
Section B2:  Methods of Solving for Equilibrium  
 
There are many methods of projecting a time series based on finding a relationship with another 
time series. These methods, such as linear regression, require that the related series already be 
projected into the future. Economic theory suggests that energy prices are based primarily on 
long-term energy demand and production costs, while energy demand depends on energy prices, 
economic activity, technology efficiency, and other factors. One can therefore build a simple 
model of energy prices and consumption by developing a series of equations relating energy 
demand to prices and energy prices to demand, including other factors in the equations as 
needed. Methods based on such a model include Jacobi optimization, Gauss-Seidel optimization, 
and the Adaptive Expectation method. The National Energy Modeling System (NEMS) uses 
these methods as well as the method of Regula Falsi, described below. 
 
B2.1.  Jacobi Optimization  
Jacobi Optimization is an iterative method of solving a set of linear equations by replacing the 
independent variables with previous solved-for values. The method begins with a set of educated 
guesses of the unknown values. We use these initial values to solve all of the equations in the set, 
and then we use the results to solve the equations a second time. We continue until the 
differences between the results of the successive iterations are small enough to fall within a 
predetermined tolerance or until a maximum number of iterations is completed. 

As an example, consider the following equations, constructed as simple price and demand 
(linear) curves, with the quantity demanded declining as the price 𝑝𝑝 increases and the price of the 
product supplied increasing as the quantity demanded 𝑞𝑞 increases: 
 
 𝑞𝑞 = 5.6 − (0.3 × 𝑝𝑝), (B2.1.1) 
and 
 𝑝𝑝 = 0.7 + (2.3 × 𝑞𝑞). (B2.1.2) 

 
We start with an initial guess of 𝑝𝑝 = 0 and 𝑞𝑞 = 0, and solve both equations: 
 

 𝑞𝑞 = 5.6 − (0.3 × 0) = 5.6, (B2.1.3) 
and 
 𝑝𝑝 = 0.7 + (2.3 × 0) = 0.7. (B2.1.4) 

 
Next, we substitute 𝑝𝑝 = 0.7 into the equation for 𝑞𝑞 and 𝑞𝑞 = 5.6 into the equation for 𝑝𝑝: 
 
 𝑞𝑞 = 5.6 − (0.3 × 0.7) = 5.39, (B2.1.5) 
and 
 𝑝𝑝 = 0.7 + (2.3 × 5.6) = 13.58. (B2.1.6) 

 
We continue substituting the resulting (𝑝𝑝, 𝑞𝑞) pairs into the equations until we arrive in the 
neighborhood of the solution (𝑝𝑝 = 8.0, 𝑞𝑞 = 3.2). 
 



 
B2.2.  Gauss-Seidel Optimization  
Much like Jacobi method, the Gauss-Seidel Optimization method is an iterative method of 
solving a set of linear equations by replacing the unknown variables with previously solved-for 
values and is initialized with educated guesses. The equations are arranged in a specified order, 
and each equation is solved in turn using the most recently available values. Since the equations 
are solved in sequence, the solution is at least partially dependent on the order in which the 
equations are solved. The accuracy of the initial guesses affects the speed of convergence.  
 
The difference between the Gauss-Seidel method and the Jacobi method is that, in the Jacobi 
method, all equations are solved using the same set of data input, whereas, in the Gauss-Seidel 
method, each equation is solved using all data available at the time of its solution. The Gauss-
Seidel method is most successful on a set of equations whose matrix representation is a strictly or 
irreducibly diagonally dominant or symmetric positive-definite matrix. If the matrix is not 
diagonally dominant, the method could result in a sequence of results that diverge rather than 
converge. 
 
Using as an example the equations illustrating the Jacobi method, we have 
 
 𝑞𝑞 = 5.6 − (0.3 × 𝑝𝑝), (B2.2.1) 
and 
 𝑝𝑝 = 0.7 + (2.3 × 𝑞𝑞). (B2.2.2) 

 
We can start with an initial guess of 𝑝𝑝 = 0 and 𝑞𝑞 = 0. This time, we solve each equation in turn, 
using the latest available 𝑝𝑝 and 𝑞𝑞 values. We first set 𝑝𝑝 = 0 and solve for 𝑞𝑞: 
 
 𝑞𝑞 = 5.6 − (0.3 × 0) = 5.6 (B2.2.3) 
 
Next we set 𝑞𝑞 = 5.6 and solve for 𝑝𝑝: 
 
 𝑝𝑝 = 0.7 + (2.3 × 5.6) = 13.58 (B2.2.4) 

 
Then we set 𝑝𝑝 = 13.58 and solve for 𝑞𝑞: 
 
 𝑞𝑞 = 5.6 − (0.3 × 13.58) = 1.526 (B2.2.5) 

 
Similarly, we set 𝑞𝑞 = 1.526 and solve for 𝑝𝑝: 
 
 𝑝𝑝 = 0.7 + (2.3 × 1.526) = 4.2098 (B2.2.6) 

 
We continue substituting the resulting 𝑝𝑝 and 𝑞𝑞 values into the equations until we arrive in the 
neighborhood of the solution (𝑝𝑝 = 8.0, 𝑞𝑞 = 3.2). Note that the Gauss-Seidel method converges 
more quickly than does the Jacobi method. 

Convergence can be tested for each variable each time it is re-estimated. After each pass through 
the entire set of equations, overall convergence can be tested, and the process is stopped once all 



changes between iterations are within a set tolerance. We may also terminate the process after a 
fixed maximum number of iterations. 
 
B2.3.  Regula Falsi  
Regula falsi, the method of false position, is a form of linear interpolation that can be used to 
iteratively solve a one-variable equation. Simple regula falsi may use direct proportion. If the 
equation be, for example, 

 182 = 4𝑥𝑥 + 𝑥𝑥 3,⁄  (B2.3.1) 
 
we may initially set 𝑥𝑥 = 6 to obtain 

 4 × 6 + 6 3 = 26.⁄  (B2.3.2) 
 
Because 26 is 7 times smaller than 182, we scale the initial guess (𝑥𝑥 = 6) up by a factor of 7 to 
arrive at the answer, 𝑥𝑥 = 42. Clearly, equation B11.3.1 is also solvable by simple algebra. 

Double false position can be used when the problem is more difficult and/or the equation is non-
linear. Just as before, we guess a solution and calculate the result. We then revise the guess 
enough so that we are fairly confident that the second guess will err in the opposite direction 
from the first one, e.g., if the first guess, 𝑔𝑔1 gave a solution 𝑎𝑎1 that was too high, we try a second 
guess 𝑔𝑔2 that gives a low solution, 𝑎𝑎2. Once the problem has been bracketed between 𝑔𝑔1 and 𝑔𝑔2, 
our next guess could be of the form 
 
 

𝑔𝑔3 =
(𝑎𝑎1 × 𝑔𝑔2) − (𝑎𝑎2 × 𝑔𝑔1)

(𝑎𝑎1 − 𝑎𝑎2)
. (B2.3.3) 

 
The third trial should result in a point to one side of the answer, but closer. We then replace the 
old bracket point on that side with the newer point. If, continuing the example, the third guess 𝑔𝑔3 
be too low (like 𝑔𝑔2), we would replace 𝑎𝑎2 with 𝑎𝑎3 in the equation above, and we would replace 
𝑔𝑔2 with 𝑔𝑔3. If, however, 𝑔𝑔2 be too high, we would replace 𝑎𝑎1 with 𝑎𝑎3 and 𝑔𝑔1 with 𝑔𝑔3. With 
enough iterations, we should converge on a solution, as long as the shape of the curve is either 
monotonically increasing or decreasing. 
 
The key for solving problems using this method is to successfully bracket the answer quickly, 
i.e., have one guess that provides a too-high answer and a second guess that provides a too-low 
answer. Regula falsi works less well, or not at all, if the equations change across iterations. 
 
 
B2.4.  Adaptive Expectation Method 

The basis for the adaptive expectation approach is the notion that increases in cumulative energy 
production would deplete domestic resources and thus place upward pressure on long-term 
energy prices. The following equation captures this general idea: 

𝑃𝑃𝑦𝑦 = �𝐴𝐴𝑦𝑦 × 𝑄𝑄𝑦𝑦𝑒𝑒� + 𝐵𝐵𝑦𝑦 



where 𝑃𝑃𝑦𝑦 is the Henry Hub natural gas spot price for a future year, 𝑦𝑦, 𝑄𝑄𝑦𝑦 is the cumulative 
production from a specified starting year to year 𝑦𝑦, e is a judgment-specified parameter, and 𝐴𝐴𝑦𝑦 
and 𝐵𝐵𝑦𝑦 are computed as explained below. 

The approach was developed to represent the following assumptions: 

• Prices should be upward sloping as a function of cumulative natural gas production, as 
prices could be expected to rise as existing resources are depleted. 

• The rate of change in the natural gas spot price is a function of the economical reserves 
that remain to be discovered and produced. The value of the parameter e determines the 
shape of the function. 

 
The approach assumes that, when cumulative natural gas production reaches a certain level 𝑄𝑄𝑄𝑄, a 
target price 𝑃𝑃𝑃𝑃 results. In practice, the target production value 𝑃𝑃𝑃𝑃 is assumed, while 𝑄𝑄𝑄𝑄 and the 
annual production growth rates are model-based estimates. The parameters 𝐴𝐴𝑦𝑦 and 𝐵𝐵𝑦𝑦 are 
computed as follows: 

𝐴𝐴𝑦𝑦  =
𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑦𝑦−1
𝑄𝑄𝑄𝑄𝑒𝑒 − 𝑄𝑄𝑄𝑄𝑦𝑦−1𝑒𝑒 , 

and  
𝐵𝐵𝑦𝑦 = 𝑃𝑃𝑃𝑃 − 𝐴𝐴𝑦𝑦 × 𝑄𝑄𝑄𝑄𝑒𝑒 , 

 
where 
 

𝐷𝐷𝑦𝑦−1= natural gas production in year 𝑦𝑦 − 1; 
𝑃𝑃𝑆𝑆𝑦𝑦−1= Henry Hub natural gas spot price in year 𝑦𝑦 − 1; and 
𝑄𝑄𝑆𝑆𝑦𝑦−1= cumulative natural gas production from the starting year to year 𝑦𝑦 − 1. 

 
The following equation extrapolates cumulative production for a future year 𝑦𝑦: 

𝑄𝑄𝑦𝑦 = 𝑄𝑄𝑦𝑦−1 + 𝐷𝐷𝑦𝑦−1 

This generates the expected Henry Hub spot prices: 

𝑃𝑃𝑦𝑦 = 𝐴𝐴𝑦𝑦 × 𝑄𝑄𝑦𝑦𝑒𝑒 + 𝐵𝐵𝑦𝑦 

= 𝑃𝑃𝑃𝑃 + (𝑄𝑄𝑦𝑦𝑒𝑒 − 𝑄𝑄𝑄𝑄𝑒𝑒) × (
𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑦𝑦−1
𝑄𝑄𝑄𝑄𝑒𝑒 − 𝑄𝑄𝑄𝑄𝑦𝑦−1𝑒𝑒 ) 

The value for e is assumed to be .70 until the price reaches a point at which the unconventional 
recovery of natural gas becomes economic ($3.50 in real 1998 dollars), and 1.3 afterward, 
creating an inflection point in the curve.  


