Macro-Industrial Working Group Meeting 2: Industrial updates and Preliminary results

Macro Industrial Working Group (MIWG) Industrial Team: Kelly Perl, Team Leader; Peter Gross, Susan Hicks, Paul Otis February 18, 2016 / Washington, DC

Preliminary Results. Do not Disseminate.

AEO2016 additions for the Industrial Demand Module

- Technology choice models complete; end of 5 year effort isseminate.
- Benchmarking improvements •
 - Individual industry benchmarking of tables complete —
 - On-going effort to coordinate reporting and benchmarking with refinery model (LFMM) —
- Data updates
- **Regulation updates**

Technology choice for process flow industries

- Allow for technology choice within individual *process flows* for energyintensive industries (e.g., anode production for primary aluminum smelting)
- All submodules complete: Cement & Lime (AEO2012), Aluminum (AEO2013), Glass (AEO2014), Steel (AEO2016), Pulp & Paper (AEO2016)
- Benefits of Technology choice models
 - Flexibility in modeling primary vs. secondary processing
 - Allows for an explicit industrial energy efficiency side case
 - Allows for technology deployment based on economics of capital and fuel costs

Data updates & regulation

- Data
 - Economic Census (2012) for nonmanufacturing completed
 - Calibration to achieve greater precision in historic data and benchmarking; will start with natural gas
 - Did complete 860/923 CHP data update this year for 2013 & 2014
- Regulation updates
 - Updated motor efficiencies to reflect latest motor efficiency standards & pump standards
 Clean Power Plan: Part of AEO2016 Reference Case; IDM does not model, but responds to price changes that other modules cause

Industrial results Excludes Refining

Industrial Team, MIWG #2, February 18, 2016

Industrial energy consumption higher for AEO2016 reference case on higher out-year shipments

eia Industrial Team, MIWG #2, February 18, 2016

Industrial natural gas consumption higher for AEO2016 reference case; bulk chemicals largely responsible

Source: AEO2016 runs Ref2016.0214a & Ref2016.0214a_nocpp; AEO2015 Reference case

Industrial natural gas consumption and petroleum shares increase modestly; other fuel shares decrease modestly

Preliminary AEO2016 Industrial Energy Consumption by Fuel

éia

AEO2016 CHP generation lower owing to model changes & new history

Source: Ref2016.0214a; AEO2015 Reference case

AEO2016 CHP generation – renewables have higher relative share because of paper modelling changes

Source: Ref2016.0214a

Individual industry results

Industrial Team, MIWG #2, February 18, 2016

Bulk chemicals energy consumption considerably higher in AEO2016; shipments higher in out years

Source: Ref2016.0214a; AEO2015 Reference case

Bulk chemicals feedstock consumption much higher in AEO2016, especially for natural gas

Source: Ref2016.0214a; AEO2015 Reference case

Paper shipments and accounting for recycled steam in new model explain AEO2016 vs. AEO2015 energy differences

Source: Ref2016.0214a; AEO2015 Reference case

Paper: Renewables largest share of energy consumption; relatively higher renewable CHP for AEO2016

Source: Ref2016.0214a

Iron & Steel: Lower near term shipments, stagnant blast furnace additions explain different AEO2016 energy consumption

Source: Ref2016.0214a; AEO2015 Reference case

Iron & Steel: Capacity mothballed in early prediction years, starts coming back online in early 2020s

Iron & Steel: almost all growth is in electric arc furnaces

Source: Ref2016.0214a

Iron & Steel: Direct Reduced Iron capacity adopted relatively early

DRI (Direct Reduced Iron) Capacity

Capacity Index 2015 Total =100 Not Disseminat Results. Do f Ingly re Source: Ref2016.0214a

Memo on this meeting and presentation can be found here in about a month: <u>http://www.eia.gov/forecasts/aeo/workinggroup/macroindustrial/</u>

Thank you for your attention!

Macro Team:

Kay Smith	(202) 586-1132	kay.smith@eia.gov
Vipin Arora	(202) 586-1048	vipin.arora@eia.gov
Russell Tarver	(202) 586-3991	russell.tarver@eia.gov
Elizabeth Sendich	(202) 586-7145	elizabeth.sendich@eia.gov
Industrial Team: EIA-OECEAIndustrialTeam@eia.gov		
Kelly Perl	(202) 586-1743	
Peter Gross	(202) 586-8822	
Susan Hicks	(202) 586-4388	
Paul Otis	(202) 586-2306	

