

Independent Statistics and Analysis
**U.S. Energy Information
Administration**

Short-Term Energy Outlook: Energy-Related Carbon Dioxide Forecasts

www.eia.gov
U.S. Department of Energy
Washington, DC 20585
Last updated: February 2026

The U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy (DOE), prepared this report. By law, our data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government. The views in this report do not represent those of DOE or any other federal agencies.

Table of Contents

Introduction	1
Carbon Dioxide Model Outputs	1
Data Sources and Aggregations	2
Methodology.....	3
Step 1: Download CO ₂ emissions and MER fuel consumption	4
Step 2: Calculate emissive shares for fuels.....	5
Step 3: Forecast STEO CO ₂ emissions	6

Table of Figures

Figure 1. STEO CO ₂ Emission Calculation Flow Diagram	4
--	---

Table of Tables

Table 1. STEO CO ₂ Emission Factors and Emissive Shares	3
Table 2. MER fuel codes and descriptions	5

Introduction

Energy use continues to be the largest source of carbon dioxide (CO₂) emissions in the United States, accounting for about 93% of U.S. CO₂ emissions in 2024.¹ The majority of energy-related CO₂ emissions come from fossil fuel (coal, natural gas, and petroleum) combustion, with small amounts from the nonfuel use of energy inputs, such as for industrial feedstocks, and emissions from non-biogenic municipal solid waste and steam geothermal electricity generation. Non-energy CO₂ emissions, such as those from agricultural use or some industrial processes, are outside the scope of EIA analysis.

The Short-Term Energy Outlook (STEO) provides historical CO₂ emissions estimates (starting in 1998), as well as CO₂ emissions forecasts, for three major fossil fuel categories: coal, natural gas, and petroleum. The historical and forecast CO₂ emissions are available as monthly, quarterly, and annual data series from [STEO Table 9a](#). Short-term forecasts of CO₂ emissions are calculated using STEO forecast of fossil fuel consumption and applying estimated conversion factors of CO₂ emissions per unit of fuel consumed, which are taken or calculated from the EIA [Monthly Energy Review](#) (MER) database.²

Carbon Dioxide Model Outputs

The STEO publishes CO₂ emissions estimates for three primary fossil fuel categories:

- Coal
- Natural gas
- Petroleum

Coal and petroleum are both aggregate categories, consisting of distinct subcomponents:

- Coal
 - Total U.S. coal consumption
 - Coal coke net imports
- Petroleum
 - Asphalt and road oil
 - Aviation gasoline
 - Jet fuel
 - Distillate fuel oil³
 - Kerosene
 - Liquified petroleum gases⁴
 - Lubricants
 - Motor gasoline⁵
 - Petroleum coke
 - Residual fuel oil

¹ https://www.epa.gov/system/files/documents/2024-04/us-ghg-inventory-2024-chapter-executive-summary_04-16-2024.pdf

² The historical monthly CO₂ emissions provided in the STEO tables are from the MER. The emissions factors used there, as well as in the STEO, are sourced primarily from EPA's [Inventory of Greenhouse Gas Emissions and Sinks](#).

³ Not including renewable diesel or biodiesel

⁴ Propane, ethane, butane, and isobutane

⁵ Excluding blended fuel ethanol

- Other petroleum⁶

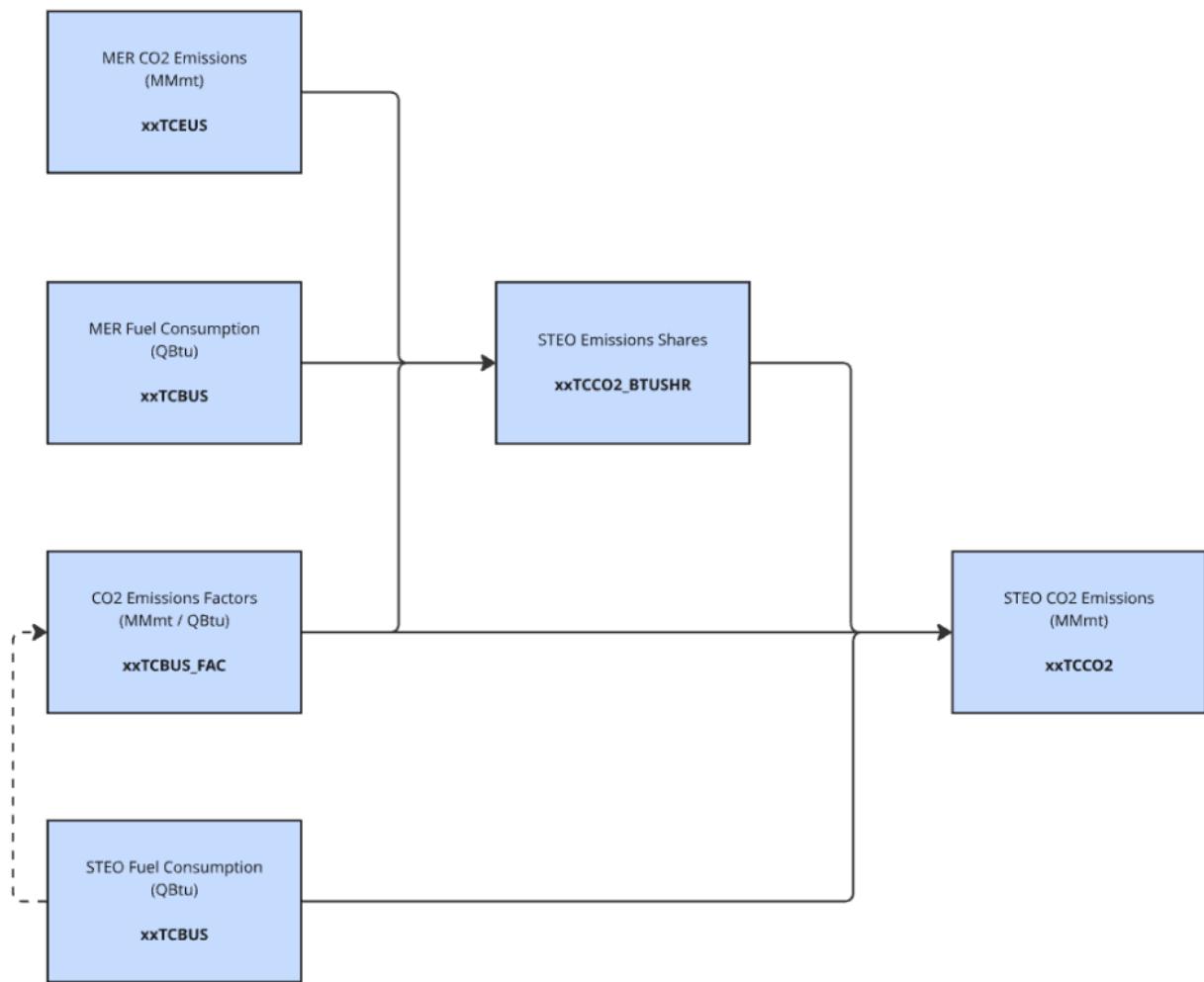
Data Sources and Aggregations

STEO CO₂ emission forecasts are based on STEO forecasts of fossil fuel consumption, established CO₂ emissions factors, and calculated emissive shares of energy products. The CO₂ emissions factors used are standardized across most EIA products, based on the latest available data from EPA's *Inventory of Greenhouse Gas Emissions and Sinks*. The emissive share for each fuel is calculated using MER emissions estimates, as the MER more explicitly accounts for non-combustion uses of energy products. By taking the ratio of the MER CO₂ emissions estimate, which takes into account sequestration from non-combustion fuel use, to a hypothetical CO₂ estimate assuming full combustion, we calculate effective emissions shares for each fuel. Additional details on the calculation of these emissions shares are available in [Step 2](#) of the [Methodology](#) section.

CO₂ factors and emissive shares of each fuel are provided in Table 1.

⁶ Includes aviation gasoline blending components, motor gasoline blending components, crude oil, petroleum feedstocks, still gas, special naphtha, pentanes plus, unfinished oils, waxes, and miscellaneous petroleum products

Table 1. STEO CO₂ Emission Factors and Emissive Shares


Fuel	CO ₂ emissions factor	Emissive share
	(million metric tons CO ₂ per quadrillion British thermal units)	
Natural gas	52.91	1.00
Coal	95.70 ^a	1.00
Coal coke net imports	113.67	1.00
Aviation gasoline blending components	69.19	1.00
Aviation gasoline	69.15	1.00
Liquified Petroleum Gases	61.38 ^a	0.43 ^a
Crude oil	74.47	1.00
Distillate fuel oil	74.14	1.00
Jet fuel	72.23	1.00
Kerosene	73.19	1.00
Lubricants	74.07	0.5
Motor gasoline blending components	71.35	1.00
Finished motor gasoline	70.66	1.00
Petroleum coke	102.12	0.94
Residual fuel oil	75.09	1.00
Still gas	66.73	0.93
Special naphtha	72.38	1.00
Asphalt and road oil	75.35	0.00
Unfinished oils	74.47	1.00

Data source: U.S. Energy Information Administration, *Short-Term Energy Outlook* and *Monthly Energy Review*, February 2026

^a This value shown here is a weighted average, and may not be exact for each STEO publication

Methodology

A flow chart of the STEO methodology for calculating CO₂ emissions is shown in Figure 1, followed by detailed steps in the calculation procedure.

Figure 1. STEO CO₂ Emission Calculation Flow Diagram

Note: For some aggregate fuel categories, such as liquified petroleum gases, the emissions factor used is based on a weighted average of consumption across underlying products (indicated by the dashed line). MMmt=Million metric tons; QBtu=Quadrillion British thermal units.

Step 1: Download CO₂ emissions and MER fuel consumption

We start by downloading the relevant CO₂ emissions and fuel consumption variables. The MER CO₂ emissions and fuel consumption series use the following naming conventions:

xxTCEUS = CO₂ emissions from fuel xx (MMmt)

xxTCBUS = Total consumption of fuel xx (QBtu)

Where xx is the 2-character MER code to represent each fuel. For calculating CO₂ emissions in the STEO, 23 MER emissions and consumption series are required. The character codes for each of these required fuels are listed in Table 2.

Table 2. MER fuel codes and descriptions

Fuel character code	Fuel description
AB	Aviation gasoline blending components
AR	Asphalt and road oil
AV	Aviation gasoline blending components
CL	Coal
CO	Crude oil
DM	Distillate fuel oil, excluding biofuels
FN	Naphthas for petrochemical feedstock use
FO	Other oils for petrochemical feedstock use
JF	Jet fuel
KS	Kerosene
LG	Liquified petroleum gases
LU	Lubricants
MB	Motor gasoline blending components
MM	Motor gasoline, excluding ethanol
MS	Miscellaneous petroleum products
NN	Natural gas, excluding supplemental gaseous fuels
PC	Petroleum coke
PO	Other petroleum products
RF	Residual Fuel Oil
SG	Still Gas
UO	Unfinished Oils
WX	Waxes

The exceptions to this convention are the series for net imports of coal coke, which are *CCNIEUS* and *CCNIBUS*. These series can be downloaded from the “Total Energy” category of the [EIA Open Data](#) portal.

Step 2: Calculate emissive shares for fuels

Using the MER emissions and fuel consumption series downloaded in Step 1, we estimate emissive shares of each fuel. The MER CO₂ emissions estimates (*xxTCEUS*) account for both combustion as well as non-combustion uses of each fuel (such as in the form of industrial feedstocks). In cases where a fuel is used for non-combustion purposes, some amount of CO₂ is assumed to be sequestered (or stored) in final industrial products and not emitted into the atmosphere. By taking the ratio of emissions estimate to a theoretical full-combustion emissions estimate, using total consumption (*xxTCBUS*) and emissions factors (*xxTCBUS_FAC*), we derive an effective emissive share (*xxTCCO2_BTUSHR*).

$$xxTCCO2_BTUSHR = \frac{xxTCEUS}{(xxTCBUS \cdot xxTCBUS_FAC)}$$

Step 3: Forecast STEO CO₂ emissions

Using STEO fuel consumption estimates, emissions factors, and calculated emissive shares (from Step 2), we calculate CO₂ emissions estimates (xxTCCO2) over the STEO forecast.

$$xxTCCO2 = xxTCBUS \cdot xxTCBUS_FAC \cdot xxTCCO2_BTUSHR$$

Note that some of emissions factors and emissive shares used are weighted averages across multiple fuels (as indicated in the Table 1 notes and the dashed line in Figure 1), and that some individual fuels are aggregated for presentation in STEO tables (as shown in Carbon Dioxide Model Outputs).