Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

AEO2015 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis August 7, 2014 / Washington, DC

http://www.eia.gov/forecasts/aeo/workinggroup/

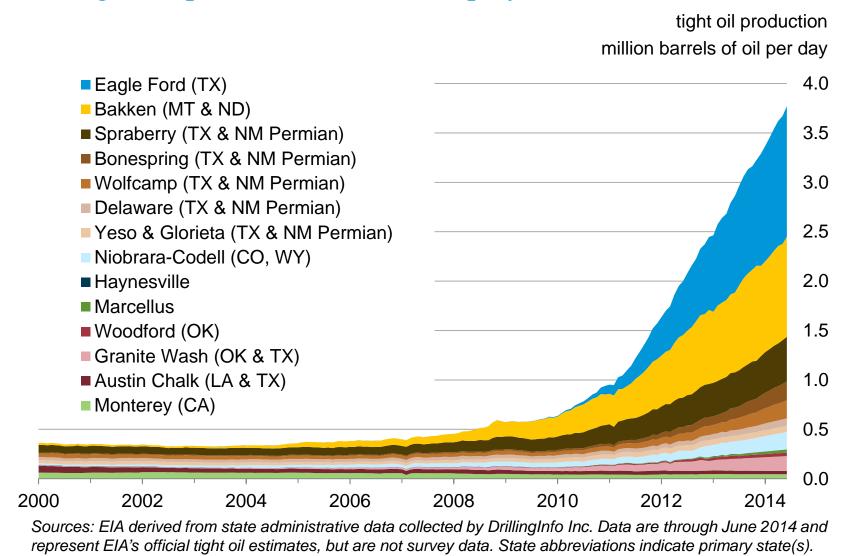
WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE

Changes in release cycles for EIA's AEO and IEO

- To focus more resources on rapidly changing energy markets and how they might evolve over the next few years, the U.S. Energy Information Administration is revising the schedule and approach for production of the *International Energy Outlook* (*IEO*) and the *Annual Energy Outlook* (*AEO*).
- Starting with IEO2013, which was released in July, 2013, EIA adopted a two-year production cycle for both the IEO and AEO.
- Under this approach, a full edition of the IEO and AEO will be produced in alternating years and an interim, shorter edition of each will be completed in the "off" years.

	<u>2015</u>	<u>2016</u>
International	Full Edition will be released	Shorter Edition will be
Energy	in the spring 2015	released in mid 2016,
Outlook		focusing on the liquids
		projection, which is used as
		part of the AEO2016.
		Summary tables and a short
		analysis will be included.
Annual	Shorter Edition will be	Full Edition will be released
Energy	released in late 2014 and will	in spring 2016, including
Outlook	only include the Reference,	analysis of energy issues and
	Low and High Economic	many alternative scenarios.
	Growth, and Low and High Oil	
	Price, and High Resource	
	cases. The shorter version will	
	include tables for these cases	
	and short discussions.	

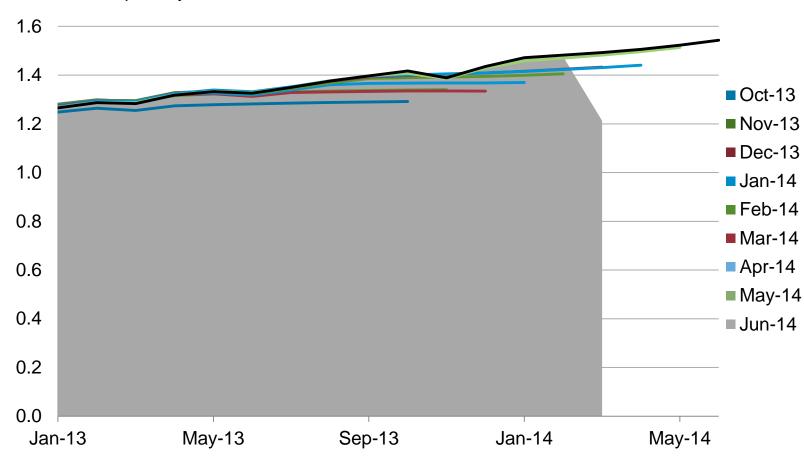
We welcome feedback on our assumptions and documentation


- The AEO Assumptions report http://www.eia.gov/forecasts/aeo/assumptions/
- Appendix 2.C and Appendix 2.D in the AEO Documentation http://www.eia.gov/forecasts/aeo/nems/documentation/ogsm/pdf/m063(2014).pdf
- We have restarted our working papers series http://www.eia.gov/workingpapers/
- And these working group meetings <u>http://www.eia.gov/forecasts/aeo/workinggroup/</u>

Overview

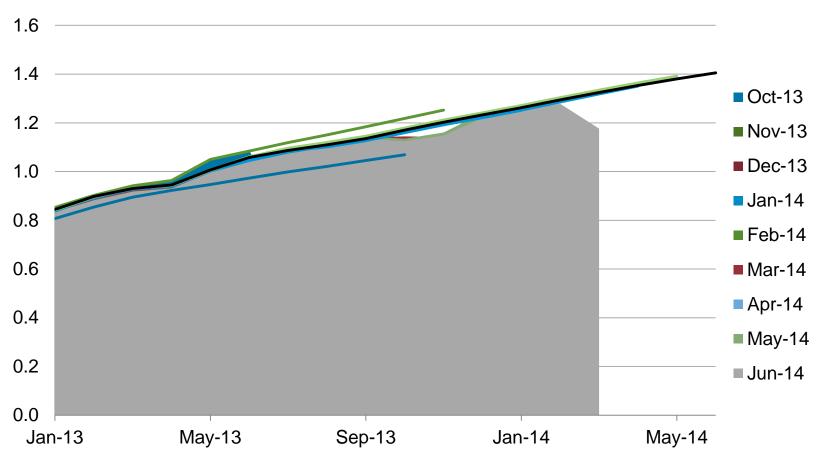
- What has changed and what we've learned: DPR analysis
- Most of the focus is on
 - NGPL production and ethane rejection
 - Crude oil quality measured by API gravity
 - Offshore discoveries and project start-up timing
 - Exports as LNG and to Mexico
- New modeling innovation adds GIS based geologic dependency tools (prototype on the Marcellus play)
- World oil price outlooks based on updated resource and demand analysis

OGSM / Upstream


U.S. tight oil production – selected plays

Data lags caused Permian drilling productivity to appear flat

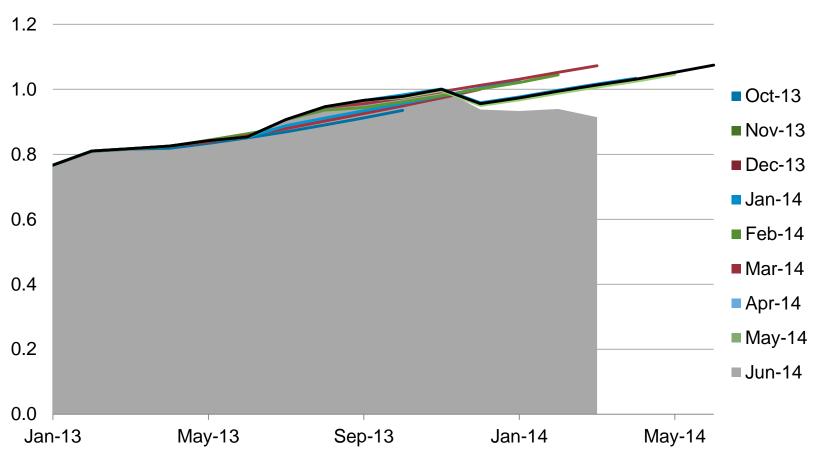
Permian region million barrels per day



Source: EIA Drilling Productivity Report

Eagle Ford – Early changes to regional boundary caused errors, forecasts stabilized with steady drilling activity, incr. productivity

Eagle Ford region million barrels per day



Source: EIA Drilling Productivity Report

Bakken – Changing completion techniques lead to mid-2013 growth, 'event' related decline in Dec. 2013, trends intact

Bakken region million barrels per day

Source: EIA Drilling Productivity Report

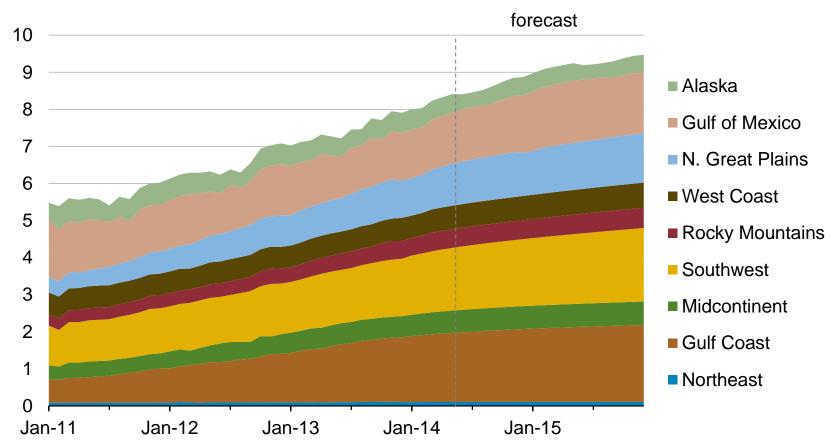
NGPL

Improved representation of NGPLs significantly change NGPL production

- Refinement of NGPL factors for producing reservoirs inprogress
 - Updated NGPL factors are based on data from EIA-64, 757, and 816 surveys
- Reviewed and enhanced the algorithm associated with NGPL production
 - NGPLs were being underreported in the past
- These changes will significantly change levels of NGPL production

API gravity

More than 60% of EIA's production growth forecast for 2014 and 2015 consists of sweet grades with API gravity of 40+


Annual change in U.S. crude oil production by type million barrels of oil per day forecast 1.2 1.0 ■ API 50+ API 45-50 8.0 ■ API 40-45 ■ API 40-50 sweet 0.6 ■ API 35-40 sweet ■ API 35-40 sour 0.4 ■ API 27-35 med-sour API 27-35 sour 0.2 California ■ API <27 sweet 0.0 ■ API <27 sour 2012 2013 2014 2015 -0.2

Source: EIA, DrillingInfo, Colorado DNR, Texas RRC. http://www.eia.gov/analysis/petroleum/crudetypes/

EIA forecast that U.S. crude oil production will grow from an average of 7.4 million b/d in 2013 to 9.2 million b/d in 2015

U.S. crude oil production million barrels of oil per day

Source: EIA, Short-Term Energy Outlook, May 2014

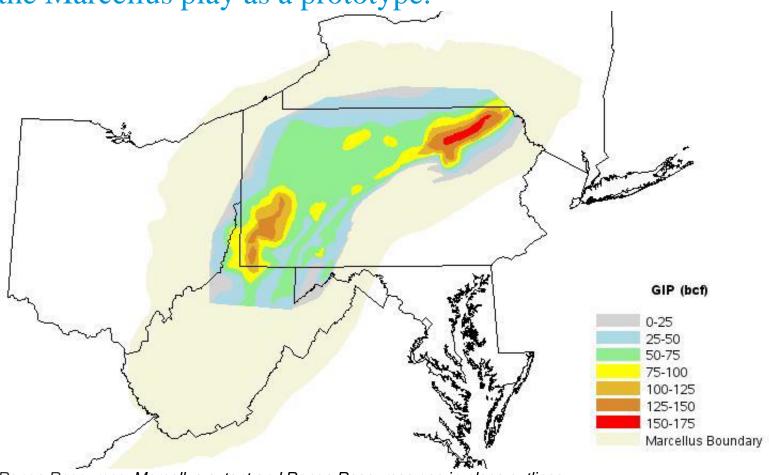
Lower 48 Offshore

Lower 48 offshore deepwater projects

BOEM Field name	Nickname	Water depth	Field Size (MMBoe)	Discovery Year	Start Year of Production
AC865	GOTCHA'	7844		2006	2014
DC004	AXE'	5831		2010	2015
DC048	DALMATIAN'	5876	89	2008	2015
DC353	'VICKSBURG'	7457	372	2009	2019
GB427	'CARDAMOM'	2720	182	2010	2015
GB463	BUSHWOOD'	2700	89	2009	2015
GB506	DANNY II'	2800	89	2012	2013
GB515	'OZONA'	3000	89	2008	2013
GB605	'WINTER'	3400	45	2009	2015
GB782	'ENTRADA'	4690	372	2000	2014
GC432	'SAMURAI'	3400	89	2009	2017
GC468	STAMPEDE-PONY'	3497	372	2006	2015
GC512	STAMPEDE-KNOTTY HEAD'	3557	372	2005	2014
GC683	CAESAR/TONGA'	4457	45	2006	2013
GC726	'WEST TONGA'	4674	372	2007	2013
GC859	'HEIDELBERG'	5000	182	2009	2016
KC102	'TIBER'	4132	691	2009	2016
KC292	'KASKIDA'	5860	691	2006	2016
KC736	'MOCCASIN'	6759	372	2011	2018
KC872	'BUCKSKIN'	6920	182	2009	2018
KC875	'LUCIUS'	7168	182	2009	2014
KC919	'HADRIAN NORTH'	7000	372	2010	2020
KC964	'HADRIAN SOUTH'	7586	182	2009	2016
LL370	'DIAMOND'	9975	45	2008	2018
LL400	'CHEYENNE EAST'	9200		2010	2013
MC199	'MANDY'	2478	182	2010	2013
MC392	'APPOMATTOX'	7217	691	2009	2019

Lower 48 offshore deepwater projects (cont.)

BOEM Field name	Nickname	Water depth	Field Size (MMBoe)	Discovery Year	Start Year of Production
MC519	'SANTIAGO'	6526		2011	2013
MC562	'ISABELA'	6535	45	2007	2013
MC563	'SANTA CRUZ'	6515		2009	2013
MC725	TUBULAR BELLS'	4334	89	2003	2014
MC754	'ANDUIN WEST'	2696	45	2008	2015
MC762	'DEIMOS SOUTH'	3122		2010	2015
MC771	'KODIAK'	4986	182	2008	2016
MC792	'WEST BOREAS'	3112	182	2004	2016
MC948	'FREEDOM '	6095		2008	2014
MC984	'VITO'	4038	182	2009	2016
SM217	'FLATROCK'	10		2007	2013
SM230	'DAVY JONES'	20		2010	2013
WR029	'BIG FOOT'	5235	182	2005	2015
WR052	'SHENANDOAH'	5750	182	2009	2017
WR508	'STONES'	9556	89	2005	2017
WR627	'JULIA'	7087	89	2007	2016
WR678	'ST. MALO'	7036	372	2003	2014
WR759	'JACK'	6963	372	2004	2014
WR848	'HAL'	7657	45	2008	2019
MC948	GUNFLINT'	6095	691	2008	2016
MC806	South Deimos'	3117		2010	2016
MC029	Cardona South			2014	2015
WC076	Tomcat			2014	2014
MC026	Amethyst			2014	2014
KC093	Gila	4900		2013	
MC782	Dantzler	6580		2013	
MC698	Big Bend			2012	
AT063	Telemark Phase 2				2014
	Troubadour	7273		2013	



Geologic dependencies and GIS

For AEO2014 we added county level EUR estimates, but there can be considerable variation across individual counties.

AEO2015 debuts GIS based geologic dependences for EURs

with the Marcellus play as a prototype.

Source: Range Resources, Marcellus extent and Range Resources gas in-place outlines

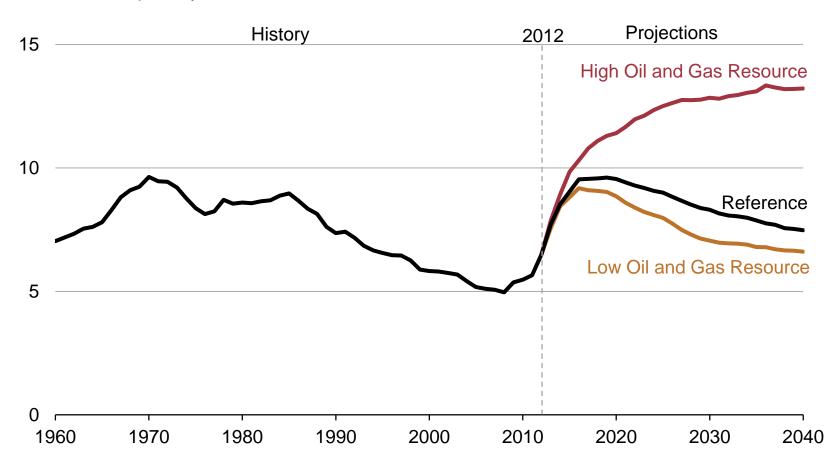
Adding geology improves EUR estimate quality, offers higher resolution. Cautionary tale: some apparent great EURs (Wyoming Co.) fizzle when look at extent of geology

County	Average EUR	Average EUR weighted by GIP tier	County	Average EUR	Average EUR weighted by GIP tier
ALLEGHENY	3.74	4.09	SUSQUEHANNA	6.14	4.92
ARMSTRONG	0.91	2.72	TIOGA	2.98	2.49
BEAVER	2.74	2.44	UNION	2.80	0.30
BEDFORD	1.16	0.85	VENANGO	0.83	2.49
BLAIR	1.34	1.23	WARREN	1.84	2.28
BRADFORD	5.70	3.94	WASHINGTON	2.45	3.69
BUTLER	1.74	2.72	WAYNE	7.49	1.34
CAMBRIA	1.46	2.43	WESTMORELAND	1.85	2.84
CAMERON	0.33	2.69	WYOMING	8.85	3.42

Resource and technology assumption changes from Reference to High Resource case

Tight oil specific (L48)	High Resource case
New plays	~57 billion barrels tight oil in plays not considered in the Reference case
Well spacing	100% more wells/area (50% reduction in acre spacing)
Interference effects (diminishing returns)	IP rate increased 20%, but decline curve shifted to lower estimated ultimate recovery (EUR) to 80% of Reference once drill # of Ref case wells in county
Technology: production	Well EURs 50% larger 1% increase/year with no end date

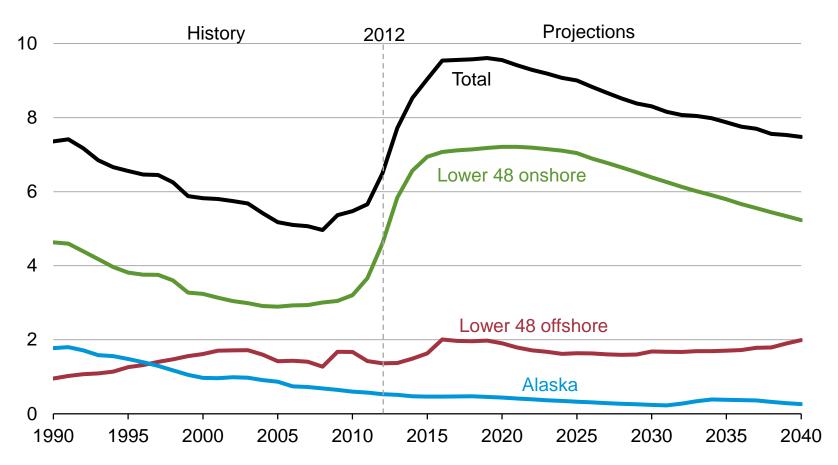
Other resources	High Resource case
Offshore	50% increase in undiscovered resources
Alaska: tight oil plays	Added 1.9 billion barrels
Alaska: undiscovered resources	50% increase in undiscovered resources


Development of Alaska North Slope shale oil production is not expected prior to 2040 because:

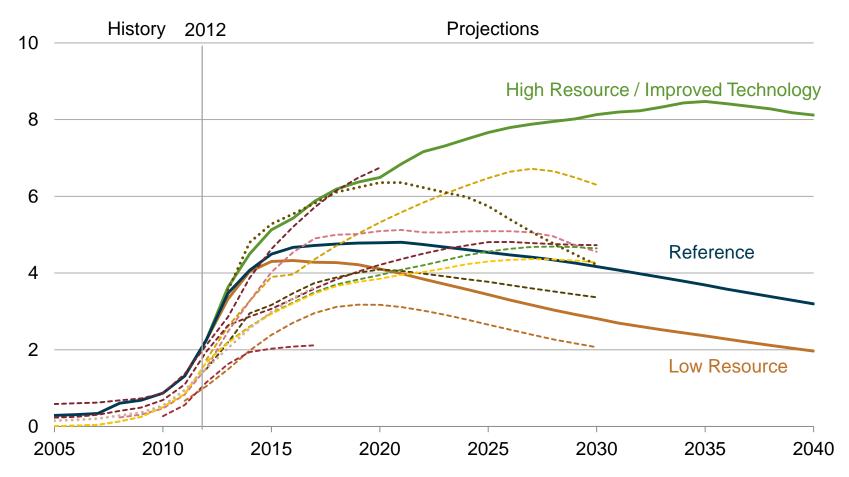
- low expected shale oil well recovery rates
- high drilling, completion, and infrastructure costs
- reduced wellhead oil prices
- natural gas and frack water disposal costs

Looking back at AEO2014 oil

U.S. crude oil production in three cases, 1960-2040

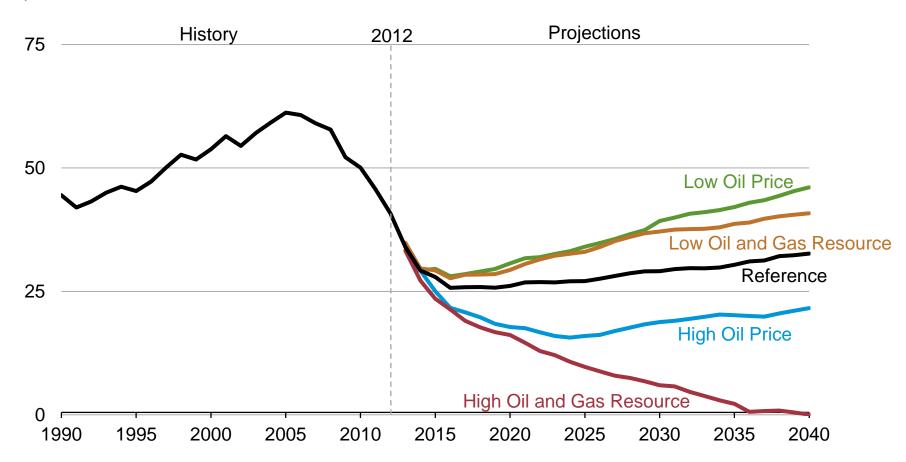

crude oil production million barrels per day

Domestic crude oil production by source in the Reference case, 1990-2040


crude oil production million barrels per day

Projected tight oil production in EIA's three *AEO2014* resource cases span the range of most other estimates

tight oil production million barrels per day



Source: EIA, Annual Energy Outlook 2014, and external forecasts

Net import share of U.S. petroleum and other liquid fuels consumption in five cases, 1990-2040

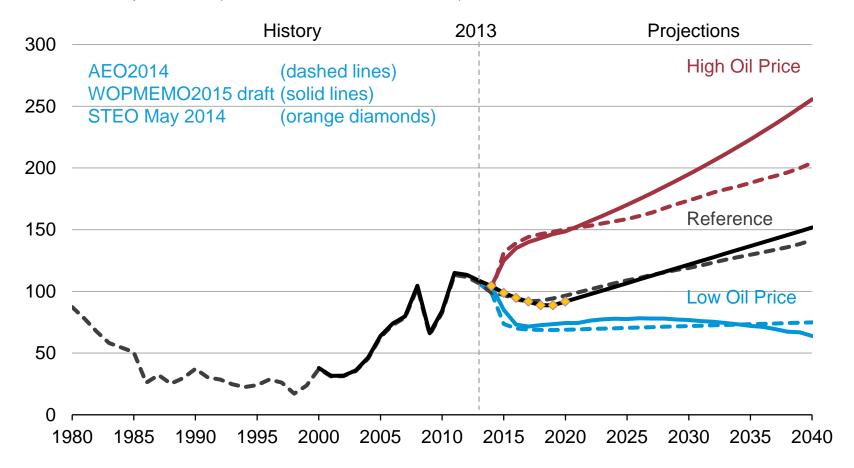
net import share percent

Questions

- We plan to add additional detail to standard tables:
 - Drop AD gas, and add shale gas from tight oil plays (tables 14, 71, 72)
 - Split offshore oil and gas production by state and federal (tables 14, 71, 72)
 - Split Alaska onshore vs offshore (will require some assumptions on state lands vs federal)
 - Add tables of API gravity by region?
 - Other tables changes?

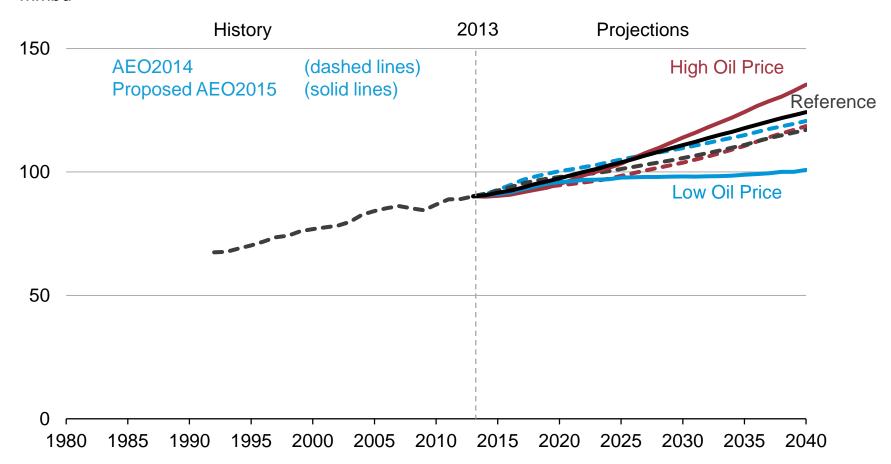
Table 14
Crude Oil Production (million barrels per day)
United States Total
Lower 48 Onshore
Tight Oil 3/
Carbon Dioxide Enhanced Oil Recovery
Other
Lower 48 Offshore
Federal
State
Alaska
Federal
State
Natural Gas Plant Liquids Production
United States Total
Lower 48 Onshore
Lower 48 Offshore
Alaska
Natural Gas
Dry Production (trillion cubic feet) 4/
United States Total
Lower 48 Onshore
Associated-Dissolved 5/
— Non-Associated
Tight Gas
Shale Gas (and Tight Oil plays)
Coalbed Methane
Other
Lower 48 Offshore
— Associated-Dissolved 5/
— Non-Associated
Federal
State
Alaska
Federal

Table 71
ower 48 Total Crude Oil Production
Lower 48 Onshore
Northeast
Gulf Coast
Midcontinent
Southwest
Rocky Mountain
West Coast
Lower 48 Offshore
Gulf
Shallow (State) <200 meters
Shallow (Federal) <200 meters
Deep (Federal)
Pacific
State
Federal
Atlantic
State
Federal



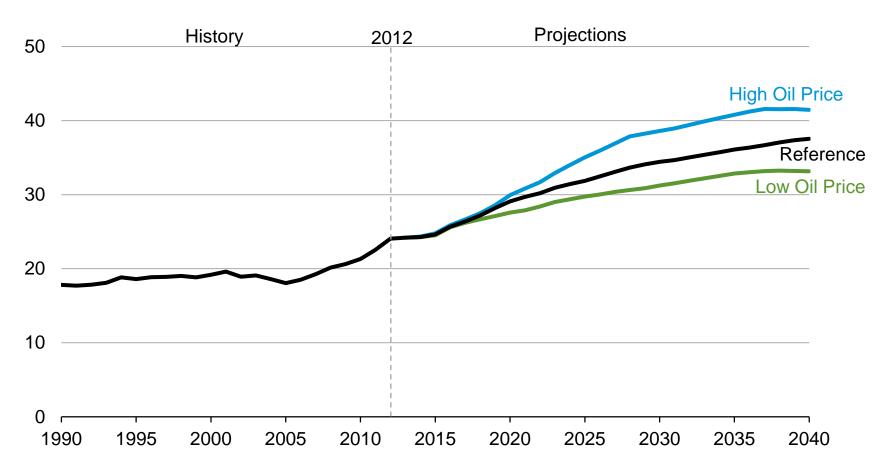
State

Oil price paths are higher than in AEO2014


Annual average spot price of Brent crude oil 2013 dollars per barrel (for the AEO2015 draft series)

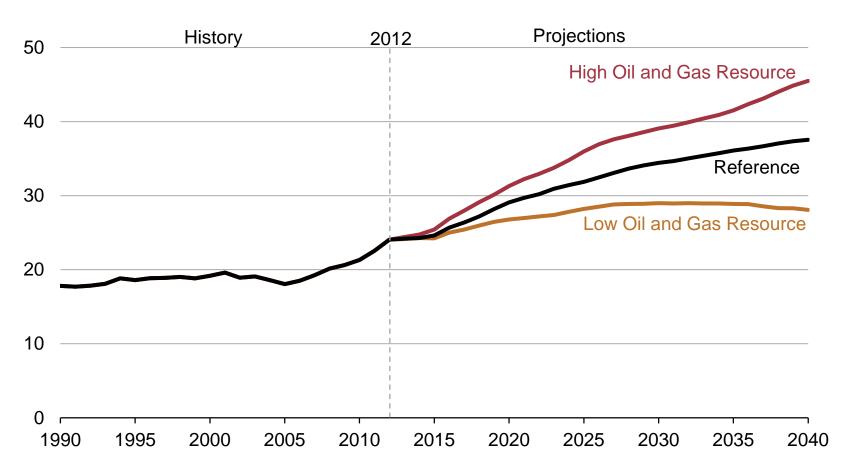
Liquids volumes in proposed *AEO2015* cases are wider relative to *AEO2014* cases

Annual world liquids demand mmbd

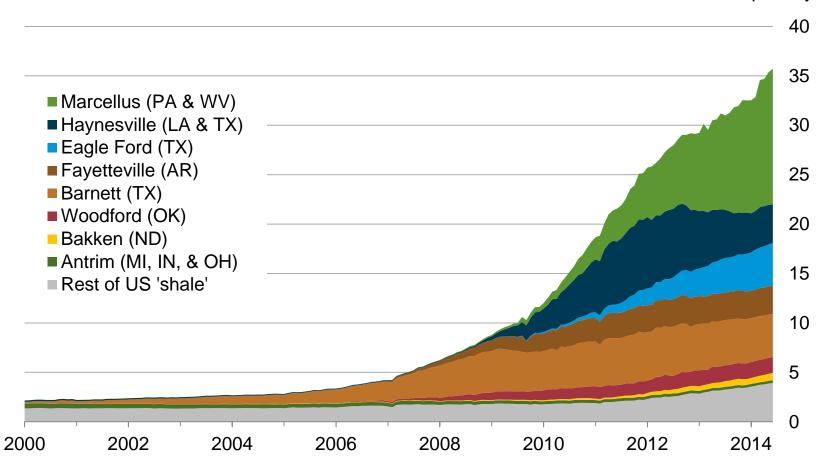


Looking back at AEO2014 natural gas

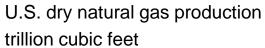
U.S. natural gas production in three cases, 1990-2040

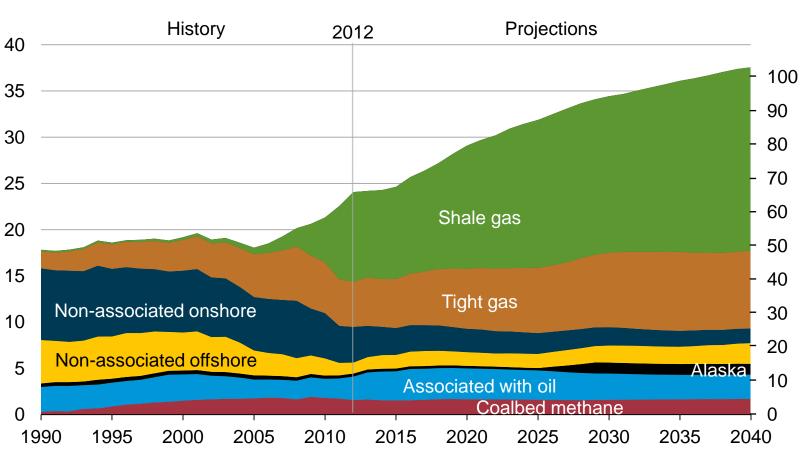

natural gas production trillion cubic feet

Total U.S. natural gas production in three cases, 1990-2040

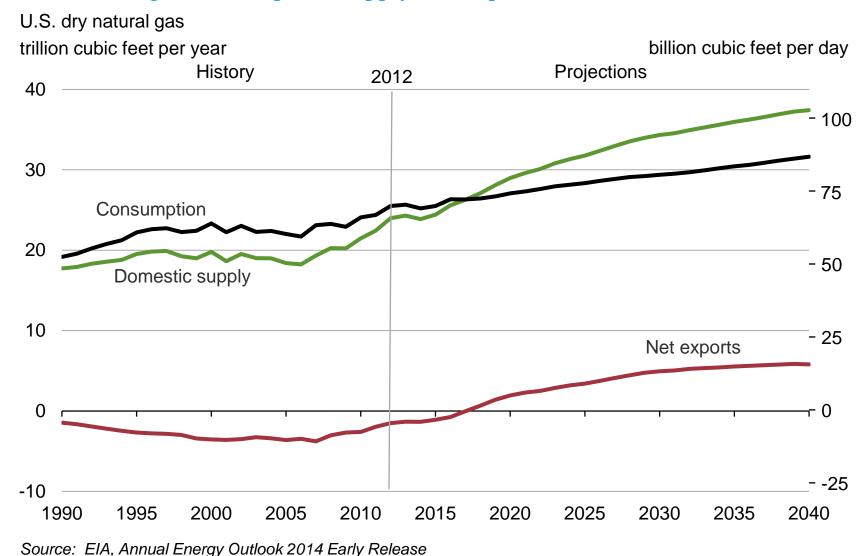

natural gas production trillion cubic feet

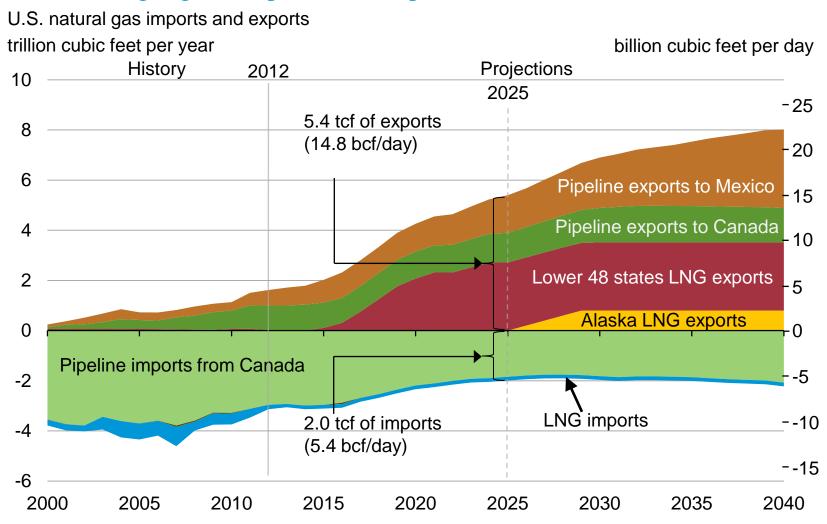
U.S. dry shale gas production


shale gas production (dry) billion cubic feet per day


Sources: EIA derived from state administrative data collected by DrillingInfo Inc. Data are through June 2014 and represent EIA's official shale gas estimates, but are not survey data. State abbreviations indicate primary state(s).

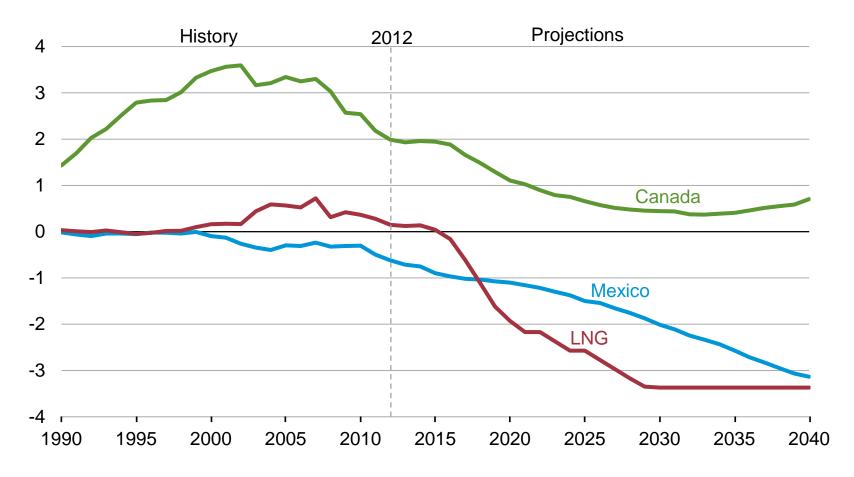
Shale gas leads U.S. production growth


billion cubic feet per day


NGTDM

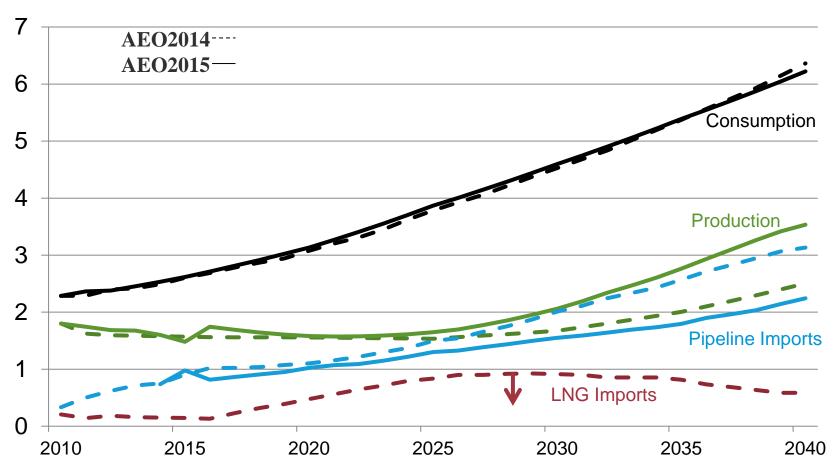
U.S. natural gas consumption, supply, net exports in AEO2014 Reference Case

U.S. natural gas gross exports (and imports) AEO2014 Reference case



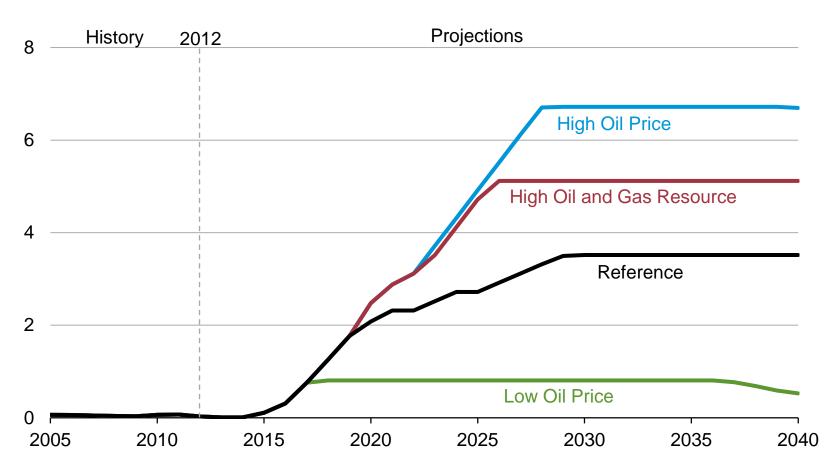
Source: EIA, Annual Energy Outlook 2014 Reference Case

U.S. net imports of natural gas by source in the AEO2014 Reference case


natural gas net imports trillion cubic feet

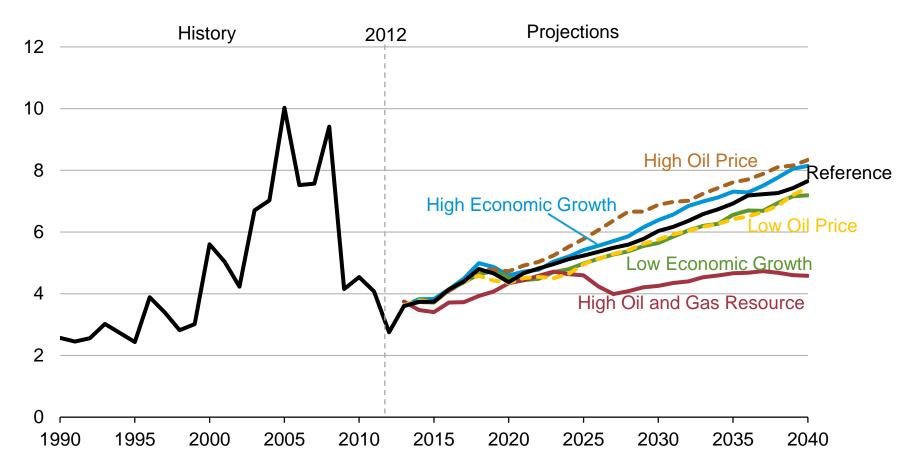
Mexico consumption, production, imports to Mexico, *AEO2014* and *AEO2015* (preliminary)

Trillion cubic feet



Source: Annual Energy Outlook 2014, preliminary AEO2015

U.S. exports of liquefied natural gas in four AEO2014 cases


natural gas exports trillion cubic feet

Annual average Henry Hub spot prices for natural gas in six AEO2014 cases

natural gas spot prices 2012 dollars per million Btu

