35,197	35,197	N/A	35,197	35,197	35,197	35,197	35,197	35,197
Power Input (kW)	162	155	162	160	125	N/A	160	125	160	125	160	125
Annual Energy Use (MMWh/y) ²	1,497	1,497	1,305	1,232	1,160	N/A	1,109	1,044	998	939	898	845
Indexed Annual Efficiency ³	1.00	1.00	1.15	1.21	1.29	N/A	1.35	1.43	1.50	1.59	1.67	1.77
Average Life (years)	15	15	15	15	15	N/A	15	15	15	15	15	15
Total Installed Cost (2022\$)	\$630,000	\$630,000	\$488,000	\$625,000	\$630,000	N/A	\$625,000	\$630,000	\$625,000	\$630,000	\$625,000	\$630,000
Total Installed Cost (2022\$/kBtu/h)	\$525,000	\$525,000	\$406,667	\$525,210	\$677,419	N/A	\$525,210	\$677,419	\$525,210	\$677,419	\$525,210	\$677,419
Annual Maintenance Cost (2022\$) ⁴	\$3,400	\$3,400	\$3,400	\$3,400	\$3,400	N/A	\$3,400	\$3,400	\$3,400	\$3,400	\$3,400	\$3,400
Annual Maintenance Cost (2022\$/kBtu/h)	\$2,833	\$2,833	\$2,833	\$2,857	\$3,656	N/A	\$2,857	\$3,656	\$2,857	\$3,656	\$2,857	\$3,656

- 1. The total capacity represents the nominal compressor capacity required for the entire refrigeration system of a typical supermarket. This refrigeration system usually includes two low temperature racks and two medium temperature racks. For 2018, a 1,200 MBtu/h total cooling capacity is based on a 200-ton estimate for total capacity–80 tons for the medium temperature racks and 20 tons for the low temperature racks.
- 2. Capacity and annual energy consumption for 2022 and beyond are based on market research and Guidehouse estimates.
- $3. \quad Annual \, efficiency \, normalized \, to \, the \, efficiency \, of \, the \, 2012 \, installed \, base. \, Indexed \, Annual \, Efficiency = (2012 \, Energy \, Use) / \, (Energy \, Use).$
- 4. Maintenance cost includes oil changes, bearing lubrication, filter replacement, and system functionality checks-approximately half a day per rack of labor for technician is assumed.

- Commercial compressor rack systems that serve commercial supermarket display cases and walk-ins consist of a number of parallel-connected compressors located in a separate machine room. By modulating compressor capacity, these integrated systems provide higher efficiency and mechanical longevity.
- Rack integrators generally supply a packaged compressor rack for which much of the necessary piping, insulation, components, and controls are pre-assembled.
- A typical supermarket will have 10 to 20 compressors mounted in racks in the 3-horsepower (hp) to 15-hp size range. Usually, each rack has three to five compressors serve a series of loads with nearly identical evaporator temperature.
- The duty cycle for compressors is usually in the range of 60% to 70%.
- Energy use and capacity for the Reference Case are projected to remain static over the coming decades because commercial compressor racks systems are a mature technology. The Reference Case assumes low R&D efforts because it is an established technology.
- For this Advanced Case, a 10% reduction in energy consumption is assumed to occur over the Reference Case for 2022 and beyond due to vacuum insulated panel (VIP) adoption by display cases and a relaxation in charge size limits for more efficient, low global warming potential (GWP) refrigerants. Also, increased adoption of toxic/flammable refrigerants such as ammonia and propane due to improved safety technology such as leak detection.

Lower annual energy use compared with Reference Case

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Total Capacity (kBtu/h) ¹	1,680	1,520	1,440	1,440	1,440	N/A	1,440	1,368	1,300	1,300	1,235	1,235
Median Store Size (ft²)	46,500	31,997	35,197	35,197	35,197	N/A	35,197	35,197	35,197	35,197	35,197	35,197
Power Input (kW)	25	25	18	18	18	N/A	18	18	18	18	18	18
Annual Energy Use (MMWh/y)	120	120	115	106	86	N/A	95	77	86	70	77	63
Indexed Annual Efficiency ²	1.00	1.00	1.04	1.13	1.40	N/A	1.26	1.55	1.40	1.72	1.55	1.91
Average Life (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Total Installed Cost (2022\$)	\$54,000	\$60,000	\$54,000	\$60,000	\$80,000	N/A	\$60,000	\$80,000	\$60,000	\$80,000	\$60,000	\$80,000
Total Installed Cost (2022\$/kBtu/h)	\$32,143	\$39,474	\$37,500	\$41,667	\$55,556	N/A	\$41,667	\$58,480	\$46,168	\$61,538	\$48,598	\$64,777
Annual Maintenance Cost (2022\$) ³	\$954	\$954	\$954	\$954	\$954	N/A	\$954	\$954	\$954	\$954	\$954	\$954
Annual Maintenance Cost (2022\$/kBtu/h)	\$0.57	\$0.63	\$0.66	\$0.66	\$0.66	N/A	\$0.66	\$0.70	\$0.73	\$0.73	\$0.77	\$0.77

^{1.} Total capacity is the total heat rejected (THR) by condensers comprised of two low temperature condensers (THRL = 240 MBtu/h each, suction temperature = -25°F, condensing temperature = 115°F); ambient temperature = 95°F. (NCI, 2009). For 2022 and beyond, capacity was estimated by Guidehouse.

^{2.} Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).

^{3.} Maintenance cost includes coil cleaning, leak checking, belt replacement as necessary, and system functionality checks.

- Condensers are designed with multiple methods of cooling: air-cooled, water-cooled, and evaporative. These units can be single-circuit or a multiple circuit.
- Commercial condensers are remotely located, typically installed on the roof of a supermarket.
- For use with parallel compressors in supermarkets, air-cooled units are the most commonly used condensers. This analysis is based on multiple air-cooled condensers connected to a supermarket refrigeration system comprised of two low temperature condensers and two medium temperature condensers.
- Each compressor rack has a dedicated condenser or a separate circuit of a single common condenser. Condenser temperatures of multiple racks are often different.
- The duty cycle for condensers is usually in the range 50%-70%.
- For this Advanced Case, a 10% reduction in energy consumption and a 5% reduction in required capacity is assumed to occur over the Reference Case for 2020 and beyond due to VIP adoption by display cases and a relaxation in charge size limits for more efficient, low GWP. Also, increased adoption of toxic/flammable refrigerants such as ammonia and propane due to improved safety technology such as leak detection.

Performance and Cost Characteristics » Commercial Supermarket Display Cases

Lower annual energy use, increased installed cost compared with Reference Case

	2012	2018		20	22		203	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	17,623	11,850	11,850	11,850	11,850	N/A	11,850	11,850	11,850	11,850	11,850	11,850
Median Store Size (ft²)	46,500	31,997	35,197	35,197	35,197	N/A	35,197	35,197	35,197	35,197	35,197	35,197
Case Length (ft)	12	12	12	12	12	N/A	12	12	12	12	12	12
Annual Energy Use (kWh/y) ¹²	13,497	10,506	10,506	9,771	9,087	N/A	9,282	8,632	8,818	8,201	8,377	7,791
Annual Energy Use / Case Length (kWh/ft)	1,125	876	876	814	757	N/A	774	719	735	683	698	649
Indexed Annual Efficiency ³	1.00	1.28	1.28	1.38	1.49	N/A	1.45	1.56	1.53	1.65	1.61	1.73
AverageLife (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$8,510	\$10,650	\$7,265	\$9,500	\$10,680	N/A	\$9,500	\$10,680	\$9,500	\$10,680	\$9,500	\$10,680
Total Installed Cost (2022\$)	\$10,811	\$12,650	\$9,265	\$11,500	\$12,680	N/A	\$11,500	\$12,680	\$11,500	\$12,680	\$11,500	\$12,680
Total Installed Cost (2022\$/kBtu/h)	613	1,068	782	970	1,070	N/A	970	1,070	970	1,070	970	1,070
Annual Maintenance Cost (2022\$) ⁴	\$940	\$940	\$940	\$940	\$940	N/A	\$940	\$940	\$940	\$940	\$940	\$940
Annual Maintenance Cost (2022\$/kBtu/h)	\$53.34	\$79.32	\$79.32	\$79.32	\$79.32	N/A	\$79.32	\$79.32	\$79.32	\$79.32	\$79.32	\$79.32

- 1. For 2022 and beyond, energy consumption and cost values were estimated using shipment-weighted averages reported in DOE's 2014 CRE Final Rule Technical Support Document (TSD) for equipment commonly used as display cases. DOE's updated conservation standard went into effect in 2017, so units sold in 2018 are assumed to comply with this standard.
- 2. For consistency with DOE rulemaking practices, Supermarket Display Case Energy Use reported above includes energy use of the compressor racks and condensers. To avoid double counting, do not add Energy Use from the Compressor Rack or Condenser Systems tabs if calculating total energy consumption.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use). (Energy Use).
- 4. Maintenance cost includes preventative maintenance costs such as cleaning evaporator coils, drain pans, fans, and intake screens as well as lamp replacements and other lighting maintenance activities. After 2012, these values are based on a reported maintenance and repair cost of \$220 per unit for preventative maintenance plus approximately \$60 per linear foot for additional repair and maintenance.

52

- DOE set federal energy efficiency standards for Commercial Refrigeration Equipment (CRE) in 2009. These standards set maximum daily energy consumption levels, in kilowatt-hours per day, for display cases manufactured sold in the United States on or after January 1, 2012.
- DOE updated its Energy Conservation Standards for Commercial Refrigeration Equipment in 2014 for equipment sold on or after March 27, 2017.
- The table below lists equipment used as supermarket display cases and their corresponding Energy Conservation Standard levels. The maximum allowable daily energy consumption for each equipment class is a linear function of Total Display Area (TDA).

Equipment Description	Standards Equation (2012)	Standards Equation (2017)
Vertical Open Cooler (VOP.RC.M)	0.82xTDA+4.07	0.64xTDA+4.07
Semi-Vertical Open Cooler (SVO.RC.M)	0.83xTDA+3.18	0.66xTDA+3.18
Horizontal Open Cooler (HZO.RC.M)	0.35xTDA+2.88	0.35xTDA+2.88
Transparent-Doored Cooler (VCT.RC.M)	0.22xTDA+1.95	0.15xTDA+1.95
Deli Display Cooler (SOC.RC.M)	0.51xTDA+0.11	0.44xTDA+0.11
Transparent-Doored Freezer (VCT.RC.L)	0.56xTDA+2.61	0.49xTDA+2.61
Horizontal Open Freezer (HZO.RC.L)	0.57xTDA+6.88	0.55xTDA+6.88

Performance and Cost Characteristics » Commercial Supermarket Display Cases

- According to CBECS 2018 microdata, the average building size for food sale building type is 31,997.
- Unit energy consumption for 2022 and beyond is estimated using a shipment-weighted average by efficiency level and equipment class, using data in DOE's 2014 CRE Final Rule TSD with updated analysis from Guidehouse in 2016. The equipment classes analyzed are listed in the table on the previous slide.
- Supermarket refrigeration systems consist of refrigerated display cases, condensing units, and centralized compressor racks.
- A typical supermarket display case contains lighting, evaporators, evaporator fans, piping, insulation, valves, and controls.
- The efficiency of supermarket display cases can be increased through the use of improved evaporator coils, larger evaporators, higher efficiency evaporator fan blades, high efficiency doors, LED lighting, and improved insulation.
- For 2020 and beyond, accelerated adoption of energy savings technologies is assumed to take place more than in the Reference Case, including accelerated shipments migration to doored over open units, where applicable, as well as vacuum insulated panels.
- The incremental cost of VIPs is assumed to decrease from its present value due to increased R&D funding.
- Projected installed costs for this Advanced Case are higher than the Reference Case, even assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs and/or carbon pricing.
- This Advanced Case assumes a transition from Hydrofluorocarbons (HFC) to more efficient propane and ammonia refrigerants by 2040.
- Advanced Case assumes a 5% reduction in energy use per decade based on technology and efficiency improvements.

Performance and Cost Characteristics » Commercial Reach-In Refrigerators

$^{\prime}$ Lower annual energy use, increased installed cost compared with Reference Case $_{\prime}$

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	2,929	2,400	2,349	2,349	2,349	2,349	2,349	2,349	2,349	2,349	2,349	2,349
Size (ft³)	49	49	46	46	46	47	46	46	46	46	46	46
Annual Energy Use (kWh/y)	2,340	2,222	1,935	1,351	810	810	1,283	770	1,283	770	1,283	770
Annual Energy Use / Volume (kWh/y/ft³)¹	48	45	42	29	18	17	28	17	28	17	28	17
Indexed Annual Efficiency ³	1.00	1.05	1.21	1.73	2.89	2.89	1.82	3.04	1.82	3.04	1.82	3.04
Average Life (years)	10	10	10	10	10	10	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$2,624	\$2,403	\$2,728	\$2,780	\$3,021	\$3,021	\$3,058	\$3,323	\$3,323	\$3,364	\$3,655	\$3,655
Total Installed Cost (2022\$) ⁴	\$3,454	\$3,282	\$3,591	\$3,643	\$3,884	\$3,884	\$3,932	\$4,197	\$4,197	\$4,238	\$4,529	\$4,529
Total Installed Cost (2022\$/kBtu/h)	\$1,179	\$1,368	\$1,529	\$1,551	\$1,654	\$1,654	\$1,885	\$2,568	\$1,885	\$2,568	\$1,885	\$2,568
Annual Maintenance Cost (2022\$) ⁵	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185
Annual Maintenance Cost (2022\$/kBtu/h)	\$63	\$77	\$79	\$79	\$79	\$79	\$79	\$79	\$79	\$79	\$79	\$79

- 1. EPACT 2005 energy standards went into effect in 2010. 2022 low efficiency cost and energy consumption values are based on minimum compliance with this standard. Unless otherwise noted, all other cases are based on shipment-weighted averages solid- and transparent-doored units reported in the 2014 CRETSD. DOE's updated Energy Conservation standards went into effect in 2017; therefore, compliance with this standard is assumed for 2022 and beyond.
- 2. The ENERGY STAR category is based on a shipment weighted average of solid- and transparent-doored units that are minimally compliant with ENERGY STAR v3, effective October 1, 2014. Units compliant with ENERGY STAR are found to be the most efficient reach-in refrigeration equipment on the market in 2022.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = $(2012 \, \text{Energy Use})$ (Energy Use).
- 4. Installation cost for 2012 is based on NCI 2009 report that assumes a cost of \$863. Installation cost for 2022 and beyond is based DOE's 2014 CREFinal Rule and additional analysis by Guidehouse, which assumes an installation cost of \$878 for self-contained equipment.
- 5. Maintenance costs after 2012 are based on DOE's CRE 2014 Final Rule TSD, which reports \$35 annual preventative maintenance, per unit, per year, plus approximately \$40 per linear foot, per year of additional repair and maintenance costs for the units characterized.

Performance and Cost Characteristics » Commercial Reach-In Refrigerators

- The Energy Policy Act of 2005 (EPACT 2005) set maximum daily energy consumption levels, in kilowatt-hours per day, for commercial reach-in refrigerators that went into effect on January 1, 2010. The daily energy consumption is based on the volume of the unit (V) in ft³.
- In 2014, DOE updated its energy conservation standards for reach-in refrigerators, effective March 27, 2017. Both standards are reported in the table below.

Equipment Class	EPCA Standard Level (2010)	DOE Standard Level (2017)
Solid Door (VCS.SC.M)	0.10xV+2.04	0.05xV + 1.36
Glass Door (VCT.SC.M)	0.12xV+3.34	0.1xV+0.86

• In 2013, EPA updated its ENERGY STAR specifications for reach-in refrigerators, effective March 27, 2017. These standards are also based on the refrigerated volume of the unit.

Reach-In Refrigerator Size	0 < V < 15	15 ≤ V < 30	30 ≤ V < 50	50 ≤ V
Solid Door (VCS.SC.M)	0.022xV+0.97	0.066xV+0.31	0.04xV+1.09	0.024xV+1.89
Glass Door (VCT.SC.M)	0.095xV+0.445	0.05xV+1.12	0.076xV+0.034	0.105xV-1.111

Performance and Cost Characteristics » Commercial Reach-In Refrigerators

- Unit energy consumption for 2012 and beyond was estimated based on shipment-weighted averages by efficiency level and equipment class for 49 ft³ VCS.SC.M and VCT.SC.M units reported in DOE's 2014 CRE Final Rule TSD with updated analysis from Guidehouse in 2016. These units were estimated to comprise approximately 85% and 15% of total reach-in refrigerator shipments, respectively.
- The efficiency of commercial reach-in refrigerators can be increased through the use of efficient compressors, efficient evaporator fans, efficient condenser fans, electric defrost, and more efficient lighting.
- After 2022, the high efficiency cases are based on solid-doored units rather than shipment-weighted averages due to the assumption that stakeholders will increasingly value energy conservation.
- Unit energy consumption is expected to decrease as a result of DOE's updated energy conservation standards, as well as a transition to more efficient propane refrigerant due to compliance with EPA Significant New Alternatives Policy (SNAP).
- For this Advanced Case, the typical unit in 2020 is assumed to comply with DOE's updated energy conservation standards for commercial refrigeration.
- A shipments migration from transparent- to solid-doored units is assumed for the Advanced Case.
- By 2040, the adoption of vacuum insulated panels is assumed to occur, with the aid of decreased incremental costs due to increased R&D funding.
- Projected installed costs for this Advanced Case are higher than the Reference Case, even assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs and/or carbon pricing.
- This analysis finds that with increased R&D and market incentives for energy-efficient technologies, a limit of possible efficiency improvements for self-contained, vapor compression refrigeration systems will be reached by 2040.

Performance and Cost Characteristics » Commercial Reach-In Freezers

Lower annual energy use, increased installed cost compared with Reference Case

	2012	2018		20	22		203	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	4,341	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340
Size (ft³)	49	49	49	49	49	49	49	49	49	49	49	49
Annual Energy Use (kWh/y) ¹	6,023	5,585	5,585	4,847	4,110	4,110	4,362	3,699	3,926	3,329	3,533	2,996
Annual Energy Use / Volume (kWh/y/ft³)	123	114	114	99	84	84	89	75	80	68	72	61
Indexed Annual Efficiency ³	1.00	1.08	1.08	1.24	1.47	1.47	1.38	1.63	1.53	1.81	1.70	2.01
Average Life (years)	10	10	10	10	10	10	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$2,886	\$2,886	\$2,886	\$3,175	\$3,493	\$3,493	\$3,493	\$3,842	\$3,842	\$4,226	\$4,226	\$4,649
Total Installed Cost (2022\$) ⁴	\$3,749	\$3,749	\$3,749	\$4,125	\$4,443	\$4,443	\$4,443	\$4,792	\$4,792	\$5,176	\$5,176	\$5,599
Total Installed Cost (2022\$/kBtu/h)	\$864	\$864	\$864	\$950	\$1,024	\$1,024	\$1,024	\$1,104	\$1,104	\$1,193	\$1,193	\$1,290
Annual Maintenance Cost (2022\$) ⁵	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181
Annual Maintenance Cost (2022\$/kBtu/h)	\$41.70	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71

- 1. A 49 ft³ unit was characterized, because it was the representative size selected for DOE's rulemaking analysis.
- 2. The ENERGY STAR category was based on a solid-doored unit that is minimally compliant with ENERGY STAR v3, effective October 1, 2014.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 and 2018 is based on DOE's on-going CRE rulemaking, which assumes a cost of \$863 for self-contained equipment and \$950 for 2022 and beyond based on analysis from Guidehouse.
- 5. Maintenance costs are calculated based on a \$35 per unit annual preventative maintenance cost, plus an additional \$45 per linear foot repair and maintenance cost estimated based on values reported in the CRETSD.

58

Performance and Cost Characteristics » Commercial Reach-In Freezers

- EPACT 2005 set maximum daily energy consumption levels, in kilowatt-hours per day, for commercial reach-in freezers that went into effect on January 1, 2010. The daily energy consumption is based on the volume of the unit (V) in ft³.
- In March of 2017, DOE updated its energy conservation standards for commercial refrigeration equipment, including reach-in freezers. Both the EPCA and DOE standards are reported in the table below.

Equipment Class	EPCA (2010)	DOE Standard Level (2017)
Solid Door (VCS.SC.L)	0.4xV+1.38	0.22xV+1.38
Transparent Door (VCT.SC.L)	0.75xV+4.10	0.29xV+2.95

• In 2013, EPA updated its ENERGY STAR specifications for reach-in freezers, effective March 27, 2017. These standards are also based on the refrigerated volume of the unit.

Reach-In Freezer Size	0 < V < 15	$15 \le V < 30$	$30 \le V < 50$	50 ≤ V
Solid Door (VCS.SC.L)	0.21xV+0.9	0.12xV+2.248	0.285xV-2.703	0.142xV+4.445
Glass Door (VCT.SC.L)	0.232xV+2.36	0.232xV+2.36	0.232xV+2.36	0.232xV+2.36

Performance and Cost Characteristics » Commercial Reach-In Freezers

- The commercial reach-in freezer characterized in this report, which is the typical unit according to DOE's 2014 CRE rulemaking, is a 49 cubic ft. solid two-door unit with a nominal compressor size of 4,341 Btu/h.
- The efficiency of commercial reach-in freezers can be increased through the use of efficient compressors, efficient evaporator fans, efficient condenser fans, electric defrost, and more efficient lighting.
- Unit energy consumption for reach-in freezers is expected to decrease as a result of DOE's updated energy conservation standards, as well as a transition to more efficient propane refrigerant due to EPA SNAP compliance.
- The typical unit in 2020 is assumed to comply with DOE's updated energy conservation standards for commercial refrigeration.
- By 2040, the adoption of vacuum insulated panels is assumed to occur, with the aid of decreased incremental costs due to increased R&D funding.
- Projected installed costs for this Advanced Case are higher than the Reference Case, even assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs.
- This analysis finds that with increased R&D and market incentives for energy-efficient technologies, a limit of possible efficiency improvements for self-contained, vapor compression refrigeration systems will be reached by 2040.

Performance and Cost Characteristics » Commercial Walk-In Refrigerators

Lower annual energy use compared with Reference Case

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/hr) ¹	37,820	39,422	41,024	41,024	41,024	N/A	41,024	41,024	41,024	41,024	41,024	41,024
Size (ft²)	305	240	240	240	240	N/A	240	240	240	240	240	240
Annual Energy Use (kWh/yr) ²	30,689	20,040	17,600	16,200	14,800	N/A	14,580	13,320	13,122	11,988	11,810	10,789
Annual Energy Use / Area (kWh/ft²/yr)	101	84	73	68	62	N/A	61	56	55	50	49	45
Indexed Annual Efficiency ³	1.00	1.53	1.74	1.89	2.07	N/A	2.10	2.30	2.34	2.56	2.60	2.84
Insulated Box Average Life (yrs)	12	12	12	12	12	N/A	12	12	12	12	12	12
Compressor Average Life (yrs)	10	10	10	10	10	N/A	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$23,598	\$19,847	\$16,050	\$19,847	\$23,644	N/A	\$16,050	\$23,644	\$16,050	\$23,644	\$16,050	\$23,644
Total Installed Cost (2022\$) ⁴	\$27,012	\$23,897	\$20,100	\$23,897	\$27,694	N/A	\$20,100	\$27,694	\$20,100	\$27,694	\$20,100	\$27,694
Total Installed Cost (2022\$/kBtu/hr)	\$714	\$606	\$490	\$583	\$675	N/A	\$490	\$675	\$490	\$675	\$490	\$675
Annual Maintenance Cost (2022\$) ⁵	\$716	\$740	\$740	\$740	\$740	N/A	\$740	\$740	\$740	\$740	\$740	\$740
Annual Maintenance Cost (2022\$/kBtu/hr)	\$18.93	\$18.77	\$18.04	\$18.04	\$18.04	N/A	\$18.04	\$18.04	\$18.04	\$18.04	\$18.04	\$18.04

- 1. Assumes medium temperature units are refrigerators.
- 2. Average unit energy consumption was adapted from the DOE CRE 2016 report by assuming electronically commutated motor (ECM) evaporator fan motors are required for Energy Policy & Conservation Act (EPCA) compliance, as well as ECM condenser fan motors.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 and beyond is based on DOE's Walk-In Technical Support Document (TSD).
- 5. Maintenance cost includes checking and maintaining refrigerant charge levels, checking settings, and cleaning heat exchanger coils.

- For 2012 and beyond, the unit characterized was a walk-in storage cooler, based on DOE's WICF TSD.
- A typical walk-in refrigerator includes:
 - insulated floor and wall panels
 - merchandising doors, shelving, and lighting (not included in cost estimate)
 - semi-hermetic reciprocating compressor
 - refrigerant (R404A)
 - condenser
 - evaporator
- Energy consumption is assumed to scale with the AWEF (Annual Walk-in Energy Factor), defined as the ratio of total
 heat removed from the refrigerated volume per year to the total electrical energy input of refrigeration systems over
 the same time period.
- The installation cost consists of freight and delivery costs in addition to on-site assembly.
- This Advanced Case assumes a projected 10% decrease in energy consumption over the Reference Case due to adoption of more efficient refrigerants.

The Energy Independence and Security Act (EISA) of 2007 included prescriptive standards for walk-in refrigerators (coolers) that went into effect in 2009. These prescriptive standards, which are included in the analysis for all units for 2012 and beyond, state that all walk-in refrigerators manufactured after January 1, 2009, must:

- For 2012 and beyond
- have automatic door closers
- have strip doors, spring hinged doors, or other method of minimizing infiltration when doors are open
- contain wall, ceiling, and door insulation of at least R–25, except for glazed portions of doors and structural members
- use electronically commutated motors or three-phase motors (for evaporator fan motors of under 1 horsepower and less than 460 volts)
- use electronically commutated motors, permanent split capacitor-type motors, or three-phase motors (for condenser fan motors of under 1 horsepower)
- use light sources with an efficacy of 40 lumens per watt or more, including ballast losses (if any), except that light sources with an efficacy of 40 lumens per watt or less, including ballast losses (if any), may be used in conjunction with a timer or device that turns off the lights within 15 minutes of when the walk-in refrigerator is not occupied by people.

In 2014, DOE updated its energy conservation standards for walk-in coolers and freezers. Minimum AWEF (Annual Walk-In Energy Factor) was set for refrigeration systems, as well as upper limits on energy consumption attributable to passage, freight, and display doors. DOE elected not to set new standards for the R-value of Walk-In Panels.

ENERGY CONSERVATION STANDARDS FOR WALK-IN COOLERS AND WALK-IN FREEZERS Class descriptor Class Standard level Refrigeration Systems Minimum AWEF (Btu/W-h) Dedicated Condensing, Medium Temperature, Indoor System, <9,000 Btu/h Capacity DC.M.I, <9,000 ... 5.61 Dedicated Condensing, Medium Temperature, Indoor System, ≥9,000 Btu/h Capacity DC.M.I, ≥9,000 ... 5.61 Dedicated Condensing, Medium Temperature, Outdoor System, <9,000 Btu/h Capacity DC.M.O, <9,000 ...7.60 Dedicated Condensing, Medium Temperature, Outdoor System, ≥9,000 Btu/h Capacity DC.M.O,≥9,000 ...7.60 Dedicated Condensing, Low Temperature, Indoor System, ≥9,000 Btu/h Capacity DC.L.I, ≥9,000 3.10 Dedicated Condensing, Low Temperature, Outdoor System, <9,000 Btu/h Capacity DC.L.O, <9,000 .. 2.30 · 1044 · Q + 2.73 Dedicated Condensing, Low Temperature, Outdoor System, ≥9,000 Btu/h Capacity DC.L.O, ≥9,000 .. 4.79 Panels Minimum R-v alue (h-ft2-°F/Btu) Non-Display Doors Maximum energy consumption (kWh/day) * Passage Door, Low Temperature PD.L 0.14 · And + 4.8 Display Doors Maximum Energy Consumption (kWh/day) †

Performance and Cost Characteristics » Commercial Walk-In Freezers

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	22,114	23,500	23,500	23,500	23,500	N/A	23,500	23,500	23,500	23,500	23,500	23,500
Size (ft²) ¹	172	161	161	161	161	N/A	161	161	161	161	161	161
Annual Energy Use (kWh/y) ²	22,862	17,600	21,400	21,400	21,400	N/A	19,260	19,260	17,334	17,334	15,601	15,601
Annual Energy Use / Area (kWh/ft²/y)	133	109	133	133	133	N/A	120	120	108	108	97	97
Indexed Annual Efficiency ³	1.00	1.30	1.07	1.07	1.07	N/A	1.19	1.19	1.32	1.32	1.47	1.47
Insulated Box Average Life (years)	12	12	12	12	12	N/A	12	12	12	12	12	12
Compressor Average Life (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$22,008	\$21,950	\$21,950	\$22,850	\$23,750	N/A	\$22,850	\$23,750	\$22,850	\$23,750	\$22,850	\$23,750
Total Installed Cost (2022\$) ⁴	\$24,058	\$23,950	\$23,950	\$24,850	\$25,750	N/A	\$24,850	\$25,750	\$24,850	\$25,750	\$24,850	\$25,750
Total Installed Cost (2022\$/kBtu/h)	\$1,088	\$1,019	\$1,019	\$1,057	\$1,096	N/A	\$1,057	\$1,096	\$1,057	\$1,096	\$1,057	\$1,096
Annual Maintenance Cost (2022\$) ⁵	\$741	\$741	\$741	\$740	\$741	N/A	\$740	\$741	\$740	\$741	\$740	\$741
Annual Maintenance Cost (2022\$/kBtu/h)	\$33.51	\$31.53	\$31.53	\$31.49	\$31.53	N/A	\$31.49	\$31.53	\$31.49	\$31.53	\$31.49	\$31.53

- 1. Based on DOE's 2014 WICF Final Rule TSD and additional analysis by Guidehouse, the average floor area for a walk-in storage freezer as 161 ft².
- 2. EISA 2007 includes prescriptive standards for walk-in freezers that went into effect in 2009. All units for 2012 and beyond include these prescriptive standards. Units for 2022 and beyond are characterized using data from DOE's 2014 WICF rulemaking. All units for 2022 and beyond are assumed to comply with this standard.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 and beyond is based on DOE's WICF TSD and additional analysis by Guidehouse.
- 5. Maintenance cost includes checking and maintaining refrigerant charge levels, checking settings, and cleaning heat exchanger coils.

Performance and Cost Characteristics » Commercial Walk-In Freezers

- The commercial walk-in freezer characterized in this report is a walk-in storage freezer with an area of 161 ft².
- A typical walk-in freezer includes:
 - insulated floor, door, and wall panels
 - semi-hermetic reciprocating compressor
 - refrigerant (R404A)
 - condenser
 - evaporator
- Energy consumption is assumed to scale with the AWEF (Annual Walk-in Energy Factor), defined as the ratio of total heat removed from the refrigerated volume per year to the total electrical energy input of refrigeration systems over the same time period.
- The installation cost consists of freight and delivery costs in addition to on-site assembly.
- This Advanced Case assumes a projected 10% decrease in energy consumption over the Reference Case due to adoption of more efficient refrigerants.

EISA 2007 included prescriptive standards for walk-in freezers that went into effect in 2009. These prescriptive standards, which are included in all units for 2011 and beyond, state that all walk-in freezers manufactured after January 1, 2009, must:

- have automatic door closers
- have strip doors, spring hinged doors, or other method of minimizing infiltration when doors are open
- contain wall, ceiling, and door insulation of at least R–32, except for glazed portions of doors and structural members
- contain floor insulation of at least R–28
- use electronically commutated motors or three-phase motors (for evaporator fan motors of under 1 horsepower and less than 460 volts)
- use electronically commutated motors, permanent split capacitor-type motors, or three-phase motors (for condenser fan motors of under 1 horsepower)
- use light sources with an efficacy of 40 lumens per watt or more, including ballast losses (if any), except that light sources with an efficacy of 40 lumens per watt or less, including ballast losses (if any), may be used in conjunction with a timer or device that turns off the lights within 15 minutes of when the walk-in freezer is not occupied by people.

In 2014, DOE updated its energy conservation standards for walk-in coolers and freezers. Minimum AWEF (Annual Walk-in Energy Factor) was set for refrigeration systems, as well as upper limits on energy consumption attributable to passage, freight, and display doors. DOE elected not to set new standards for the R-value of Walk-in Panels.

ENERGY CONSERVATION STANDARDS FOR WALK-IN COOLERS AND WALK-IN FREEZERS Class descriptor Class Standard level

ciass descriptor	Class Stallualu level						
Refrigeration Systems Minimum AWEF (Btu/W-h)							
Dedicated Condensing, Medium Temperature, Indoor System, <9,000 Btu/h Capac	city DC.M.I, <9,0	00 5.61					
Dedicated Condensing, Medium Temperature, Indoor System, ≥9,000 Btu/h Capa	city DC.M.I, ≥9,0	000 5.61					
Dedicated Condensing, Medium Temperature, Outdoor System, <9,000 Btu/h Capa							
Dedicated Condensing, Medium Temperature, Outdoor System, ≥9,000 Btu/h Cap							
Dedicated Condensing, Low Temperature, Indoor System, <9,000 Btu/h Capacity.							
Dedicated Condensing, Low Temperature, Indoor System, ≥9,000 Btu/h Capacity							
Dedicated Condensing, Low Temperature, Outdoor System, <9,000 Btu/h Capacity							
Dedicated Condensing, Low Temperature, Outdoor System, ≥9,000 Btu/h Capacit	•						
Multiplex Condensing, Medium Temperature							
Multiplex Condensing, Low Temperature	MC.L	6.57					
Panels Minimum R-v alue (h-ft2-°F/Btu)							
Structural Panel, Medium Temperature	SP.M	25					
Structural Panel, Low Temperature	SP.L	32					
Floor Panel, Low Temperature	FP.L	28					
Non-Display Doors Maximum energy consumption							
(kWh/day) **							
Passage Door, Medium Temperature							
Passage Door, Low Temperature	PD.L	$0.14 \cdot A_{nd} + 4.8$					
Freight Door, Medium Temperature	FD.M	0.04 · And + 1.9					
Freight Door, Low Temperature	FD.L	$0.12 \cdot A_{nd} + 5.6$					
Display Doors Maximum Energy Consumption (kWh/day) †							
Display Door, Medium Temperature							
Display Door, Low Temperature	DD.L	$0.15 \cdot A_{dd} + 0.29$					

Performance and Cost Characteristics » Commercial Ice Machines

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		20	30	20	40	205	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ⁶	Typical	High	Typical	High	Typical	High
Output (pounds [lbs] per day) 1	300	641	700	700	700	700	700	700	700	700	700	700
Cooling Capacity (Btu/h) ²	1963	4194	4580	4580	4580	4580	4580	4580	4580	4580	4580	4580
Water Use per Hundred Pounds (gal/hundred lbs) ³	20	25	25	20	15	15	20	15	20	15	20	15
Energy Use per Hundred Pounds (kWh/hundred lbs)	7.7	7.5	7.1	5.8	4.8	4.8	5.8	4.8	5.8	4.8	5.8	4.8
Annual Energy Use (kWh/y) ⁴	3,185	2,502	1,675	1,478	1,190	1,190	1,330	1,071	1,197	964	1,077	868
Indexed Annual Efficiency ⁵	1.00	1.27	1.90	2.15	2.68	2.68	2.39	2.97	2.66	3.30	2.96	3.67
Average Life (years)	8.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
Retail Equipment Cost (2022\$)	\$2,146	\$2,616	\$2,946	\$3,020	\$3,368	\$3,368	\$3,020	\$3,368	\$3,020	\$3,368	\$3,020	\$3,368
Total Installed Cost (with Bin)	\$2,441	\$3,626	\$3,276	\$3,350	\$3,737	\$3,737	\$3,350	\$3,737	\$3,350	\$3,737	\$3,350	\$3,737
Total Installed Cost (2022\$/kBtu/h)	\$1,244	\$865	\$715	\$732	\$816	\$816	\$732	\$816	\$732	\$816	\$732	\$816
Annual Maintenance Cost (2022\$) ⁷	\$826	\$826	\$800	\$800	\$800	\$800	\$800	\$800	\$800	\$800	\$800	\$800
Annual Maintenance Cost (2022\$/kBtu/h)	\$421	\$197	\$175	\$175	\$175	\$175	\$175	\$175	\$175	\$175	\$175	\$175

- 1. Based on the average output from the Compliance Certification Database and values within 2022 Automatic Commercial Ice Maker (ACIM) TSD.
- 2. Defined as the average heat load to remove the latent and sensible heat required to freeze the daily output capacity of ice.
- 3. Water use refers to potable water.
- 4. EPACT 2005 energy standards went into effect in 2010. The 2015 low values are based on this standard. In 2014, DOEset new standards for commercial ice machines, with compliance required by 2018. The unit characterized for 2012 and beyond uses data from this rulemaking. All units for 2020 and beyond are assumed to comply with the updated standard.
- 5. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 6. The ENERGY STAR category is based on minimum compliance with the ENERGY STAR v3.0 standard, which went into effect on January 28, 2018. According to this analysis, ENERGY STAR certification is typical for the small air-cooled ice-making head (IMH) unit characterized.
- 7. Maintenance cost is based on the average cost of equipment within the 700 lb/day output range and includes cleaning and maintaining refrigerant levels, replacing filters, checking water distribution lines for leaks, cleaning, sanitizing, and descaling the bin and water system. Maintenance cost decreases as the size of the ice machine (i.e. output) decreases.

- Commercial ice machines are typically integrated with an insulated ice storage bin or mounted on top of a separate storage bin. The retail equipment cost includes the ice making head and the integrated storage bin. Commercial ice machine condensers are either air-cooled or water-cooled. Approximately 90% of all units are the air-cooled type.
- Commercial ice machine maintenance includes periodic cleaning (every 2 to 6 weeks) to remove lime and scale and sanitizing to kill bacteria. Some ice machines are self-cleaning/sanitizing.
- ENERGY STAR® updated its maximum energy consumption levels, in kilowatt-hours per 100 pounds of ice, for air-cooled ice machines that went into effect on January 28, 2018. These efficiency levels are based on the harvest rate, in pounds per 24 hours. (H). Water-cooled ice machines are not eligible for ENERGY STAR certification.
- For this Advanced Case, a 10% reduction in energy consumption is projected over the Reference Case due to the adoption of more efficient refrigerants such as propane, which, while not currently required by EPA SNAP, are a source of possible efficiency improvements.

ENERGY STAR Requirements for Air-Cooled Batch-Type Ice Makers									
Equipment Type	Applicable Ice Harvest Rate Range (lbs of ice/24 hrs)	Energy Consumption Rate (kWh/100 lbs ice)	Potable Water Use (gal/hundred lbs ice)						
IMH	$200 \le H \le 1600$	≤37.72 * H -0.298	≤20.0						
RCU	400 ≤ H ≤ 1600	≤22.95 * H -0.258 + 1.00	≤ 20.0						
	$1600 \le H \le 4000$	≤-0.00011 * H + 4.60	≤20.0						
SCU	50 ≤ H ≤ 450	≤ 48.66 * H -0.326 + 0.08	≤ 25.0						

ENERGY STAR Requirements for Air-Cooled Continuous-Type Ice Makers								
Equipment Type	Energy Consumption Rate (kWh/hundred lbs ice)	Potable Water Use (gal/hundred lbs ice)						
IMH	≤9.18 * H -0.057	≤ 15.0						
RCU	≤6.00 * H -0.162 + 3.50	≤ 15.0						
SCU	≤59.45 * H -0.349 + 0.08	≤ 15.0						

Performance and Cost Characteristics » Commercial Ice Machines

EPACT 2005 issued standard levels for commercial ice machines with capacities between 50 pounds and 2500 pounds per 24-hour period that are manufactured or sold in the United States on or after January 1, 2010. The energy consumption is based on the harvest rate in pounds per 24 hours (H). In 2015, DOE finalized new standards for ACIMs extending coverage to flake, nugget, and tube-type machines and to capacities up to 4,000 pounds per 24 hours.

Equipment Type	Type of Cooling	Harvest Rate (lbs ice/24 hrs)	Maximum Energy Use (kWh/hundred lbs ice)	Maximum Condenser Water Use (gal/hundred lbs ice)
		<500	7.80-0.0055 H	200-0.022 H
	Water	≥500 and <1,436	5.58-0.0011 H	200-0.022 H
Ice Making Head		≥1,436	4.0	200-0.022 H
	Air	<450	10.26-0.0086 H	Not Applicable
	Air	≥450	6.89-0.0011 H	Not Applicable
Remote Condensing	Air	<1,000	8.85-0.0038 H	Not Applicable
(but not remote compressor)	Air	≥1,000	5.10	Not Applicable
Remote Condensing	Air	<934	8.85-0.0038 H	Not Applicable
and Remote Compressor	All	≥934	5.3	Not Applicable
	Water	<200	11.40-0.019 H	191-0.0315 H
Self Contained	vvater	≥200	7.60	191-0.0315 H
Jen Contained	Air	<175	18.0-0.0469 H	Not Applicable
	All	≥175	9.80	Not Applicable

Water use is for the condenser only and does not include potable water used to make ice.

2

2014 DOE Standards

Energy Conservation Standards for Batch-Type Automatic Commercial Ice Makers Effective January 2018

Equipment Type	Type of Cooling	Harvest Rate lb ice/24 hours	Maximum Energy Use kWh/100 lb ice*	Maximum Condenser Water Use gal/100 lb ice**
		<300	6.88 - 0.0055H	200 - 0.022H
		300 and <850	5.80 - 0.00191H	200 - 0.022H
Ice-Making Head	Water	850 and <1,500	4.42 - 0.00028H	200 - 0.022H
		1500 and <2,500	4.0	200 - 0.022H
		2500 and <4,000	4.0	145
		<300	10 - 0.01233H	Not Applicable
Ice-Making Head	Λ:	300 and <800	7.05 - 0.0025H	Not Applicable
	Air	800 and <1500	5.55 - 0.00063H	Not Applicable
		1500 and <4,000	4.61	Not Applicable
Remote Condensing		50 and <1,000	7.97 - 0.00342H	Not Applicable
(but not remote compressor)	Air	1,000 and <4,000	4.55	Not Applicable
Remote Condensing		<942	7.97 - 0.00342H	Not Applicable
and Remote Compressor	Air	942 and <4,000	4.75	Not Applicable
		<200	9.5 - 0.019H	191 - 0.0315H
Self-Contained	Water	200 and <2,500	5.7	191 - 0.0315H
		2500 and <4,000	5.7	112
		<110	14.79 - 0.0469H	Not Applicable
Self-Contained	Air	110 and <200	12.42 - 0.02533H	Not Applicable
		200 and <4,000	7.35	Not Applicable

Energy Conservation Standards for Continuous-Type Automatic Commercial Ice Makers Effective January 2018

		•			
	Equipment Type	Type of Cooling	Harvest Rate lbice/24 hours	Maximum Energy Use kWh/100 lb ice*	Maximum Condenser Water Use gal/100 lb ice**
			<801	6.48 - 0.00267H	180 - 0.0198H
Ice-Making Head	Water	801 and <2,500	4.34	180 - 0.0198H	
ice-making riead		· · · · · · · · · · · · · · · · · · ·	2,500 and <4,000	4.34	130.5
			<310	9.19 - 0.00629H	Not Applicable
	Ice-Making Head	Air	310 and <820	8.23 - 0.0032H	Not Applicable
			820 and <4,000	5.61	Not Applicable
	Remote		<800	9.7 - 0.0058H	Not Applicable
	Condensing (but not remote compressor)	Air	800 and <4,000	5.06	Not Applicable
	Remote		<800	9.9 - 0.0058H	Not Applicable
	Condensing and Remote Compressor	Air	800 and <4,000	5.26	Not Applicable
			<900	7.6 - 0.00302H	153 - 0.0252H
	Self-Contained	Water	900 and <2,500	4.88	153 - 0.0252H
			2500 and <4,000	4.88	90
			<200	14.22 - 0.03H	Not Applicable
	Self-Contained	Air	200 and <700	9.47 - 0.00624H	Not Applicable
7	⁷ 2		700 and <4,000	5.1	Not Applicable

Performance and Cost Characteristics » Commercial Beverage Merchandisers

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	4,689	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700
Size (ft³)	27	27	27	27	27	27	27	27	27	27	27	27
Annual Energy Use (kWh/y)	1,829	1,635	1,380	1,141	902	902	1,141	902	1,084	857	1,030	814
Annual Energy Use / Volume (kWh/ft³/y)¹	68	73	55	35	26	26	35	26	35	26	35	26
Indexed Annual Efficiency ³	1.00	1.12	1.33	1.60	2.03	2.03	1.60	2.03	1.69	2.13	1.78	2.25
Average Life (years)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Retail Equipment Cost (2022\$)	\$2,382	\$2,051	\$1,710	\$2,762	\$3,332	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332
Total Installed Cost (2022\$) ⁴	\$2,382	\$2,051	\$1,710	\$2,762	\$3,332	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332
Total Installed Cost (2022\$/kBtu/h)	\$508	\$436	\$364	\$588	\$709	\$709	\$588	\$709	\$588	\$709	\$588	\$709
Annual Maintenance Cost (2022\$)	\$108	\$108	\$95	\$95	\$95	\$95	\$95	\$95	\$95	\$95	\$95	\$95
Annual Maintenance Cost (2022\$/kBtu/h)	\$23.03	\$22.98	\$20.21	\$20.21	\$20.11	\$20.11	\$20.21	\$20.11	\$20.21	\$20.11	\$20.21	\$20.11

^{1.} EPACT 2005 energy conservation standards went into effect in 2010. In 2015, DOE updated its energy conservation standards for commercial refrigeration equipment, including transparent-doored refrigerators with pull-down capability. Compliance with this standard is required by 2017. Units characterized for 2018 and beyond use data reported in this rulemaking's TSD. Units sold in 2022 and beyond are assumed to comply with this updated standard.

- 2. The ENERGY STAR category characterizes a unit that is compliant with ENERGY STAR v4, effective March 2017. This standard does not separately define units with pull-down capability.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Beverage merchandisers are shipped ready to be plugged in, so installation costs are assumed to be negligible.

Performance and Cost Characteristics » Commercial Beverage Merchandisers

- EPACT 2005 sets maximum daily energy consumption levels, in kilowatt-hours per day, for commercial refrigerators with transparent doors and self-contained condensing unit designed for pull-down temperature applications (i.e., beverage merchandisers) and went into effect on January 1, 2010.
- In 2014, DOE updated its energy consumption standards for commercial refrigeration equipment, including beverage merchandisers, effective March 27, 2015. Both the DOE and EPCA standards are reported below.

Equipment Type	EPCA (2010)	DOE Standards (2017)
Beverage Merchandisers (PD.SC.M)	0.126xV + 3.51	0.11xV+0.81

• In 2013, EPA updated its ENERGY STAR specifications for glass-doored commercial refrigerators, which can be used as beverage merchandisers, effective October 1, 2014. These standards are also based on the volume of the unit (V). Note that ENERGY STAR does not have a separate equipment class for units with pull-down capability.

Beverage Merchandiser Size	0 < V < 15	15 ≤ V < 30	30 ≤ V < 50	50 ≤ V	
Glass Door	0.118*V + 1.382	≤0.140*V + 1.050	≤0.088*V + 2.625	≤0.110*V + 1.500	

Performance and Cost Characteristics » Commercial Beverage Merchandisers

- The beverage merchandiser characterized in this report, which is the typical unit according to DOE's 2014 CRE rulemaking and additional analysis by Guidehouse, is a 27 cubic foot cooler with a single hinged, transparent door, bright lighting, and shelving with a nominal compressor size of 4,700 Btu/h.
- The efficiency of beverage merchandisers can be increased through the use of more efficient compressors, fluorescent lighting with electronic ballasts, LED lighting, and improved insulation.
- For the Reference Case, beverage merchandisers are assumed to be mature technologies with few technology advancements in the coming years that would dramatically improve the efficiency.
- For this Advanced Case, the typical unit in 2030 is assumed to comply with DOE's updated energy conservation standards for commercial refrigeration
- By 2040, the adoption of vacuum insulated panels is assumed to occur, with the aid of decreased incremental costs due to increased R&D funding
- Beverage merchandisers may transition from HFC to more efficient propane.
- Projected installed costs for this Advanced Case are the same as the Reference Case, assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs and/or carbon pricing.
- This analysis finds that with increased R&D and market incentives for energy efficiency technologies, a limit of possible efficiency improvements for self-contained, vapor compression refrigeration systems will be reached by 2040 and a 5% decrease in energy use from 2030 to 2040.

Performance and Cost Characteristics » Commercial Refrigerated Vending Machines

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		203	30	204	10	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	1,810	1,707	1,810	1,810	1,810	1,810	1,810	1,810	1,810	1,810	1,810	1,810
Can Capacity	470	500	500	500	500	500	500	500	500	500	500	500
Size (ft³)	26	35	35	35	35	35	35	35	35	35	35	35
Annual Energy Use (kWh/y) ¹	1,632	1,550	1,550	1,531	1,443	1,443	1,455	1,371	1,382	1,302	1,313	1,237
Annual Energy Use / Volume (kWh/ft³/y)	63	44	44	44	41	41	42	39	39	37	38	35
Indexed Annual Efficiency ³	1.00	1.05	1.05	1.07	1.13	1.13	1.12	1.19	1.18	1.25	1.24	1.32
Average Life (years)	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
Retail Equipment Cost (2022\$)	\$3,209	\$2,553	\$3,059	\$3,272	\$3,520	\$3,520	\$3,272	\$3,520	\$3,272	\$3,520	\$3,272	\$3,520
Total Installed Cost (2022\$)	\$3,320	\$2,705	\$3,276	\$3,489	\$3,737	\$3,737	\$3,489	\$3,737	\$3,489	\$3,737	\$3,489	\$3,737
Total Installed Cost (2022\$/kBtu/h)	\$1,834	\$1,585	\$1,810	\$1,928	\$2,065	\$2,065	\$1,928	\$2,065	\$1,928	\$2,065	\$1,928	\$2,065
Annual Maintenance Cost (2022\$) ⁴	\$270	\$270	\$333	\$333	\$333	\$333	\$333	\$333	\$333	\$333	\$333	\$333
Annual Maintenance Cost (2022\$/kBtu/h)	\$149	\$149	\$184	\$184	\$184	\$184	\$184	\$184	\$184	\$184	\$184	\$184

- 1. Energy use for 2018 and beyond is estimated based on DOE's 2020 BVM Final Rule and the 2022 Compliance Certification Database.
- 2. The ENERGY STAR category assumes units are compliant with the ENERGY STAR v4 standard because combination units are currently not separately defined by ENERGY STAR. This standard went into effect on April 29, 2020. Our analysis finds ENERGY STAR certified equipment to be the most efficient currently available on the market.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Maintenance cost includes preventative maintenance costs such as checking and maintaining refrigerant charge levels, cleaning heat exchanger coils, and an annualized cost for refurbishments/remanufacturing.

76

- DOE set federal energy efficiency standards for refrigerated vending machines. These standards set maximum daily energy consumption levels, in kilowatt-hours per day, for commercial refrigerated vending machines manufactured or sold in the United States on or after August 31, 2012. The daily energy consumption is based on the volume of the unit (V).
- In December 2015, DOE updated its energy conservation standards for beverage vending machines and defined two new product classes for combination vending machines. The energy conservation standard remains the same in the updated 2022 technical support document for vending machines. Compliance with these standards was required by 2019. For this analysis, compliance with these updated standards is assumed for equipment sold in 2022 and beyond. The updated standards and DOE equipment definitions are listed in the table below.

Equipment Type	Maximum Daily Energy Consumption
Class A (Transparent-Front)	MDEC= $0.052 \times V + 2.43$
Class B (Solid-Front)	$MDEC = 0.052 \times V + 2.20$
Combination A	$MDEC = 0.086 \times V + 2.66$
Combination B	$MDEC = 0.111 \times V + 2.04$

ENERGY STAR® updated its maximum daily energy consumption efficiency levels, also in kilowatt-hours per day, for refrigerated vending machines that went into effect on April 29, 2020. These efficiency levels are based on refrigerated volume.

Equipment Class	Maximum daily energy consumption (kilowatt-hours per day)
Class A – a refrigerated bottled or canned beverage vending machine that is not a combination vending machine and in which 25% or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.04836 x V + 2.2599
Class B – any refrigerated bottled or canned beverage vending machine that is not considered to be Class A and is not a combination vending machine	MDEC = 0.04576 x V+1.936
Combination A – a combination vending machine where 25% or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.07998 x V + 2.4738
Combination B – a combination vending machine that is not considered to be Combination A	MDEC = 0.09768 x V + 1.7952

Performance and Cost Characteristics » Commercial Refrigerated Vending Machines

- DOE set federal energy efficiency standards for refrigerated vending machines in 2009. These standards set maximum daily energy consumption levels, in kWh/day, for commercial refrigerated vending machines manufactured and/or sold in the United States on or after August 31, 2012. The daily energy consumption is based on the volume of the unit (V).
 - Refrigerated Vending Machines that are fully-cooled (Type A) $\leq 0.055*V + 2.56$
 - Refrigerated Vending Machines that are zone-cooled (Type B) $\leq 0.073*V + 3.16$
- ENERGY STAR® updated its maximum daily energy consumption efficiency levels, also in kWh/day, for refrigerated vending machines, which went into effect on March 1, 2013. These efficiency levels are based on refrigerated volume.

Equipment Type	Maximum Daily Energy Consumption	Low Power Mode Requirement
Class A (Transparent-Front)	MDEC= 0.0523 x V + 2.432	Hard-wired controls and/or software capable of placing the machine into a low power mode during periods of extended inactivity
Class B (Solid-Front)	$MDEC = 0.0657 \times V + 2.844$	while still connected to its power source

- Currently, stakeholders such as Coca Cola have indicated a preference for CO₂ refrigerant, which is less efficient. However, this Advanced Case scenario assumes a shift to more efficient propane for cost and energy consumption projections due to the superior efficiency of propane refrigerant.
- By 2040, the adoption of vacuum insulated panels is assumed to occur, with the aid of decreased incremental costs due to increased R&D funding
- Projected installed costs for this Advanced Case are higher than the Reference Case, even assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs and/or carbon pricing.
- This analysis finds that with increased R&D and market incentives for energy efficiency technologies, a limit of possible efficiency improvements for self-contained, vapor compression refrigeration systems will be reached by 2040.

In December 2015, DOE updated its energy conservation standards for beverage vending machines, and defined two new product classes for combination vending machines Compliance with these standards is required by 2019. For this analysis, compliance with these updated standards is assumed for equipment sold in 2020 and beyond. The updated standards and DOE equipment definitions are listed in the table below.

Equipment Class	Maximum daily energy consumption (kilowatt hours per day)
Class A – a refrigerated bottled or canned beverage vending machine that is not a combination vending machine and in which 25 percent or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.052 x V + 2.43
Class B – any refrigerated bottled or canned beverage vending machine that is not considered to be Class A and is not a combination vending machine	MDEC = 0.052 x V + 2.20
Combination A – a combination vending machine where 25 percent or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.086 x V + 2.66
Combination B – a combination vending machine that is not considered to be Combination A	MDEC = 0.111 x V + 2.04

Commercial Ventilation

Performance and Cost Characteristics » Commercial Constant Air Volume

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		20	30	204	40	2050	
DATA	Installed Stock Average	Installed Stock Average ³	Low ^{4,5}	Typical ^{4,6}	High ^{4,7}	ENERGY STAR	Typical ^{4,6}	High ^{4,7}	Typical ^{4,6}	High ^{4,7}	Typical ^{4,6}	High ^{4,7}
System Airflow (CFM)	15,000	16,300	16,300	16,300	16,300	N/A	16,300	16,300	16,300	16,300	16,300	16,300
System Fan Power (kW)	11.56	11.56	11.56	10.98	10.78	N/A	10.98	10.78	10.98	10.78	10.98	10.78
Specific Fan Power (W/CFM)	0.771	0.709	0.709	0.674	0.661	N/A	0.674	0.661	0.674	0.661	0.674	0.661
Annual Fan Energy Use (kWh/y) ¹	43,924	23,038	23,038	21,886	20,792	N/A	20,792	19,752	19,752	18,765	18,765	17,826
Average Life (years)	35	35	35	35	35	N/A	35	35	35	35	35	35
Total Installed Cost (2022\$) ²	\$80,288	\$83,083	\$83,083	\$86,901	\$90,651	N/A	\$86,901	\$90,651	\$86,901	\$90,651	\$86,901	\$90,651
Annual Maintenance Cost (2022\$)	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	N/A	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054
Total Installed Cost (2022\$/thousand CFM)	\$5,353	\$5,097	\$5,097	\$5,331	\$5,561	N/A	\$5,331	\$5,561	\$5,331	\$5,561	\$5,331	\$5,561
Annual Maintenance Cost (2022\$/thousand CFM)	\$70	\$65	\$65	\$65	\$65	N/A	\$65	\$65	\$65	\$65	\$65	\$65

- 1. Based on 3800 operating hours per year (ADL, 1999) and typical zone air flow requirement profile (ASHRAE S45.11-2012)
- 2. Total installed cost of 16,300 CFM constant air volume (CAV) air handling unit (AHU) and hypothetical supply ductwork layout
- 3. Based on ASHRAE 90.1-2016 and 2019 fan power limit (Table 6.5.3.1.1-1) with no pressure drop adjustment. Assumed 80% motor load and 91% motor efficiency
- 4. ASHRAE 90.1-2016 and 2019 Section 6.5.3.2 require minimum two-speed fan control (no longer always constant volume).
- 5. Two-speed variable frequency drive (VFD)
- 6. Modulating VFD
- 7. Modulating custom engineered VFD

Performance and Cost Characteristics » Commercial Constant Air Volume

- Constant air volume (CAV) ventilation systems are common, inexpensive, air-side HVAC systems that operate in response to a single control zone. Historically, these systems provide a constant flow rate of air (typically a mix of recirculated and outside air) and adjust the supply temperature of that air in order to maintain the space temperature setpoint. Beginning with ASHRAE 90.1-2013 and continued in ASHRAE 90.1-2019, new CAV ventilation systems were mandated to have at least two fan speed settings with the requirement of a maximum 40% power at 66% flow. Systems with variable speed fans are increasingly popular, making the term "constant air volume" somewhat of a misnomer for this system type. This analysis examines only the fan energy of the CAV system.
- There is movement in the industry and in energy codes to reduce fan power. ASHRAE 90.1 includes fan power limits for CAV systems. Fan power can be minimized through good design practice (efficient duct layout, low pressure drop ductwork, filters, coils), proper fan selection, and high efficiency type fans. ASHRAE 90.1-2019 now requires a minimum fan efficiency grade (FEG, based on AMCA 205-12: Energy Efficiency Classification for Fans) of 67 and a design operating fan efficiency within 15% of the maximum fan total efficiency. There are exceptions to this requirement, including packaged systems such as the CAV system type considered here. Still the fan power limits are expected to become more stringent, and fan efficiency will become more important throughout the industry.
- The unit characterized in this report is a 16,300 CFM CAV system. The average commercial building is approximately 16,300 square feet (CBECS 2018). Assuming 1 CFM is needed per square foot of floor area results in a 16,300 CFM air handling unit.
- A 16,300 CFM CAV packaged indoor air handling unit with cooling and heating coils can be installed for approximately \$71,829 (RS Means 2022). Ductwork would cost approximately \$9,272 additional (\$81,101 total). A two-speed motor (estimated \$500 incremental cost) and variable frequency drive (estimated \$5,800) add cost. Custom engineered variable frequency drives (estimated \$9,550) and premium efficiency motors (estimated additional \$1,500) add an additional cost to the system.
- Annual maintenance cost assumes 8 hours worth of labor by a technician to perform the necessary tasks (e.g., filter replacement, draining condenser water, etc.)
- ASHRAE Standard 90.1, which is used as a basis for most state energy codes, limits the fan power (brake HP or nameplate HP) for CAV systems. The 2016 version of Standard 90.1 was used to represent the 2018 minimum efficiency level (state energy codes typically refer to older versions of Standard 90.1 due to code revision cycles).
- Fan energy is affected by several factors, including fan type (e.g., centrifugal, axial), fan blade shape (e.g., forward-curved, backward-curved, backward-inclined, airfoil), drive type (belt or direct), configuration (plenum or housed centrifugal), system effects, duct design, filter and coil pressure drops, motor efficiency, and speed and flow control.
- For this Advanced Case, the projections from 2030 to 2050 for system fan power and annual fan energy use assume a 5% improvement per decade based on the assumption that use of variable frequency drives and incremental improvements in technology will increase.

Performance and Cost Characteristics » Commercial Variable Air Volume

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		20	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average ³	Low ⁴	Typical⁵	High ⁶	ENERGY STAR	Typical ⁶	High ^{6,7}	Typical ^{6,7}	High ^{6,7}	Typical ^{6,7}	High ^{6,7}
System Airflow (CFM)	15,000	16,300	16,300	16,300	16,300	N/A	16,300	16,300	16,300	16,300	16,300	16,300
System Fan Power (kW)	15.99	15.99	15.99	15.99	15.99	N/A	15.99	15.19	15.99	15.19	15.99	15.19
Specific Fan Power (W/CFM)	1.066	1.066	0.981	0.981	0.981	N/A	0.981	0.932	0.981	0.932	0.981	0.932
Annual Fan Energy Use (kWh/yr) ¹	24,699	24,082	24,082	22,878	21,734	N/A	21,734	20,647	20,647	19,615	19,615	18,634
Average Life (yrs)	28	28	28	28	28	N/A	28	28	28	28	28	28
Total Installed Cost (2022\$) ²	\$103,327	\$110,414	\$118,814	\$124,495	\$124,995	N/A	\$124,495	\$124,995	\$124,495	\$124,995	\$124,495	\$124,995
Annual Maintenance Cost (2022\$)	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	N/A	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054
Total Installed Cost (2022\$/1000 CFM)	\$6,888	\$6,774	\$7,289	\$7,638	\$7,668	N/A	\$7,638	\$7,668	\$7,638	\$7,668	\$7,638	\$7,668
Annual Maintenance Cost (2022\$/1000 CFM)	\$70	\$65	\$65	\$65	\$65	N/A	\$65	\$65	\$65	\$65	\$65	\$65

- 1. Based on 3800 operating hours per year (ADL, 1999) and typical zone air flow requirement profile (ASHRAES45.11-2012)
- 2. Total installed cost of 16,300 CFM VAV AHU, VFD, (10) VAV boxes, (10) VAV controllers with associated space temperature sensor, and hypothetical supply ductwork layout
- 3. Based on ASHRAE90.1-2016 and 2019 fan power limit (Table 6.5.3.1.1-1) with no pressure drop adjustment. Assumed 80% motor load and 91% motor efficiency
- 4. ASHRAE 90.1-2016 and 2019 Section 6.5.3.2 minimum power-flow requirement
- 5. ASHRAE90.1-2019 fan power limit and typical VAV power-flow relationship for 40%-100% flow
- 6. ASHRAE90.1-2019 fan power limit and typical VAV power-flow relationship for 30%-100% flow
- 7. High aerodynamic efficiency fan

Performance and Cost Characteristics » Commercial Variable Air Volume

- Variable air volume (VAV) ventilation systems are the most common multi-zone system type specified today for conditioning commercial buildings. These systems provide conditioned air to multiple zone terminal units (VAV boxes) that use dampers to modulate the amount of cool air to each zone. An individual zone thermostat controls the VAV box damper to allow more or less cooling. If a zone requires heating, then the VAV box provides the minimum flow rate and typically includes a reheat coil to meet the space temperature setpoint. As VAV box dampers close in the system, a variable frequency drive reduces fan speed and flow continuously to meet current requirements.
- This analysis examines only the fan energy of the VAV system. VAV systems vary fan speed and flow to meet space conditioning requirements; minimum flow settings apply for DX cooling stages and gas furnace heating stages. Most hours of operation are much lower than full speed, and fan power varies with the cube of fan speed according to fan affinity laws. The 2012 ASHRAE Handbook: HVAC Systems and Equipment (p. 45.11) provided the typical flow profile used for this analysis. The unit characterized in this report is a 16,300 CFM VAV system.
- There is movement in the industry and in energy codes to reduce fan power. ASHRAE 90.1 includes fan power limits for VAV systems. Fan power can be minimized through good design practice (efficient duct layout, low pressure drop ductwork, filters, coils), proper fan selection, and high efficiency type fans. ASHRAE 90.1-2019 now requires a minimum fan efficiency grade (FEG, based on AMCA 205-12: Energy Efficiency Classification for Fans) of 67 and a design operating fan efficiency within 15% of the maximum fan total efficiency. There are exceptions to this requirement, including packaged systems such as the VAV system type considered here. Still the fan power limits are expected to become more stringent, and fan efficiency will become more important throughout the industry.
- A 16,300 CFM VAV packaged indoor air handling unit with cooling and heating coils can be installed for approximately \$82,023 (RS Means 2022). Ductwork and (10) VAV boxes with reheat would cost approximately an additional \$28,272. (10) VAV controllers and the associated space temperature sensor would cost approximately \$8,400 (\$118,695 total). A 15 hp variable frequency drive (estimated \$5,800) is an additional cost.
- ASHRAE Standard 90.1, which is used as a basis for most state energy codes, limits the fan power for VAV systems (brake HP or nameplate HP). The 2016 version of Standard 90.1 was used to represent the 2018 minimum efficiency level (state energy codes typically refer to older versions of Standard 90.1 due to code revision cycles).
- Annual maintenance cost assumes 8 hours worth of labor by a technician to perform the necessary tasks (e.g., filter replacement, draining condenser water, etc.)
- Fan energy is affected by several factors, including fan type (e.g., centrifugal, axial), fan blade shape (e.g., forward-curved, backward-curved, backward-inclined, airfoil), drive type (belt or direct), configuration (plenum or housed centrifugal), system effects, duct design, filter and coil pressure drops, and motor VFD efficiency.
- For this Advanced Case, the projections from 2030 to 2050 for system fan power and annual fan energy use assume a 5% improvement per decade based on the assumption use of variable frequency drives and incremental improvements in technology will increase.

Performance and Cost Characteristics » Commercial Fan Coil Units

Same as Reference Case

	2012	2018		20	22		20	30	204	40	2050	
DATA	Installed Stock Average	Installed Stock Average ⁵	Low ³	Typical ⁵	High ⁶	ENERGY STAR	Typical ^{4,6}	High ^{4,7}	Typical ^{4,7}	High ^{4,8}	Typical ^{4,8}	High ^{4,8,9}
System Airflow (CFM)	800	800	800	800	800	N/A	800	800	800	800	800	800
System Fan Power (kW)	0.241	0.241	0.241	0.148	0.148	N/A	0.141	0.134	0.134	0.136	0.136	0.129
Specific Fan Power (W/CFM)	0.302	0.302	0.301	0.185	0.185	N/A	0.176	0.167	0.167	0.170	0.170	0.162
Annual Fan Energy Use (kWh/y) ¹	543	542	542	333	333	N/A	316	301	301	306	306	291
Average Life (years)	37	37	37	37	37	N/A	37	37	37	37	37	37
Total Installed Cost (2022\$) ²	\$2,845	\$2,688	\$3,038	\$3,521	\$3,961	N/A	\$3,961	\$4,161	\$3,961	\$4,161	\$3,961	\$4,161
Annual Maintenance Cost (2022\$)	\$117	\$117	\$117	\$117	\$117	N/A	\$117	\$117	\$117	\$117	\$117	\$117
Total Installed Cost (2022\$/thousand CFM)	\$3,557	\$3,360	\$3,798	\$4,401	\$4,951	N/A	\$4,951	\$5,201	\$4,951	\$5,201	\$4,951	\$5,201
Annual Maintenance Cost (2022\$/thousand CFM)	\$146	\$146	\$146	\$146	\$146	N/A	\$146	\$146	\$146	\$146	\$146	\$146

- 1. Based on 2250 operating hours per year (ADL, 1999) and typical zone air flow requirement profile (ASHRAES45.11-2012)
- 2. Total installed cost of 2-ton horizontal two-pipe fan coil unit, housing, and controls
- 3. Based on ASHRAE 90.1-2016 and 2019 fan power limit (Table 6.5.3.1.1-1) with no pressure drop adjustment. Assumed 80% motor load and 91% motor efficiency
- 4. Based on ASHRAE90.1-2016 and 2019 Section 6.5.3.6 requirement of electronically commutated or 70+% efficient fan motor
- 5. Permanent split capacitor fan motor
- 6. Electronically commutated fan motor (single speed)
- 7. Electronically commutated fan motor (two-speed)
- 8. Electronically commutated fan motor (variable speed)
- 9. High aerodynamic efficiency fan

Performance and Cost Characteristics » Commercial Fan Coil Units

- Commercial fan coil units (FCUs) are self-contained, mass-produced assemblies that provide cooling, heating, or cooling and heating, but they do not include the source of cooling or heating. The unit characterized in this report is a cooling only (two-pipe), horizontal unit with housing and controls. Fan coil units are typically installed in or adjacent to the space being served and have no (or very limited) ductwork.
- According to manufacturer literature, the cooling capacity for a nominal 800 CFM fan coil unit is about 2 tons. This analysis examines only the fan energy of FCUs.
- Fan coil unit fan motors can be shaded pole, a single-phase AC motor with offset start winding and no capacitor; PSC, a single-phase AC motor with offset start winding with capacitor; or ECM, an AC electronically commutated permanent magnet DC motor. PSC motors are currently the most common motor type in FCUs, but manufacturers also offer single speed, two speed, and ECM motors as an option. ASHRAE 90.1-2019 requires an electronically commutated fan motor (or minimum motor efficiency of 70%) for this system.
- There is movement in the industry and in energy codes to reduce fan power. ASHRAE 90.1 includes fan power limits for FCUs. Fan power can be minimized through good design practice and high efficiency type fans. ASHRAE 90.1-2019 now requires a minimum fan efficiency grade (FEG, based on AMCA 205-12: Energy Efficiency Classification for Fans) of 67 and a design operating fan efficiency within 15% of the maximum fan total efficiency. There are exceptions to this requirement, including small systems such as the FCU considered here. Still the fan power limits are expected to become more stringent, and fan efficiency will become more important throughout the industry.
- Fan coil units have higher maintenance costs than central air systems due to the distributed nature of the system. For each unit, the filters must be changed, and drain systems must be flushed periodically.
- ASHRAE Standard 90.1, which is used as a basis for most state energy codes, limits the fan power (brake HP or nameplate HP). The 2016 version of Standard 90.1 was used to represent the 2018 minimum efficiency level (state energy codes typically refer to older versions of Standard 90.1 due to code revision cycles).
- Fan energy is affected by several factors, including fan type configuration, filter and coil pressure drops, motor efficiency, and fan speed control.

Final

Appendix A Data Sources

Guidehouse 1200 19th Street, NW, Suite 700 Washington, D.C. 20036

And

Leidos 8301 Greensboro Drive McLean, VA 22102

Residential Lighting

Data Sources » Residential General Service LED Lamps (60 Watt Equivalent)

	2015	2020		202	22		2023**	20	30	20	40	2050		
DATA SOURCES	Installed Stock Average		Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High	
Lamp Wattage			Distributo	r Websites o	r Product					Calcu	ılated			
Lamp Lumens	Model, Energy Savings Forecast of			Catalogs			DOE, 2022	Assume Unchanged Model DOE Goals Scenario, Energy Savings Forecast of Solid-State						
Lamp Efficacy (lm/W)	Solid-State Lighting in General	2020 DOE LED		Calculated		ENERGY						Forecast of S ons (Navigar		
CRI	Illumination	Pricing Analysis				STAR, 2020				A agruma II	in a bon o o d			
Correlated Color Temperature (CCT)	Applications		Distributo	r Websites o	r Product		N/A			Assume U	_			
Average Lamp Life (thousand hours)	(Navigant, 2019)			Catalogs			,					ForecastofS ns (Navigar		
Annual Operating Hours (h/y)						DOE, 201	7				••			
	II	2020 DOE LED Pricing Analysis	Distributor	r Websites o Catalogs		N/A						ForecastofS ons (Navigan		
Lamp Cost (2022\$/klm)						Calculate	d	0 0			11	, 0		
Labor Cost (2022\$/h)						NT/A								
Labor Lamp Installation (hours)						N/A								
Total Installed Cost (2022\$)														
Annual Maintenance Cost (2022\$)		Cal	culated				N/A			Calcu	lated			
Total Installed Cost (2022\$/klm)		Calculated					11/11			Calct	uaicu			
Annual Maintenance Cost (2022\$/klm)														

Data Sources » Residential General Service Filament-LED Lamps (60 Watt Equivalent)

	2015	2020		20	22		2023**	20	30	20	40	205	50	
DATA SOURCES	Installed Stock Average		Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typica1	High	Typical	High	
Lamp Wattage			Distributo	r Websites c	r Product					Calcu	ılated			
Lamp Lumens	Model, Energy Savings Forecast of			Catalogs			DOE, 2022	2 Assume Unchanged						
Lamp Efficacy (lm/W)	Solid-State Lighting in General	2020 DOE LED		Calculated		ENERGY		Model DOE Goals Scenario, Energy Savings Forecast of Solid-Sta Lighting in General Illumination Applications (Navigant, 2019)						
CRI	Illumination	Pricing Analysis				STAR, 2020				Assume U	Inchanged			
Correlated Color Temperature (CCT)	Applications		Distributo	websites o	r Product		N/A				_			
Average Lamp Life (thousand hours)	(Navigant, 2019)			Catalogs				Model DO Lighting	E Goals Sco in General	enario, Energ Illumination	gy Savings Applicatio	Forecast of S ns (Navigar	Solid-State nt, 2019)	
Annual Operating Hours (h/y)						DOE, 201	7							
	rr	2020 DOE LED Pricing Analysis	Distributo	r Websites o Catalogs		N/A						ForecastofS ons (Naviga		
Lamp Cost (2022\$/klm)		,				Calculate	d	0 0			11	, 0		
Labor Cost (2022\$/h)						NT/A								
Labor Lamp Installation (hours)						N/A								
Total Installed Cost (2022\$)														
Annual Maintenance Cost (2022\$)		Cal	culated				N/A			Calcu	ulated			
Total Installed Cost (2022\$/klm)		Calculated					11/11			Calct	пасч			
Annual Maintenance Cost (2022\$/klm)														

Data Sources » Residential Reflector LED BR30

	2015	2020		20	22		2023**	20	30	20	40	20	50			
DATA SOURCES	Installed Stock Average		Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High			
Lamp Wattage	Model		Distributo	r Websites o	r Product						ılated					
Lamp Lumens	Reference			Catalogs			DOE, 2022	Assume Unchanged								
Lamp Efficacy (lm/W)	Scenario, Energy			Calculated			002,2022					ForecastofSons (Navigant				
CRI	Savings							Assuma Linchangad								
Correlated Color Temperature (CCT)	Forecastof	2020 DOE						Assume Unchanged								
Average Lamp Life (thousand hours)	Solid-State Lighting in General Illuminatio n Application s (Navigant, 2019)		Distributo	r Websites o Catalogs		ENERGY STAR, 2020	N/A					ForecastofSons (Navigant				
Annual Operating Hours (h/y)							DOE, 2017									
Lamp Price (2022\$)	I ighting in	2020 DOE LED Pricing Analysis	Distributo	r Websites o Catalogs		N/A		Model D Lightin	OE Goals So	cenario, Ener	gy Savings:	Forecast of Sons (Navigant	olid-State t. 2019)			
Lamp Cost (2022\$/klm)						,	Calculated	8	0		FF	(8	,,			
Labor Cost (2022\$/h) Labor Lamp Installation (hours)							N/A									
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)			Calcu	ılated			N/A			Calcı	ulated					

Data Sources» Residential Reflector LED PAR38

	2015	2020		20	22		2023**	20	30	20	40	20	50		
DATASOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High		
Lamp Wattage			Distributo	or Websites	or Product			Calculated							
Lamp Lumens	Model R	eference		Catalogs			DOE, 2022			Assume U					
Lamp Efficacy (lm/W)	Scenario			Calculated		ENERGY						Forecast of S ons (Naviga			
CRI	Solid-State Lighting in					STAR, 2020				Accumoli	In abongod				
Correlated Color Temperature (CCT)	General III	umination		or Websites	or Product		N/A	Assume Unchanged							
Average Lamp Life (thousand hours)	Applio (Naviga		Catalogs				,	Model DOE Goals Scenario, Energy Savings Forecast of Solid-Sta Lighting in General Illumination Applications (Navigant, 2019							
Annual Operating Hours (h/y)							DOE, 2017								
Lamp Price (2022\$)	Model R Scenario Savings F Solid-State General Ill Applio (Naviga	o, Energy orecast of Lighting in lumination cations	Distribute	or Websites o Catalogs	or Product	N/A						Forecast of S ons (Na viga			
Lamp Cost (2022\$/klm)	` 0	,					Calculated								
Labor Cost (2022\$/h)							N/A								
Labor Lamp Installation (hours)							IN/A								
Total Installed Cost (2022\$)															
Annual Maintenance Cost (2022\$)			Calcı	ılated			N/A			Calcu	ılated				
Total Installed Cost (2022\$/klm)			Calculated				N/A	Culculated							
Annual Maintenance Cost (2022\$/klm)															

Data Sources» Residential Linear LED Replacement Lamp 2-Lamp System

DATA SOURCES	2015	2020	2022			2030 2040				2050				
	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High			
Lamp Wattage								Calculated						
Lamp Lumens	LED Webscrape	DOE Webscrape								022 Typical and High				
Lamp Efficacy (lm/W)	Database	Database	Distributor Websites			Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)								
System Wattage	Calculated													
System Lumens														
System Efficacy (lm/W)														
Ballast Efficiency (BLE)	N/A													
CRI	2016 EIA Ref. Case	Distributor Websites												
Correlated Color Temperature (CCT)	2016 EIA Ref. Case	Distributor Websites Distributor Websites												
Average Lamp Life (thousand hours)	LED Webscrape Database	DOE Web Scrape Database			r vv ebsit	isites								
Annual Operating Hours (h/y)	DOE, 2017													
Lamp Price (2022\$)	LED Webscrape	DOE Web Scrape Database	Distri	Calculated										
Ballast Price (2022\$)	Database		NI/	/^										
Fixture Price (2022\$)	N/A													
Lamp Cost (2022\$/klm)	Calculated													
System (1/b/f) Cost (2022\$/klm)														
Labor Cost (2022\$/h)														
Labor System Installation (hours)	N/A													
Labor Lamp Change (hours)														
Total Installed Cost (2022\$)														
Annual Maintenance Cost (2022\$)	Calculated													
Total Installed Cost (2022\$/klm)		Careanatea												
Annual Maintenance Cost (2022\$/klm)		0.4												

Final

Data Sources » Residential Linear LED Luminaire

DATA SOURCES Installed Stock Installed Sto		2022			2030 2040				2050					
Average Average	-	Low	Typical	High	Typical	High	Typical	High	Typical	High				
Lamp Wattage														
Lamp Lumens	N/A													
Lamp Efficacy (lm/W)														
System Wattage					Calculated									
System Lumens LED Webscrape DOE Web Scr	ane		Assume Same as 2022 Typical and High											
System Efficacy (lm/W) Database Database Database		Distributor Websites			Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)									
Ballast Efficiency (BLE)			N/A											
CRI LED Walter groups DOE Walt Com														
Correlated Color Lemperature ICC II	DOE Web Scrape Database Distributor Webs		outor Websit	ites			Distributor Websites							
Average Lamp Life (thousand hours)														
Annual Operating Hours (h/y)	DOE, 2017													
Lamp or Luminaire Price (2022\$) LED Webscrape Database Database		Distributor Websites			Calculated									
Ballast Price (2022\$)														
Fixture Price (2022\$)		N/A												
Lamp Cost (2022\$/klm)		1\(\frac{1}{L^2}\)												
System (1/b/f) Cost (2022\$/klm)														
Labor Cost (2022\$/h) 2016 EIA Ref. Case		2022 RS Means Online												
Labor System Installation (hours)														
Labor Lamp Change (hours)		N/A												
Total Installed Cost (2022\$)														
Annual Maintenance Cost (2022\$)	Calculated													
Total Installed Cost (2022\$/klm)														
Annual Maintenance Cost (2022\$/klm)	O.E.													

Data Sources » Residential Outdoor Lamps (Security: LED PAR38)

	2015	2020		20	22		2023*	20	30	20	40	205	50		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High		
Lamp Wattage															
Lamp Lumens															
Lamp Efficacy (lm/W)															
CRI															
Correlated Color Temperature (CCT)															
Average Lamp Life (1000 hrs)															
Annual Operating Hours (hrs/yr)															
Lamp Price (2022\$)		Same as Residential LEDPAR38													
Lamp Cost (2022\$/klm)															
Labor Cost (2022\$/hr)															
Labor Lamp Installation (hr)															
Total Installed Cost (2022\$)															
Annual Maintenance Cost (2022\$)															
Total Installed Cost (2022\$/klm)															
Annual Maintenance Cost (2022\$/klm)															

Data Sources » Residential Outdoor Lamps (Porch: LED A-Type)

	2015	2020		20	22		2023*	20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typica1	High	ENERGY STAR*	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	Model		Distributo	r Websites o	r Product					Calcı	ılated		
Lamp Lumens	Reference Scenario,			Catalogs			DOE, 2022			Assume U			
Lamp Efficacy (lm/W)	Energy Savings			Calculated			ŕ	Model DOE	Goals Scenar General Illun	io, Energy Sa nination App	vings Forecas lications (Nav	st of Solid-State vigant, 2019)	E Lighting in
CRI	Forecastof	2020 DOE				ENTERON				Assume U	Inchanged		
Correlated Color Temperature (CCT)	Solid-State	LED Pricing				ENERGY STAR, 2020				Assume C	nichangeu		
Average Lamp Life (thousand hours)	Lighting in General Illumination Applications (Navigant, 2019)	Analysis	Distributor Websites or Product Catalogs			51111 , 2 020	N/A	Model DOE	Goals Scenar General Illun		vings Forecas lications (Nav		e Lighting in
Annual Operating Hours (h/y)							DOE, 2017						
Lamp Price (2022\$)		2020 DOE LED Pricing Analy sis	Distributo	or Websites o Catalogs		N/A		Model DOE	Goals Scenar General Illun		vings Forecas lications (Nav		e Lighting in
Lamp Cost (2022\$/klm)		Ĭ					Calculated						
Labor Cost (2022\$/h)							N/A						
Labor Lamp Installation (hours)							1N/ /1						
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)							Calculated						
Total Installed Cost (2022\$/klm)							Cure didice d						
Annual Maintenance Cost (2022\$/klm)													

Commercial Lighting

Data Sources» Commercial General Service 100W Equivalent LED Replacement Lamp in Recessed Can Fixture

	2012	2018		2()22		2023	20	030	20	40	20	50
DATA SOURCES		Installed Stock Average	Low	Typical	High	ENERGY STAR		Typical	High	Typical	High	Typical	High
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)		Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor	Websites or Prod	uct Catalogs	ENERGY STAR, 2020	DOE, 2022	Model Refere	nce Scenario, Enc	Calcu Assume U ergy Savings Forec Applications (N	ast of Solid-State	Lighting in Gener	al Illumination
System Wattage System Lumens* System Efficacy (lm/W) Ballast Efficiency (BLE)	2016 EIA Reference Case						Calcu	ılated					
CRI Correlated Color Temperature (CCT)		Model Reference Scenario, Energy				ENERGY STAR, 2020 N/A				Assume U	Inchanged		
Average Lamp Life (thousand hours)		Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor	Websites or Prod	uct Catalogs	ENERGY STAR, 2020	N/A			gy Savings Foreca on Applications (N		Assume U	Inchanged
Annual Operating Hours (h/y)							DOE, 2017	Lighting in C	criciai irrairariaci	orr ipprications (i v	avigan, 2017)	Tiodine C	Tierau ge u
Lamp Price (2022\$)	2016 EIA	Model Reference Scenario, Energy Savings Fore cast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor	Websites or Prod	uct Catalogs	N/4		Model Refere	nce Scenario, Ene	rgy Savings Forec Applications (N		Lighting in Gene1	al Illumination
Ballast Price (2022\$)	Reference Case	, ,	N _i		9-	N/A				N/			
Fixture Price (2022\$)* Lamp Cost (2022\$/klm)			Calcu							Calcu			
System (I/b/f) Cost (2022\$/klm)			N _i							N/			
Labor Cost (2022\$/h) Labor System Installation (hours) Labor Lamp Change (hours)		2016 EIA Reference Case	20:	22 RS Means Onl	ine					2022 RS Me	eans Online		
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)			Calcu	ılated						Calcu	ılated		

Data Sources » Commercial LED Reflector Lighting (PAR38)

	2012	2018		202	22		2023	20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)		Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor	Websites or Produ	ct Catalogs	ENERGY STAR, 2020	DOE, 2022	Model Referer	nce Scenario, Ene:	Assume U	ast of Solid-State	Lighting in Gener	ral Illumination
System Wattage System Lumens* System Efficacy (Im/W) Ballast Efficiency (BLE)	2016 EIA Reference Case						Calcu	ılated					
CRI Correlated Color Temperature (CCT)		Model Reference Scenario, Energy				ENERGY STAR, 2020 N/A				Assume U	Inchange d		
Average Lamp Life (thousand hours)		Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor	Websites or Produ	ct Catalogs	ENERGY STAR, 2020	N/A			gy Savings Foreca n Applications (N		Assume U	Inchange d
Annual Operating Hours (h/y)							DOE, 2017	Eighting in Ge	Ticiai IIIaiiaiio	ni rippiications (i	avigant, 2017)	7 Icocarie C	richangeu
Lamp Price (2022\$)	2016 EIA	Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	e y			N/A		Model Referer	nce Scenario, Ene:	rgy Savings Forec Applications (N	ast of Solid-State Javigant, 2019)	Lighting in Gener	ral Illumination
Ballast Price (2022\$) Fixture Price (2022\$) Large Cost (2022\$)	Reference Case		N.	/A ılated		IN/A				N/ Calcu	/A		
Lamp Cost (2022\$/klm) System (1/b/f) Cost (2022\$/klm)				латеа /А						Carcu N/			
Labor Cost (2022\$/h) Labor System Installation (hours) Labor Lamp Change (hours)		2016 EIA Reference Case		22 RS Means Onli	ne					2022 RS Me			
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)			Calcı	ılated						Calcu	ılated		

Data Sources » Commercial 4-ft Linear LED Replacement Lamp in 2-Lamp System

	2012	2018		2022		20	30	20	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	
Lamp Wattage		LED						Calcu	lated		
Lamp Lumens		Webscrape	Distri	butor Website	ne .			ame as 202			
Lamp Efficacy (lm/W)		Database	Distri	outor Website				vings Forenation Ap			
System Wattage								•	<u>.</u>	` 0	,
System Lumens					Cal	culated					
System Efficacy (lm/W)											
Ballast Efficiency (BLE)						N/A					
CRI					D:1	. 347 1	•,				
Correlated Color Temperature (CCT)	Distributor Websites										
Average Lamp Life (thousand hours)											
Annual Operating Hours (h/y)					DC	E, 2017					
Lamp Price (2022\$)	2016 EIA Ref. Case DOE, 2017 Model, Energy Savings Forecast of Solid-Sta in General Illumination Applications (Navigor)										
Ballast Price (2022\$)						N/A					
Fixture Price (2022\$)						IN/A					
Lamp Cost (2022\$/klm) System (l/b/f) Cost (2022\$/klm)					Cal	culated					
Labor Cost (2022\$/h)		2016 EIA Ref. Case			20)22 RS Me	ans Onli	ne			
Labor System Installation (hours)	N/A										
Labor Lamp Change (hours)	Assume unchanged										
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)					Cal	culated					

Data Sources » Commercial 4-ft Linear LED Luminaire to Replace 2-Lamp Systems

	2012	2018		2022		20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage											
Lamp Lumens						N/A					
Lamp Efficacy (lm/W)											
System Wattage		LED					C	Calcu		1 177 1	
System Lumens		Webscrape	Distri	butor Website	es			ame as 202			
System Efficacy (lm/W)		Database						vings Fore nation Ap			
Ballast Efficiency (BLE)			N/A					N/		, o	
CRI		Distributor Websites									
Correlated Color Temperature (CCT)		Distributor Websites									
Average Lifetime (thousand hours)											
Annual Operating Hours (h/y)					DC	DE, 2017					
Lamp or Luminaire Price (2022\$)	2016 EIA Ref. Case	LED Webscrape Database			vings Fore nation Ap						
Ballast Price (2022\$)											
Fixture Price (2022\$)						N/A					
Lamp Cost (2022\$/klm)											
System (l/b/f) Cost (2022\$/klm)		201 (FIA D (Ca	lculated					
Labor Cost (2022\$/h)		2016 EIA Ref. Case			2	022 RS Me	ans Onlii	ne			
Labor System Installation (hours)		2022 RS Means Online									
Labor Lamp Change (hours)						N/A					
Total Installed Cost (2022\$)						,					
Annual Maintenance Cost (2022\$)					Ca	lculated					
Total Installed Cost (2022\$/klm)					Ca	iculated					
Annual Maintenance Cost (2022\$/klm)			Λ 1/1								

Data Sources » Commercial 8-ft Linear LED Replacement Lamp for a 2-Lamp System

	2012	2018		2022		20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage		2016 EIA Ref.	Dietri	butor Websites	,			Calcu	lated		
Lamp Lumens		Case, 2015	Distri	butor websites	,			ame as 202	, I	0	
Lamp Efficacy (lm/W)		typical						ings Forecation App			
System Wattage			(Calculated							,
System Lumens		Calculated						Calcu	lated		
System Efficacy (lm/W)											
Ballast Efficiency (BLE)		N									
CRI		2016 EIA Ref.									
Correlated Color Temperature (CCT)							r Websites	5			
Average Lamp Life (thousand hours)		typical									
Annual Operating Hours (h/y)	N/A				DC	E, 2017					
Lamp Price (2022\$)			Distri	butor Websites	3						
Ballast Price (2022\$)		2017 ELV D		N/A							
Fixture Price (2022\$)		2016 EIA Ref. Case, 2015		IN/A				Calcu	lated		
Lamp Cost (2022\$/klm)		typical	(Calculated							
System (l/b/f) Cost (2022\$/klm)		J 1		zarcaratea							
Labor Cost (2022\$/h)						022 RS Me	ans Onlin	e			
Labor System Installation (hours)			N/A								
Labor Lamp Change (hours)		Chapter 8; Table 8.2.4 of GSFL IRL Preliminary Analysis TSD (DOE, 2013)									
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)					Cal	culated					
Total Installed Cost (2022\$/klm)		Calculated									
Annual Maintenance Cost (2022\$/klm)											

Data Sources » Commercial 8-ft Linear LED Luminaire Replacement for a 2-Lamp System

	2012	2018		2022		20	30	204	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage											
Lamp Lumens						N/A					
Lamp Efficacy (lm/W)											
System Wattage								Calcu			
System Lumens		2016 EIA Ref.					AssumeS	Same as 202	22 Typica	l and High	
System Efficacy (lm/W)		rypicar						vings Forec nation App			
Ballast Efficiency (BLE)			N/A								
CRI		2016 EIA Ref.									
Correlated Color Temperature (CCT)		Case, 2015									
Average Lifetime (thousand hours)		typical									
Annual Operating Hours (h/y)					DC	E, 2017					
Lamp or Luminaire Price (2022\$)	N/A	2016 EIA Ref. Case, 2015 typical			I	Distributo	r Websites	5			
Ballast Price (2022\$)		, <u>, , , , , , , , , , , , , , , , , , </u>									
Fixture Price (2022\$)						N/A					
Lamp Cost (2022\$/klm)											
System (1/b/f) Cost (2022\$/klm)					Cal	lculated					
Labor Cost (2022\$/h) Labor System Installation (hours)		2016 EIA Ref. Case, 2015	Ref. 2022 RS Means Online								
Labor Lamp Change (hours)		typical	N/A								
Total Installed Cost (2022\$)						IN/A					
Annual Maintenance Cost (2022\$)											
Total Installed Cost (2022\$/klm)					Cal	lculated					
Annual Maintenance Cost (2022\$/klm)											

Data Sources » Commercial LED Low-Bay Luminaire

	2012	2018		2022		20	30	20	40	205	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	T ypical	High	T ypical	High	T ypical	High	T ypical	High
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)						N/A					
System Wattage System Lumens		Model, Energy									
System Efficacy (lm/W)	2017 FV	Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)			osites or Product logs	Model, Energy S	Sa vings Fore cast o	f Solid-State Light 20:		umination Applicat	tions (Na viga nt,
Ballast Efficiency	2016 EIA Reference Case	N/A		N	/A			N,	/A		
CRI	Reference Case										
Correlated Color Temperature (CCT)		Model, Energy Savings Forecast of Solid-State Lighting in		Distributor Wel		Model, Energy S	Sa vings Fore cast o	Assume U f Solid-State Light 201	ing in Ğeneral Illı	umina tion Applica t	tions (Na viga nt,
Average Lifetime (thousand hours)		General Illumination Applications (Navigant, 2019)			- 0						
Annual Operating Hours (h/y)	DOE	, 2017	N/A				DOE,				
Lamp or Luminaire Price (2022\$)		Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant 2019)	,	Distributor Wel Cata		Model, Energy S	Sa vings Fore cast o	f Solid-State Light 20:		umination Applicat	iions (Na viga nt,
Ballast Price (2022\$)	Reference Case	(Iva vigalit, 2017)		Cata	.10gs						
Fixture Price (2022\$)								N,	/A		
Lamp Cost (2022\$/klm)		N/A		N							
System (l/b/f) Cost (2022\$/klm) Labor Cost (2022\$/h)		Calculated		Calcu	ılated	M- 4-1 E		(C-1: 1 Ct- t- T : -1-t	: : C 1 III-	1:1:1	: (NIi t
Labor Cost (20225/n) Labor System Installation (hours)		2016 EIA				Model, Energy S	sa vings Fore cast o	15011a-State Light 201		umination Applicat	ions (Navigant,
Labor Lamp Change (hours)		Reference Case		2022 RS Me	ans Online			20.			
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)	Calcı	ıla te d		Calcı	lated			Calcu	lated		
T otal Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)	Carci	and ic d		Calct	na ic u			Carcu	na te u		
Aintual Waittenance Cost (2022\$/Kim)				105							

Data Sources » Commercial LED High-Bay Luminaire

	2012	2018		2022		20	30	20	40	205	50
DAT A SOURCES	Installed Stock Average	Installed Stock Average	Low	T ypical	High	Typical	High	Typical	High	T ypical	High
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)						N/A					
System Wattage		Model, Energy									
System Lumens		Sa vings Fore cast									
System Efficacy (lm/W)	2016 EIA	of Solid-State Lighting in General Illumination Applications (Navigant, 2019)		Distributor Wel Cata		Model, Energy Sa	vings Forecast of	Solid-State Lighting	g in General Illumi	ination Applications	s (Na vigant, 2019)
Ballast Efficiency (BLE)	Reference Case	N/A		N,	'A			N,	/A		
CRI Correlated Color Temperature (CCT)	Reference Case	Model, Energy Savings Forecast						Assume U	Inchange d		
Average Lifetime (thousand hours)		of Solid-State Lighting in General Illumination Applications (Navigant, 2019)		Distributor Web Cata		Model, Energy Sa	vings Fore cast of			na tion Applica tions	s (Na vigant, 2019)
Annual Operating Hours (h/y)	DOE	, 2017		DOE,	2017			DOE	. 2017		
Lamp or Luminaire Price (2022\$)		Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications	N/A	Distributor Web Cata	osites or Product	Model, Energy Sa	vings Forecast of	- /		nation Applications	(Na vigant, 2019)
Ballast Price (2022\$)	Reference Case	(Iva vigarit, 2017)		Cata	10 63						
Fixture Price (2022\$)								N,	/A		
Lamp Cost (2022\$/klm)		N/A		N,	'A			- 1,			
System (l/b/f) Cost (2022\$/klm)		Calculated		Calcu							
Labor Cost (2022\$/h)		cure unu te u		Carea				0 11 1 01 1 7 1 1 1			0.1
Labor System Installation (hours)		2016 EIA				Model, Energy Sa	vings Forecast of	Solid-State Lighting	gin General Illumi	nation Applications	(Navigant, 2019)
Labor Lamp Change (hours)		Reference Case		2022 RS Me	ans Online						
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)	C 1	.11		C 1	1-1-1			C 1	1-1-1		
T otal Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)	Calci	ılated		Calcu	lated			Calcu	uated		

Refrigeration

Data Sources » Commercial Compressor Rack Systems

	2012	2018		20	22		203	30	20	40	2050	0		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High		
Total Capacity (kBtu/h)	ADL, 1996				DOE, 2014	CRE Report /	Guidehouse	Analysis 202	22					
Median Store Size (ft²)	Food Marketing Institute (FMI), 2012					СВЕС	CS 2018							
Power Input (kW)	Copeland, 2008				DOE, 2014	CRE Report /	Guidehouse	Analysis 202	22					
Annual Energy Use (MMWh/y)	ADL, 1996/ NCI Analysis, 2015		DOE, 2014: CRE Report / Guidehouse Analysis 2022 Calculated											
Indexed Annual Efficiency			Calculated											
Average Life (years)	Kysor- Warren, 2008				DOE, 2014	CRE Report/	Guidehouse	Analysis 202	22					
Total Installed Cost (2022\$)	NCI, 2009/ NCI Analysis, 2012				DOE, 2014	CRE Report/	Guidehouse	Analysis 202	22					
Total Installed Cost (2022\$/kBtu/h)						Calculated								
Annual Maintenance Cost (2022\$)	ADL, 1996/ NCI Analysis, 2008				DOE, 2014	CRE Report /	Guidehouse	Analysis 202	22					
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Condensers

	2012	2018		20	22		203	0	204	40	205	0		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High		
Total Capacity (kBtu/h)	NCI Analysis, 2008 / Heatcraft, 2008 / ADL, 1996				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Median Store Size (ft²)	Food Marketing Institute (FMI), 2012					СВЕС	CS 2018							
Power Input (kW)	NCI Analysis, 2008 / Heatcraft, 2008 / ADL, 1996		DOE, 2014: CREReport/Guidehouse Analysis 2022											
Annual Energy Use (MMWh/y)	NCI Analysis, 2008 / ADL, 1996		DOE, 2014: CRE Report / Guidehouse Analysis 2022											
Indexed Annual Efficiency						Calculated								
Average Life (years)	ADL, 1996/NCI Analysis, 2008				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Total Installed Cost (2022\$)	NCI Analysis, 2008 / Heatcraft, 2008 / RS Means, 2007				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Total Installed Cost (2022\$/kBtu/h)						Calculated								
Annual Maintenance Cost (2022\$)	NCI Analysis, 2008				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Supermarket Display Cases

	2012	2018		20)22		203	30	20	40	205	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	ENERGY STAR	High	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	DOE, 2007/NCI Analysis, 2008				DOE, 20	14:CRERe _l	port/Guidel	house Anal	ysis 2022						
Median Store Size (ft²)	Food Marketing Institute (FMI), 2012					(CBECS 2018	}							
Case Length (ft)				DOE	, 2016: CREI	Report/Gu	idehouse Ar	nalysis 2022							
Annual Energy Use (kWh/y) ^{1,2}	DOE, 2007/NCI Analysis, 2008				DOE, 20	14:CREReյ	oort/Guidel	house Anal	ysis 2022						
Annual Energy Use / Case Length (kWh/ft)			Calculated												
Indexed Annual Efficiency ³			Calculated												
Average Life (years)	DOE, 2007/NCI Analysis, 2008				DOE, 20	16:CRERe _]	oort/Guidel	house Anal	ysis 2022						
Retail Equipment Cost (2022\$)	DOE, 2007/NCI Analysis, 2008			DOE, 20	014:CRERe _l	oort/Guide	ehouse Anal	ysis 2022/T	he Restaura	ant Store					
Total Installed Cost (2022\$)	DOE, 2007/NCI Analysis, 2008		DOE, 2014: CRE Report/Guidehouse Analysis 2022												
Total Installed Cost (2022\$/kBtu/h)			Calculated												
Annual Maintenance Cos (2022\$) ⁴	tDOE, 2007/NCI Analysis, 2008		DOE, 2014: CREReport/Guidehouse Analysis 2022												
Annual Maintenance Cos (2022\$/kBtu/h)						Calcula	ted								

Data Sources » Commercial Reach-In Refrigerators

	2012	2018		20	22		20	30	20	40	20	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	ADL, 1996/NCI Analysis, 2008					DOE, 201	14:CRERep	ort							
Size (ft³)	ADL, 1996 / Distributor Web Sites					DOE, 201	14:CRERep	ort							
Annual Energy Use (kWh/y)	ADL, 1996/NCI Analysis, 2008			DOE, 201	4: CRERep	ort/Guideho	use Analysi	s2022/ENE	RGYSTAR	2022					
Annual Energy Use / Volume (kWh/y/ft³)	NCI Analysis, 2012					Ca	lculated								
Indexed Annual Efficiency			Calculated												
Average Life (years)						Calculated									
Retail Equipment Cost (2022\$)	ACEEE, 2002					DOE, 20	014:CRETS	D							
Total Installed Cost (2022\$)	ADL, 1996/ Distributor Web Sites / NCI Analysis, 2008		DOE, 20	014: CRERep	ort/Guidel	nouse Analys	is 2022 / ENI	ERGY STAR	2022/The	Restauran	tStore				
Total Installed Cost (2022\$/kBtu/h)	Distributor Web Sites / NCI Analysis, 2008		DOE, 2014: CREReport/Guidehouse Analysis 2022												
Annual Maintenance Cost (2022\$)			Calculated												
Annual Maintenance Cost (2022\$/kBtu/h)	NCI Analysis, 2008		DOE, 2014: CREReport/Guidehouse Analysis 2022												
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated									

Data Sources » Commercial Reach-In Freezers

	2012	2018		20)22		203	30	20	40	2050	0			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	ADL, 1996 / NCI Analysis, 2008					DOE, 2016:	:CREReport								
Size (ft³)	ADL, 1996 / Distributor Web Sites					DOE, 2016	:CREReport								
Annual Energy Use (kWh/y)	ADL, 1996 / NCI Analysis, 2008				DOE, 2016:	CREReport/	Guidehouse	Analysis 20	22						
Annual Energy Use / Volume (kWh/y/ft³)	NCI Analysis, 2012					Calc	ulated								
Indexed Annual Efficiency			Calculated DOE, 2016: CRE Report/Guidehouse Analysis 2022												
Average Life (years)	ACEEE, 2002				DOE, 2016:	CREReport/	Guidehouse	Analysis 20	22						
Retail Equipment Cost (2022\$)	ADL, 1996/ Distributor Web Sites / NCI Analysis, 2008		DOE, 20	016: CRERep	ort/Guideho	ouse Analysis 2	2022/ENERC	GY STAR 20	22 / The Res	taurant Stoi	re				
Total Installed Cost (2022\$)	Distributor Web Sites / NCI Analysis, 2008		DOE, 2016: CREReport/Guidehouse Analysis 2022												
Total Installed Cost (2022\$/kBtu/h)			Calculated												
Annual Maintenance Cost (2022\$)	NCI Analysis, 2008		DOE, 2016: CREReport/Guidehouse Analysis 2022												
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated									

Data Sources » Commercial Walk-In Refrigerators

	2012	2018		20	22		20	30	20	40	205	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)		Ü		DOE CRE	Report 2016	/CCMS 2022 /	Guidehouse A	Analysis 2022							
Size (ft²)				DC	DE 2014 W ICI	FTSD/Guideh	ouse Analysis	s 2022							
Annual Energy Use (kWh/y)	ADL, 1996 / PG&E, 2004 / NCI Analysis, 2008				DOE C	RE Report 201	6/Guidehous	se Analysis 202	22						
Annual Energy Use / Area (kWh/ft²/y)						Calculated									
Indexed Annual Efficiency						Calculated									
Insulated Box Average Life (years)	ADL, 1996 / PG&E, 2004		DOE CRE Report 2016/Guidehouse Analysis 2022												
Compressor Average Life (years)			DOE CRE Report 2016/Guidehouse Analysis 2022												
Retail Equipment Cost (2022\$)	ADL, 1996 / Distributor Web Sites / NCI Analysis, 2008			DO	E CRE Repor	t 2016/Websta	aurant 2022 / C	Guidehouse Ar	nalysis 2022						
Total Installed Cost (2022\$)	ADL, 1996 / Distributor Web Sites / NCI Analysis, 2008			DO	E CRE Repor	t 2016/Websta	aurant 2022 / C	Guidehouse Ar	nalysis 2023						
Total Installed Cost (2022\$/kBtu/h)			Calculated												
Annual Maintenance Cost (2022\$)	ADL, 1996 / FMI, 2005 / NCI Analysis, 2008		DOE CRE Report 2016/Guidehouse Analysis 2022												
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated									

Data Sources » Commercial Walk-In Freezers

	2012	2018		. 2	022		20	30	20	40	20	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	ADL, 1996/NCI Analysis, 2008	Ü]	OOE CRE Rep	ort 2016/CCM	S 2022 / Guid	ehouse Anal	ysis 2022						
Size (ft²)	ADL, 1996 / NCI Analysis, 2008					Guidehous	se Analysis 20	22							
Annual Energy Use (kWh/y)	ADL, 1996 / PG&E, 2004 / NCI Analysis, 2008					Guidehouse	CREReport2	2016							
Annual Energy Use / Area (kWh/ft²/y)						Calculated									
Indexed Annual Efficiency			Calculated												
Insulated Box Average Life (years)	ADL, 1996 / PG&E, 2004		DOE CRE Report 2016/Guidehouse Analysis 2022												
Compressor Average Life (years)	ADL, 1996 / PG&E, 2004				DOE CI	RE Report 2016	/Guidehouse	e Analysis 202	22						
Retail Equipment Cos (2022\$)	ADL, 1996 / tDistributor Web Sites / NCI Analysis, 2008			DO	E CRE Report	: 2016/Webstau	ırant 2022 / Gı	uidehouse A	nalysis 2022						
Total Installed Cost (2022\$)	ADL, 1996 / Distributor Web Sites / NCI Analysis, 2008		DOE CRE Report 2016/Webstaurant 2022/Guidehouse Analysis 2023												
Total Installed Cost (2022\$/kBtu/h)			Calculated												
Annual Maintenance Cost (2022\$)			DOE CRE Report 2016 / Guidehouse Analysis 2022												
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated									

Data Sources » Commercial Ice Machines

	2012	2018		20	22		20	30	204	40	205	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Output (pounds [lbs] per day)	ADL, 1996/NCI Analysis, 2008			DOE, 2	2022: ACIMT	'SD/Guideho	use Analysis,	2022/CCMS1	Database 202	22					
Water Use per Hundred Pounds (gal/hundred lbs)	ADL, 1996 / Distributor Web Sites			DOE, 2	2022: ACIMT	SD/Guideho	use Analysis, 2	2022/CCMS1	Database 202	22					
Energy Use per Hundred Pounds (kWh/hundred lbs)	ADL, 1996/NCI Analysis, 2008				DOE, 20	22: ACIM TSE) / Guidehous	e Analysis, 20	122						
Annual Energy Use (kWh/y)	ACEEE, 2002 / NCI Analysis, 2012		DOE, 2022: ACIMTSD / Guidehouse Analysis, 2022 / ENERGY STAR												
Indexed Annual Efficiency	Calculated														
Average Life (years)	ADL, 1996/ Distributor Web Sites / NCI Analysis, 2008				DOE, 20	22: ACIM TSE) / Guidehous	e Analysis, 20)22						
Retail Equipment Cost (2022\$)	Distributor Web Sites / NCI Analysis, 2008				DOE, 20	22: ACIM TSE)/Guidehous	e Analysis, 20)22						
Total Installed Cost (with Bin)	NCI Analysis, 2008		DOE, 2022: ACIMTSD / Guidehouse Analysis, 2022												
Total Installed Cost (2022\$/kBtu/h)		Calculated													
Annual Maintenance Cost (2022\$)	Analysis, 2008		DOE, 2022: ACIMTSD / Guidehouse Analysis, 2022												
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated									

Data Sources » Commercial Beverage Merchandisers

	2012	2018		20	22		203	30	20	40	2050	0		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High		
Cooling Capacity (Btu/h)				DOE	, 2014: CRE R	eport / Guideł	nouse Analysi	s 2022						
Size (ft³)	ADL, 1996 / Distributor Web Sites				DOE, 2014:	CRE Report/	Guidehouse A	Analysis 202	2					
Annual Energy Use (kWh/y)	ADL, 1996/ NCI Analysis, 2008	DOE, 2014: CRE Report / Guidehouse Analysis 2022 / ENERGY STAR 2022												
Annual Energy Use / Volume (kWh/ft³/y)		Calculated												
Indexed Annual Efficiency						Calculated								
Average Life (years)	ACEEE, 2002				DOE, 2014:	CRE Report /	Guidehouse A	Analysis 202	2					
Retail Equipment Cost (2022\$)	ADL, 1996 / Distributor Web Sites	, 1996/ ributor DOE, 2014: CRE Report / Guidehouse Analysis 2022 / KaTom Restaurant Supply												
Total Installed Cost (2022\$)				DOE	, 2014: CRE R	eport / Guideł	nouse Analysi	s 2022						
Total Installed Cost (2022\$/kBtu/h)		Calculated												
Annual Maintenance Cost (2022\$	()			DOE	, 2014: CRE R	eport / Guideh	nouse Analysi	s 2022						
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Refrigerated Vending Machines

	2012	2018		202	22		20	30	204	10	2050				
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	DOE, 2015: BVMTSD/ Guidehouse Analysis, 2015	Ü			DOE, 2	2022: BVM TS	D/ Guidehou	use Analysis, 2	2022						
Can Capacity	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD							
Size (ft³)				I	DOE, 2022: B	VMTSD/Gu	idehouse Ana	alysis, 2022							
Annual Energy Use (kWh/y)	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD							
Annual Energy Use / Volume (kWh/ft³/y)			Calculated												
Indexed Annual Efficiency						Calcula	ated								
Average Life (years)	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD							
Retail Equipment Cost (2022\$	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD							
Total Installed Cost (2022\$)	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD							
Total Installed Cost (2022\$/kBtu/h)						Calcula	ated								
Annual Maintenance Cost (2022\$)	DOE, 2015: BVMTSD/ Guidehouse Analysis, 2015		DOE, 2022: BVM TSD/ Guidehouse Analysis, 2022												
Annual Maintenance Cost (2022\$/kBtu/h)				1	DOE, 2022: B	3VMTSD/Gu	idehouse An	alysis, 2022							

Commercial Ventilation

Data Sources » Commercial Constant Air Volume Ventilation

	2012	2018		2022			20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
System Airflow (CFM)	CBECS 2003 & BED 2007				(CBECS 201	8					
System Fan Power (kW)	ACIID AEOO 1	ACIDAEO0 1	ACID AEOO 1									
Specific Fan Power(W/CFM)	2007	ASHRAE90.1- 2016	2019	ASHRAE90.1 2019 / Guidehouse Analysis 2022								
Annual Fan Energy Use (kWh/y)												
Average Life (years)				ASI	-IRAE: Service	Life Datal	oase					
Total Installed Cost (2022\$)					2022 RS Mea	ns Online						
Annual Maintenance Cost (2022\$)	2022 RS Means Online / Guidehouse											
Total Installed Cost (2022\$/thousand CFM)	Calculated											
Annual Maintenance Cost (2022\$/thousand CFM)	M) Calculated											

Data Sources » Commercial Variable Air Volume Ventilation

	2012	2018		2022			20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
System Airflow (CFM)	CBECS 2003 & BED 2007				(CBECS 201	18					
System Fan Power (kW) Specific Fan Power (W/CFM) Annual Fan Energy Use (kWh/y)	ASHRAE 90.1-2007	$\Delta SHR \Delta HUI LOUING (111) dehouse \Delta natural (2007)$										
Average Life (years)				ASH	IRAE: Service	Life Data	base					
Total Installed Cost (2022\$)					2022 RS Mea:	ns Online						
Annual Maintenance Cost (2022\$)	2022 RS Means Online / Guidehouse											
Total Installed Cost (2022\$/thousand CFM)					Calcula	ated						
Annual Maintenance Cost (2022\$/thousand CFM)	Calculated											

Data Sources » Commercial Fan Coil Unit

	2012	2018		2022			20	30	2040		2050		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High	
System Airflow (CFM)					ProductLit	erature							
System Fan Power (kW)													
Specific Fan Power(W/CFM)	ASHRAE90.1- 2007	ASHRAE90.1- 2016	-ASHRAE90.1- 2019	ASHRAE90.1 2019 / Guidehouse Analysis 2022									
Annual Fan Energy Use (kWh/y)													
AverageLife (years)				ASHRAE: Service Life Database									
Total Installed Cost (2022\$)					2022 RS Mean	ns Online							
Annual Maintenance Cost (2022\$)				2022 F	RS Means Onli	ne/Guide	house						
Total Installed Cost (2022\$/thousand CFM)			Calculated										
Annual Maintenance Cost (2022\$/thousand CFM)	FM) Calculated												

Appendix B References

> Guidehouse 1200 19th Street, NW, Suite 700 Washington, D.C. 20036

> > And

Leidos 11951 Freedom Drive Reston, VA 20190

References

- ASHRAE Service Life and Maintenance Cost Database. (n.d.).
- ASHRAE 90.1-2010, 2016, 2019. Energy Standard for Buildings Except Low-Rise Residential Buildings
- Appliance Magazine. (2005). Portrait of the U.S. Appliance Industry. Appliance Magazine.
- Arthur D. Little. (1996). Energy Savings Potential for Commercial Refrigeration Equipment.
- DOE SSL Program. (2012a). 2010 U.S. Lighting Market Characterization
- DOE SSL Program. (2012b). Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates
- DOE SSL Program. (2017). 2015 U.S. Lighting Market Characterization
- DOE Appliance and Equipment Standards Program. (2022). *The Compliance Certification Database*.
- EERE. (2014). Energy Conservation Program for Appliance Standards: Automatic Commercial Ice Makers
- EERE. (2014). Energy Conservation Program for Appliance Standards: Commercial Refrigeration Equipment.
- EERE. (2014). Energy Conservation Program for Appliance Standards: Refrigerated Beverage Vending Machines
- EERE. (2015). Energy Conservation Program for Appliance Standards: Walk-in Coolers and Freezers.
- ENERGY STAR. (n.d.). Retrieved November 2015, from ENERGY STAR Products: http://www.energystar.gov/index.cfm?c=products.pr_find_es_products
- ENERGY STAR. (2020) from ENERGY STAR Lamps Specification Version 2.1: https://www.energystar.gov/sites/default/files/Lamps%20V2.1%20Final%20Specification%20%28Revised%20June%202 020%29 0.pdf

References

- ENERGY STAR. (2014) ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs) Eligibility Criteria Version 1.1
- ENERGY STAR. (2012) ENERGY STAR® Program Requirements Product Specification for Luminaires (Light Fixtures) Eligibility Criteria Version 1.1
- Environmental Protection Agency. (2022). *Establishing a Recycling Program for Mercury-Containing Light Bulbs*. From: https://www.epa.gov/hw/establishing-recycling-program-mercury-containing-light-bulbs
- Federal Standard. (1975). National energy conservation standards authorized under the Energy and Policy Conservation Act of 2007 (EPCA 1975).
- Federal Standard. (2005). National energy conservation standards authorized under the Energy Policy Act of 2005 (EPACT 2005).
- Federal Standard. (2007). National energy conservation standards authorized under the Energy Independence and Security Act of 2007 (EISA 2007).
- Food Marketing Institute. (n.d.). Retrieved May 2022, from FMI Supermarket Facts: https://www.fmi.org/our-research/supermarket-facts/average-total-store-size-square-feetLighting Research Institute. (1992). Specifier Reports, Specular Reflectors.
- KaTom. (n.d.) Retrieved May 2022, From: https://www.katom.com/
- Navigant Consulting, Inc. (2009). Energy Savings Potential and R&D Opportunities for Commercial Refrigeration.
- Navigant Consulting, Inc. (n.d.). In House Expertise.

References

- Navigant Consulting, Inc. (2019). Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, Model. https://www.energy.gov/eere/ssl/downloads/2019-ssl-forecast-report
- Product Literature. (n.d.). Literature from manufacturers and experts on specific products
- The Restaurant Store. (n.d.). Retrieved May 2022, From: https://www.therestaurantstore.com/
- *RS Means Online*. (2022). Retrieved June 2022, From: https://www.rsmeansonline.com/
- Webstaurant. (n.d.) Retrieved May 2022, From: https://www.webstaurantstore.com/