APPENDIX D

EIA - Technology Forecast Updates – Residential and Commercial Building Technologies – Advanced Case

Presented to:

U.S. Energy Information Administration

Prepared by:

Guidehouse 1200 19th Street, NW, Suite 700 Washington, D.C. 20036

And

Leidos 11951 Freedom Drive Reston, VA 20190

October 14, 2022

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

October 2022

Final

Table of Contents

	Page		Page
<u>Objective</u>	$\overline{}$ 4	Commercial Refrigeration	47
Methodology	5	Compressor Rack Systems	48
<u>Definitions</u>	6	<u>Condensers</u>	50
Calculations	7	Supermarket Display Cases	52
Market Transformation	8	Reach-In Refrigerators	55
		Reach-In Freezers	58
Residential Lighting	9	Walk-In Refrigerators	61
General Service	10	Walk-In Freezers	65
Reflector Lamps	14	<u>Ice Machines</u>	69
4-foot Linear 2-lamp Lighting Systems	18	Beverage Merchandisers	73
Outdoor Lamps	22	Refrigerated Vending Machines	76
Commercial Lighting	26	Commercial Ventilation	79
General Service Lamps	27	Constant Air Volume	80
Reflector Lamps	30	Variable Air Volume	82
4-Foot Linear 2 Lamp Lighting Systems	33	Fan Coil Units	84
8-Foot Linear 2 Lamp Lighting Systems	37		
Low Bay Lighting Systems	41	Appendix A: Data Sources	A-1
High Bay Lighting Systems	44	**	
		Appendix B: References	B-1

Objective

The objective of this study is to develop baseline and projected performance and cost characteristics for residential and commercial end-use equipment in an Advanced Case that assumes accelerated adoption of energy-saving technologies due to increased R&D funding and market incentives.

- Examine 2012 and 2018 (commercial) and 2015 and 2020 (residential) baselines, as well as this year's baseline (2022).
 - Review literature, standards, installed base, contractor, and manufacturer information.
 - Provide a relative comparison and characterization of the cost and efficiency of a generic product.
- Forecast technology improvements that are projected to be available through 2050.
 - Review trends in standards, product enhancements, and research and development (R&D).
 - Project impact of product improvements and technology enhancement.

The performance and cost characterization of end-use equipment developed in this study will assist EIA in projecting national primary energy consumption.

Methodology

Input from industry stakeholders, including government, R&D organizations, and manufacturers, was used to project product enhancements concerning equipment performance and cost attributes.

- Technology forecasting involves many uncertainties.
- Technology developments affect performance and cost forecasts.
- Varied sources ensure a balanced view of technology progress and the probable timing of commercial availability.

Definitions

The following tables represent the current and projected efficiencies for residential and commercial building equipment ranging from the installed base in 2012 and 2018 (for commercial products) and 2015 and 2020 (for residential) to the highest efficiency equipment that is expected to be commercially available by 2050, assuming incremental adoption. Below are definitions for the terms used in characterizing the status of each technology.

- Installed Stock Average: the installed and in use equipment for that year. Represents the installed stock of equipment, but does not represent sales.
- Current Standard: the minimum efficiency (or maximum energy use) required (allowed) by current U.S. Department of Energy (DOE) standards, when applicable. For lighting, if no product exists at the standard efficiency level, a hypothetical wattage and lumen output is given for the standard's efficiency level.
- ENERGY STAR®: the minimum efficiency required (or maximum energy use allowed) to meet the ENERGY STAR® criteria, when applicable. Presented performance data represents certified products just meeting current ENERGY STAR specifications. For lighting, if no products exist at the ENERGY STAR efficiency level, a hypothetical wattage and lumen output is given for the ENERGY STAR efficiency level.
- Low: The minimum efficiency product or product mix available on the market. This rating typically reflects minimal compliance with DOE standards.
- Typical: the average, or typical, product being sold in the particular timeframe.
- High: the product with the highest efficiency available in the particular timeframe.
- Lumens (lm): the unit for luminous flux used in the SI unit system. This unit is used to indicate a light source's light output. All reported lumens are initial lumens. 1 kilolumen (klm) = 1,000 lumens.
- Correlated Color Temperature (CCT): a specification of the color appearance of the light emitted by a lamp. Note: CCT is not a performance metric.
- Color Rendering Index (CRI): a scale from 0 to 100 percent indicating how accurate a given light source is at rendering color when compared to a reference light source. The higher the CRI, the better the color rendering ability.
- British thermal unit (Btu): a measure of the heat content of fuels or energy sources. It is the quantity of heat required to raise the temperature of one pound of liquid water by 1°F at the temperature that water has its greatest density (approximately 39 °F). 1 kBtu = 1,000 Btu.
- Cubic Feet per Minute (CFM): a measure of airflow volume equal to the number of cubic feet of air flowing through a two-dimensional plane in one minute.
- Not Available (N/A): data is not available where indicated.

Calculations

The following metrics are commonly referred to throughout the tables to follow. Below are the calculations for each metric

Lighting

- System Wattage = (Lamp Wattage * Ballast Factor) / Ballast Efficiency
- System Lumens = Lamp Lumens * Ballast Factor
- Lamp Efficacy = Lamp Lumens / Lamp Wattage
- System Efficacy = System Lumens / System Wattage
- Lamp Cost (\$/klm) = Lamp Cost / (Lamp Lumens / 1,000)
- Total Equipment Cost = Lamp Cost + Fixture (including ballast) Cost
- System Cost (\$/klm) = Total Equipment Cost/ (System Lumens / 1,000). 1/b/f denotes that the cost includes the luminaire, the ballast, and the fixture.
- Total Installed Cost = Total Equipment Cost + Labor Installation Cost
- Ballast Luminous Efficiency (BLE) = A/(1+B*Avg Total Lamp Arc Power^(-C)) where A, B, and C are pre-defined constants by DOE Energy Conservation Standards for Fluorescent Lamp Ballasts.

Commercial Refrigeration

- Nominal Capacity over Average Input (Btu in / Btu out) = (Cooling or Heat Rejection Capacity)*24*365/(Annual Energy Consumption * 3,412)
- Total Installed Cost = Retail Equipment Cost + Labor Installation Cost
- Total Installed Cost (\$/kBtu/hour) = Total Installed Cost*1,000 / (Cooling or Heat Rejection Capacity). h used as an abbreviation for hour throughout
- Annual Maintenance Cost (\$/kBtu/h) = Annual Maintenance Cost* 1,000 / (Cooling or Heat Rejection Capacity)

Ventilation

- **CFM out / Btu in / h** = System Airflow / (System Fan Power * 3,412)
- Total Installed Cost (\$/1,000 CFM) = Total Installed Cost* 1,000 / System Airflow
- Annual Maintenance Cost (\$/1,000 CFM) = Annual Maintenance Cost*1,000/System Fan Power

Market Transformation

The market for the reviewed products has changed since this analysis was performed in 2015. These changes are noted and reflected in the efficiency and cost characteristics.

- DOE issued federal minimum efficiency standards that have gone into effect for General Service Fluorescent Lamps (2012), Incandescent Reflector Lamps (2012), and Fluorescent Lamp Ballasts (2019).
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lumens per watt (lm/W) backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act (10 CFR 430, 87 FR 27439). This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.
- DOE published a Final Rule updating energy conservation standards for Refrigerated Beverage Vending Machines at the end of 2015, effective in 2018. DOE also issued federal minimum efficiency standards that have or will soon go into effect for Refrigerated Beverage Vending Machines (2012), Automatic Commercial Ice Makers (2018), Walk-In Coolers and Freezers (2017), and Commercial Refrigeration Equipment (2017).

Residential Lighting

Note: More R&D investment and effort in the lighting industry only changes projections of LED technologies because additional funding and effort will likely not be applied to traditional technologies that have been exceeded in performance by their LED counterparts. Therefore, the inputs for all non-LED technologies remain unchanged from the Reference Case and are not included in this report.

Final

Performance and Cost Characteristics » Residential General Service Lamps

The residential general service lamps characterized in this report are a 60-watt and a 75-watt medium screw-based (E26) A-type incandescent lamp and their halogen, CFL, and LED equivalents. A standard 60-watt incandescent lamp produces approximately 800 – 850 lumens. A standard 75-watt incandescent lamp produces approximately 1,100 lumens.

Performance:

- A majority of residential lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Fixture prices and installation costs are not included for the residential sector. Labor costs are assumed to be negligible because homeowners likely replaces lamps themselves as they burn out. Therefore, total installed cost is the price of a lamp, and annual maintenance costs are the cost of replacing the lamps, which is a function of lamp life, lamp price, and the annual operating hours.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Legislation:

- The Energy Independence and Security Act of 2007 (EISA 2007) established standards for 60-watt general service lamps, effective in 2014, and 75-watt lamps, effective in 2013. These standards cannot be achieved by incandescent bulbs, but can be by halogen, CFL, and LED technologies.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

ENERGY STAR:

• For ENERGY STAR qualification, general service omnidirectional lamps must have a minimum lamp efficacy of 70 lm/W for products with CRI ≥ 90 and 80 lm/W for lamps with CRI < 90. Additionally, the lamps must have a CRI ≥ 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime ≥ 10,000 hours (ENERGY STAR).

Performance and Cost Characteristics » Residential General Service Lamps

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent, halogen, and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050:

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022.
CFL	+0.5%	0%	-0.5%	Improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps.

Performance and Cost Characteristics » Residential General Service LED Lamps (60 W Incandescent Equivalent)

	2015	2020		20	22		2023 ²	203	30	204	10	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	8.7	9.2	10.0	8.9	8.0	13.8	17.8	5.7	5.1	4.4	4.0	3.8	3.4
Lamp Lumens	656	803	800	800	800	800	800	800	800	800	800	800	800
Lamp Efficacy (lm/W)	75.5	87.1	80.0	90.0	100.0	80.0	45.0	141.5	157.2	180.2	200.2	209.0	232.1
CRI	81	85	80	81	90	80	N/A	81	90	81	90	81	90
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	25	21	15	14	18	15	N/A	14	18	14	18	14	18
Annual Operating Hours (h/y)	657	657	657	657	657	657	N/A	657	657	657	657	657	657
Lamp Price (2022\$)	\$13.53	\$4.56	\$6.20	\$3.92	\$5.32	\$6.20	N/A	\$3.23	\$4.39	\$2.84	\$3.86	\$2.46	\$3.33
Lamp Cost (2022\$/klm)	\$20.63	\$5.68	\$7.75	\$4.90	\$6.65	\$7.75	N/A	\$7.02	\$7.02	\$3.57	\$3.57	\$2.38	\$2.38
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	0.0	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$13.53	\$4.56	\$6.20	\$3.92	\$5.32	\$6.20	N/A	\$3.23	\$4.39	\$2.84	\$3.86	\$2.46	\$3.33
Annual Maintenance Cost (2022\$)	\$0.35	\$0.15	\$0.27	\$0.18	\$0.19	\$0.27	N/A	\$0.15	\$0.16	\$0.13	\$0.14	\$0.11	\$0.12
Total Installed Cost (2022\$/klm)	\$20.63	\$5.68	\$7.75	\$4.90	\$6.65	\$7.75	N/A	\$4.04	\$5.49	\$3.56	\$4.83	\$3.07	\$4.17
Annual Maintenance Cost (2022\$/klm)	\$0.54	\$0.18	\$0.34	\$0.22	\$0.24	\$0.34	N/A	\$0.18	\$0.20	\$0.16	\$0.17	\$0.14	\$0.15

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential General Service Filament-LED Lamps (60 W Incandescent Equivalent)

	2015	2020		20	22		2023 ²	20	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	9.7	7.1	5.5	6.9	8.0	13.8	17.8	5.4	5.1	4.2	4.0	3.6	3.4
Lamp Lumens	457	650	450	650	800	800	800	800	800	800	800	800	800
Lamp Efficacy (lm/W)	47.1	91.7	81.8	94.8	100.0	80.0	45.0	149.0	157.2	189.8	200.2	220.0	232.1
CRI	82	84	90	84	80	80	N/A	81	90	81	90	81	90
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	23	21	15	15	15	15	N/A	15	15	15	15	15	15
Annual Operating Hours (h/y)	657	657	657	657	657	N/A	N/A	657	657	657	657	657	657
Lamp Price (2022\$)	\$15.17	\$6.88	\$6.25	\$5.91	\$7.75	N/A	N/A	\$4.87	\$6.39	\$4.29	\$5.62	\$3.70	\$4.86
Lamp Cost (2022\$/klm)	\$33.20	\$10.58	\$13.89	\$9.09	\$9.69	N/A	N/A	\$7.02	\$7.02	\$3.57	\$3.57	\$2.38	\$2.38
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$15.17	\$6.88	\$6.25	\$5.91	\$7.75	N/A	N/A	\$4.87	\$6.39	\$4.29	\$5.62	\$3.70	\$4.86
Annual Maintenance Cost (2022\$)	\$0.43	\$0.21	\$0.27	\$0.26	\$0.34	N/A	N/A	\$0.21	\$0.28	\$0.19	\$0.25	\$0.16	\$0.21
Total Installed Cost (2022\$/klm)	\$33.20	\$10.58	\$13.89	\$9.09	\$9.69	N/A	N/A	\$6.09	\$7.99	\$5.36	\$7.03	\$4.63	\$6.07
Annual Maintenance Cost (2022\$/klm)	\$0.93	\$0.33	\$0.61	\$0.40	\$0.42	N/A	N/A	\$0.27	\$0.35	\$0.23	\$0.31	\$0.20	\$0.27

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential Reflector Lamps

The residential reflector lamps characterized in this report are directional lamps that emit approximately 550 – 850 lumens (except for LED PAR38s which have outputs up to 1,700 lumens). Multiple baseline reflector lamps were analyzed, including 65W Incandescent BR30, Halogen PAR30, Halogen Infrared Reflector (HIR) PAR30, CFL BR30, LED BR30, and LED PAR38.

Performance:

- A majority of residential lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but for CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy.
- Fixture prices and installation costs are not included for the residential sector. Labor costs are assumed to be negligible because homeowners likely replaces lamps themselves as they burn out. Therefore, total installed cost is the price of a lamp, and annual maintenance costs are the cost of replacing the lamps, which is a function of lamp life, lamp price, and the annual operating hours.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Legislation:

- EPAct92 established minimum performance standards for some reflector lamps and provided exemptions for certain specialty applications (e.g., ER/BR, vibration service, more than 5% neodymium oxide, impact resistant, infrared heat, colored). EPAct92 effectively phased-out R-shaped tungsten filament incandescent reflector lamps at certain wattages and bulb diameters, replacing them with more efficient and cost effective tungsten-halogen parabolic aluminized reflector (PAR) lamps. EISA 2007 took away certain exemptions from EPACT 1992, requiring certain previously exempted lamps to meet EPAct92 minimum performance standards by January 1, 2008. The 65W BR30, a large majority of the incandescent reflector lamp market, was still exempted until 2022.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

Performance and Cost Characteristics » Residential Reflector Lamps

ENERGY STAR:

• For ENERGY STAR qualification, general service, reflector lamps must have a minimum lamp efficacy of 61 lm/W for products with CRI \geq 90 and 70 lm/W for lamps with CRI \leq 90, respectively. Additionally, the lamps must have a CRI \geq 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime \geq 10,000 hours (ENERGY STAR).

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022.
CFL	+0.5%	0%	-0.5%	In addition to higher efficiency reflector coatings, improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Residential Reflector LED BR30

	2015	2020		20	22		2023 ²	20	30	204	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	14.2	10.9	11.0	8.8	7.2	10.7	14.4	5.5	4.7	4.8	4.1	4.2	3.7
Lamp Lumens	706	781	800	683	650	650	650	650	650	650	650	650	650
Lamp Efficacy (lm/W)	49.8	71.5	72.7	78.6	90.3	61.0	45.0	119.2	137.0	136.3	156.7	153.4	176.3
CRI	82	85	92	87	90	80	N/A	87	90	87	90	87	90
Correlated Color Temperature (CCT)	2,700	2,700	2,700	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	25	25	25	19	18	15	N/A	19	18	19	18	19	18
Annual Operating Hours (h/y)	730	730	730	730	730	N/A	N/A	730	730	730	730	730	730
Lamp Price (2022\$)	\$21.40	\$15.36	\$4.09	\$5.01	\$5.96	N/A	N/A	\$4.11	\$4.89	\$3.62	\$4.31	\$3.14	\$3.74
Lamp Cost (2022\$/klm)	\$30.31	\$19.66	\$5.11	\$7.33	\$9.17	N/A	N/A	\$6.32	\$7.53	\$5.57	\$6.64	\$4.83	\$5.75
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$21.40	\$15.36	\$4.09	\$5.01	\$5.96	N/A	N/A	\$4.11	\$4.89	\$3.62	\$4.31	\$3.14	\$3.74
Annual Maintenance Cost (2022\$)	\$0.63	\$0.45	\$0.12	\$0.20	\$0.24	N/A	N/A	\$0.16	\$0.19	\$0.14	\$0.17	\$0.12	\$0.15
Total Installed Cost (2022\$/klm)	\$30.31	\$19.66	\$5.11	\$7.33	\$9.17	N/A	N/A	\$6.32	\$7.53	\$5.57	\$6.64	\$4.83	\$5.75
Annual Maintenance Cost (2022\$/klm)	\$0.89	\$0.57	\$0.15	\$0.29	\$0.37	N/A	N/A	\$0.25	\$0.30	\$0.22	\$0.26	\$0.19	\$0.23

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential Reflector LED PAR38

	2015	2020		20	22		2023 ²	20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	19.2	15.5	17.0	16.4	17.0	10.7	29.9	10.8	11.2	9.4	9.8	8.4	8.7
Lamp Lumens	1,202	1,211	1,200	1,344	1,700	650	1,344	1,344	1,700	1,344	1,700	1,344	1,700
Lamp Efficacy (lm/W)	62.7	77.9	70.6	82.0	100.0	61.0	45.0	124.5	151.7	142.4	173.6	160.2	195.3
CRI	83	86	82	86	82	80	N/A	86	86	86	86	86	86
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	3,000	2,700	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	24	27	25	27	25	15	N/A	27	25	27	25	27	25
Annual Operating Hours (h/y)	730	730	730	730	730	N/A	N/A	730	730	730	730	730	730
Lamp Price (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Lamp Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Annual Maintenance Cost (2022\$)	\$1.07	\$0.60	\$0.69	\$0.62	\$0.46	N/A	N/A	\$0.52	\$0.38	\$0.46	\$0.34	\$0.41	\$0.31
Total Installed Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Annual Maintenance Cost (2022\$/klm)	\$0.89	\$0.49	\$0.58	\$0.46	\$0.27	N/A	N/A	\$0.39	\$0.23	\$0.35	\$0.20	\$0.31	\$0.18

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023, and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential 4-foot Linear 2-Lamp Lighting Systems

This section characterizes commercial linear fixtures that house two 4ft long linear lamps and their integrated luminaire equivalents. The technologies available for this system are linear fluorescent and LED.

- T5 lamps are approximately 40% narrower than T8 lamps and almost 60% narrower than T12 lamps. This narrowness allows T5 lamps to be coated with higher quality, more efficient phosphor blends than larger diameter lamps, resulting in a more efficacious lamp. The compact size of T5 lamps also permits greater flexibility in lighting design and construction.
- LED options for linear fixtures include replacement lamps that can fit directly into an existing fixture and fully integrated luminaires that can be used to replace existing fixtures. LED replacement lamps are also known as TLEDs. Type A TLEDs can be installed with existing ballasts and Type B and C TLEDs require the ballast to be disconnected. Replacement lamps are only sold to go into existing fixtures. If a new fixture is to be installed, a fully integrated LED luminaire is a more cost effective and efficient option. Because LED luminaires are fully integrated, they do not have lamp and fixture efficiency losses associated with ballasts and fixture optics.

Performance:

- Residential linear lamps often have a nominal CCT rating of 3500K, but products with CCTs of 3000K, 4000K, and 4100K (neutral white) are also common. 5000K (daylight) lamps are available as well. When replacing a light bulb, it is important to choose a product with a similar CCT value to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps, including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps. which are sold only as a replacement for use in an existing fixture. The LED luminaire is more efficient and cost effective for new installations or fixture retrofits.
- Labor costs for lamp changes are assumed to be negligible because homeowners likely replace lamps themselves as they burn out. Therefore, annual maintenance costs are the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for residential linear systems.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Legislation:

- Beginning July 14, 2012 (or July 14, 2014, for T8 700-series phosphor lamps), DOE fluorescent lamp standards required a minimum efficacy of 89 lm/W. Although the amended performance-based standards do not explicitly prohibit T12 lamps, no T12 lamps met the standard at the time of its announcement. Since then, however, T12 lamps meeting the standard have entered the market.
- Beginning November 14, 2014, DOE standards required that the characterized residential ballasts have a minimum BLE = 0.993 / (1 + 0.41 * Avg Total Lamp Arc power ^ (- 0.25)). Residential ballasts also must have a minimum power factor of 0.5.
- California's Title 24 mandates the use of electronic ballasts with high efficacy luminaires (including fluorescent) of 13 W or higher (CEC, 2005).

ENERGY STAR:

• ENERGY STAR does not cover linear lamps. (ENERGY STAR, 2020)

Performance and Cost Characteristics » Residential 4-foot Linear 2-Lamp Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume that manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050:

Technology	Efficacy	Lifetime	Price	Potential for Improvements
T12	0%	0%	-0.5%	Limited because the technology is mature.
Т8	0%	0%	-0.5%	Limited because the technology is mature.
T5	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Residential Linear LED Replacement Lamp 2-Lamp System

Higher efficacy compared with Reference Case

	2015	2020		2022		20	30	20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	18.5	16.3	16.0	13.7	11.0	8.9	7.2	7.7	7.2	7.7	7.2
Lamp Lumens	2,013	2,130	1,800	1,920	1,800	1,920	1,800	1,920	1,800	1,920	1,800
Lamp Efficacy (lm/W)	111.0	130.7	112.5	140.1	163.6	216.1	250.0	250.0	250.0	250.0	250.0
System Wattage	36.9	32.6	32.0	27.4	22.0	17.8	14.4	15.4	14.4	15.4	14.4
System Lumens	3,583	4,004	3,456	3,686	3,456	3,686	3,456	3,686	3,456	3,686	3,456
System Efficacy (lm/W)	97.0	122.8	108.0	134.5	157.1	207.4	240.0	240.0	240.0	240.0	240.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	83	81	82	81	80	81	80	81	80	81	80
Correlated Color Temperature (CCT)	4,100	3,500	4,100	4,100	5,000	4,100	5,000	4,100	5,000	4,100	5,000
Average Lamp Life (thousand hours)	55	50	50	54	50	54	50	54	50	54	50
Annual Operating Hours (h/y)	584	584	584	584	584	584	584	584	584	584	584
Lamp Price (2022\$)	\$27.00	\$12.89	\$14.63	\$11.11	\$4.28	\$9.97	\$3.84	\$9.87	\$3.80	\$9.77	\$3.77
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$13.41	\$6.05	\$8.13	\$5.79	\$2.38	\$5.19	\$2.13	\$5.14	\$2.11	\$5.09	\$2.09
System (1/b/f) Cost (2022\$/klm)	\$15.07	\$6.44	\$8.47	\$6.03	\$2.48	\$5.41	\$2.22	\$5.35	\$2.20	\$5.30	\$2.18
Labor Cost (2022\$/h) ²	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor System Installation (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$54.00	\$25.78	\$29.26	\$22.22	\$8.56	\$19.95	\$7.68	\$19.74	\$7.60	\$19.55	\$7.53
Annual Maintenance Cost (2022\$)	\$0.57	\$0.30	\$0.34	\$0.24	\$0.10	\$0.22	\$0.09	\$0.21	\$0.09	\$0.21	\$0.09
Total Installed Cost (2022\$/klm)	\$15.07	\$6.44	\$8.47	\$6.03	\$2.48	\$5.41	\$2.22	\$5.35	\$2.20	\$5.30	\$2.18
Annual Maintenance Cost (2022\$/klm)	\$0.16	\$0.08	\$0.10	\$0.07	\$0.03	\$0.06	\$0.03	\$0.06	\$0.03	\$0.06	\$0.03

^{1.} N/A because a fixture and an LED replacement lamp would not be purchased separately for a new installation or retrofit when there are integrated LED luminaires that are more efficient and cost effective. These lamps are sold only as replacements to go into existing fixtures.

Assume no labor is associated with lamp replacement in the residential sector because residents likely replace the lamps themselves.

Performance and Cost Characteristics » Residential Linear LED Luminaire

	2015	2020		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	50.0	43.1	49.0	44.0	35.0	27.4	21.8	23.0	19.2	21.2	19.2
System Lumens	4,615	4,945	5,024	5,302	4,800	5,302	4,800	5,302	4,800	5,302	4,800
System Efficacy (lm/W)	92.3	114.7	102.5	120.5	137.1	193.4	220.1	230.4	250.0	250.0	250.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	83	82	80	79	80	79	80	79	80	79	80
Correlated Color Temperature (CCT)	3,838	3,000	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
Average Lamp Life (thousand hours)	56	58	54	53	50	53	50	53	50	53	50
Annual Operating Hours (h/y)	730	730	730	730	730	730	730	730	730	730	730
Lamp or Luminaire Price (2022\$)	\$181.60	\$158.60	\$144.85	\$152.54	\$207.80	\$121.11	\$164.98	\$105.34	\$143.50	\$90.11	\$122.76
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (I/b/f) Cost (2022\$/klm)	\$78.70	\$64.15	\$57.66	\$57.54	\$86.58	\$45.68	\$68.74	\$39.74	\$59.79	\$33.99	\$51.15
Labor Cost (2022\$/h)	\$80.90	\$80.90	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$403.65	\$357.65	\$322.70	\$338.08	\$448.60	\$275.22	\$362.97	\$243.68	\$320.01	\$213.23	\$278.52
Annual Maintenance Cost (2022\$)	\$2.89	\$2.49	\$2.40	\$2.56	\$3.52	\$2.12	\$2.89	\$1.91	\$2.58	\$1.70	\$2.27
Total Installed Cost (2022\$/klm)	\$87.46	\$72.33	\$64.23	\$63.76	\$93.46	\$51.91	\$75.62	\$45.96	\$66.67	\$40.22	\$58.03
Annual Maintenance Cost (2022\$/klm)	\$0.63	\$0.50	\$0.48	\$0.48	\$0.73	\$0.40	\$0.60	\$0.36	\$0.54	\$0.32	\$0.47

^{1.} N/A because the lamp and fixture are both included in the luminaire.

Performance and Cost Characteristics » Residential Outdoor Lamps

• The residential outdoor lamps characterized in this report include reflector and general service lamps used for security and/or porch lighting that can be switched on from inside the home (i.e. parking lot/garage and outdoor common area lighting at multifamily buildings are excluded) with lumen outputs of approximately 1,000 – 1,400 lumens. Multiple baseline lamps were analyzed according to estimates of installed base average lumens by lamp type, including:

Security (Reflector Lamps)	Porch (General Service Lamps)
Incandescent BR30	Incandescent A-Type
Halogen PAR38	Halogen A-Type
Halogen Infrared Reflector (HIR) PAR38	CFL Bare Spiral
CFL PAR38	LED A-Type Lamp
LED PAR38	

Performance:

- 65W BR30 is the only viable incandescent reflector lamp due to exemption from EISA 2007. The lumen output of this lamp type is well below other reflector lamp technologies characterized for residential outdoor spaces, thus its use is limited for this application. This product is, as of 2022, expected to be eliminated by DOE's 45 lm/W backstop requirement.
- A majority of residential lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2015 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Fixture prices and installation costs are not included for the residential sector. Labor costs are assumed to be negligible because homeowners likely replaces lamps themselves as they burn out. Therefore, total installed cost is the price of a lamp, and annual maintenance costs are the cost of replacing the lamps, which is a function of lamp life, lamp price, and the annual operating hours for residential reflector lamps.
- Disposal costs are not characterized for residential lighting in this analysis. In residential cases, disposal is done by the occupant. Lamp and product burnout are assumed to result in no "added" cost aside from the work performed to install the replacement.

Performance and Cost Characteristics » Residential Outdoor Lamps

Legislation:

• In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

ENERGY STAR:

- For ENERGY STAR qualification, general service omnidirectional lamps must have a minimum lamp efficacy of 70 lm/W for products with CRI ≥ 90 and 80 lm/W for lamps with CRI < 90.
- For ENERGY STAR qualification, general service reflector lamps must have a minimum lamp efficacy of 61 lm/W for products with CRI ≥ 90 and 70 lm/W for lamps with CRI < 90.
- Additionally, the lamps must have a CRI \geq 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime \geq 10,000 hours (ENERGY STAR).

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent Omnidirectional	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Incandescent Directional	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
CFL	+0.5%	0%	-0.5%	In addition to benefiting from higher efficiency reflector coatings, improvements in efficacy can be made by using more rare- earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Residential Outdoor Lamps (Security: LED Reflector)

	2015	2020		20	22		2023 ²	200	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	19.2	15.5	17.0	16.4	17.0	10.7	29.9	10.8	11.2	9.4	9.8	8.4	8.7
Lamp Lumens	1,202	1,211	1,200	1,344	1,700	650	1,344	1,344	1,700	1,344	1,700	1,344	1,700
Lamp Efficacy (lm/W)	62.7	77.9	70.6	82.0	100.0	61.0	45.0	124.5	151.7	142.4	173.6	160.2	195.3
CRI	83	86	82	86	82	80	N/A	86	86	86	86	86	86
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	3,000	2,700	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	24	27	25	27	25	15	N/A	27	25	27	25	27	25
Annual Operating Hours (h/y)	730	730	730	730	730	N/A	N/A	730	730	730	730	730	730
Lamp Price (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Lamp Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$35.23	\$22.44	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Annual Maintenance Cost (2022\$)	\$1.07	\$0.60	\$0.69	\$0.62	\$0.46	N/A	N/A	\$0.52	\$0.38	\$0.46	\$0.34	\$0.41	\$0.31
Total Installed Cost (2022\$/klm)	\$29.31	\$18.54	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
Annual Maintenance Cost (2022\$/klm)	\$0.89	\$0.49	\$0.58	\$0.46	\$0.27	N/A	N/A	\$0.39	\$0.23	\$0.35	\$0.20	\$0.31	\$0.18

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Performance and Cost Characteristics » Residential Outdoor Lamps (Porch: LED A-Type)

	2015	2020		20	22		2023 ¹	203	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	12.9	11.8	13.5	11.9	11.0	13.6	24.4	7.6	7.0	6.0	5.5	5.1	4.7
Lamp Lumens	1,073	1,102	1,100	1,089	1,100	1,089	1,100	1,100	1,100	1,100	1,100	1,100	1,100
Lamp Efficacy (lm/W)	83.1	93.5	81.5	92.2	100.0	80	45.0	144.9	157.2	184.6	200.2	214.0	232.1
CRI	81	85	80	86	80	80	N/A	86	80	86	80	86	80
Correlated Color Temperature (CCT)	2,700	2,700	3,000	2,700	2,700	2,700	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	25	21	25	18	25	N/A	N/A	18	25	18	25	18	25
Annual Operating Hours (h/y)	657	657	657	657	657	N/A	N/A	657	657	657	657	657	657
Lamp Price (2022\$)	\$18.13	\$8.48	\$4.39	\$3.92	\$5.29	N/A	N/A	\$3.23	\$4.36	\$2.84	\$3.84	\$2.46	\$3.31
Lamp Cost (2022\$/klm)	\$16.90	\$7.70	\$3.99	\$3.60	\$4.81	N/A	N/A	\$7.02	\$7.02	\$3.57	\$3.57	\$2.38	\$2.38
Labor Cost (2022\$/h)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	N/A	N/A	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Labor Lamp Installation (hours)	0.0	0.0	0.0	0.0	0.0	N/A	N/A	0.0	0.0	0.0	0.0	0.0	0.0
Total Installed Cost (2022\$)	\$18.13	\$8.48	\$4.39	\$3.92	\$5.29	N/A	N/A	\$3.23	\$4.36	\$2.84	\$3.84	\$2.46	\$3.31
Annual Maintenance Cost (2022\$)	\$0.49	\$0.27	\$0.12	\$0.14	\$0.14	N/A	N/A	\$0.12	\$0.11	\$0.10	\$0.10	\$0.09	\$0.09
Total Installed Cost (2022\$/klm)	\$16.90	\$7.70	\$3.99	\$3.60	\$4.81	N/A	N/A	\$2.94	\$3.97	\$2.59	\$3.49	\$2.23	\$3.01
Annual Maintenance Cost (2022\$/klm)	\$0.45	\$0.24	\$0.10	\$0.13	\$0.13	N/A	N/A	\$0.11	\$0.10	\$0.09	\$0.09	\$0.08	\$0.08

^{1.} In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.

Commercial Lighting

Note: More R&D investment and effort in the lighting industry will only change future projections of LED technologies because additional funding and effort will likely not be applied to traditional technologies that have been exceeded in performance by their LED counterparts. Therefore, the inputs for all non-LED technologies remain unchanged from the Reference Case and are therefore not included in this report.

.

Final

Performance and Cost Characteristics » Commercial General Service Lamps in Recessed Can Fixtures

This section characterizes commercial omnidirectional incandescent, halogen, CFL, and LED screw-based general service lamps emitting approximately 1,600 lumens (equivalent to a 100W incandescent lamp) used in recessed can fixtures. A recessed can is a directional fixture set into the ceiling, in which all of the light is directed downwards from the opening. Therefore, an omnidirectional lamp is not well suited for use in such fixtures because light that emits upwards and out of the sides must be reflected downwards and out of the fixture and some light is absorbed in the process. A fixture efficiency of 61% is used to characterize these lumen losses for all omnidirectional lamps. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- A majority of general service lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (day light), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps which are sold only as a replacement for use in an existing fixture. There are integrated LED luminaires that are more efficient and cost effective for new installations or fixture retrofits. Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy. Therefore typical lamp prices in 2015 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial general service lamps (DOESSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for high intensity discharge (HID) lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- The Energy Independence and Security Act of 2007 (EISA 2007) established standards for 100W lamps effective in 2012. These standards cannot be achieved by incandescent bulbs, but they can be met by halogen, CFL, and LED technologies from 2012 to 2023.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

ENERGY STAR:

• For ENERGY STAR qualification, general service omnidirectional lamps must have a minimum lamp efficacy of 70 lm/W for products with CRI ≥ 90 and 80 lm/W for lamps with CRI < 90. Additionally, the lamps must have a CRI ≥ 80 , nominal CCT of 2,700,3,000,3,500,4,000/4,100,5,000, or 6,000 K, and rated lifetime $\geq 10,000 \text{ hours}$ (ENERGY STAR).

Performance and Cost Characteristics » Commercial General Service Lamps in Recessed Can Fixtures

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022
CFL	+0.5%	0%	-0.5%	Improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Commercial General Service 100W Equivalent LED Replacement Lamp in Recessed Can Fixture

	2012	2018		20	22		2023 ²	2030		2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ¹	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	26.7	14.5	16.0	14.8	13.0	20.0	34.8	9.4	8.3	7.4	6.5	6.4	6.4
Lamp Lumens	1,600	1,528	1,600	1,567	1,600	1,600	1,567	1,567	1,600	1,567	1,600	1,567	1,600
Lamp Efficacy (lm/W)	60.0	105.1	100.0	106.0	123.1	80.0	45.0	166.7	193.5	212.2	246.4	246.1	250.0
System Wattage	26.7	14.5	16.0	14.8	13.0	20.0	34.8	9.4	8.3	7.4	6.5	6.4	6.4
System Lumens ³	976	932	976	956	976	976	956	956	976	956	976	956	976
System Efficacy (lm/W)	36.6	64.1	61.0	64.7	75.1	48.8	27.5	101.7	118.0	129.5	150.3	150.1	152.5
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	80	80	90	84.8	84	80	N/A	84.8	84.8	84.8	84.8	84.8	84.8
Correlated Color Temperature (CCT)	3,000	3,000	2,700	2,700	5,000	N/A	N/A	2,700	2,700	2,700	2,700	2,700	2,700
Average Lamp Life (thousand hours)	22.0	17.9	25.0	16.9	25.0	15.0	N/A	16.9	25.0	16.9	25.0	16.9	25.0
Annual Operating Hours (h/y)	4,928	4,928	4,928	4,928	4,928	N/A	N/A	4,928	4,928	4,928	4,928	4,928	4,928
Lamp Price (2022\$)	\$47.45	\$11.28	\$5.62	\$7.04	\$3.39	N/A	N/A	\$5.81	\$2.80	\$5.11	\$2.46	\$4.41	\$2.12
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$26.38	\$22.07	\$22.07	\$22.07	N/A	N/A	\$21.20	\$21.20	\$20.17	\$20.17	\$19.18	\$19.18
Lamp Cost (2022\$/klm)	\$25.00	\$7.38	\$3.51	\$4.49	\$2.12	N/A	N/A	\$3.71	\$1.75	\$3.26	\$1.54	\$2.82	\$1.33
System (l/b/f) Cost (2022\$/klm)	\$72.92	\$40.40	\$28.37	\$30.46	\$26.09	N/A	N/A	\$28.26	\$24.59	\$26.45	\$23.18	\$24.68	\$21.83
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	N/A	N/A	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.0	1.0	1.0	1.0	1.0	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.0
Labor Lamp Change (hours)	0.05	0.05	0.05	0.05	0.05	N/A	N/A	0.05	0.05	0.05	0.05	0.05	0.05
Total Installed Cost (2022\$)	\$148.39	\$114.88	\$93.69	\$95.11	\$91.46	N/A	N/A	\$93.01	\$90.00	\$91.27	\$88.63	\$89.59	\$87.30
Annual Maintenance Cost (2022\$)	\$11.49	\$4.16	\$1.76	\$3.02	\$1.32	N/A	N/A	\$2.66	\$1.20	\$2.45	\$1.14	\$2.25	\$1.07
Total Installed Cost (2022\$/klm)	\$152.04	\$123.25	\$95.99	\$99.52	\$93.71	N/A	N/A	\$97.32	\$92.21	\$95.51	\$90.81	\$93.75	\$89.45
Annual Maintenance Cost (2022\$/klm)	\$11.77	\$4.46	\$1.80	\$3.16	\$1.35	N/A	N/A	\$2.78	\$1.23	\$2.57	\$1.16	\$2.35	\$1.10

- 1. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. All LED lighting products exceed the new minimum efficacy standards.
- 3. Based on a fixture efficiency of 61% for an omnidirectional lamp installed in a recessed can fixture.

Performance and Cost Characteristics » Commercial Reflector Lamps in Recessed Can Fixtures

This section characterizes commercial halogen, halogen infrared reflector (HIR), and LED screw-based reflector lamps emitting approximately 1400 lumens used in recessed can fixtures.

- HIR lamps contain a tungsten halogen capsule with a film coating on the inside of the capsule. The coating reflects infrared radiation back into the lamp filament, which forces the filament to burn at a higher temperature. This design increases the efficacy of the lamp, without reducing operating life.
- A recessed can is a directional fixture set into the ceiling, in which all of the light is directed downwards from the opening. Therefore, a reflector lamp, which employs reflective coating to direct light out in only one direction, is well suited for use in such fixtures. However, some light is not able to escape the fixture, and a fixture efficiency of 93% is used to characterize these minimal lumen losses. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- A majority of reflector lamps have a nominal CCT rating of 2,700K and give off a warm, yellowish white color, but products with CCTs of 3,000K, 3,500K, 4,100K (neutral white), 5,000K (daylight), and 6,500K (blueish white) are also available. Traditional incandescent light bulbs have a nominal CCT of about 2,700K. When replacing a light bulb, it is advised to chose a product with a similar CCT value in order to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100. However, CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination. High CRI products are preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these specific retail and display applications.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps which are sold only as a replacement for use in an existing fixture. Many factors influence the price of LED lamps including CRI, lifetime, dimming capabilities, and efficacy.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial reflector lamps (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- EPAct92 established minimum performance standards for some reflector lamps and provided exemptions for certain specialty applications (e.g., ER/BR, vibration service, more than 5% neodymium oxide, impact resistant, infrared heat, colored). EPAct92 effectively phased-out R-shaped tungsten filament incandescent reflector lamps at certain wattages and bulb diameters, replacing them with more efficient and cost effective tungsten-halogen parabolic aluminized reflector (PAR) lamps. EISA2007 took away certain exemptions from EPACT 1992, requiring certain previously exempted lamps to meet EPAct92 minimum performance standards by January 1, 2008. In 2015, DOE issued a final rule that determined that amending the standards for incandescent reflector lamps could not be economically justified.
- In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress prescribed in the Energy Policy and Conservation Act. This action also amended the definition of general service lamps to include previously exempted product classes, such as reflector lamps. These standards can not be achieved by traditional incandescent or halogen technologies currently on the market, and given current and projected trends in industry, they will likely not be met. It is currently assumed that industry will increase its investment in LED technology at the expense of incandescent, halogen, and CFL technologies. The rule will go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023.

Performance and Cost Characteristics » Commercial Reflector Lamps in Recessed Can Fixtures

ENERGY STAR:

• For ENERGY STAR qualification, general service reflector lamps must have a minimum lamp efficacy of 61 lm/W for products with CRI ≥ 90 and 70 lm/W for lamps with CRI < 90. Additionally, the lamps must have a CRI ≥ 80, nominal CCT of 2,700, 3,000, 3,500, 4,000/4,100, 5,000, or 6,000 K, and rated lifetime ≥ 10,000 hours (ENERGY STAR).

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
Incandescent	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements.
Halogen	0%	0%	-0.5%	Limited because the technology is mature and the technology cannot meet legislative requirements as of 2022
CFL	+0.5%	0%	-0.5%	In addition to higher efficiency reflector coatings, improvements in efficacy can be made by using more rare-earth phosphors in compact fluorescent lamps. Lifetime improvements can be made by improving the compact fluorescent lamp electrodes.

Performance and Cost Characteristics » Commercial LED Reflector Lighting (PAR38)

	2012	2018		20	22		2023 ²	20	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ³	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	17.2	16.6	17.0	16.4	17.0	22.0	29.9	14.0	11.2	9.4	9.8	8.4	8.7
Lamp Lumens	1,045	1,210	1,200	1,344	1,700	1,344	1,344	1,344	1,700	1,344	1,700	1,344	1,700
Lamp Efficacy (lm/W)	60.9	73.0	70.6	82.0	100.0	61.0	45.0	95.7	151.7	142.4	173.6	160.2	195.3
System Wattage	17.2	16.6	17.0	16.4	17.0	22.0	29.9	14.0	11.2	9.4	9.8	8.4	8.7
System Lumens ¹	972	1,125	1,116	1,250	1,581	1,250	1,250	1,250	1,581	1,250	1,581	1,250	1,581
System Efficacy (lm/W)	56.6	67.9	65.6	76.1	93.0	56.7	41.9	89.0	141.1	132.4	161.4	149.0	181.6
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	83	83	82	86	82	80	N/A	86	82	86	82	86	82
Correlated Color Temperature (CCT)	3,000	3,000	2,700	3,000	3,000	3,000	N/A	3,000	3,000	3,000	3,000	3,000	3,000
Average Lamp Life (thousand hours)	22	15	25	28	25	25	N/A	28	25	28	25	28	25
Annual Operating Hours (h/y)	4,928	4,928	4,928	4,928	4,928	N/A	N/A	4,928	4,928	4,928	4,928	4,928	4,928
Lamp Price (2022\$)	\$61.98	\$28.10	\$23.71	\$23.09	\$15.69	N/A	N/A	\$19.40	\$13.18	\$17.36	\$11.79	\$15.37	\$10.45
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	\$23.72	\$26.38	\$22.07	\$22.07	\$22.07	N/A	N/A	\$21.20	\$21.20	\$20.17	\$20.17	\$19.18	\$19.18
Lamp Cost (2022\$/klm)	\$59.31	\$23.23	\$19.76	\$17.18	\$9.23	N/A	N/A	\$14.43	\$7.75	\$12.91	\$6.94	\$11.44	\$6.14
System (1/b/f) Cost (2022\$/klm)	\$88.18	\$48.42	\$41.02	\$36.13	\$23.88	N/A	N/A	\$32.48	\$21.75	\$30.02	\$20.22	\$27.64	\$18.74
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	N/A	N/A	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.0	1.0	1.0	1.0	1.0	N/A	N/A	1.0	1.0	1.0	1.0	1.0	1.0
Labor Lamp Change (hours)	0.05	0.05	0.05	0.05	0.05	N/A	N/A	0.05	0.05	0.05	0.05	0.05	0.05
Total Installed Cost (2022\$)	\$162.93	\$131.71	\$111.78	\$111.16	\$103.76	N/A	N/A	\$106.60	\$100.38	\$103.52	\$97.96	\$100.55	\$95.63
Annual Maintenance Cost (2022\$)	\$14.75	\$10.50	\$5.32	\$4.64	\$3.74	N/A	N/A	\$3.99	\$3.25	\$3.64	\$2.98	\$3.29	\$2.71
Total Installed Cost (2022\$/klm)	\$167.64	\$117.04	\$100.16	\$88.92	\$65.63	N/A	N/A	\$85.28	\$63.49	\$82.81	\$61.96	\$80.44	\$60.48
Annual Maintenance Cost (2022\$/klm)	\$15.17	\$9.33	\$4.77	\$3.72	\$2.37	N/A	N/A	\$3.20	\$2.05	\$2.91	\$1.88	\$2.63	\$1.71

- 1. Based on a fixture efficiency of 93% for an omnidirectional lamp installed in a recessed can fixture.
- 2. In April 2022, DOE codified into the Code of Federal Regulations the 45 lm/W backstop requirement for general service lamps that Congress presed in the Energy Policy and Conservation Act. The new minimum efficacy requirements go into effect for manufacture and import in January 2023 and for retail and distribution in July 2023. This Final Rule also amended the definition of GSLs to include previously exempted product classes, including reflector lamps. All LED lighting products exceed the new minimum efficacy standards.
- 3. Criteria outlined in ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs): Eligibility Criteria Version 2.1 (Published June, 2017, Revised June 2020)

Performance and Cost Characteristics » Commercial 4-foot Linear 2-Lamp Lighting Systems

This section characterizes commercial linear fixtures that house two 4ft long linear lamps and their integrated luminaire equivalents. The technologies available for this system are linear fluorescent and LED.

- Linear fluorescent options are T5, T8, and T12 lamps. T5 lamps are approximately 40% narrower than T8 lamps and almost 60% narrower than T12 lamps. This narrowness allows T5 lamps to be coated with higher quality, more efficient phosphor blends than larger diameter lamps, resulting in a more efficacious lamp. The compact size of T5 lamps also permits greater flexibility in lighting design and construction.
- LED options for linear fixtures include replacement lamps that can fit directly into an existing fixture and fully integrated luminaires that can be used to replace existing fixtures. LED replacement lamps are also known as TLEDs. Type A TLEDs can be installed with existing ballasts and Type B and C TLEDs require the ballast to be disconnected. Replacement lamps are only sold to go into existing fixtures. If a new fixture is to be installed, a fully integrated LED luminaire is a more cost effective and efficient option. Because LED luminaires are fully integrated, they do not have lamp and fixture efficiency losses associated with ballasts and fixture optics. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- Linear lamps often have a nominal CCT rating of 3,500K, but products with CCTs of 3,000K, 4,000K, and 4,100K (neutral white) are also common. 5,000K (daylight) lamps are available as well. When replacing a light bulb, it is important to choose a product with a similar CCT value to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- The total installed cost is the price of two lamps, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamp, which are sold only as a replacement for use in an existing fixture. There are integrated LED luminaires that are more efficient and cost effective for new installations or fixture retrofits. Many factors influence the price of LED lamps, including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022, reflecting a mix of lamp characteristics and features, were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours of 4055 hours per year for commercial 4ft linear systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- Beginning July 14, 2012 (or July 14, 2014, for T8 700-series phosphor lamps), DOE fluorescent lamp standards required a minimum efficacy of 89 lm/W. Although the amended performance-based standards do not explicitly prohibit T12 lamps, no T12 lamps meet the standard at the time of its announcement. Since then, however, T12 lamps meeting the standard have entered the market.
- California's Title 24 mandates the use of electronic ballasts with high efficacy luminaires (including fluorescent) of 13 W or higher (CEC, 2005).

ENERGY STAR:

• ENERGY STAR does not cover commercial linear luminaires (ENERGY STAR, 2020).

Performance and Cost Characteristics » Commercial 4-foot Linear 2-Lamp Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume that manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

Technology	Efficacy	Lifetime	Price	Potential for Improvements
T8 F32 Commodity	0%	0%	-0.5%	Limited because the technology is mature.
T8 F32 High Efficiency/High Output	0%	0%	-0.5%	Limited because the technology is mature.
T5 F28	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial 4-ft Linear LED Replacement Lamp in 2-Lamp System

	2012	2018		2022		20	30	204	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	20.8	17.0	16.0	13.7	11.0	8.9	7.2	7.7	7.2	7.7	7.2
Lamp Lumens	2,091	2,003	1,800	1,920	1,800	1,920	1,800	1,920	1,800	1,920	1,800
Lamp Efficacy (lm/W)	100.5	117.8	112.5	140.1	163.6	216.1	250.0	250.0	250.0	250.0	250.0
System Wattage	41.6	34.0	32.0	27.4	22.0	17.8	14.4	15.4	14.4	15.4	14.4
System Lumens	3,555	3,565	3,456	3,686	3,456	3,686	3,456	3,686	3,456	3,686	3,456
System Efficacy (lm/W)	85.4	104.9	108.0	134.5	157.1	207.4	240.0	240.0	240.0	240.0	240.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	86	81	82	81	80	81	80	81	80	81	80
Correlated Color Temperature (CCT)	4,100	4,020	4,100	3,500	5,000	3,500	5,000	3,500	5,000	3,500	5,000
Average Lamp Life (thousand hours)	50	54	50	54	50	54	50	54	50	54	50
Annual Operating Hours (h/y)	4,055	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541	3,541
Lamp Price (2022\$)	\$278.36	\$35.06	\$14.63	\$11.11	\$4.28	\$9.88	\$3.81	\$9.66	\$3.72	\$9.44	\$3.64
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	\$133.10	\$17.50	\$8.13	\$5.79	\$2.38	\$5.15	\$2.11	\$5.03	\$2.07	\$4.92	\$2.02
System $(1/b/f)$ Cost $(2022\$/klm)^1$	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Total Installed Cost (2022\$)	\$587.35	\$70.12	\$29.26	\$22.22	\$8.56	\$19.76	\$7.61	\$19.31	\$7.44	\$18.89	\$7.28
Annual Maintenance Cost (2022\$)	\$47.63	\$6.61	\$3.93	\$3.17	\$2.46	\$3.01	\$2.39	\$2.98	\$2.38	\$2.95	\$2.37
Total Installed Cost (2022\$/klm)	\$165.20	\$19.67	\$8.47	\$6.03	\$2.48	\$5.36	\$2.20	\$5.24	\$2.15	\$5.12	\$2.11
Annual Maintenance Cost (2022\$/klm)	\$13.40	\$1.85	\$1.14	\$0.86	\$0.71	\$0.82	\$0.69	\$0.81	\$0.69	\$0.80	\$0.69

^{1.} N/A because a fixture and an LED replacement lamp would not be purchased separately for a new installation or retrofit when there are integrated LED luminaires that are more efficient and cost effective. These lamps are sold only as replacements to go into existing fixtures.

Performance and Cost Characteristics » Commercial 4-ft Linear LED Luminaire to Replace 2-Lamp Systems

Higher efficacy compared with Reference Case

	2012	2018		2022		2030		20	40	2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	51.5	50.0	49.0	44.0	35.0	27.4	21.8	23.0	19.2	21.2	19.2
System Lumens	4,818	4,673	5,024	5,302	4,800	5,302	4,800	5,302	4,800	5,302	4,800
System Efficacy (lm/W)	93.6	93.5	102.5	120.5	137.1	193.4	220.1	230.4	250.0	250.0	250.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	84	79	80	79	80	79	80	79	80	79	80
Correlated Color Temperature (CCT)	3,500	3,650	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
Average Lifetime (thousand hours)	67	53	54	53	50	53	50	53	50	53	50
Annual Operating Hours (h/y)	4,055	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431
Lamp or Luminaire Price (2022\$)	\$723.96	\$188.00	\$144.85	\$152.54	\$207.80	\$127.58	\$173.80	\$118.37	\$161.25	\$109.57	\$149.27
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (l/b/f) Cost (2022\$/klm)	\$150.25	\$40.23	\$57.66	\$57.54	\$86.58	\$24.06	\$36.21	\$22.33	\$33.59	\$20.67	\$31.10
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$762.57	\$226.61	\$322.70	\$338.08	\$448.60	\$160.58	\$206.80	\$151.37	\$194.25	\$142.57	\$182.27
Annual Maintenance Cost (2022\$)	\$46.16	\$14.67	\$11.30	\$12.01	\$16.52	\$10.40	\$14.19	\$9.80	\$13.33	\$9.23	\$12.51
Total Installed Cost (2022\$/klm)	\$158.27	\$48.49	\$64.23	\$63.76	\$93.46	\$30.29	\$43.08	\$28.55	\$40.47	\$26.89	\$37.97
Annual Maintenance Cost (2022\$/klm)	\$9.58	\$3.14	\$2.25	\$2.27	\$3.44	\$1.96	\$2.96	\$1.85	\$2.78	\$1.74	\$2.61

 $^{1. \}quad N/A \ because the lamp \ and \ fixture \ are both \ included \ in \ the \ luminaire.$

Performance and Cost Characteristics » Commercial 8-foot Linear 2-Lamp Lighting Systems

This section characterizes commercial linear fixtures that house two 8ft long linear lamps and their integrated luminaire equivalents. The technologies available for this system are linear fluorescent and LED.

- Linear fluorescent options are T5, T8, and T12 lamps. T5 lamps are approximately 40% narrower than T8 lamps and almost 60% narrower than T12 lamps. This narrowness allows T5 lamps to be coated with higher quality, more efficient phosphor blends than larger diameter lamps, resulting in a more efficacious lamp. The compact size of T5 lamps also permits greater flexibility in lighting design and construction.
- LED options for linear fixtures include replacement lamps that can fit directly into an existing fixture and fully integrated luminaires that can be used to replace existing fixtures. LED replacement lamps are also known as TLEDs. Type A TLEDs can be installed with existing ballasts and Type B and C TLEDs require the ballast to be disconnected. Replacement lamps are only sold to go into existing fixtures. If a new fixture is to be installed, a fully integrated LED luminaire is a more cost effective and efficient option. Because LED luminaires are fully integrated, they do not have lamp and fixture efficiency losses associated with ballasts and fixture optics. For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- Linear lamps often have a nominal CCT rating of 3,500K, but products with CCTs of 3,000K, 4,000K, and 4,100K (neutral white) are also common. 5,000K (daylight) lamps are available as well. When replacing a light bulb, it is important to choose a product with a similar CCT value to achieve the same look.
- Incandescent and halogen lamps have perfect color rendering with a CRI value of 100, but CFL and LEDs products commonly fall between 70 and 90 CRI, with an average around 80. CRI values of 80 are considered suitable for general illumination, with high CRI products being preferable for retail and display applications where improved color quality is of real value. Higher CRI is not expected to be a focus for future LED products except for these very specific retail and display applications.

Cost:

- The total installed cost is the price of two lamps, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED replacement lamps, which are sold only as a replacement for use in an existing fixture. There are integrated LED luminaires that are more efficient and cost effective for new installations or fixture retrofits.

 Many factors influence the price of LED lamps, including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical lamp prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours of 4147 hours per year for commercial 8ft linear systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

Legislation:

- Beginning July 14, 2012 (or July 14, 2014, for T8 700-series phosphor lamps), DOE fluorescent lamp standards required a minimum efficacy of 89 lm/W. Although the amended performance-based standards do not explicitly prohibit T12 lamps, no T12 lamps meet the standard at the time of its announcement. Since then, however, T12 lamps meeting the standard have entered the market.
- California's Title 24 mandates the use of electronic ballasts with high efficacy luminaires (including fluorescent) of 13 W or higher (CEC, 2005).

ENERGY STAR:

• ENERGY STAR does not cover commercial linear luminaires (ENERGY STAR, 2020).

Performance and Cost Characteristics » Commercial 8-foot Linear 2-Lamp Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume that manufacturers will focus on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050:

Technology	Efficacy	Lifetime	Price	Potential for Improvements
T8 F59 Typical Efficiency	0%	0%	-0.5%	Limited because the technology is mature.
T8 F59 High Efficiency	0%	0%	-0.5%	Limited because the technology is mature.
T8 F96 High Output	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial 8-ft Linear LED Replacement Lamp for a 2-Lamp System

Higher efficacy compared with Reference Case

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	N/A	35.7	34.0	39.0	40.0	25.3	25.9	21.9	22.4	19.8	22.0
Lamp Lumens	N/A	3,975	4,200	4,960	5,500	4,960	5,500	4,960	5,500	4,960	5,500
Lamp Efficacy (lm/W)	N/A	111.2	123.5	127.2	137.5	196.1	212.0	226.7	245.1	250.0	250.0
System Wattage	N/A	71.5	68.0	78.0	80.0	50.6	51.9	43.8	44.9	39.7	44.0
System Lumens	N/A	7,473	8,064	9,523	10,560	9,523	10,560	9,523	10,560	9,523	10,560
System Efficacy (lm/W)	N/A	104.5	118.6	122.1	132.0	188.2	203.5	217.7	235.3	240.0	240.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	N/A	80	82	81	82	81	82	81	82	81	82
Correlated Color Temperature (CCT)	N/A	5,000	4,000	4,000	5,000	4,000	5,000	4,000	5,000	4,000	5,000
Average Lamp Life (thousand hours)	N/A	50	50	50	50	50	50	50	50	50	50
Annual Operating Hours (h/y)	N/A	4,147	4,147	4,147	4,147	4,147	4,147	4,147	4,147	4,147	4,147
Lamp Price (2022\$)	N/A	\$89.59	\$33.11	\$37.22	\$41.44	\$32.35	\$36.02	\$31.71	\$35.30	\$31.11	\$34.64
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	N/A	\$19.00	\$7.88	\$7.50	\$7.53	\$6.52	\$6.55	\$6.39	\$6.42	\$6.27	\$6.30
System $(1/b/f)$ Cost $(2022\$/klm)^1$	N/A	\$23.98	\$8.21	\$7.82	\$7.85	\$6.79	\$6.82	\$6.66	\$6.69	\$6.53	\$6.56
Labor Cost (2022\$/h)	N/A	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Labor Lamp Change (hours)	N/A	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Total Installed Cost (2022\$)	N/A	\$200.80	\$84.70	\$92.92	\$101.36	\$83.18	\$90.52	\$81.90	\$89.09	\$80.70	\$87.76
Annual Maintenance Cost (2022\$)	N/A	\$16.65	\$7.02	\$7.71	\$8.41	\$6.90	\$7.51	\$6.79	\$7.39	\$6.69	\$7.28
Total Installed Cost (2022\$/klm)	N/A	\$50.51	\$10.50	\$9.76	\$9.60	\$8.73	\$8.57	\$8.60	\$8.44	\$8.47	\$8.31
Annual Maintenance Cost (2022\$/klm)	N/A	\$4.19	\$0.87	\$0.81	\$0.80	\$0.72	\$0.71	\$0.71	\$0.70	\$0.70	\$0.69

^{1.} N/A because a fixture and an LED replacement lamp would not be purchased separately for a new installation or retrofit when there are integrated LED luminaires that are more efficient and cost effective. These lamps are sold only as replacements to go into existing fixtures.

Performance and Cost Characteristics » Commercial 8-ft Linear LED Luminaire Replacement for a 2-Lamp System

Higher efficacy compared with Reference Case

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	N/A	73.0	90.0	78.0	72.0	49.7	45.9	42.4	41.6	37.9	41.6
System Lumens	N/A	8,000	8,200	9,465	10,400	9,465	10,400	9,465	10,400	9,465	10,400
System Efficacy (lm/W)	N/A	109.6	91.1	121.3	144.4	190.4	226.7	223.1	250.0	250.0	250.0
Ballast Efficiency (BLE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	N/A	90	80	81	80	81	80	81	80	81	80
Correlated Color Temperature (CCT)	N/A	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Average Lifetime (thousand hours)	N/A	75	50	73	100	73	100	73	100	73	100
Annual Operating Hours (h/y)	N/A	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431	3,431
Lamp or Luminaire Price (2022\$)	N/A	\$759.16	\$119.99	\$142.48	\$153.91	\$109.90	\$118.71	\$96.00	\$103.70	\$82.68	\$89.31
Ballast Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	N/A	\$80.00	\$14.63	\$15.05	\$14.80	\$11.61	\$11.41	\$10.14	\$9.97	\$8.73	\$8.59
Labor Cost (2022\$/h)	N/A	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	N/A	1.0	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	N/A	\$708.20	\$206.52	\$229.01	\$240.44	\$196.42	\$205.24	\$182.53	\$190.23	\$169.20	\$175.83
Annual Maintenance Cost (2022\$)	N/A	\$39.16	\$22.40	\$17.46	\$13.53	\$14.40	\$11.11	\$13.09	\$10.08	\$11.84	\$9.10
Total Installed Cost (2022\$/klm)	N/A	\$88.53	\$25.18	\$24.20	\$23.12	\$20.75	\$19.73	\$19.28	\$18.29	\$17.88	\$16.91
Annual Maintenance Cost (2022\$/klm)	N/A	\$4.89	\$2.73	\$1.84	\$1.30	\$1.52	\$1.07	\$1.38	\$0.97	\$1.25	\$0.87

Performance and Cost Characteristics » Commercial Low-Bay Lighting Systems

The commercial low bay lighting characterized in this report is a one-lamp and one-ballast system in a low/high bay fixture that emits between 6,000 and 10,000 system lumens. Low bay lighting is defined as "interior lighting where the roof trusses or ceiling height is less than 25ft. above the floor" (IESNA, 2000). For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- Low bay conventional lighting technologies, such as metal halide and sodium vapor lamps, provide higher efficacy ranging from 80 lm/W to 100 lm/W. Older, mercury vapor lamps have much lower efficacy at approximately 40 lm/W.
- CCT and CRI values range broadly based on technology type for low bay products.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED luminaires, which are sold as one integrated system. Many factors influence the price of LED luminaires, including CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical luminaire prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial low-bay systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

ENERGY STAR:

• ENERGY STAR does not cover low/high bay luminaires (ENERGY STAR, 2012).

Performance and Cost Characteristics » Commercial Low-Bay Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime, and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

	Efficacy	Lifetime	Price	Potential for Improvements
Mercury Vapor	0%	0%	-0.5%	Limited because the technology is mature.
Metal Halide	0%	0%	-0.5%	Limited because the technology is mature.
Sodium Vapor	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial LED Low-Bay Luminaire

Higher efficacy compared with Reference Case

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	68.1	84.0	40.0	73.0	76.0	47.1	49.0	40.5	48.0	40.0	48.0
System Lumens	4,877	10,000	5,000	10,000	12,000	10,000	12,000	10,000	12,000	10,000	12,000
System Efficacy (lm/W)	71.6	119.0	125.0	137.0	157.9	212.5	244.9	246.7	250.0	250.0	250.0
Ballast Efficiency	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	85	78	84	81	80	81	84	81	84	81	81
Correlated Color Temperature (CCT)	4,000	4,806	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	4,000
Average Lifetime (thousand hours)	50	74	75	65	60	65	60	65	60	65	60
Annual Operating Hours (h/y)	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042
Lamp or Luminaire Price (2022\$)	\$903.82	\$281.00	\$63.99	\$145.46	\$285.89	\$123.82	\$243.37	\$111.24	\$218.63	\$99.09	\$194.75
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$185.31	\$28.10	\$12.80	\$14.55	\$23.82	\$12.38	\$20.28	\$11.12	\$18.22	\$9.91	\$16.23
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$865.44	\$396.83	\$162.99	\$244.46	\$384.89	\$222.82	\$342.37	\$210.24	\$317.63	\$198.09	\$293.75
Annual Maintenance Cost (2022\$)	\$69.95	\$37.02	\$12.23	\$24.24	\$45.18	\$21.55	\$39.45	\$19.99	\$36.12	\$18.48	\$32.90
Total Installed Cost (2022\$/klm)	\$177.44	\$39.68	\$32.60	\$24.45	\$32.07	\$22.28	\$28.53	\$21.02	\$26.47	\$19.81	\$24.48
Annual Maintenance Cost (2022\$/klm)	\$14.34	\$3.70	\$2.45	\$2.42	\$3.77	\$2.16	\$3.29	\$2.00	\$3.01	\$1.85	\$2.74

 $^{1. \}quad N/A\ because\ the\ lamp\ and\ fixture\ are\ both\ included\ in\ the\ luminaire.$

Performance and Cost Characteristics » Commercial High-Bay Lighting Systems

The commercial high-bay lighting characterized in this report is a one-lamp and one-ballast system in a low/high bay fixture that emits greater than 10,000 system lumens. High-bay lighting is defined as "interior lighting where the roof trusses or ceiling height is greater than 25ft. above the floor" (IESNA, 2000). For all lamp technologies, an annual fixture renovation rate of 10% (i.e., 10-year fixture service life) is used to reflect the proportion of equipment that retires each year.

Performance:

- High bay conventional lighting technologies, such as metal halide and sodium vapor lamps, provide higher efficacy ranging from 80 lm/W to 100 lm/W. Older, mercury vapor lamps have much lower efficacy at approximately 40 lm/W.
- CCT and CRI values range broadly based on technology type for high bay products.

Cost:

- The total installed cost is the price of a lamp, ballast (if applicable), and fixture plus the cost for labor associated with the installation, except for in the case of LED luminaires, which are sold as one integrated system. Many factors influence the price of LED luminaires including, CRI, lifetime, dimming capabilities, and efficacy. Therefore, typical luminaire prices in 2022 reflecting a mix of lamp characteristics and features were used as the basis for projections for both typical and high efficacy products in the future.
- Annual maintenance costs are the cost of labor for replacing the lamps and the cost of the replacement lamp itself. The frequency at which lamps are replaced is a function of lamp life and the annual operating hours for commercial high bay systems (DOE SSL Program, 2012a).
- Commercial lighting disposal costs are estimated to be \$0.12 per linear foot of fluorescent lamps, \$1.50 per lamp for HID lamps, and \$0.50 for CFLs (EPA, 2022).

ENERGY STAR:

• ENERGY STAR does not cover low/high bay luminaires (ENERGY STAR, 2012).

Performance and Cost Characteristics » Commercial High-Bay Lighting Systems

Future Performance Improvements:

- Projections were provided for both typical and high performing products for 2030, 2040, and 2050. We assume manufacturers will focus would be on improving efficacy, lifetime and price for products at constant CRI and CCT values.
- Due to continued R&D investment, competition from LED lighting products, and general market demand for cost-effective lighting, the performance and cost characteristics of conventional lighting technologies are expected to improve over the analysis period. However, the ability of these conventional technologies to react rapidly (in terms of performance improvement) to the emergence of a new light source such as LED lighting is relatively small because these are mature technologies (particularly incandescent and fluorescent) and established market competitors (Navigant, 2019).
- For LED technology, efficacy, lifetime, and price improvements were based on the model described in the Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019). For traditional technologies, the following future improvements were assumed to occur year over year through 2050.

	Efficacy	Lifetime	Price	Potential for Improvements
Mercury Vapor	0%	0%	-0.5%	Limited because the technology is mature.
Metal Halide	0%	0%	-0.5%	Limited because the technology is mature.
Sodium Vapor	0%	0%	-0.5%	Limited because the technology is mature.

Performance and Cost Characteristics » Commercial LED High-Bay Luminaire

Higher efficacy compared with Reference Case

	2012	2018		2022		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Lumens ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Efficacy (lm/W) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System Wattage	212	167	150	138	130	89	84	76	76	74	76
System Lumens	18,915	18,797	18,500	18,500	18,900	18,500	18,900	18,500	18,900	18,500	18,900
System Efficacy (lm/W)	89	113	123	134	145	208	225	242	250	250	250
Ballast Efficiency	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRI	74	78	80	80	80	80	80	80	80	80	80
Correlated Color Temperature (CCT)	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
Average Lifetime (thousand hours)	70	67	100	100	100	100	100	100	100	100	100
Annual Operating Hours (h/y)	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042	4,042
Lamp or Luminaire Price (2022\$)	\$2,842.05	\$448.43	\$177.54	\$195.81	\$234.20	\$162.12	\$193.90	\$148.87	\$178.06	\$136.20	\$162.90
Ballast Price (2022\$) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fixture Price (2022\$) 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lamp Cost (2022\$/klm) ¹	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System (1/b/f) Cost (2022\$/klm)	\$150.25	\$23.86	\$9.60	\$10.58	\$12.39	\$8.76	\$10.26	\$8.05	\$9.42	\$7.36	\$8.62
Labor Cost (2022\$/h)	\$77.22	\$77.22	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00	\$66.00
Labor System Installation (hours)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Labor Lamp Change (hours)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Installed Cost (2022\$)	\$2,957.88	\$564.26	\$276.54	\$294.81	\$333.20	\$261.12	\$292.90	\$247.87	\$277.06	\$235.20	\$261.90
Annual Maintenance Cost (2022\$)	\$170.78	\$34.07	\$11.18	\$11.91	\$13.47	\$10.55	\$11.84	\$10.02	\$11.20	\$9.51	\$10.58
Total Installed Cost (2022\$/klm)	\$156.38	\$30.02	\$14.95	\$15.94	\$17.63	\$14.11	\$15.50	\$13.40	\$14.66	\$12.71	\$13.86
Annual Maintenance Cost (2022\$/klm)	\$9.03	\$1.81	\$0.60	\$0.64	\$0.71	\$0.57	\$0.63	\$0.54	\$0.59	\$0.51	\$0.56

 $^{1. \}quad N/A\ because\ the\ lamp\ and\ fixture\ are\ both\ included\ in\ the\ luminaire.$

Refrigeration

Performance and Cost Characteristics » Commercial Compressor Rack Systems

Lower annual energy use compared with Reference Case

	2012	2018		20	22		20	30	204	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Total Capacity (kBtu/h) ¹	1,200	1,200	1,200	1,190	930	N/A	1,190	930	1,190	930	1,190	930
Median Store Size (ft²)	46,500	31,997	35,197	35,197	35,197	N/A	35,197	35,197	35,197	35,197	35,197	35,197
Power Input (kW)	162	155	162	160	125	N/A	160	125	160	125	160	125
Annual Energy Use (MMWh/y) ²	1,497	1,497	1,305	1,232	1,160	N/A	1,109	1,044	998	939	898	845
Indexed Annual Efficiency ³	1.00	1.00	1.15	1.21	1.29	N/A	1.35	1.43	1.50	1.59	1.67	1.77
Average Life (years)	15	15	15	15	15	N/A	15	15	15	15	15	15
Total Installed Cost (2022\$)	\$630,000	\$630,000	\$488,000	\$625,000	\$630,000	N/A	\$625,000	\$630,000	\$625,000	\$630,000	\$625,000	\$630,000
Total Installed Cost (2022\$/kBtu/h)	\$525,000	\$525,000	\$406,667	\$525,210	\$677,419	N/A	\$525,210	\$677,419	\$525,210	\$677,419	\$525,210	\$677,419
Annual Maintenance Cost (2022\$) ⁴	\$3,400	\$3,400	\$3,400	\$3,400	\$3,400	N/A	\$3,400	\$3,400	\$3,400	\$3,400	\$3,400	\$3,400
Annual Maintenance Cost (2022\$/kBtu/h)	\$2,833	\$2,833	\$2,833	\$2,857	\$3,656	N/A	\$2,857	\$3,656	\$2,857	\$3,656	\$2,857	\$3,656

- 1. The total capacity represents the nominal compressor capacity required for the entire refrigeration system of a typical supermarket. This refrigeration system usually includes two low temperature racks and two medium temperature racks. For 2018, a 1,200 MBtu/h total cooling capacity is based on a 200-ton estimate for total capacity–80 tons for the medium temperature racks and 20 tons for the low temperature racks.
- 2. Capacity and annual energy consumption for 2022 and beyond are based on market research and Guidehouse estimates.
- $3. \quad Annual \, efficiency \, normalized \, to \, the \, efficiency \, of \, the \, 2012 \, installed \, base. \, Indexed \, Annual \, Efficiency = (2012 \, Energy \, Use) / \, (Energy \, Use).$
- 4. Maintenance cost includes oil changes, bearing lubrication, filter replacement, and system functionality checks-approximately half a day per rack of labor for technician is assumed.

- Commercial compressor rack systems that serve commercial supermarket display cases and walk-ins consist of a number of parallel-connected compressors located in a separate machine room. By modulating compressor capacity, these integrated systems provide higher efficiency and mechanical longevity.
- Rack integrators generally supply a packaged compressor rack for which much of the necessary piping, insulation, components, and controls are pre-assembled.
- A typical supermarket will have 10 to 20 compressors mounted in racks in the 3-horsepower (hp) to 15-hp size range. Usually, each rack has three to five compressors serve a series of loads with nearly identical evaporator temperature.
- The duty cycle for compressors is usually in the range of 60% to 70%.
- Energy use and capacity for the Reference Case are projected to remain static over the coming decades because commercial compressor racks systems are a mature technology. The Reference Case assumes low R&D efforts because it is an established technology.
- For this Advanced Case, a 10% reduction in energy consumption is assumed to occur over the Reference Case for 2022 and beyond due to vacuum insulated panel (VIP) adoption by display cases and a relaxation in charge size limits for more efficient, low global warming potential (GWP) refrigerants. Also, increased adoption of toxic/flammable refrigerants such as ammonia and propane due to improved safety technology such as leak detection.

Lower annual energy use compared with Reference Case

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Total Capacity (kBtu/h) ¹	1,680	1,520	1,440	1,440	1,440	N/A	1,440	1,368	1,300	1,300	1,235	1,235
Median Store Size (ft²)	46,500	31,997	35,197	35,197	35,197	N/A	35,197	35,197	35,197	35,197	35,197	35,197
Power Input (kW)	25	25	18	18	18	N/A	18	18	18	18	18	18
Annual Energy Use (MMWh/y)	120	120	115	106	86	N/A	95	77	86	70	77	63
Indexed Annual Efficiency ²	1.00	1.00	1.04	1.13	1.40	N/A	1.26	1.55	1.40	1.72	1.55	1.91
Average Life (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Total Installed Cost (2022\$)	\$54,000	\$60,000	\$54,000	\$60,000	\$80,000	N/A	\$60,000	\$80,000	\$60,000	\$80,000	\$60,000	\$80,000
Total Installed Cost (2022\$/kBtu/h)	\$32,143	\$39,474	\$37,500	\$41,667	\$55,556	N/A	\$41,667	\$58,480	\$46,168	\$61,538	\$48,598	\$64,777
Annual Maintenance Cost (2022\$) ³	\$954	\$954	\$954	\$954	\$954	N/A	\$954	\$954	\$954	\$954	\$954	\$954
Annual Maintenance Cost (2022\$/kBtu/h)	\$0.57	\$0.63	\$0.66	\$0.66	\$0.66	N/A	\$0.66	\$0.70	\$0.73	\$0.73	\$0.77	\$0.77

^{1.} Total capacity is the total heat rejected (THR) by condensers comprised of two low temperature condensers (THRL = 240 MBtu/h each, suction temperature = -25°F, condensing temperature = 115°F); ambient temperature = 95°F. (NCI, 2009). For 2022 and beyond, capacity was estimated by Guidehouse.

^{2.} Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).

^{3.} Maintenance cost includes coil cleaning, leak checking, belt replacement as necessary, and system functionality checks.

- Condensers are designed with multiple methods of cooling: air-cooled, water-cooled, and evaporative. These units can be single-circuit or a multiple circuit.
- Commercial condensers are remotely located, typically installed on the roof of a supermarket.
- For use with parallel compressors in supermarkets, air-cooled units are the most commonly used condensers. This analysis is based on multiple air-cooled condensers connected to a supermarket refrigeration system comprised of two low temperature condensers and two medium temperature condensers.
- Each compressor rack has a dedicated condenser or a separate circuit of a single common condenser. Condenser temperatures of multiple racks are often different.
- The duty cycle for condensers is usually in the range 50%-70%.
- For this Advanced Case, a 10% reduction in energy consumption and a 5% reduction in required capacity is assumed to occur over the Reference Case for 2020 and beyond due to VIP adoption by display cases and a relaxation in charge size limits for more efficient, low GWP. Also, increased adoption of toxic/flammable refrigerants such as ammonia and propane due to improved safety technology such as leak detection.

Performance and Cost Characteristics » Commercial Supermarket Display Cases

Lower annual energy use, increased installed cost compared with Reference Case

	2012	2018		20	22		203	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	17,623	11,850	11,850	11,850	11,850	N/A	11,850	11,850	11,850	11,850	11,850	11,850
Median Store Size (ft²)	46,500	31,997	35,197	35,197	35,197	N/A	35,197	35,197	35,197	35,197	35,197	35,197
Case Length (ft)	12	12	12	12	12	N/A	12	12	12	12	12	12
Annual Energy Use (kWh/y) ¹²	13,497	10,506	10,506	9,771	9,087	N/A	9,282	8,632	8,818	8,201	8,377	7,791
Annual Energy Use / Case Length (kWh/ft)	1,125	876	876	814	757	N/A	774	719	735	683	698	649
Indexed Annual Efficiency ³	1.00	1.28	1.28	1.38	1.49	N/A	1.45	1.56	1.53	1.65	1.61	1.73
AverageLife (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$8,510	\$10,650	\$7,265	\$9,500	\$10,680	N/A	\$9,500	\$10,680	\$9,500	\$10,680	\$9,500	\$10,680
Total Installed Cost (2022\$)	\$10,811	\$12,650	\$9,265	\$11,500	\$12,680	N/A	\$11,500	\$12,680	\$11,500	\$12,680	\$11,500	\$12,680
Total Installed Cost (2022\$/kBtu/h)	613	1,068	782	970	1,070	N/A	970	1,070	970	1,070	970	1,070
Annual Maintenance Cost (2022\$) ⁴	\$940	\$940	\$940	\$940	\$940	N/A	\$940	\$940	\$940	\$940	\$940	\$940
Annual Maintenance Cost (2022\$/kBtu/h)	\$53.34	\$79.32	\$79.32	\$79.32	\$79.32	N/A	\$79.32	\$79.32	\$79.32	\$79.32	\$79.32	\$79.32

- 1. For 2022 and beyond, energy consumption and cost values were estimated using shipment-weighted averages reported in DOE's 2014 CRE Final Rule Technical Support Document (TSD) for equipment commonly used as display cases. DOE's updated conservation standard went into effect in 2017, so units sold in 2018 are assumed to comply with this standard.
- 2. For consistency with DOE rulemaking practices, Supermarket Display Case Energy Use reported above includes energy use of the compressor racks and condensers. To avoid double counting, do not add Energy Use from the Compressor Rack or Condenser Systems tabs if calculating total energy consumption.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use). (Energy Use).
- 4. Maintenance cost includes preventative maintenance costs such as cleaning evaporator coils, drain pans, fans, and intake screens as well as lamp replacements and other lighting maintenance activities. After 2012, these values are based on a reported maintenance and repair cost of \$220 per unit for preventative maintenance plus approximately \$60 per linear foot for additional repair and maintenance.

52

- DOE set federal energy efficiency standards for Commercial Refrigeration Equipment (CRE) in 2009. These standards set maximum daily energy consumption levels, in kilowatt-hours per day, for display cases manufactured sold in the United States on or after January 1, 2012.
- DOE updated its Energy Conservation Standards for Commercial Refrigeration Equipment in 2014 for equipment sold on or after March 27, 2017.
- The table below lists equipment used as supermarket display cases and their corresponding Energy Conservation Standard levels. The maximum allowable daily energy consumption for each equipment class is a linear function of Total Display Area (TDA).

Equipment Description	Standards Equation (2012)	Standards Equation (2017)
Vertical Open Cooler (VOP.RC.M)	0.82xTDA+4.07	0.64xTDA+4.07
Semi-Vertical Open Cooler (SVO.RC.M)	0.83xTDA+3.18	0.66xTDA+3.18
Horizontal Open Cooler (HZO.RC.M)	0.35xTDA+2.88	0.35xTDA+2.88
Transparent-Doored Cooler (VCT.RC.M)	0.22xTDA+1.95	0.15xTDA+1.95
Deli Display Cooler (SOC.RC.M)	0.51xTDA+0.11	0.44xTDA+0.11
Transparent-Doored Freezer (VCT.RC.L)	0.56xTDA+2.61	0.49xTDA+2.61
Horizontal Open Freezer (HZO.RC.L)	0.57xTDA+6.88	0.55xTDA+6.88

Performance and Cost Characteristics » Commercial Supermarket Display Cases

- According to CBECS 2018 microdata, the average building size for food sale building type is 31,997.
- Unit energy consumption for 2022 and beyond is estimated using a shipment-weighted average by efficiency level and equipment class, using data in DOE's 2014 CRE Final Rule TSD with updated analysis from Guidehouse in 2016. The equipment classes analyzed are listed in the table on the previous slide.
- Supermarket refrigeration systems consist of refrigerated display cases, condensing units, and centralized compressor racks.
- A typical supermarket display case contains lighting, evaporators, evaporator fans, piping, insulation, valves, and controls.
- The efficiency of supermarket display cases can be increased through the use of improved evaporator coils, larger evaporators, higher efficiency evaporator fan blades, high efficiency doors, LED lighting, and improved insulation.
- For 2020 and beyond, accelerated adoption of energy savings technologies is assumed to take place more than in the Reference Case, including accelerated shipments migration to doored over open units, where applicable, as well as vacuum insulated panels.
- The incremental cost of VIPs is assumed to decrease from its present value due to increased R&D funding.
- Projected installed costs for this Advanced Case are higher than the Reference Case, even assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs and/or carbon pricing.
- This Advanced Case assumes a transition from Hydrofluorocarbons (HFC) to more efficient propane and ammonia refrigerants by 2040.
- Advanced Case assumes a 5% reduction in energy use per decade based on technology and efficiency improvements.

Performance and Cost Characteristics » Commercial Reach-In Refrigerators

$^{\prime}$ Lower annual energy use, increased installed cost compared with Reference Case $_{\prime}$

	2012	2018		20	22		20	30	2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	2,929	2,400	2,349	2,349	2,349	2,349	2,349	2,349	2,349	2,349	2,349	2,349
Size (ft³)	49	49	46	46	46	47	46	46	46	46	46	46
Annual Energy Use (kWh/y)	2,340	2,222	1,935	1,351	810	810	1,283	770	1,283	770	1,283	770
Annual Energy Use / Volume (kWh/y/ft³)¹	48	45	42	29	18	17	28	17	28	17	28	17
Indexed Annual Efficiency ³	1.00	1.05	1.21	1.73	2.89	2.89	1.82	3.04	1.82	3.04	1.82	3.04
Average Life (years)	10	10	10	10	10	10	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$2,624	\$2,403	\$2,728	\$2,780	\$3,021	\$3,021	\$3,058	\$3,323	\$3,323	\$3,364	\$3,655	\$3,655
Total Installed Cost (2022\$) ⁴	\$3,454	\$3,282	\$3,591	\$3,643	\$3,884	\$3,884	\$3,932	\$4,197	\$4,197	\$4,238	\$4,529	\$4,529
Total Installed Cost (2022\$/kBtu/h)	\$1,179	\$1,368	\$1,529	\$1,551	\$1,654	\$1,654	\$1,885	\$2,568	\$1,885	\$2,568	\$1,885	\$2,568
Annual Maintenance Cost (2022\$) ⁵	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185	\$185
Annual Maintenance Cost (2022\$/kBtu/h)	\$63	\$77	\$79	\$79	\$79	\$79	\$79	\$79	\$79	\$79	\$79	\$79

- 1. EPACT 2005 energy standards went into effect in 2010. 2022 low efficiency cost and energy consumption values are based on minimum compliance with this standard. Unless otherwise noted, all other cases are based on shipment-weighted averages solid- and transparent-doored units reported in the 2014 CRETSD. DOE's updated Energy Conservation standards went into effect in 2017; therefore, compliance with this standard is assumed for 2022 and beyond.
- 2. The ENERGY STAR category is based on a shipment weighted average of solid- and transparent-doored units that are minimally compliant with ENERGY STAR v3, effective October 1, 2014. Units compliant with ENERGY STAR are found to be the most efficient reach-in refrigeration equipment on the market in 2022.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = $(2012 \, \text{Energy Use})$ (Energy Use).
- 4. Installation cost for 2012 is based on NCI 2009 report that assumes a cost of \$863. Installation cost for 2022 and beyond is based DOE's 2014 CREFinal Rule and additional analysis by Guidehouse, which assumes an installation cost of \$878 for self-contained equipment.
- 5. Maintenance costs after 2012 are based on DOE's CRE 2014 Final Rule TSD, which reports \$35 annual preventative maintenance, per unit, per year, plus approximately \$40 per linear foot, per year of additional repair and maintenance costs for the units characterized.

Performance and Cost Characteristics » Commercial Reach-In Refrigerators

- The Energy Policy Act of 2005 (EPACT 2005) set maximum daily energy consumption levels, in kilowatt-hours per day, for commercial reach-in refrigerators that went into effect on January 1, 2010. The daily energy consumption is based on the volume of the unit (V) in ft³.
- In 2014, DOE updated its energy conservation standards for reach-in refrigerators, effective March 27, 2017. Both standards are reported in the table below.

Equipment Class	EPCA Standard Level (2010)	DOE Standard Level (2017)
Solid Door (VCS.SC.M)	0.10xV+2.04	0.05xV + 1.36
Glass Door (VCT.SC.M)	0.12xV+3.34	0.1xV+0.86

• In 2013, EPA updated its ENERGY STAR specifications for reach-in refrigerators, effective March 27, 2017. These standards are also based on the refrigerated volume of the unit.

Reach-In Refrigerator Size	0 < V < 15	15 ≤ V < 30	30 ≤ V < 50	50 ≤ V
Solid Door (VCS.SC.M)	0.022xV+0.97	0.066xV+0.31	0.04xV+1.09	0.024xV+1.89
Glass Door (VCT.SC.M)	0.095xV+0.445	0.05xV+1.12	0.076xV+0.034	0.105xV-1.111

Performance and Cost Characteristics » Commercial Reach-In Refrigerators

- Unit energy consumption for 2012 and beyond was estimated based on shipment-weighted averages by efficiency level and equipment class for 49 ft³ VCS.SC.M and VCT.SC.M units reported in DOE's 2014 CRE Final Rule TSD with updated analysis from Guidehouse in 2016. These units were estimated to comprise approximately 85% and 15% of total reach-in refrigerator shipments, respectively.
- The efficiency of commercial reach-in refrigerators can be increased through the use of efficient compressors, efficient evaporator fans, efficient condenser fans, electric defrost, and more efficient lighting.
- After 2022, the high efficiency cases are based on solid-doored units rather than shipment-weighted averages due to the assumption that stakeholders will increasingly value energy conservation.
- Unit energy consumption is expected to decrease as a result of DOE's updated energy conservation standards, as well as a transition to more efficient propane refrigerant due to compliance with EPA Significant New Alternatives Policy (SNAP).
- For this Advanced Case, the typical unit in 2020 is assumed to comply with DOE's updated energy conservation standards for commercial refrigeration.
- A shipments migration from transparent- to solid-doored units is assumed for the Advanced Case.
- By 2040, the adoption of vacuum insulated panels is assumed to occur, with the aid of decreased incremental costs due to increased R&D funding.
- Projected installed costs for this Advanced Case are higher than the Reference Case, even assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs and/or carbon pricing.
- This analysis finds that with increased R&D and market incentives for energy-efficient technologies, a limit of possible efficiency improvements for self-contained, vapor compression refrigeration systems will be reached by 2040.

Performance and Cost Characteristics » Commercial Reach-In Freezers

Lower annual energy use, increased installed cost compared with Reference Case

	2012	2018		20	22		203	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	4,341	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340	4,340
Size (ft³)	49	49	49	49	49	49	49	49	49	49	49	49
Annual Energy Use (kWh/y) ¹	6,023	5,585	5,585	4,847	4,110	4,110	4,362	3,699	3,926	3,329	3,533	2,996
Annual Energy Use / Volume (kWh/y/ft³)	123	114	114	99	84	84	89	75	80	68	72	61
Indexed Annual Efficiency ³	1.00	1.08	1.08	1.24	1.47	1.47	1.38	1.63	1.53	1.81	1.70	2.01
Average Life (years)	10	10	10	10	10	10	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$2,886	\$2,886	\$2,886	\$3,175	\$3,493	\$3,493	\$3,493	\$3,842	\$3,842	\$4,226	\$4,226	\$4,649
Total Installed Cost (2022\$) ⁴	\$3,749	\$3,749	\$3,749	\$4,125	\$4,443	\$4,443	\$4,443	\$4,792	\$4,792	\$5,176	\$5,176	\$5,599
Total Installed Cost (2022\$/kBtu/h)	\$864	\$864	\$864	\$950	\$1,024	\$1,024	\$1,024	\$1,104	\$1,104	\$1,193	\$1,193	\$1,290
Annual Maintenance Cost (2022\$) ⁵	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181	\$181
Annual Maintenance Cost (2022\$/kBtu/h)	\$41.70	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71	\$41.71

- 1. A 49 ft³ unit was characterized, because it was the representative size selected for DOE's rulemaking analysis.
- 2. The ENERGY STAR category was based on a solid-doored unit that is minimally compliant with ENERGY STAR v3, effective October 1, 2014.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 and 2018 is based on DOE's on-going CRE rulemaking, which assumes a cost of \$863 for self-contained equipment and \$950 for 2022 and beyond based on analysis from Guidehouse.
- 5. Maintenance costs are calculated based on a \$35 per unit annual preventative maintenance cost, plus an additional \$45 per linear foot repair and maintenance cost estimated based on values reported in the CRETSD.

58

Performance and Cost Characteristics » Commercial Reach-In Freezers

- EPACT 2005 set maximum daily energy consumption levels, in kilowatt-hours per day, for commercial reach-in freezers that went into effect on January 1, 2010. The daily energy consumption is based on the volume of the unit (V) in ft³.
- In March of 2017, DOE updated its energy conservation standards for commercial refrigeration equipment, including reach-in freezers. Both the EPCA and DOE standards are reported in the table below.

Equipment Class	EPCA (2010)	DOE Standard Level (2017)
Solid Door (VCS.SC.L)	0.4xV+1.38	0.22xV+1.38
Transparent Door (VCT.SC.L)	0.75xV+4.10	0.29xV+2.95

• In 2013, EPA updated its ENERGY STAR specifications for reach-in freezers, effective March 27, 2017. These standards are also based on the refrigerated volume of the unit.

Reach-In Freezer Size	0 < V < 15	$15 \le V < 30$	$30 \le V < 50$	50 ≤ V
Solid Door (VCS.SC.L)	0.21xV+0.9	0.12xV+2.248	0.285xV-2.703	0.142xV+4.445
Glass Door (VCT.SC.L)	0.232xV+2.36	0.232xV+2.36	0.232xV+2.36	0.232xV+2.36

Performance and Cost Characteristics » Commercial Reach-In Freezers

- The commercial reach-in freezer characterized in this report, which is the typical unit according to DOE's 2014 CRE rulemaking, is a 49 cubic ft. solid two-door unit with a nominal compressor size of 4,341 Btu/h.
- The efficiency of commercial reach-in freezers can be increased through the use of efficient compressors, efficient evaporator fans, efficient condenser fans, electric defrost, and more efficient lighting.
- Unit energy consumption for reach-in freezers is expected to decrease as a result of DOE's updated energy conservation standards, as well as a transition to more efficient propane refrigerant due to EPA SNAP compliance.
- The typical unit in 2020 is assumed to comply with DOE's updated energy conservation standards for commercial refrigeration.
- By 2040, the adoption of vacuum insulated panels is assumed to occur, with the aid of decreased incremental costs due to increased R&D funding.
- Projected installed costs for this Advanced Case are higher than the Reference Case, even assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs.
- This analysis finds that with increased R&D and market incentives for energy-efficient technologies, a limit of possible efficiency improvements for self-contained, vapor compression refrigeration systems will be reached by 2040.

Performance and Cost Characteristics » Commercial Walk-In Refrigerators

Lower annual energy use compared with Reference Case

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/hr) ¹	37,820	39,422	41,024	41,024	41,024	N/A	41,024	41,024	41,024	41,024	41,024	41,024
Size (ft²)	305	240	240	240	240	N/A	240	240	240	240	240	240
Annual Energy Use (kWh/yr) ²	30,689	20,040	17,600	16,200	14,800	N/A	14,580	13,320	13,122	11,988	11,810	10,789
Annual Energy Use / Area (kWh/ft²/yr)	101	84	73	68	62	N/A	61	56	55	50	49	45
Indexed Annual Efficiency ³	1.00	1.53	1.74	1.89	2.07	N/A	2.10	2.30	2.34	2.56	2.60	2.84
Insulated Box Average Life (yrs)	12	12	12	12	12	N/A	12	12	12	12	12	12
Compressor Average Life (yrs)	10	10	10	10	10	N/A	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$23,598	\$19,847	\$16,050	\$19,847	\$23,644	N/A	\$16,050	\$23,644	\$16,050	\$23,644	\$16,050	\$23,644
Total Installed Cost (2022\$) ⁴	\$27,012	\$23,897	\$20,100	\$23,897	\$27,694	N/A	\$20,100	\$27,694	\$20,100	\$27,694	\$20,100	\$27,694
Total Installed Cost (2022\$/kBtu/hr)	\$714	\$606	\$490	\$583	\$675	N/A	\$490	\$675	\$490	\$675	\$490	\$675
Annual Maintenance Cost (2022\$) ⁵	\$716	\$740	\$740	\$740	\$740	N/A	\$740	\$740	\$740	\$740	\$740	\$740
Annual Maintenance Cost (2022\$/kBtu/hr)	\$18.93	\$18.77	\$18.04	\$18.04	\$18.04	N/A	\$18.04	\$18.04	\$18.04	\$18.04	\$18.04	\$18.04

- 1. Assumes medium temperature units are refrigerators.
- 2. Average unit energy consumption was adapted from the DOE CRE 2016 report by assuming electronically commutated motor (ECM) evaporator fan motors are required for Energy Policy & Conservation Act (EPCA) compliance, as well as ECM condenser fan motors.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 and beyond is based on DOE's Walk-In Technical Support Document (TSD).
- 5. Maintenance cost includes checking and maintaining refrigerant charge levels, checking settings, and cleaning heat exchanger coils.

- For 2012 and beyond, the unit characterized was a walk-in storage cooler, based on DOE's WICF TSD.
- A typical walk-in refrigerator includes:
 - insulated floor and wall panels
 - merchandising doors, shelving, and lighting (not included in cost estimate)
 - semi-hermetic reciprocating compressor
 - refrigerant (R404A)
 - condenser
 - evaporator
- Energy consumption is assumed to scale with the AWEF (Annual Walk-in Energy Factor), defined as the ratio of total
 heat removed from the refrigerated volume per year to the total electrical energy input of refrigeration systems over
 the same time period.
- The installation cost consists of freight and delivery costs in addition to on-site assembly.
- This Advanced Case assumes a projected 10% decrease in energy consumption over the Reference Case due to adoption of more efficient refrigerants.

The Energy Independence and Security Act (EISA) of 2007 included prescriptive standards for walk-in refrigerators (coolers) that went into effect in 2009. These prescriptive standards, which are included in the analysis for all units for 2012 and beyond, state that all walk-in refrigerators manufactured after January 1, 2009, must:

- For 2012 and beyond
- have automatic door closers
- have strip doors, spring hinged doors, or other method of minimizing infiltration when doors are open
- contain wall, ceiling, and door insulation of at least R–25, except for glazed portions of doors and structural members
- use electronically commutated motors or three-phase motors (for evaporator fan motors of under 1 horsepower and less than 460 volts)
- use electronically commutated motors, permanent split capacitor-type motors, or three-phase motors (for condenser fan motors of under 1 horsepower)
- use light sources with an efficacy of 40 lumens per watt or more, including ballast losses (if any), except that light sources with an efficacy of 40 lumens per watt or less, including ballast losses (if any), may be used in conjunction with a timer or device that turns off the lights within 15 minutes of when the walk-in refrigerator is not occupied by people.

In 2014, DOE updated its energy conservation standards for walk-in coolers and freezers. Minimum AWEF (Annual Walk-In Energy Factor) was set for refrigeration systems, as well as upper limits on energy consumption attributable to passage, freight, and display doors. DOE elected not to set new standards for the R-value of Walk-In Panels.

ENERGY CONSERVATION STANDARDS FOR WALK-IN COOLERS AND WALK-IN FREEZERS Class descriptor Class Standard level Refrigeration Systems Minimum AWEF (Btu/W-h) Dedicated Condensing, Medium Temperature, Indoor System, <9,000 Btu/h Capacity DC.M.I, <9,000 ... 5.61 Dedicated Condensing, Medium Temperature, Indoor System, ≥9,000 Btu/h Capacity DC.M.I, ≥9,000 ... 5.61 Dedicated Condensing, Medium Temperature, Outdoor System, <9,000 Btu/h Capacity DC.M.O, <9,000 ...7.60 Dedicated Condensing, Medium Temperature, Outdoor System, ≥9,000 Btu/h Capacity DC.M.O,≥9,000 ...7.60 Dedicated Condensing, Low Temperature, Indoor System, ≥9,000 Btu/h Capacity DC.L.I, ≥9,000 3.10 Dedicated Condensing, Low Temperature, Outdoor System, <9,000 Btu/h Capacity DC.L.O, <9,000 .. 2.30 · 1044 · Q + 2.73 Dedicated Condensing, Low Temperature, Outdoor System, ≥9,000 Btu/h Capacity DC.L.O, ≥9,000 .. 4.79 Panels Minimum R-v alue (h-ft2-°F/Btu) Non-Display Doors Maximum energy consumption (kWh/day) ** Passage Door, Low Temperature PD.L 0.14 · And + 4.8 Display Doors Maximum Energy Consumption (kWh/day) †

Performance and Cost Characteristics » Commercial Walk-In Freezers

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		20	30	20	40	20	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	22,114	23,500	23,500	23,500	23,500	N/A	23,500	23,500	23,500	23,500	23,500	23,500
Size (ft²) ¹	172	161	161	161	161	N/A	161	161	161	161	161	161
Annual Energy Use (kWh/y) ²	22,862	17,600	21,400	21,400	21,400	N/A	19,260	19,260	17,334	17,334	15,601	15,601
Annual Energy Use / Area (kWh/ft²/y)	133	109	133	133	133	N/A	120	120	108	108	97	97
Indexed Annual Efficiency ³	1.00	1.30	1.07	1.07	1.07	N/A	1.19	1.19	1.32	1.32	1.47	1.47
Insulated Box Average Life (years)	12	12	12	12	12	N/A	12	12	12	12	12	12
Compressor Average Life (years)	10	10	10	10	10	N/A	10	10	10	10	10	10
Retail Equipment Cost (2022\$)	\$22,008	\$21,950	\$21,950	\$22,850	\$23,750	N/A	\$22,850	\$23,750	\$22,850	\$23,750	\$22,850	\$23,750
Total Installed Cost (2022\$) ⁴	\$24,058	\$23,950	\$23,950	\$24,850	\$25,750	N/A	\$24,850	\$25,750	\$24,850	\$25,750	\$24,850	\$25,750
Total Installed Cost (2022\$/kBtu/h)	\$1,088	\$1,019	\$1,019	\$1,057	\$1,096	N/A	\$1,057	\$1,096	\$1,057	\$1,096	\$1,057	\$1,096
Annual Maintenance Cost (2022\$) ⁵	\$741	\$741	\$741	\$740	\$741	N/A	\$740	\$741	\$740	\$741	\$740	\$741
Annual Maintenance Cost (2022\$/kBtu/h)	\$33.51	\$31.53	\$31.53	\$31.49	\$31.53	N/A	\$31.49	\$31.53	\$31.49	\$31.53	\$31.49	\$31.53

- 1. Based on DOE's 2014 WICF Final Rule TSD and additional analysis by Guidehouse, the average floor area for a walk-in storage freezer as 161 ft².
- 2. EISA 2007 includes prescriptive standards for walk-in freezers that went into effect in 2009. All units for 2012 and beyond include these prescriptive standards. Units for 2022 and beyond are characterized using data from DOE's 2014 WICF rulemaking. All units for 2022 and beyond are assumed to comply with this standard.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Installation cost for 2012 and beyond is based on DOE's WICF TSD and additional analysis by Guidehouse.
- 5. Maintenance cost includes checking and maintaining refrigerant charge levels, checking settings, and cleaning heat exchanger coils.

Performance and Cost Characteristics » Commercial Walk-In Freezers

- The commercial walk-in freezer characterized in this report is a walk-in storage freezer with an area of 161 ft².
- A typical walk-in freezer includes:
 - insulated floor, door, and wall panels
 - semi-hermetic reciprocating compressor
 - refrigerant (R404A)
 - condenser
 - evaporator
- Energy consumption is assumed to scale with the AWEF (Annual Walk-in Energy Factor), defined as the ratio of total heat removed from the refrigerated volume per year to the total electrical energy input of refrigeration systems over the same time period.
- The installation cost consists of freight and delivery costs in addition to on-site assembly.
- This Advanced Case assumes a projected 10% decrease in energy consumption over the Reference Case due to adoption of more efficient refrigerants.

EISA 2007 included prescriptive standards for walk-in freezers that went into effect in 2009. These prescriptive standards, which are included in all units for 2011 and beyond, state that all walk-in freezers manufactured after January 1, 2009, must:

- have automatic door closers
- have strip doors, spring hinged doors, or other method of minimizing infiltration when doors are open
- contain wall, ceiling, and door insulation of at least R–32, except for glazed portions of doors and structural members
- contain floor insulation of at least R–28
- use electronically commutated motors or three-phase motors (for evaporator fan motors of under 1 horsepower and less than 460 volts)
- use electronically commutated motors, permanent split capacitor-type motors, or three-phase motors (for condenser fan motors of under 1 horsepower)
- use light sources with an efficacy of 40 lumens per watt or more, including ballast losses (if any), except that light sources with an efficacy of 40 lumens per watt or less, including ballast losses (if any), may be used in conjunction with a timer or device that turns off the lights within 15 minutes of when the walk-in freezer is not occupied by people.

In 2014, DOE updated its energy conservation standards for walk-in coolers and freezers. Minimum AWEF (Annual Walk-in Energy Factor) was set for refrigeration systems, as well as upper limits on energy consumption attributable to passage, freight, and display doors. DOE elected not to set new standards for the R-value of Walk-in Panels.

ENERGY CONSERVATION STANDARDS FOR WALK-IN COOLERS AND WALK-IN FREEZERS Class descriptor Class Standard level

ciass descriptor	Class Stalluaru leve	51
Refrigeration Systems Minimum AWEF (Btu/W-h)		
Dedicated Condensing, Medium Temperature, Indoor System, <9,000 Btu/h Capac	city DC.M.I, <9,0	00 5.61
Dedicated Condensing, Medium Temperature, Indoor System, ≥9,000 Btu/h Capa	city DC.M.I, ≥9,0	000 5.61
Dedicated Condensing, Medium Temperature, Outdoor System, <9,000 Btu/h Capa		
Dedicated Condensing, Medium Temperature, Outdoor System, ≥9,000 Btu/h Cap		
Dedicated Condensing, Low Temperature, Indoor System, <9,000 Btu/h Capacity.		
Dedicated Condensing, Low Temperature, Indoor System, ≥9,000 Btu/h Capacity		
Dedicated Condensing, Low Temperature, Outdoor System, <9,000 Btu/h Capacity		
Dedicated Condensing, Low Temperature, Outdoor System, ≥9,000 Btu/h Capacit	•	
Multiplex Condensing, Medium Temperature		
Multiplex Condensing, Low Temperature	MC.L	6.57
Panels Minimum R-v alue (h-ft2-°F/Btu)		
Structural Panel, Medium Temperature	SP.M	25
Structural Panel, Low Temperature	SP.L	32
Floor Panel, Low Temperature	FP.L	28
Non-Display Doors Maximum energy consumption		
(kWh/day) **		
Passage Door, Medium Temperature		
Passage Door, Low Temperature	PD.L	$0.14 \cdot A_{nd} + 4.8$
Freight Door, Medium Temperature	FD.M	0.04 · And + 1.9
Freight Door, Low Temperature	FD.L	$0.12 \cdot A_{nd} + 5.6$
Display Doors Maximum Energy Consumption (kWh/day) †		
Display Door, Medium Temperature		
Display Door, Low Temperature	DD.L	$0.15 \cdot A_{dd} + 0.29$

Performance and Cost Characteristics » Commercial Ice Machines

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		20	30	20	40	205	50
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ⁶	Typical	High	Typical	High	Typical	High
Output (pounds [lbs] per day) 1	300	641	700	700	700	700	700	700	700	700	700	700
Cooling Capacity (Btu/h) ²	1963	4194	4580	4580	4580	4580	4580	4580	4580	4580	4580	4580
Water Use per Hundred Pounds (gal/hundred lbs) ³	20	25	25	20	15	15	20	15	20	15	20	15
Energy Use per Hundred Pounds (kWh/hundred lbs)	7.7	7.5	7.1	5.8	4.8	4.8	5.8	4.8	5.8	4.8	5.8	4.8
Annual Energy Use (kWh/y) ⁴	3,185	2,502	1,675	1,478	1,190	1,190	1,330	1,071	1,197	964	1,077	868
Indexed Annual Efficiency ⁵	1.00	1.27	1.90	2.15	2.68	2.68	2.39	2.97	2.66	3.30	2.96	3.67
Average Life (years)	8.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
Retail Equipment Cost (2022\$)	\$2,146	\$2,616	\$2,946	\$3,020	\$3,368	\$3,368	\$3,020	\$3,368	\$3,020	\$3,368	\$3,020	\$3,368
Total Installed Cost (with Bin)	\$2,441	\$3,626	\$3,276	\$3,350	\$3,737	\$3,737	\$3,350	\$3,737	\$3,350	\$3,737	\$3,350	\$3,737
Total Installed Cost (2022\$/kBtu/h)	\$1,244	\$865	\$715	\$732	\$816	\$816	\$732	\$816	\$732	\$816	\$732	\$816
Annual Maintenance Cost (2022\$) ⁷	\$826	\$826	\$800	\$800	\$800	\$800	\$800	\$800	\$800	\$800	\$800	\$800
Annual Maintenance Cost (2022\$/kBtu/h)	\$421	\$197	\$175	\$175	\$175	\$175	\$175	\$175	\$175	\$175	\$175	\$175

- 1. Based on the average output from the Compliance Certification Database and values within 2022 Automatic Commercial Ice Maker (ACIM) TSD.
- 2. Defined as the average heat load to remove the latent and sensible heat required to freeze the daily output capacity of ice.
- 3. Water use refers to potable water.
- 4. EPACT 2005 energy standards went into effect in 2010. The 2015 low values are based on this standard. In 2014, DOEset new standards for commercial ice machines, with compliance required by 2018. The unit characterized for 2012 and beyond uses data from this rulemaking. All units for 2020 and beyond are assumed to comply with the updated standard.
- 5. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 6. The ENERGY STAR category is based on minimum compliance with the ENERGY STAR v3.0 standard, which went into effect on January 28, 2018. According to this analysis, ENERGY STAR certification is typical for the small air-cooled ice-making head (IMH) unit characterized.
- 7. Maintenance cost is based on the average cost of equipment within the 700 lb/day output range and includes cleaning and maintaining refrigerant levels, replacing filters, checking water distribution lines for leaks, cleaning, sanitizing, and descaling the bin and water system. Maintenance cost decreases as the size of the ice machine (i.e. output) decreases.

- Commercial ice machines are typically integrated with an insulated ice storage bin or mounted on top of a separate storage bin. The retail equipment cost includes the ice making head and the integrated storage bin. Commercial ice machine condensers are either air-cooled or water-cooled. Approximately 90% of all units are the air-cooled type.
- Commercial ice machine maintenance includes periodic cleaning (every 2 to 6 weeks) to remove lime and scale and sanitizing to kill bacteria. Some ice machines are self-cleaning/sanitizing.
- ENERGY STAR® updated its maximum energy consumption levels, in kilowatt-hours per 100 pounds of ice, for air-cooled ice machines that went into effect on January 28, 2018. These efficiency levels are based on the harvest rate, in pounds per 24 hours. (H). Water-cooled ice machines are not eligible for ENERGY STAR certification.
- For this Advanced Case, a 10% reduction in energy consumption is projected over the Reference Case due to the adoption of more efficient refrigerants such as propane, which, while not currently required by EPA SNAP, are a source of possible efficiency improvements.

ENERGY STAR Requirements for Air-Cooled Batch-Type Ice Makers							
Equipment Type	Applicable Ice Harvest Rate Range (lbs of ice/24 hrs)	Energy Consumption Rate (kWh/100 lbs ice)	Potable Water Use (gal/hundred lbs ice)				
IMH	200 ≤ H ≤ 1600	≤37.72 * H -0.298	≤ 20.0				
RCU	400 ≤ H ≤ 1600	≤22.95 * H -0.258 + 1.00	≤ 20.0				
	$1600 \le H \le 4000$	≤-0.00011 * H + 4.60	≤ 20.0				
SCU	50 ≤ H ≤ 450	≤ 48.66 * H -0.326 + 0.08	≤25.0				

ENERGY STAR Requirements for Air-Cooled Continuous-Type Ice Makers								
Equipment Type	Energy Consumption Rate (kWh/hundred lbs ice)	Potable Water Use (gal/hundred lbs ice)						
IMH	≤9.18 * H -0.057	≤ 15.0						
RCU	≤6.00 * H -0.162 + 3.50	≤ 15.0						
SCU	≤59.45 * H -0.349 + 0.08	≤ 15.0						

Performance and Cost Characteristics » Commercial Ice Machines

EPACT 2005 issued standard levels for commercial ice machines with capacities between 50 pounds and 2500 pounds per 24-hour period that are manufactured or sold in the United States on or after January 1, 2010. The energy consumption is based on the harvest rate in pounds per 24 hours (H). In 2015, DOE finalized new standards for ACIMs extending coverage to flake, nugget, and tube-type machines and to capacities up to 4,000 pounds per 24 hours.

Equipment Type	Type of Cooling	Harvest Rate (lbs ice/24 hrs)	Maximum Energy Use (kWh/hundred lbs ice)	Maximum Condenser Water Use (gal/hundred lbs ice)
Ice Making Head	Water	<500	7.80-0.0055 H	200-0.022 H
		≥500 and <1,436	5.58-0.0011 H	200-0.022 H
		≥1,436	4.0	200-0.022 H
	Air	<450	10.26-0.0086 H	Not Applicable
		≥450	6.89-0.0011 H	Not Applicable
Remote Condensing	Air	<1,000	8.85-0.0038 H	Not Applicable
(but not remote compressor)	All	≥1,000	5.10	Not Applicable
Remote Condensing and Remote Compressor	Air	<934	8.85-0.0038 H	Not Applicable
		≥934	5.3	Not Applicable
Self Contained	Water	<200	11.40-0.019 H	191-0.0315 H
		≥200	7.60	191-0.0315 H
	Air	<175	18.0-0.0469 H	Not Applicable
		≥175	9.80	Not Applicable

Water use is for the condenser only and does not include potable water used to make ice.

2

2014 DOE Standards

Energy Conservation Standards for Batch-Type Automatic Commercial Ice Makers Effective January 2018

Equipment Type	Type of Cooling	Harvest Rate lb ice/24 hours	Maximum Energy Use kWh/100 lb ice*	Maximum Condenser Water Use gal/100 lb ice**	
		<300	6.88 - 0.0055H	200 - 0.022H	
		300 and <850	5.80 - 0.00191H	200 - 0.022H	
Ice-Making Head	Water	850 and <1,500	4.42 - 0.00028H	200 - 0.022H	
		1500 and <2,500	4.0	200 - 0.022H	
		2500 and <4,000	4.0	145	
		<300	10 - 0.01233H	Not Applicable	
I Ml.i II J	Air	300 and <800	7.05 - 0.0025H	Not Applicable	
Ice-Making Head		800 and <1500	5.55 - 0.00063H	Not Applicable	
		1500 and <4,000	4.61	Not Applicable	
Remote Condensing		50 and <1,000	7.97 - 0.00342H	Not Applicable	
(but not remote compressor)	Air	1,000 and <4,000	4.55	Not Applicable	
Remote Condensing		<942	7.97 - 0.00342H	Not Applicable	
and Remote Compressor	Air	942 and <4,000	4.75	Not Applicable	
		<200	9.5 - 0.019H	191 - 0.0315H	
Self-Contained	Water	200 and <2,500	5.7	191 - 0.0315H	
		2500 and <4,000	5.7	112	
		<110	14.79 - 0.0469H	Not Applicable	
Self-Contained	Air	110 and <200	12.42 - 0.02533H	Not Applicable	
		200 and <4,000	7.35	Not Applicable	

Energy Conservation Standards for Continuous-Type Automatic Commercial Ice Makers Effective January 2018

		•			
	Equipment Type	Type of Cooling	Harvest Rate lbice/24 hours	Maximum Energy Use kWh/100 lb ice*	Maximum Condenser Water Use gal/100 lb ice**
			<801	6.48 - 0.00267H	180 - 0.0198H
	Ice-Making Head	Water	801 and <2,500	4.34	180 - 0.0198H
	ree maning read	· · · · · · · · · · · · · · · · · · ·	2,500 and <4,000	4.34	130.5
			<310	9.19 - 0.00629H	Not Applicable
	Ice-Making Head	Air	310 and <820	8.23 - 0.0032H	Not Applicable
			820 and <4,000	5.61	Not Applicable
	Remote		<800	9.7 - 0.0058H	Not Applicable
	Condensing (but not remote compressor)	Air	800 and <4,000	5.06	Not Applicable
	Remote		<800	9.9 - 0.0058H	Not Applicable
	Condensing and Remote Compressor	Air	800 and <4,000	5.26	Not Applicable
			<900	7.6 - 0.00302H	153 - 0.0252H
	Self-Contained	Water	900 and <2,500	4.88	153 - 0.0252H
			2500 and <4,000	4.88	90
			<200	14.22 - 0.03H	Not Applicable
	Self-Contained	Air	200 and <700	9.47 - 0.00624H	Not Applicable
7	⁷ 2		700 and <4,000	5.1	Not Applicable

Performance and Cost Characteristics » Commercial Beverage Merchandisers

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		2030		2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	4,689	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700
Size (ft³)	27	27	27	27	27	27	27	27	27	27	27	27
Annual Energy Use (kWh/y)	1,829	1,635	1,380	1,141	902	902	1,141	902	1,084	857	1,030	814
Annual Energy Use / Volume (kWh/ft³/y)¹	68	73	55	35	26	26	35	26	35	26	35	26
Indexed Annual Efficiency ³	1.00	1.12	1.33	1.60	2.03	2.03	1.60	2.03	1.69	2.13	1.78	2.25
Average Life (years)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Retail Equipment Cost (2022\$)	\$2,382	\$2,051	\$1,710	\$2,762	\$3,332	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332
Total Installed Cost (2022\$) ⁴	\$2,382	\$2,051	\$1,710	\$2,762	\$3,332	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332	\$2,762	\$3,332
Total Installed Cost (2022\$/kBtu/h)	\$508	\$436	\$364	\$588	\$709	\$709	\$588	\$709	\$588	\$709	\$588	\$709
Annual Maintenance Cost (2022\$)	\$108	\$108	\$95	\$95	\$95	\$95	\$95	\$95	\$95	\$95	\$95	\$95
Annual Maintenance Cost (2022\$/kBtu/h)	\$23.03	\$22.98	\$20.21	\$20.21	\$20.11	\$20.11	\$20.21	\$20.11	\$20.21	\$20.11	\$20.21	\$20.11

^{1.} EPACT 2005 energy conservation standards went into effect in 2010. In 2015, DOE updated its energy conservation standards for commercial refrigeration equipment, including transparent-doored refrigerators with pull-down capability. Compliance with this standard is required by 2017. Units characterized for 2018 and beyond use data reported in this rulemaking's TSD. Units sold in 2022 and beyond are assumed to comply with this updated standard.

- 2. The ENERGY STAR category characterizes a unit that is compliant with ENERGY STAR v4, effective March 2017. This standard does not separately define units with pull-down capability.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Beverage merchandisers are shipped ready to be plugged in, so installation costs are assumed to be negligible.

Performance and Cost Characteristics » Commercial Beverage Merchandisers

- EPACT 2005 sets maximum daily energy consumption levels, in kilowatt-hours per day, for commercial refrigerators with transparent doors and self-contained condensing unit designed for pull-down temperature applications (i.e., beverage merchandisers) and went into effect on January 1, 2010.
- In 2014, DOE updated its energy consumption standards for commercial refrigeration equipment, including beverage merchandisers, effective March 27, 2015. Both the DOE and EPCA standards are reported below.

Equipment Type	EPCA (2010)	DOE Standards (2017)
Beverage Merchandisers (PD.SC.M)	0.126xV + 3.51	0.11xV+0.81

• In 2013, EPA updated its ENERGY STAR specifications for glass-doored commercial refrigerators, which can be used as beverage merchandisers, effective October 1, 2014. These standards are also based on the volume of the unit (V). Note that ENERGY STAR does not have a separate equipment class for units with pull-down capability.

Beverage Merchandiser Size	0 < V < 15	15 ≤ V < 30	30 ≤ V < 50	50 ≤ V
Glass Door	0.118*V + 1.382	≤0.140*V + 1.050	≤0.088*V + 2.625	≤0.110*V + 1.500

Performance and Cost Characteristics » Commercial Beverage Merchandisers

- The beverage merchandiser characterized in this report, which is the typical unit according to DOE's 2014 CRE rulemaking and additional analysis by Guidehouse, is a 27 cubic foot cooler with a single hinged, transparent door, bright lighting, and shelving with a nominal compressor size of 4,700 Btu/h.
- The efficiency of beverage merchandisers can be increased through the use of more efficient compressors, fluorescent lighting with electronic ballasts, LED lighting, and improved insulation.
- For the Reference Case, beverage merchandisers are assumed to be mature technologies with few technology advancements in the coming years that would dramatically improve the efficiency.
- For this Advanced Case, the typical unit in 2030 is assumed to comply with DOE's updated energy conservation standards for commercial refrigeration
- By 2040, the adoption of vacuum insulated panels is assumed to occur, with the aid of decreased incremental costs due to increased R&D funding
- Beverage merchandisers may transition from HFC to more efficient propane.
- Projected installed costs for this Advanced Case are the same as the Reference Case, assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs and/or carbon pricing.
- This analysis finds that with increased R&D and market incentives for energy efficiency technologies, a limit of possible efficiency improvements for self-contained, vapor compression refrigeration systems will be reached by 2040 and a 5% decrease in energy use from 2030 to 2040.

Performance and Cost Characteristics » Commercial Refrigerated Vending Machines

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		2030		2040		2050	
DATA	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR ²	Typical	High	Typical	High	Typical	High
Cooling Capacity (Btu/h)	1,810	1,707	1,810	1,810	1,810	1,810	1,810	1,810	1,810	1,810	1,810	1,810
Can Capacity	470	500	500	500	500	500	500	500	500	500	500	500
Size (ft³)	26	35	35	35	35	35	35	35	35	35	35	35
Annual Energy Use (kWh/y) ¹	1,632	1,550	1,550	1,531	1,443	1,443	1,455	1,371	1,382	1,302	1,313	1,237
Annual Energy Use / Volume (kWh/ft³/y)	63	44	44	44	41	41	42	39	39	37	38	35
Indexed Annual Efficiency ³	1.00	1.05	1.05	1.07	1.13	1.13	1.12	1.19	1.18	1.25	1.24	1.32
Average Life (years)	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
Retail Equipment Cost (2022\$)	\$3,209	\$2,553	\$3,059	\$3,272	\$3,520	\$3,520	\$3,272	\$3,520	\$3,272	\$3,520	\$3,272	\$3,520
Total Installed Cost (2022\$)	\$3,320	\$2,705	\$3,276	\$3,489	\$3,737	\$3,737	\$3,489	\$3,737	\$3,489	\$3,737	\$3,489	\$3,737
Total Installed Cost (2022\$/kBtu/h)	\$1,834	\$1,585	\$1,810	\$1,928	\$2,065	\$2,065	\$1,928	\$2,065	\$1,928	\$2,065	\$1,928	\$2,065
Annual Maintenance Cost (2022\$) ⁴	\$270	\$270	\$333	\$333	\$333	\$333	\$333	\$333	\$333	\$333	\$333	\$333
Annual Maintenance Cost (2022\$/kBtu/h)	\$149	\$149	\$184	\$184	\$184	\$184	\$184	\$184	\$184	\$184	\$184	\$184

- 1. Energy use for 2018 and beyond is estimated based on DOE's 2020 BVM Final Rule and the 2022 Compliance Certification Database.
- 2. The ENERGY STAR category assumes units are compliant with the ENERGY STAR v4 standard because combination units are currently not separately defined by ENERGY STAR. This standard went into effect on April 29, 2020. Our analysis finds ENERGY STAR certified equipment to be the most efficient currently available on the market.
- 3. Annual efficiency normalized to the efficiency of the 2012 installed base. Indexed Annual Efficiency = (2012 Energy Use) / (Energy Use).
- 4. Maintenance cost includes preventative maintenance costs such as checking and maintaining refrigerant charge levels, cleaning heat exchanger coils, and an annualized cost for refurbishments/remanufacturing.

76

- DOE set federal energy efficiency standards for refrigerated vending machines. These standards set maximum daily energy consumption levels, in kilowatt-hours per day, for commercial refrigerated vending machines manufactured or sold in the United States on or after August 31, 2012. The daily energy consumption is based on the volume of the unit (V).
- In December 2015, DOE updated its energy conservation standards for beverage vending machines and defined two new product classes for combination vending machines. The energy conservation standard remains the same in the updated 2022 technical support document for vending machines. Compliance with these standards was required by 2019. For this analysis, compliance with these updated standards is assumed for equipment sold in 2022 and beyond. The updated standards and DOE equipment definitions are listed in the table below.

Equipment Type	Maximum Daily Energy Consumption
Class A (Transparent-Front)	MDEC= $0.052 \times V + 2.43$
Class B (Solid-Front)	$MDEC = 0.052 \times V + 2.20$
Combination A	$MDEC = 0.086 \times V + 2.66$
Combination B	$MDEC = 0.111 \times V + 2.04$

ENERGY STAR® updated its maximum daily energy consumption efficiency levels, also in kilowatt-hours per day, for refrigerated vending machines that went into effect on April 29, 2020. These efficiency levels are based on refrigerated volume.

Equipment Class	Maximum daily energy consumption (kilowatt-hours per day)
Class A – a refrigerated bottled or canned beverage vending machine that is not a combination vending machine and in which 25% or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.04836 x V + 2.2599
Class B – any refrigerated bottled or canned beverage vending machine that is not considered to be Class A and is not a combination vending machine	MDEC = 0.04576 x V+1.936
Combination A – a combination vending machine where 25% or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.07998 x V + 2.4738
Combination B – a combination vending machine that is not considered to be Combination A	MDEC = 0.09768 x V + 1.7952

Performance and Cost Characteristics » Commercial Refrigerated Vending Machines

- DOE set federal energy efficiency standards for refrigerated vending machines in 2009. These standards set maximum daily energy consumption levels, in kWh/day, for commercial refrigerated vending machines manufactured and/or sold in the United States on or after August 31, 2012. The daily energy consumption is based on the volume of the unit (V).
 - Refrigerated Vending Machines that are fully-cooled (Type A) $\leq 0.055*V + 2.56$
 - Refrigerated Vending Machines that are zone-cooled (Type B) $\leq 0.073*V + 3.16$
- ENERGY STAR® updated its maximum daily energy consumption efficiency levels, also in kWh/day, for refrigerated vending machines, which went into effect on March 1, 2013. These efficiency levels are based on refrigerated volume.

Equipment Type	Maximum Daily Energy Consumption	Low Power Mode Requirement
Class A (Transparent-Front)	MDEC= 0.0523 x V + 2.432	Hard-wired controls and/or software capable of placing the machine into a low power mode during periods of extended inactivity
Class B (Solid-Front)	$MDEC = 0.0657 \times V + 2.844$	while still connected to its power source

- Currently, stakeholders such as Coca Cola have indicated a preference for CO₂ refrigerant, which is less efficient. However, this Advanced Case scenario assumes a shift to more efficient propane for cost and energy consumption projections due to the superior efficiency of propane refrigerant.
- By 2040, the adoption of vacuum insulated panels is assumed to occur, with the aid of decreased incremental costs due to increased R&D funding
- Projected installed costs for this Advanced Case are higher than the Reference Case, even assuming increased R&D funding. Advanced energy-saving technologies are assumed to be made financially viable for operators by increased market incentives such as utility efficiency rebate programs and/or carbon pricing.
- This analysis finds that with increased R&D and market incentives for energy efficiency technologies, a limit of possible efficiency improvements for self-contained, vapor compression refrigeration systems will be reached by 2040.

In December 2015, DOE updated its energy conservation standards for beverage vending machines, and defined two new product classes for combination vending machines Compliance with these standards is required by 2019. For this analysis, compliance with these updated standards is assumed for equipment sold in 2020 and beyond. The updated standards and DOE equipment definitions are listed in the table below.

Equipment Class	Maximum daily energy consumption (kilowatt hours per day)
Class A – a refrigerated bottled or canned beverage vending machine that is not a combination vending machine and in which 25 percent or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.052 x V + 2.43
Class B – any refrigerated bottled or canned beverage vending machine that is not considered to be Class A and is not a combination vending machine	MDEC = 0.052 x V + 2.20
Combination A – a combination vending machine where 25 percent or more of the surface area on the front side of the beverage vending machine is transparent	MDEC = 0.086 x V + 2.66
Combination B – a combination vending machine that is not considered to be Combination A	MDEC = 0.111 x V + 2.04

Commercial Ventilation

Performance and Cost Characteristics » Commercial Constant Air Volume

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		2030		2040		2050	
DATA	Installed Stock Average	Installed Stock Average ³	Low ^{4,5}	Typical ^{4,6}	High ^{4,7}	ENERGY STAR	Typical ^{4,6}	High ^{4,7}	Typical ^{4,6}	High ^{4,7}	Typical ^{4,6}	High ^{4,7}
System Airflow (CFM)	15,000	16,300	16,300	16,300	16,300	N/A	16,300	16,300	16,300	16,300	16,300	16,300
System Fan Power (kW)	11.56	11.56	11.56	10.98	10.78	N/A	10.98	10.78	10.98	10.78	10.98	10.78
Specific Fan Power (W/CFM)	0.771	0.709	0.709	0.674	0.661	N/A	0.674	0.661	0.674	0.661	0.674	0.661
Annual Fan Energy Use (kWh/y) ¹	43,924	23,038	23,038	21,886	20,792	N/A	20,792	19,752	19,752	18,765	18,765	17,826
Average Life (years)	35	35	35	35	35	N/A	35	35	35	35	35	35
Total Installed Cost (2022\$) ²	\$80,288	\$83,083	\$83,083	\$86,901	\$90,651	N/A	\$86,901	\$90,651	\$86,901	\$90,651	\$86,901	\$90,651
Annual Maintenance Cost (2022\$)	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	N/A	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054
Total Installed Cost (2022\$/thousand CFM)	\$5,353	\$5,097	\$5,097	\$5,331	\$5,561	N/A	\$5,331	\$5,561	\$5,331	\$5,561	\$5,331	\$5,561
Annual Maintenance Cost (2022\$/thousand CFM)	\$70	\$65	\$65	\$65	\$65	N/A	\$65	\$65	\$65	\$65	\$65	\$65

- 1. Based on 3800 operating hours per year (ADL, 1999) and typical zone air flow requirement profile (ASHRAE S45.11-2012)
- 2. Total installed cost of 16,300 CFM constant air volume (CAV) air handling unit (AHU) and hypothetical supply ductwork layout
- 3. Based on ASHRAE 90.1-2016 and 2019 fan power limit (Table 6.5.3.1.1-1) with no pressure drop adjustment. Assumed 80% motor load and 91% motor efficiency
- 4. ASHRAE 90.1-2016 and 2019 Section 6.5.3.2 require minimum two-speed fan control (no longer always constant volume).
- 5. Two-speed variable frequency drive (VFD)
- 6. Modulating VFD
- 7. Modulating custom engineered VFD

Performance and Cost Characteristics » Commercial Constant Air Volume

- Constant air volume (CAV) ventilation systems are common, inexpensive, air-side HVAC systems that operate in response to a single control zone. Historically, these systems provide a constant flow rate of air (typically a mix of recirculated and outside air) and adjust the supply temperature of that air in order to maintain the space temperature setpoint. Beginning with ASHRAE 90.1-2013 and continued in ASHRAE 90.1-2019, new CAV ventilation systems were mandated to have at least two fan speed settings with the requirement of a maximum 40% power at 66% flow. Systems with variable speed fans are increasingly popular, making the term "constant air volume" somewhat of a misnomer for this system type. This analysis examines only the fan energy of the CAV system.
- There is movement in the industry and in energy codes to reduce fan power. ASHRAE 90.1 includes fan power limits for CAV systems. Fan power can be minimized through good design practice (efficient duct layout, low pressure drop ductwork, filters, coils), proper fan selection, and high efficiency type fans. ASHRAE 90.1-2019 now requires a minimum fan efficiency grade (FEG, based on AMCA 205-12: Energy Efficiency Classification for Fans) of 67 and a design operating fan efficiency within 15% of the maximum fan total efficiency. There are exceptions to this requirement, including packaged systems such as the CAV system type considered here. Still the fan power limits are expected to become more stringent, and fan efficiency will become more important throughout the industry.
- The unit characterized in this report is a 16,300 CFM CAV system. The average commercial building is approximately 16,300 square feet (CBECS 2018). Assuming 1 CFM is needed per square foot of floor area results in a 16,300 CFM air handling unit.
- A 16,300 CFM CAV packaged indoor air handling unit with cooling and heating coils can be installed for approximately \$71,829 (RS Means 2022). Ductwork would cost approximately \$9,272 additional (\$81,101 total). A two-speed motor (estimated \$500 incremental cost) and variable frequency drive (estimated \$5,800) add cost. Custom engineered variable frequency drives (estimated \$9,550) and premium efficiency motors (estimated additional \$1,500) add an additional cost to the system.
- Annual maintenance cost assumes 8 hours worth of labor by a technician to perform the necessary tasks (e.g., filter replacement, draining condenser water, etc.)
- ASHRAE Standard 90.1, which is used as a basis for most state energy codes, limits the fan power (brake HP or nameplate HP) for CAV systems. The 2016 version of Standard 90.1 was used to represent the 2018 minimum efficiency level (state energy codes typically refer to older versions of Standard 90.1 due to code revision cycles).
- Fan energy is affected by several factors, including fan type (e.g., centrifugal, axial), fan blade shape (e.g., forward-curved, backward-curved, backward-inclined, airfoil), drive type (belt or direct), configuration (plenum or housed centrifugal), system effects, duct design, filter and coil pressure drops, motor efficiency, and speed and flow control.
- For this Advanced Case, the projections from 2030 to 2050 for system fan power and annual fan energy use assume a 5% improvement per decade based on the assumption that use of variable frequency drives and incremental improvements in technology will increase.

Performance and Cost Characteristics » Commercial Variable Air Volume

|Lower annual energy use compared with Reference Case |

	2012	2018		20	22		2030		2040		2050	
DATA	Installed Stock Average	Installed Stock Average ³	Low ⁴	Typical⁵	High ⁶	ENERGY STAR	Typical ⁶	High ^{6,7}	Typical ^{6,7}	High ^{6,7}	Typical ^{6,7}	High ^{6,7}
System Airflow (CFM)	15,000	16,300	16,300	16,300	16,300	N/A	16,300	16,300	16,300	16,300	16,300	16,300
System Fan Power (kW)	15.99	15.99	15.99	15.99	15.99	N/A	15.99	15.19	15.99	15.19	15.99	15.19
Specific Fan Power (W/CFM)	1.066	1.066	0.981	0.981	0.981	N/A	0.981	0.932	0.981	0.932	0.981	0.932
Annual Fan Energy Use (kWh/yr) ¹	24,699	24,082	24,082	22,878	21,734	N/A	21,734	20,647	20,647	19,615	19,615	18,634
Average Life (yrs)	28	28	28	28	28	N/A	28	28	28	28	28	28
Total Installed Cost (2022\$) ²	\$103,327	\$110,414	\$118,814	\$124,495	\$124,995	N/A	\$124,495	\$124,995	\$124,495	\$124,995	\$124,495	\$124,995
Annual Maintenance Cost (2022\$)	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	N/A	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054	\$1,054
Total Installed Cost (2022\$/1000 CFM)	\$6,888	\$6,774	\$7,289	\$7,638	\$7,668	N/A	\$7,638	\$7,668	\$7,638	\$7,668	\$7,638	\$7,668
Annual Maintenance Cost (2022\$/1000 CFM)	\$70	\$65	\$65	\$65	\$65	N/A	\$65	\$65	\$65	\$65	\$65	\$65

- 1. Based on 3800 operating hours per year (ADL, 1999) and typical zone air flow requirement profile (ASHRAES45.11-2012)
- 2. Total installed cost of 16,300 CFM VAV AHU, VFD, (10) VAV boxes, (10) VAV controllers with associated space temperature sensor, and hypothetical supply ductwork layout
- 3. Based on ASHRAE90.1-2016 and 2019 fan power limit (Table 6.5.3.1.1-1) with no pressure drop adjustment. Assumed 80% motor load and 91% motor efficiency
- 4. ASHRAE 90.1-2016 and 2019 Section 6.5.3.2 minimum power-flow requirement
- 5. ASHRAE90.1-2019 fan power limit and typical VAV power-flow relationship for 40%-100% flow
- 6. ASHRAE90.1-2019 fan power limit and typical VAV power-flow relationship for 30%-100% flow
- 7. High aerodynamic efficiency fan

Performance and Cost Characteristics » Commercial Variable Air Volume

- Variable air volume (VAV) ventilation systems are the most common multi-zone system type specified today for conditioning commercial buildings. These systems provide conditioned air to multiple zone terminal units (VAV boxes) that use dampers to modulate the amount of cool air to each zone. An individual zone thermostat controls the VAV box damper to allow more or less cooling. If a zone requires heating, then the VAV box provides the minimum flow rate and typically includes a reheat coil to meet the space temperature setpoint. As VAV box dampers close in the system, a variable frequency drive reduces fan speed and flow continuously to meet current requirements.
- This analysis examines only the fan energy of the VAV system. VAV systems vary fan speed and flow to meet space conditioning requirements; minimum flow settings apply for DX cooling stages and gas furnace heating stages. Most hours of operation are much lower than full speed, and fan power varies with the cube of fan speed according to fan affinity laws. The 2012 ASHRAE Handbook: HVAC Systems and Equipment (p. 45.11) provided the typical flow profile used for this analysis. The unit characterized in this report is a 16,300 CFM VAV system.
- There is movement in the industry and in energy codes to reduce fan power. ASHRAE 90.1 includes fan power limits for VAV systems. Fan power can be minimized through good design practice (efficient duct layout, low pressure drop ductwork, filters, coils), proper fan selection, and high efficiency type fans. ASHRAE 90.1-2019 now requires a minimum fan efficiency grade (FEG, based on AMCA 205-12: Energy Efficiency Classification for Fans) of 67 and a design operating fan efficiency within 15% of the maximum fan total efficiency. There are exceptions to this requirement, including packaged systems such as the VAV system type considered here. Still the fan power limits are expected to become more stringent, and fan efficiency will become more important throughout the industry.
- A 16,300 CFM VAV packaged indoor air handling unit with cooling and heating coils can be installed for approximately \$82,023 (RS Means 2022). Ductwork and (10) VAV boxes with reheat would cost approximately an additional \$28,272. (10) VAV controllers and the associated space temperature sensor would cost approximately \$8,400 (\$118,695 total). A 15 hp variable frequency drive (estimated \$5,800) is an additional cost.
- ASHRAE Standard 90.1, which is used as a basis for most state energy codes, limits the fan power for VAV systems (brake HP or nameplate HP). The 2016 version of Standard 90.1 was used to represent the 2018 minimum efficiency level (state energy codes typically refer to older versions of Standard 90.1 due to code revision cycles).
- Annual maintenance cost assumes 8 hours worth of labor by a technician to perform the necessary tasks (e.g., filter replacement, draining condenser water, etc.)
- Fan energy is affected by several factors, including fan type (e.g., centrifugal, axial), fan blade shape (e.g., forward-curved, backward-curved, backward-inclined, airfoil), drive type (belt or direct), configuration (plenum or housed centrifugal), system effects, duct design, filter and coil pressure drops, and motor VFD efficiency.
- For this Advanced Case, the projections from 2030 to 2050 for system fan power and annual fan energy use assume a 5% improvement per decade based on the assumption use of variable frequency drives and incremental improvements in technology will increase.

Performance and Cost Characteristics » Commercial Fan Coil Units

Same as Reference Case

	2012	2018		20	22		20	30	204	40	20	50
DATA	Installed Stock Average	Installed Stock Average ⁵	Low ³	Typical ⁵	High ⁶	ENERGY STAR	Typical ^{4,6}	High ^{4,7}	Typical ^{4,7}	High ^{4,8}	Typical ^{4,8}	High ^{4,8,9}
System Airflow (CFM)	800	800	800	800	800	N/A	800	800	800	800	800	800
System Fan Power (kW)	0.241	0.241	0.241	0.148	0.148	N/A	0.141	0.134	0.134	0.136	0.136	0.129
Specific Fan Power (W/CFM)	0.302	0.302	0.301	0.185	0.185	N/A	0.176	0.167	0.167	0.170	0.170	0.162
Annual Fan Energy Use (kWh/y) ¹	543	542	542	333	333	N/A	316	301	301	306	306	291
Average Life (years)	37	37	37	37	37	N/A	37	37	37	37	37	37
Total Installed Cost (2022\$) ²	\$2,845	\$2,688	\$3,038	\$3,521	\$3,961	N/A	\$3,961	\$4,161	\$3,961	\$4,161	\$3,961	\$4,161
Annual Maintenance Cost (2022\$)	\$117	\$117	\$117	\$117	\$117	N/A	\$117	\$117	\$117	\$117	\$117	\$117
Total Installed Cost (2022\$/thousand CFM)	\$3,557	\$3,360	\$3,798	\$4,401	\$4,951	N/A	\$4,951	\$5,201	\$4,951	\$5,201	\$4,951	\$5,201
Annual Maintenance Cost (2022\$/thousand CFM)	\$146	\$146	\$146	\$146	\$146	N/A	\$146	\$146	\$146	\$146	\$146	\$146

- 1. Based on 2250 operating hours per year (ADL, 1999) and typical zone air flow requirement profile (ASHRAES45.11-2012)
- 2. Total installed cost of 2-ton horizontal two-pipe fan coil unit, housing, and controls
- 3. Based on ASHRAE 90.1-2016 and 2019 fan power limit (Table 6.5.3.1.1-1) with no pressure drop adjustment. Assumed 80% motor load and 91% motor efficiency
- 4. Based on ASHRAE90.1-2016 and 2019 Section 6.5.3.6 requirement of electronically commutated or 70+% efficient fan motor
- 5. Permanent split capacitor fan motor
- 6. Electronically commutated fan motor (single speed)
- 7. Electronically commutated fan motor (two-speed)
- 8. Electronically commutated fan motor (variable speed)
- 9. High aerodynamic efficiency fan

Performance and Cost Characteristics » Commercial Fan Coil Units

- Commercial fan coil units (FCUs) are self-contained, mass-produced assemblies that provide cooling, heating, or cooling and heating, but they do not include the source of cooling or heating. The unit characterized in this report is a cooling only (two-pipe), horizontal unit with housing and controls. Fan coil units are typically installed in or adjacent to the space being served and have no (or very limited) ductwork.
- According to manufacturer literature, the cooling capacity for a nominal 800 CFM fan coil unit is about 2 tons. This analysis examines only the fan energy of FCUs.
- Fan coil unit fan motors can be shaded pole, a single-phase AC motor with offset start winding and no capacitor; PSC, a single-phase AC motor with offset start winding with capacitor; or ECM, an AC electronically commutated permanent magnet DC motor. PSC motors are currently the most common motor type in FCUs, but manufacturers also offer single speed, two speed, and ECM motors as an option. ASHRAE 90.1-2019 requires an electronically commutated fan motor (or minimum motor efficiency of 70%) for this system.
- There is movement in the industry and in energy codes to reduce fan power. ASHRAE 90.1 includes fan power limits for FCUs. Fan power can be minimized through good design practice and high efficiency type fans. ASHRAE 90.1-2019 now requires a minimum fan efficiency grade (FEG, based on AMCA 205-12: Energy Efficiency Classification for Fans) of 67 and a design operating fan efficiency within 15% of the maximum fan total efficiency. There are exceptions to this requirement, including small systems such as the FCU considered here. Still the fan power limits are expected to become more stringent, and fan efficiency will become more important throughout the industry.
- Fan coil units have higher maintenance costs than central air systems due to the distributed nature of the system. For each unit, the filters must be changed, and drain systems must be flushed periodically.
- ASHRAE Standard 90.1, which is used as a basis for most state energy codes, limits the fan power (brake HP or nameplate HP). The 2016 version of Standard 90.1 was used to represent the 2018 minimum efficiency level (state energy codes typically refer to older versions of Standard 90.1 due to code revision cycles).
- Fan energy is affected by several factors, including fan type configuration, filter and coil pressure drops, motor efficiency, and fan speed control.

Appendix A Data Sources

Guidehouse 1200 19th Street, NW, Suite 700 Washington, D.C. 20036

And

Leidos 8301 Greensboro Drive McLean, VA 22102

Residential Lighting

Data Sources » Residential General Service LED Lamps (60 Watt Equivalent)

	2015	2020		202	22		2023**	20	30	20	40	205	50
DATA SOURCES	Installed Stock Average		Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage			Distributo	r Websites o	r Product					Calcu	ılated		
Lamp Lumens	Model, Energy Savings Forecast of			Catalogs			DOE, 2022			Assume U			
Lamp Efficacy (lm/W)	Solid-State Lighting in General	2020 DOE LED		Calculated		ENERGY						ForecastofS ns (Navigar	
CRI	Illumination	Pricing Analysis				STAR, 2020				A agruma II	in a bon o o d		
Correlated Color Temperature (CCT)	Applications		Distributo	r Websites o	r Product		N/A			Assume U	_		
Average Lamp Life (thousand hours)	(Navigant, 2019)			Catalogs			,					ForecastofS ns (Navigar	
Annual Operating Hours (h/y)						DOE, 201	7				••		
	II	2020 DOE LED Pricing Analysis	Distributor	r Websites o Catalogs		N/A						ForecastofS ons (Navigan	
Lamp Cost (2022\$/klm)						Calculate	d	0 0			11	, 0	
Labor Cost (2022\$/h)						NT/A							
Labor Lamp Installation (hours)						N/A							
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)		Cal	culated				N/A			Calcu	lated		
Total Installed Cost (2022\$/klm)		Cai	Culated				11/11			Calct	uaicu		
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential General Service Filament-LED Lamps (60 Watt Equivalent)

	2015	2020		20	22		2023**	20	30	20	40	205	50
DATA SOURCES	Installed Stock Average		Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typica1	High	Typical	High
Lamp Wattage			Distributo	r Websites c	r Product					Calcu	ılated		
Lamp Lumens	Model, Energy Savings Forecast of			Catalogs			DOE, 2022				nchanged		
Lamp Efficacy (lm/W)	Solid-State Lighting in General	2020 DOE LED		Calculated		ENERGY						Forecast of S ons (Navigar	
CRI	Illumination	Pricing Analysis				STAR, 2020				Assume U	Inchanged		
Correlated Color Temperature (CCT)	Applications		Distributo	websites o	r Product		N/A				_		
Average Lamp Life (thousand hours)	(Navigant, 2019)			Catalogs				Model DO Lighting	E Goals Sco in General	enario, Energ Illumination	gy Savings Applicatio	Forecast of S ns (Navigar	Solid-State nt, 2019)
Annual Operating Hours (h/y)						DOE, 201	7						
	rr	2020 DOE LED Pricing Analysis	Distributo	r Websites o Catalogs		N/A						ForecastofS ons (Naviga	
Lamp Cost (2022\$/klm)		,				Calculate	d	0 0			11	, 0	
Labor Cost (2022\$/h)						NT/A							
Labor Lamp Installation (hours)						N/A							
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)		Cal	culated				N/A			Calcu	ulated		
Total Installed Cost (2022\$/klm)		Cai	Сшасси				11/11			Calct	пасч		
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Residential Reflector LED BR30

	2015	2020		20	22		2023**	20	30	20	40	20	50
DATA SOURCES	Installed Stock Average		Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	Model		Distributo	r Websites o	r Product						ılated		
Lamp Lumens	Reference			Catalogs			DOE, 2022			Assume U			
Lamp Efficacy (lm/W)	Scenario, Energy			Calculated								ForecastofSons (Navigant	
CRI	Savings									Λ Τ	T1 J		
Correlated Color Temperature (CCT)	Forecastof	2020 DOE								Assume C	Inchanged		
Average Lamp Life (thousand hours)	Solid-State Lighting in General Illuminatio n Application s (Navigant, 2019)		Distributo	r Websites o Catalogs		ENERGY STAR, 2020	N/A					ForecastofSons (Navigant	
Annual Operating Hours (h/y)							DOE, 2017	Ü			11	` 0	,
Lamp Price (2022\$)	I ighting in	2020 DOE LED Pricing Analysis	Distributo	r Websites o Catalogs		N/A		Model D Lightin	OE Goals So	cenario, Ener	gy Savings:	ForecastofSons (Navigant	olid-State t. 2019)
Lamp Cost (2022\$/klm)						,	Calculated	8	0		FF	(8	,,
Labor Cost (2022\$/h) Labor Lamp Installation (hours)							N/A						
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)			Calcu	ılated			N/A			Calcı	ulated		

Data Sources» Residential Reflector LED PAR38

	2015	2020		20	22		2023**	20	30	20	40	20	50
DATASOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage			Distributo	or Websites	or Product					Calcu	ılated		
Lamp Lumens	Model R	eference		Catalogs			DOE, 2022			Assume U			
Lamp Efficacy (lm/W)	Scenario			Calculated		ENERGY	,					Forecast of S ons (Naviga	
CRI	Solid-State					STAR, 2020				AssumeU	In abongod		
Correlated Color Temperature (CCT)	General III	umination		or Websites	or Product		N/A				· ·		
Average Lamp Life (thousand hours)	Applio (Naviga			Catalogs			,					Forecast of S ons (Naviga	
Annual Operating Hours (h/y)							DOE, 2017						
Lamp Price (2022\$)	Model R Scenario Savings F Solid-State General Ill Applio (Naviga	o, Energy orecast of Lighting in lumination cations	Distribute	or Websites o Catalogs	or Product	N/A						Forecast of S ons (Na viga	
Lamp Cost (2022\$/klm)	` 0	,					Calculated						
Labor Cost (2022\$/h)							N/A						
Labor Lamp Installation (hours)							IN/A						
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)			Calcı	ılated			N/A			Calcu	ılated		
Total Installed Cost (2022\$/klm)			Care				1 4/11			Cuice			
Annual Maintenance Cost (2022\$/klm)													

Data Sources» Residential Linear LED Replacement Lamp 2-Lamp System

	2015	2020		2022		203	30	204	4 0	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage								Calcu	lated		
Lamp Lumens	LED Webscrape	DOE Webscrape				As	sume Sa	me as 202	22 Typic	al and Hig	gh
Lamp Efficacy (lm/W)	Database	Database	Distri	butor Websit	es			y Savings eneral Illu (Navigar	minatio	n Applica	
System Wattage											
System Lumens				Calculate	d						
System Efficacy (lm/W)											
Ballast Efficiency (BLE)				N/A							
CRI	2016 EIA Ref. Case	Distributor Websites									
Correlated Color Temperature (CCT)	2016 EIA Ref. Case	Distributor Websites			г) istributo:	, TA7 ala ai t				
Average Lamp Life (thousand hours)	LED Webscrape Database	DOE Web Scrape Database			L	ASTRIBUTO	r vv ebsit	es			
Annual Operating Hours (h/y)				DOE, 201	7						
Lamp Price (2022\$)	LED Webscrape	DOE Web Scrape Database	Distri	butor Websit	es			Calcu	lated		
Ballast Price (2022\$)	Database				N/A						
Fixture Price (2022\$)					1 N / <i>E</i>	1					
Lamp Cost (2022\$/klm)				Calculate	d						
System (1/b/f) Cost (2022\$/klm)				Carculate	u						
Labor Cost (2022\$/h)											
Labor System Installation (hours)				N/A							
Labor Lamp Change (hours)											
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)				Calculate	d						
Total Installed Cost (2022\$/klm)				Carcarate							
Annual Maintenance Cost (2022\$/klm)		0.4									

Data Sources » Residential Linear LED Luminaire

	2015	2020		2022		203	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High
Lamp Wattage											
Lamp Lumens				N/A							
Lamp Efficacy (lm/W)											
System Wattage								Calcu	lated		
System Lumens	LED Webscrape	DOE Web Scrape								al and Hi	
System Efficacy (lm/W)	Database	Database	Distril	outor Websit	tes				minatio	t of Solid on Applica)	
Ballast Efficiency (BLE)				N/A							
CRI	LED Webscrape	DOE Web Scrape									
Correlated Color Temperature (CCT)	Database	Database	Distril	outor Websit	tes		D	istributo	r Websit	tes	
Average Lamp Life (thousand hours)	Database	Database									
Annual Operating Hours (h/y)				DOE, 201	.7						
Lamp or Luminaire Price (2022\$)	LED Webscrape Database	DOE Web Scrape Database	Distril	outor Websit	tes			Calcu	lated		
Ballast Price (2022\$)											
Fixture Price (2022\$)				N/A							
Lamp Cost (2022\$/klm)				IN/A							
System (l/b/f) Cost (2022\$/klm)											
Labor Cost (2022\$/h)	2016 EIA I	Ref. Case			20)22 RS Me	ans Onl	ine			
Labor System Installation (hours)											
Labor Lamp Change (hours)						N/	'A				
Total Installed Cost (2022\$)											
Annual Maintenance Cost (2022\$)				Calculate	nd						
Total Installed Cost (2022\$/klm)				Calculate	eu .						
Annual Maintenance Cost (2022\$/klm)											
		05									

Data Sources » Residential Outdoor Lamps (Security: LED PAR38)

	2015	2020		20	22		2023*	20	30	20	40	205	50		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High		
Lamp Wattage															
Lamp Lumens															
Lamp Efficacy (lm/W)															
CRI															
Correlated Color Temperature (CCT)															
Average Lamp Life (1000 hrs)															
Annual Operating Hours (hrs/yr)															
Lamp Price (2022\$)		Same as Residential LEDPAR38													
Lamp Cost (2022\$/klm)															
Labor Cost (2022\$/hr)															
Labor Lamp Installation (hr)															
Total Installed Cost (2022\$)															
Annual Maintenance Cost (2022\$)															
Total Installed Cost (2022\$/klm)															
Annual Maintenance Cost (2022\$/klm)															

Data Sources » Residential Outdoor Lamps (Porch: LED A-Type)

	2015	2020		20	22		2023*	20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typica1	High	ENERGY STAR*	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage	Model		Distributo	r Websites o	r Product					Calcı	ılated		
Lamp Lumens	Reference Scenario,			Catalogs			DOE, 2022			Assume U			
Lamp Efficacy (lm/W)	Energy Savings			Calculated			ŕ	Model DOE	Goals Scenar General Illum	io, Energy Sa nination App	vings Forecas lications (Nav	st of Solid-State vigant, 2019)	E Lighting in
CRI	Forecastof	2020 DOE				ENTERON				Assume U	Inchanged		
Correlated Color Temperature (CCT)	Solid-State	LED Pricing				ENERGY STAR, 2020				Assume C	nichangeu		
Average Lamp Life (thousand hours)	Lighting in General Illumination Applications (Navigant, 2019)	Analysis	Distributor Websites or Product Catalogs			51111 , 2 020	N/A	Model DOE	Goals Scenar General Illun		vings Forecas lications (Nav		e Lighting in
Annual Operating Hours (h/y)							DOE, 2017						
Lamp Price (2022\$)		2020 DOE LED Pricing Analy sis	Distributo	or Websites o Catalogs		N/A		Model DOE	Goals Scenar General Illun		vings Forecas lications (Nav		e Lighting in
Lamp Cost (2022\$/klm)		Ĭ					Calculated						
Labor Cost (2022\$/h)							N/A						
Labor Lamp Installation (hours)							1N/ /1						
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)							Calculated						
Total Installed Cost (2022\$/klm)							Cure didice d						
Annual Maintenance Cost (2022\$/klm)													

Commercial Lighting

Data Sources» Commercial General Service 100W Equivalent LED Replacement Lamp in Recessed Can Fixture

	2012	2018		2(022		2023	20	30	20	040	20	50
DATA SOURCES		Installed Stock	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)	Average	Average Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)		Websites or Prod		ENERGY STAR, 2020	DOE, 2022		-	Calci Assume U	alated Jnchanged	Lighting in Gener	
System Wattage System Lumens* System Efficacy (lm/W) Ballast Efficiency (BLE)	2016 EIA Reference Case						Calcu	ılated		TT	<i>g , ,</i>		
CRI Correlated Color Temperature (CCT)		Model Reference				ENERGY STAR, 2020 N/A				Assume U	Jnchange d		
Average Lamp Life (thousand hours)		Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor	Websites or Prod	uct Catalogs	ENERGY STAR, 2020	N/A			gy Savings Foreca on Applications (N		Assume U	Inchange d
Annual Operating Hours (h/y)							DOE, 2017	Lighting in G	eneral intuminatio	on Applications (N	avigani, 2019)	Assume C	nchangeu
Lamp Price (2022\$)	2016 EIA	Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor	Websites or Prod	uct Catalogs	Nu		Model Refere	nce Scenario, Ene	ergy Savings Fore o Applications (1		Lighting in Gener	al Illumination
Ballast P rice (2022\$) Fixture Price (2022\$)* Lamp Cost (2022\$/klm) System (I/b/f) Cost (2022\$/klm)	Reference Case		Calcu	/A ulated /A		N/A				N Calcu	/A ulated /A		
Labor Cost (2022\$/h) Labor System Installation (hours) Labor Lamp Change (hours) Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$)		2016 EIA Reference Case		22 RS Means Onl	line						e ans Online		
Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)			Calcu	ılated						Calcı	ılated		

Data Sources » Commercial LED Reflector Lighting (PAR38)

	2012	2018		202	22		2023	20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Standard	Typical	High	Typical	High	Typical	High
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)		Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor	Websites or Produ	ct Catalogs	ENERGY STAR, 2020	DOE, 2022	Model Referer	nce Scenario, Ene:	Assume U	ast of Solid-State	Lighting in Gener	ral Illumination
System Wattage System Lumens* System Efficacy (Im/W) Ballast Efficiency (BLE)	2016 EIA Reference Case						Calcu	ılated					
CRI Correlated Color Temperature (CCT)		Model Reference Scenario, Energy				ENERGY STAR, 2020 N/A				Assume U	Inchange d		
Average Lamp Life (thousand hours)		Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	Distributor	Websites or Produ	ct Catalogs	ENERGY STAR, 2020	N/A			gy Savings Foreca n Applications (N		Assume U	Inchange d
Annual Operating Hours (h/y)							DOE, 2017	Eighting in Ge	Ticiai IIIaiiaiio	ni rippiications (i	avigant, 2017)	7 Icocarie C	richangeu
Lamp Price (2022\$)	2016 EIA	Model Reference Scenario, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	nce gy sst			N/A		Model Referer	nce Scenario, Ene:	rgy Savings Forec Applications (N	ast of Solid-State Javigant, 2019)	Lighting in Gener	ral Illumination
Ballast Price (2022\$) Fixture Price (2022\$) Large Cost (2022\$)	Reference Case		2019) Distributor Websites or Product Catalogs N/A			IN/A				N/ Calcu	/A		
Lamp Cost (2022\$/klm) System (1/b/f) Cost (2022\$/klm)										Carcu N/			
Labor Cost (2022\$/h) Labor System Installation (hours) Labor Lamp Change (hours)		2016 EIA Reference Case	2022 RS Means Online							2022 RS Me			
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)			Calcı	ılated						Calcu	ılated		

Data Sources » Commercial 4-ft Linear LED Replacement Lamp in 2-Lamp System

	2012	2018		2022		20	30	20	10	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	
Lamp Wattage		LED						Calcu	lated		
Lamp Lumens		Webscrape	Distri	butor Website	ne .			ame as 202			
Lamp Efficacy (lm/W)		Database	Distri	outor Website				vings Forenation Ap			
System Wattage								•	<u>.</u>	` 0	,
System Lumens					Cal	culated					
System Efficacy (lm/W)											
Ballast Efficiency (BLE)						N/A					
CRI					D:1	. 347 1	•,				
Correlated Color Temperature (CCT)					Distribu	ıtor Webs	ites				
Average Lamp Life (thousand hours)	DOE 2017										
Annual Operating Hours (h/y)	DOE, 2017										
Lamp Price (2022\$)	2016 EIA Ref. Case DOE, 2017 Model, Energy Savings Forecast of Solid-State Li in General Illumination Applications (Navigant,										
Ballast Price (2022\$)						N/A					
Fixture Price (2022\$)						IN/A					
Lamp Cost (2022\$/klm) System (l/b/f) Cost (2022\$/klm)					Cal	culated					
Labor Cost (2022\$/h)		2016 EIA Ref. Case			20)22 RS Me	ans Onli	ne			
Labor System Installation (hours)	N/A										
Labor Lamp Change (hours)	Assume unchanged										
Total Installed Cost (2022\$) Annual Maintenance Cost (2022\$) Total Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)					Cal	culated					

Data Sources» Commercial 4-ft Linear LED Luminaire to Replace 2-Lamp Systems

	2012 2018 2022					20	30	20	2040 20		50				
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High				
Lamp Wattage															
Lamp Lumens		N/A													
Lamp Efficacy (lm/W)	C:1:1														
System Wattage		LED	Calculated												
System Lumens		in				Assume Same as 2022 Typical and High									
System Efficacy (lm/W)						Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)									
Ballast Efficiency (BLE)		N/A					N/A								
CRI					D										
Correlated Color Temperature (CCT)		Distributor Websites													
Average Lifetime (thousand hours)															
Annual Operating Hours (h/y)					DC	DE, 2017									
Lamp or Luminaire Price (2022\$)	2016 EIA Ref. Case	LED Webscrape Database	Distri	butor Website	es	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)									
Ballast Price (2022\$)															
Fixture Price (2022\$)						N/A									
Lamp Cost (2022\$/klm)															
System (l/b/f) Cost (2022\$/klm)		201 (FIA D (Ca	lculated									
Labor Cost (2022\$/h)		2016 EIA Ref. Case 2022 RS Means Online													
Labor System Installation (hours)		2022 RS Means Online													
Labor Lamp Change (hours)						N/A									
Total Installed Cost (2022\$)						,									
Annual Maintenance Cost (2022\$)					Ca	lculated									
Total Installed Cost (2022\$/klm)					Ca	iculated									
Annual Maintenance Cost (2022\$/klm)			Λ 1/1												

Data Sources » Commercial 8-ft Linear LED Replacement Lamp for a 2-Lamp System

	2012	2018		2022		2030		2040		2050				
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High			
Lamp Wattage		2016 EIA Ref.	Dietri	butor Websites				Calcu	lated					
Lamp Lumens		Case, 2015	Distri			ame as 202	, I							
Lamp Efficacy (lm/W)		typical				Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)								
System Wattage			(Calculated		11								
System Lumens		Calculated				Calculated								
System Efficacy (lm/W)														
Ballast Efficiency (BLE)			N/A											
CRI		2016 EIA Ref.	016 FIA Ref											
Correlated Color Temperature (CCT)		Case, 2015 Distributor Websites							es					
Average Lamp Life (thousand hours)		typical	typical											
Annual Operating Hours (h/y)	N/A				DC	OE, 2017								
Lamp Price (2022\$)			Distri	butor Websites	3									
Ballast Price (2022\$)		2017 ELV D		N/A										
Fixture Price (2022\$)		2016 EIA Ref. Case, 2015 typical			Calculated									
Lamp Cost (2022\$/klm)			(
System (l/b/f) Cost (2022\$/klm)		<i>y</i> 1		Calculated										
Labor Cost (2022\$/h)			2022 RS Means Online											
Labor System Installation (hours)						N/A								
Labor Lamp Change (hours)		Chapter 8; Table 8.2.4 of GSFL IRL Preliminary Analysis TSD (DOE, 2013)												
Total Installed Cost (2022\$)														
Annual Maintenance Cost (2022\$)					Cal	culated								
Total Installed Cost (2022\$/klm)														
Annual Maintenance Cost (2022\$/klm)														

Data Sources » Commercial 8-ft Linear LED Luminaire Replacement for a 2-Lamp System

	2012	2018	2022			2030		2040		20	50		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	Typical	High	Typical	High	Typical	High		
Lamp Wattage													
Lamp Lumens						N/A							
Lamp Efficacy (lm/W)													
System Wattage						Calculated							
System Lumens		2016 EIA Ref.	15 Distributor Websites			Assume Same as 2022 Typical and High							
System Efficacy (lm/W)		Case, 2015 typical				Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)							
Ballast Efficiency (BLE)				N/A									
CRI		2016 EIA Ref.											
Correlated Color Temperature (CCT)		Case, 2015	se, 2015 Distributor Websites										
Average Lifetime (thousand hours)		typical	ical										
Annual Operating Hours (h/y)		DOE, 2017											
Lamp or Luminaire Price (2022\$)	N/A	2016 EIA Ref. Case, 2015 typical	e, 2015 Distributor Websites										
Ballast Price (2022\$)		, <u>, , , , , , , , , , , , , , , , , , </u>											
Fixture Price (2022\$)						N/A							
Lamp Cost (2022\$/klm)													
System (1/b/f) Cost (2022\$/klm)					Cal	lculated							
Labor Cost (2022\$/h) Labor System Installation (hours)						2022 RS Means Online							
Labor Lamp Change (hours)		typicai	typical N/A										
Total Installed Cost (2022\$)						IN/A							
Annual Maintenance Cost (2022\$)													
Total Installed Cost (2022\$/klm)					Cal	lculated							
Annual Maintenance Cost (2022\$/klm)													

Data Sources » Commercial LED Low-Bay Luminaire

	2012 2018 2022			20	30	2040		205	50				
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	T ypical	High	T ypical	High	T ypical	High	T ypical	High		
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)						N/A							
System Wattage System Lumens		Model, Energy											
System Efficacy (lm/W)	2017 FV	Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019) N/A			osites or Product logs	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigan 2019)							
Ballast Efficiency	2016 EIA Reference Case	N/A		N	/A			N,	/A				
CRI	Reference Case												
Correlated Color Temperature (CCT)		Model, Energy Savings Forecast of Solid-State Lighting in		Distributor Wel									
Average Lifetime (thousand hours)		General Illumination Applications (Navigant, 2019)			- 0								
Annual Operating Hours (h/y)	DOE	, 2017	N/A			DOE, 2017							
Lamp or Luminaire Price (2022\$)		Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications	,	Distributor Wel Cata		Model, Energy S	Sa vings Fore cast o	f Solid-State Light 201		umination Applicat	iions (Na viga nt,		
Ballast Price (2022\$)	Reference Case	(Iva vigalit, 2017)		Cata	.10gs								
Fixture Price (2022\$)								N,	/A				
Lamp Cost (2022\$/klm)		N/A		N									
System (l/b/f) Cost (2022\$/klm) Labor Cost (2022\$/h)		Calculated		Calcu	ılated	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant,							
Labor Cost (20225/n) Labor System Installation (hours)		2016 EIA				Model, Energy S	a vings Fore cast o			umination Applicat	ions (Navigant,		
Labor Lamp Change (hours)		Reference Case		2022 RS Me	ans Online	2019)							
Total Installed Cost (2022\$)													
Annual Maintenance Cost (2022\$)	Calcı	ula te d		Calcı	lated			Calcu	lated				
T otal Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)	Carci	ana te ti		Calct	na ic u			Carcu	iu ic d				
Aintual Waittenance Cost (2022\$/Kim)				105									

Data Sources » Commercial LED High-Bay Luminaire

	2012	2018		2022		20	2030		2040		50			
DAT A SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	T ypical	High	Typical	High	T ypical	High			
Lamp Wattage Lamp Lumens Lamp Efficacy (lm/W)						N/A								
System Wattage		Model, Energy												
System Lumens		Sa vings Fore cast												
System Efficacy (lm/W)	2016 EIA	of Solid-State Lighting in General Illumination Applications (Navigant, 2019)	ghting in General Imination plications igant, 2019)	Distributor Wel Cata		Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (Navigant, 2019)								
Ballast Efficiency (BLE)	Reference Case	N/A		N,	/A									
CRI Correlated Color Temperature (CCT)	Reference Case	Model, Energy Savings Forecast				N/A Assume Unchanged								
Average Lifetime (thousand hours)		of Solid-State Lighting in General Illumination Applications (Navigant, 2019)		Distributor Wel Cata		Model, Energy Sa vings Forecast of Solid-State Lighting in General Illumination Applications (Na vigant, 20								
Annual Operating Hours (h/y)	DOE	, 2017		DOE	, 2017	DOE. 2017								
Lamp or Luminaire Price (2022\$)	2016 FIA	Model, Energy Savings Forecast of Solid-State Lighting in General Illumination		Model, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications		Distributor Wel Cata	osites or Product	Model, Energy Sa	Energy Sa vings Fore cast of Solid-State Lighting in General Illumination Applications (N					
Ballast Price (2022\$)	Reference Case	(Iva vigarit, 2017)		Cata	1053									
Fixture Price (2022\$)								N,	/A					
Lamp Cost (2022\$/klm)		N/A		N	/A			- 1,						
System (l/b/f) Cost (2022\$/klm)		Calculated			ılated									
Labor Cost (2022\$/h)				Surce		M I I E		0 1:10:		A 11	AT :			
Labor System Installation (hours)		2016 EIA		Model, Energy Savings Fo		vings Forecast of	Solid-State Lighting	gin General Illumi	nation Applications	(Navigant, 2019)				
Labor Lamp Change (hours)		Reference Case		2022 RS Me	ans Online									
Total Installed Cost (2022\$)														
Annual Maintenance Cost (2022\$)	C 1	.11		C 1	1-1-1			C 1	1-1-1					
T otal Installed Cost (2022\$/klm) Annual Maintenance Cost (2022\$/klm)	Calci	ılated		Calcu	ılated	Calculated								

Refrigeration

Data Sources » Commercial Compressor Rack Systems

	2012	2018		20	22		203	30	20	40	2050	0		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High		
Total Capacity (kBtu/h)	ADL, 1996				DOE, 2014	CRE Report /	Guidehouse	Analysis 202	22					
Median Store Size (ft²)	Food Marketing Institute (FMI), 2012					СВЕС	CS 2018							
Power Input (kW)	Copeland, 2008				DOE, 2014	CRE Report /	Guidehouse	Analysis 202	22					
Annual Energy Use (MMWh/y)	ADL, 1996/ NCI Analysis, 2015		DOE, 2014: CRE Report / Guidehouse Analysis 2022											
Indexed Annual Efficiency			Calculated											
Average Life (years)	Kysor- Warren, 2008				DOE, 2014	CRE Report/	Guidehouse	Analysis 202	22					
Total Installed Cost (2022\$)	NCI, 2009/ NCI Analysis, 2012				DOE, 2014	CRE Report/	Guidehouse	Analysis 202	22					
Total Installed Cost (2022\$/kBtu/h)						Calculated								
Annual Maintenance Cost (2022\$)	ADL, 1996/ NCI Analysis, 2008		Calculated DOE, 2014: CRE Report / Guidehouse Analysis 2022											
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Condensers

	2012	2018		20	22		203	0	204	40	205	0		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High		
Total Capacity (kBtu/h)	NCI Analysis, 2008 / Heatcraft, 2008 / ADL, 1996				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Median Store Size (ft²)	Food Marketing Institute (FMI), 2012					СВЕС	CS 2018							
Power Input (kW)	NCI Analysis, 2008 / Heatcraft, 2008 / ADL, 1996		DOE, 2014: CREReport/Guidehouse Analysis 2022											
Annual Energy Use (MMWh/y)	NCI Analysis, 2008 / ADL, 1996		DOE, 2014: CREReport/Guidehouse Analysis 2022											
Indexed Annual Efficiency						Calculated								
Average Life (years)	ADL, 1996/NCI Analysis, 2008				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Total Installed Cost (2022\$)	NCI Analysis, 2008 / Heatcraft, 2008 / RS Means, 2007				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Total Installed Cost (2022\$/kBtu/h)						Calculated								
Annual Maintenance Cost (2022\$)	NCI Analysis, 2008				DOE, 2014:	CREReport/	Guidehouse	Analysis 20	22					
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Supermarket Display Cases

	2012	2018		20)22		203	30	20	40	205	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	ENERGY STAR	High	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	DOE, 2007/NCI Analysis, 2008				DOE, 20	14:CRERe _l	port/Guidel	house Anal	ysis 2022						
Median Store Size (ft²)	Food Marketing Institute (FMI), 2012					(CBECS 2018	}							
Case Length (ft)				DOE	, 2016: CREI	Report/Gu	idehouse Ar	nalysis 2022							
Annual Energy Use (kWh/y) ^{1,2}	DOE, 2007/NCI Analysis, 2008				DOE, 20	14:CREReյ	oort/Guidel	house Anal	ysis 2022						
Annual Energy Use / Case Length (kWh/ft)			Calculated												
Indexed Annual Efficiency ³			Calculated												
Average Life (years)	DOE, 2007/NCI Analysis, 2008				DOE, 20	16։CRERe _]	oort/Guidel	house Anal	ysis 2022						
Retail Equipment Cost (2022\$)	DOE, 2007/NCI Analysis, 2008			DOE, 20	014:CRERe _l	oort/Guide	ehouse Anal	ysis 2022/T	he Restaura	ant Store					
Total Installed Cost (2022\$)	DOE, 2007/NCI Analysis, 2008				DOE, 20	14։CRERe _l	port/Guidel	house Anal	ysis 2022						
Total Installed Cost (2022\$/kBtu/h)						Calcula	ted								
Annual Maintenance Cos (2022\$) ⁴	tDOE, 2007/NCI Analysis, 2008				DOE, 20	14:CRERe _l	oort/Guidel	house Anal	ysis 2022						
Annual Maintenance Cos (2022\$/kBtu/h)						Calcula	ted								

Data Sources » Commercial Reach-In Refrigerators

	2012	2018		20)22		20	30	20	40	20	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	ADL, 1996/NCI Analysis, 2008					DOE, 201	14:CRERep	ort							
Size (ft³)	ADL, 1996 / Distributor Web Sites					DOE, 201	14:CRERep	ort							
Annual Energy Use (kWh/y)	ADL, 1996/NCI Analysis, 2008			DOE, 201	4: CRERep	ort/Guideho	use Analysi	s2022/ENE	RGYSTAR	2022					
Annual Energy Use / Volume (kWh/y/ft³)	NCI Analysis, 2012		Calculated												
Indexed Annual Efficiency			Calculated												
Average Life (years)						Calculated									
Retail Equipment Cost (2022\$)	ACEEE, 2002					DOE, 20	014: CRETS	D							
Total Installed Cost (2022\$)	ADL, 1996/ Distributor Web Sites / NCI Analysis, 2008		DOE, 20	014: CRERep	ort/Guidel	nouse Analys	is2022/ENI	ERGY STAR	2022/The	Restauran	tStore				
Total Installed Cost (2022\$/kBtu/h)	Distributor Web Sites / NCI Analysis, 2008				DOE, 201	4: CRERepor	t/Guideho	use Analysi	s 2022						
Annual Maintenance Cost (2022\$)						Calculated									
Annual Maintenance Cost (2022\$/kBtu/h)	NCI Analysis, 2008				DOE, 201	4:CRERepor	t/Guideho	use Analysi	s 2022						
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated									

Data Sources » Commercial Reach-In Freezers

	2012	2018		20	22		203	30	20	40	2050	0				
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High				
Cooling Capacity (Btu/h)	ADL, 1996 / NCI Analysis, 2008					DOE, 2016	:CREReport									
Size (ft³)	ADL, 1996 / Distributor Web Sites					DOE, 2016	:CREReport									
Annual Energy Use (kWh/y)	ADL, 1996 / NCI Analysis, 2008				DOE, 2016:	CREReport/	Guidehouse	Analysis 20	22							
Annual Energy Use / Volume (kWh/y/ft³)	NCI Analysis, 2012		Calculated Calculated													
Indexed Annual Efficiency			Calculated DOE, 2016: CREReport/Guidehouse Analysis 2022													
Average Life (years)	ACEEE, 2002				DOE, 2016:	CREReport/	Guidehouse	Analysis 20	22							
Retail Equipment Cost (2022\$)	ADL, 1996/ Distributor Web Sites / NCI Analysis, 2008		DOE, 20	016: CRERep	ort/Guideho	ouse Analysis 2	2022/ENERC	GY STAR 20	22 / The Res	taurant Sto	re					
Total Installed Cost (2022\$)	Distributor Web Sites / NCI Analysis, 2008				DOE, 2016:	CREReport/	Guidehouse	Analysis 20	22							
Total Installed Cost (2022\$/kBtu/h)						Calculated										
Annual Maintenance Cost (2022\$)	NCI Analysis, 2008				DOE, 2016:	CREReport/	Guidehouse	Analysis 20	22							
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated										

Data Sources » Commercial Walk-In Refrigerators

	2012	2018		20	22		20	30	20	40	205	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)		Ü		DOE CRE	Report 2016	/CCMS 2022 /	Guidehouse A	Analysis 2022							
Size (ft²)				DC	DE 2014 W ICI	FTSD/Guideh	ouse Analysis	s 2022							
Annual Energy Use (kWh/y)	ADL, 1996 / PG&E, 2004 / NCI Analysis, 2008				DOE C	RE Report 201	6/Guidehous	se Analysis 202	22						
Annual Energy Use / Area (kWh/ft²/y)						Calculated									
Indexed Annual Efficiency			Calculated DOE CRE Report 2016 / Guidehouse Analysis 2022												
Insulated Box Average Life (years)	ADL, 1996 / PG&E, 2004		DOE CRE Report 2016/Guidehouse Analysis 2022												
Compressor Average Life (years)			DOE CRE Report 2016/Guidehouse Analysis 2022 DOE CRE Report 2016/Guidehouse Analysis 2022												
Retail Equipment Cost (2022\$)	ADL, 1996 / Distributor Web Sites / NCI Analysis, 2008			DO	E CRE Repor	t 2016/Websta	aurant 2022 / C	Guidehouse Ar	nalysis 2022						
Total Installed Cost (2022\$)	ADL, 1996 / Distributor Web Sites / NCI Analysis, 2008			DO	E CRE Repor	t 2016/Websta	aurant 2022 / C	Guidehouse Ar	nalysis 2023						
Total Installed Cost (2022\$/kBtu/h)						Calculated									
Annual Maintenance Cost (2022\$)	ADL, 1996 / FMI, 2005 / NCI Analysis, 2008				DOE C	RE Report 201	6/Guidehous	se Analysis 202	22						
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated									

Data Sources » Commercial Walk-In Freezers

	2012	2018		. 2	022		20	30	20	40	20	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	ADL, 1996/NCI Analysis, 2008	Ü]	OOE CRE Rep	ort 2016/CCM	S 2022 / Guid	ehouse Anal	ysis 2022						
Size (ft²)	ADL, 1996 / NCI Analysis, 2008					Guidehous	se Analysis 20	22							
Annual Energy Use (kWh/y)	ADL, 1996 / PG&E, 2004 / NCI Analysis, 2008					Guidehouse	CREReport2	2016							
Annual Energy Use / Area (kWh/ft²/y)			Calculated												
Indexed Annual Efficiency			Calculated												
Insulated Box Average Life (years)	ADL, 1996 / PG&E, 2004				DOE CI	RE Report 2016	/Guidehouse	Analysis 202	22						
Compressor Average Life (years)	ADL, 1996 / PG&E, 2004				DOE CI	RE Report 2016	/Guidehouse	Analysis 202	22						
Retail Equipment Cos (2022\$)	ADL, 1996 / tDistributor Web Sites / NCI Analysis, 2008			DO	E CRE Report	:2016/Webstau	ırant 2022 / Gi	uidehouse Ai	nalysis 2022						
Total Installed Cost (2022\$)	ADL, 1996 / Distributor Web Sites / NCI Analysis, 2008			DO	E CRE Report	: 2016/Webstau	ırant 2022 / G	uidehouse A	nalysis 2023						
Total Installed Cost (2022\$/kBtu/h)						Calculated									
Annual Maintenance Cost (2022\$)				DX	DE CRE Repoi	t 2016/Guideh	ouse Analysi	s 2022							
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated									

Data Sources » Commercial Ice Machines

	2012	2018		20	22		20	30	204	40	205	50			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Output (pounds [lbs] per day)	ADL, 1996/NCI Analysis, 2008			DOE, 2	2022: ACIMT	'SD/Guideho	use Analysis,	2022/CCMS1	Database 202	22					
Water Use per Hundred Pounds (gal/hundred lbs)	ADL, 1996 / Distributor Web Sites			DOE, 2	2022: ACIMT	SD/Guideho	use Analysis, 2	2022/CCMS1	Database 202	22					
Energy Use per Hundred Pounds (kWh/hundred lbs)	ADL, 1996/NCI Analysis, 2008		DOE, 2022: ACIMTSD / Guidehouse Analysis, 2022												
Annual Energy Use (kWh/y)	ACEEE, 2002 / NCI Analysis, 2012		DOE, 2022: ACIM TSD / Guidehouse Analysis, 2022 / ENERGY STAR												
Indexed Annual Efficiency	Calculated														
Average Life (years)	ADL, 1996/ Distributor Web Sites / NCI Analysis, 2008				DOE, 20	22: ACIM TSE) / Guidehous	e Analysis, 20)22						
Retail Equipment Cost (2022\$)	Distributor Web Sites / NCI Analysis, 2008				DOE, 20	22: ACIM TSE) / Guidehous	e Analysis, 20)22						
Total Installed Cost (with Bin)	NCI Analysis, 2008				DOE, 20	22: ACIMTSE)/Guidehous	e Analysis, 20)22						
Total Installed Cost (2022\$/kBtu/h)						Calculated	I								
Annual Maintenance Cost (2022\$)	Analysis, 2008				DOE, 20	22: ACIMTSE)/Guidehous	e Analysis, 20)22						
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated	l								

Data Sources » Commercial Beverage Merchandisers

	2012	2018		20	22		203	30	20	40	2050	0		
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High		
Cooling Capacity (Btu/h)				DOE	, 2014: CRE R	eport / Guideł	nouse Analysi	s 2022						
Size (ft³)	ADL, 1996 / Distributor Web Sites				DOE, 2014:	CRE Report/	Guidehouse A	Analysis 202	2					
Annual Energy Use (kWh/y)	ADL, 1996/ NCI Analysis, 2008	DOE, 2014: CRE Report / Guidehouse Analysis 2022 / ENERGY STAR 2022												
Annual Energy Use / Volume (kWh/ft³/y)		Calculated												
Indexed Annual Efficiency						Calculated								
Average Life (years)	ACEEE, 2002				DOE, 2014:	CRE Report/	Guidehouse A	Analysis 202	2					
Retail Equipment Cost (2022\$)	ADL, 1996 / Distributor Web Sites			DOE, 2014:	CRE Report/	Guidehouse A	analysis 2022 /	'KaTom Res	taurantSupj	ply				
Total Installed Cost (2022\$)				DOE	, 2014: CRE R	eport / Guideł	nouse Analysi	s 2022						
Total Installed Cost (2022\$/kBtu/h)		DOE, 2014: CRE Report / Guidehouse Analysis 2022 Calculated												
Annual Maintenance Cost (2022\$	()			DOE	, 2014: CRE R	eport / Guideh	nouse Analysi	s 2022						
Annual Maintenance Cost (2022\$/kBtu/h)						Calculated								

Data Sources » Commercial Refrigerated Vending Machines

	2012	2018		202	22		20	030	204	10	2050)			
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High			
Cooling Capacity (Btu/h)	DOE, 2015: BVMTSD/ Guidehouse Analysis, 2015	Ü			DOE, 2	2022: BVM TS	D/ Guidehou	use Analysis, 2	2022						
Can Capacity	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD							
Size (ft³)				I	DOE, 2022: B	VMTSD/Gu	idehouse Ana	alysis, 2022							
Annual Energy Use (kWh/y)	DOE, 2015: BVMTSD		DOE, 2022: BVM TSD Calculated												
Annual Energy Use / Volume (kWh/ft³/y)															
Indexed Annual Efficiency						Calcula	ated								
Average Life (years)	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD							
Retail Equipment Cost (2022\$	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD							
Total Installed Cost (2022\$)	DOE, 2015: BVMTSD					DOE,	2022:BVMT	SD							
Total Installed Cost (2022\$/kBtu/h)						Calcula	ated								
Annual Maintenance Cost (2022\$)	DOE, 2015: BVMTSD/ Guidehouse Analysis, 2015				DOE, 2	2022:BVMTS	D/ Guidehou	use Analysis, 2	2022						
Annual Maintenance Cost (2022\$/kBtu/h)				1	DOE, 2022: B	3VMTSD/Gu	idehouse An	alysis, 2022							

Commercial Ventilation

Data Sources » Commercial Constant Air Volume Ventilation

	2012	2018		2022			20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
System Airflow (CFM)	CBECS 2003 & BED 2007				(CBECS 201	8					
System Fan Power (kW)	ACIID AEOO 1	ACIDAEO0 1	ACID AEOO 1									
Specific Fan Power(W/CFM)	2007	ASHKAE90.1- 2016	ASHRAE90.1- 2019		AS	HRAE90.1	2019/Gu	idehouse	Analysis 2	.022		
Annual Fan Energy Use (kWh/y)												
Average Life (years)				ASI	-IRAE: Service	Life Datal	oase					
Total Installed Cost (2022\$)					2022 RS Mea	ns Online						
Annual Maintenance Cost (2022\$)	2022 RS Means Online / Guidehouse											
Total Installed Cost (2022\$/thousand CFM)	Calculated											
Annual Maintenance Cost (2022\$/thousand CFM)					Calcula	ated						

Data Sources » Commercial Variable Air Volume Ventilation

	2012	2018		2022			20	30	20	40	20	50
DATA SOURCES	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
System Airflow (CFM)	CBECS 2003 & BED 2007				(CBECS 201	18					
System Fan Power (kW) Specific Fan Power (W/CFM) Annual Fan Energy Use (kWh/y)	ASHRAE 90.1-2007	$\Delta SHR \Delta HUU + 70119 / C_{111}dehousee \Delta nature (7077)$										
Average Life (years)				ASH	IRAE: Service	Life Data	base					
Total Installed Cost (2022\$)					2022 RS Mea	ns Online						
Annual Maintenance Cost (2022\$)	2022 RS Means Online / Guidehouse											
Total Installed Cost (2022\$/thousand CFM)	Calculated											
Annual Maintenance Cost (2022\$/thousand CFM)	Calculated Calculated											

Data Sources » Commercial Fan Coil Unit

DATA SOURCES	2012	2018	2022				2030		2040		2050	
	Installed Stock Average	Installed Stock Average	Low	Typical	High	ENERGY STAR	Typical	High	Typical	High	Typical	High
System Airflow (CFM)	Product Literature											
System Fan Power (kW)												
Specific Fan Power(W/CFM)	ASHRAE90.1-ASHRAE90.1- 2007 2016 2019 ASHRAE90.1 2019 / Guidehouse Analysis 2022											
Annual Fan Energy Use (kWh/y)												
AverageLife (years)	ASHRAE: Service Life Database											
Total Installed Cost (2022\$)	2022 RS Means Online											
Annual Maintenance Cost (2022\$)	2022 RS Means Online / Guidehouse											
Total Installed Cost (2022\$/thousand CFM)	Calculated											
Annual Maintenance Cost (2022\$/thousand CFM)	Calculated											

Final

Appendix B References

> Guidehouse 1200 19th Street, NW, Suite 700 Washington, D.C. 20036

> > And

Leidos 11951 Freedom Drive Reston, VA 20190

References

- ASHRAE Service Life and Maintenance Cost Database. (n.d.).
- ASHRAE 90.1-2010, 2016, 2019. Energy Standard for Buildings Except Low-Rise Residential Buildings
- Appliance Magazine. (2005). Portrait of the U.S. Appliance Industry. Appliance Magazine.
- Arthur D. Little. (1996). Energy Savings Potential for Commercial Refrigeration Equipment.
- DOE SSL Program. (2012a). 2010 U.S. Lighting Market Characterization
- DOE SSL Program. (2012b). Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates
- DOE SSL Program. (2017). 2015 U.S. Lighting Market Characterization
- DOE Appliance and Equipment Standards Program. (2022). *The Compliance Certification Database*.
- EERE. (2014). Energy Conservation Program for Appliance Standards: Automatic Commercial Ice Makers
- EERE. (2014). Energy Conservation Program for Appliance Standards: Commercial Refrigeration Equipment.
- EERE. (2014). Energy Conservation Program for Appliance Standards: Refrigerated Beverage Vending Machines
- EERE. (2015). Energy Conservation Program for Appliance Standards: Walk-in Coolers and Freezers.
- ENERGY STAR. (n.d.). Retrieved November 2015, from ENERGY STAR Products: http://www.energystar.gov/index.cfm?c=products.pr_find_es_products
- ENERGY STAR. (2020) from ENERGY STAR Lamps Specification Version 2.1: https://www.energystar.gov/sites/default/files/Lamps%20V2.1%20Final%20Specification%20%28Revised%20June%202 020%29 0.pdf

References

- ENERGY STAR. (2014) ENERGY STAR® Program Requirements Product Specification for Lamps (Light Bulbs) Eligibility Criteria Version 1.1
- ENERGY STAR. (2012) ENERGY STAR® Program Requirements Product Specification for Luminaires (Light Fixtures) Eligibility Criteria Version 1.1
- Environmental Protection Agency. (2022). *Establishing a Recycling Program for Mercury-Containing Light Bulbs*. From: https://www.epa.gov/hw/establishing-recycling-program-mercury-containing-light-bulbs
- Federal Standard. (1975). National energy conservation standards authorized under the Energy and Policy Conservation Act of 2007 (EPCA 1975).
- Federal Standard. (2005). National energy conservation standards authorized under the Energy Policy Act of 2005 (EPACT 2005).
- Federal Standard. (2007). National energy conservation standards authorized under the Energy Independence and Security Act of 2007 (EISA 2007).
- Food Marketing Institute. (n.d.). Retrieved May 2022, from FMI Supermarket Facts: https://www.fmi.org/our-research/supermarket-facts/average-total-store-size-square-feetLighting Research Institute. (1992). Specifier Reports, Specular Reflectors.
- KaTom. (n.d.) Retrieved May 2022, From: https://www.katom.com/
- Navigant Consulting, Inc. (2009). Energy Savings Potential and R&D Opportunities for Commercial Refrigeration.
- Navigant Consulting, Inc. (n.d.). In House Expertise.

References

- Navigant Consulting, Inc. (2019). Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, Model. https://www.energy.gov/eere/ssl/downloads/2019-ssl-forecast-report
- Product Literature. (n.d.). Literature from manufacturers and experts on specific products
- The Restaurant Store. (n.d.). Retrieved May 2022, From: https://www.therestaurantstore.com/
- *RS Means Online*. (2022). Retrieved June 2022, From: https://www.rsmeansonline.com/
- Webstaurant. (n.d.) Retrieved May 2022, From: https://www.webstaurantstore.com/